351
|
Kurkcuoglu O, Turgut OT, Cansu S, Jernigan RL, Doruker P. Focused functional dynamics of supramolecules by use of a mixed-resolution elastic network model. Biophys J 2009; 97:1178-87. [PMID: 19686666 DOI: 10.1016/j.bpj.2009.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/12/2009] [Accepted: 06/01/2009] [Indexed: 01/03/2023] Open
Abstract
The mixed-resolution elastic network model was introduced previously for computing the motions of a structure, which is described at different levels of detail in different parts, for example, with atomistic and residue-level regions. This method has proved to be an efficient tool to explore the collective dynamics of proteins with some atomistic details, which would be difficult to obtain with either conventional full-atom approaches or fully coarse-grained models. Understanding function often requires atomic detail, but not necessarily for the entire structure. In this study, the calculation of the interaction forces between different resolution regions for the hierarchical levels of coarse-graining is further elaborated on in the new approach by considering explicitly the atomic contacts in the crystal structure. The collective dynamics of the enzyme triosephosphate isomerase and its active site together with loop 6 motions are considered in detail. The supramolecular assemblage ribosome and local atomic motions in its "interesting" functional part-the decoding center-are investigated for the low frequency range of the spectrum with high computational efficiency. This new atom-based mixed coarse-graining approach can be effectively used to generate realistic high-resolution conformations of extremely large protein-DNA or RNA complexes by performing energy minimization on structures deformed along the normal modes of the elastic network model. The new model permits focusing on specific functional parts that move in coordination and response to the remainder of the entire structure.
Collapse
Affiliation(s)
- Ozge Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342, Bebek, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
352
|
Fraser CS. The molecular basis of translational control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:1-51. [PMID: 20374738 DOI: 10.1016/s1877-1173(09)90001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our current understanding of eukaryotic protein synthesis has emerged from many years of biochemical, genetic and biophysical approaches. Significant insight into the molecular details of the mechanism has been obtained, although there are clearly many aspects of the process that remain to be resolved. Importantly, our understanding of the mechanism has identified a number of key stages in the pathway that contribute to the regulation of general and gene-specific translation. Not surprisingly, translational control is now widely accepted to play a role in aspects of cell stress, growth, development, synaptic function, aging, and disease. This chapter reviews the mechanism of eukaryotic protein synthesis and its relevance to translational control.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
353
|
What recent ribosome structures have revealed about the mechanism of translation. Nature 2009; 461:1234-42. [DOI: 10.1038/nature08403] [Citation(s) in RCA: 499] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
|
354
|
GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol Cell 2009; 35:37-47. [PMID: 19595714 DOI: 10.1016/j.molcel.2009.06.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/08/2009] [Accepted: 06/05/2009] [Indexed: 11/22/2022]
Abstract
Recent structural data have revealed two distinct conformations of the ribosome during initiation. We employed single-molecule fluorescence methods to probe the dynamic relation of these ribosomal conformations in real time. In the absence of initiation factors, the ribosome assembles in two distinct conformations. The initiation factors guide progression of the ribosome to the conformation that can enter the elongation cycle. In particular, IF2 both accelerates the rate of subunit joining and actively promotes the transition to the elongation-competent conformation. Blocking GTP hydrolysis by IF2 results in 70S complexes formed in the conformation unable to enter elongation. We observe that rapid GTP hydrolysis by IF2 drives the transition to the elongation-competent conformation, thus committing the ribosome to enter the elongation cycle.
Collapse
|
355
|
Mohan S, Hsiao C, VanDeusen H, Gallagher R, Krohn E, Kalahar B, Wartell RM, Williams LD. Mechanism of RNA double helix-propagation at atomic resolution. J Phys Chem B 2009; 113:2614-23. [PMID: 19708202 DOI: 10.1021/jp8039884] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conversion of a nucleic acid from single strands to double strands is thought to involve slow nucleation followed by fast double-strand propagation. Here, for RNA double-strand propagation, we propose an atomic resolution reaction mechanism. This mechanism, called the stack-ratchet, is based on data-mining of three-dimensional structures and on available thermodynamic information. The stack-ratchet mechanism extends and adds detail to the classic zipper model proposed by Porschke (Porschke, D. Biophysical Chemistry 1974, 2, pp. 97-101). Porschke's zipper model describes the addition of a base pair to a nucleated helix in terms of a single type of elementary reaction; a concerted process in which the two bases, one from each strand, participate in the transition state. In the stack-ratchet mechanism proposed here a net base-pairing step consists of two elementary reactions. Motions of only one strand are required to achieve a given transition state. One elementary reaction preorganizes and stacks the 3' single-strand, driven by base--base stacking interactions. A second elementary reaction stacks the 5' strand and pairs it with the preorganized 3' strand. In the stack-ratchet mechanism, a variable length 3' stack leads the single-strand/double-strand junction. The stack-ratchet mechanism is not a two-state process. A base can be (i) unstacked and unpaired, (ii) stacked and paired, or (ii) stacked and unpaired (only on the 3' strand). The data suggests that helices of DNA and of RNA do not propagate by similar mechanisms.
Collapse
Affiliation(s)
- Srividya Mohan
- School of Chemistry and Biochemistry, Georgia Tech, Atlanta, Georgia 30332-0400, USA
| | | | | | | | | | | | | | | |
Collapse
|
356
|
Mazauric MH, Leroy JL, Visscher K, Yoshizawa S, Fourmy D. Footprinting analysis of BWYV pseudoknot-ribosome complexes. RNA (NEW YORK, N.Y.) 2009; 15:1775-1786. [PMID: 19625386 PMCID: PMC2743054 DOI: 10.1261/rna.1385409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 05/26/2009] [Indexed: 05/28/2023]
Abstract
Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. When the ribosome encounters the pseudoknot barrier that resists unraveling, transient mRNA-tRNA dissociation at the decoding site, results in a shift of the reading frame. The eukaryotic frameshifting pseudoknot from the beet western yellow virus (BWYV) has been well characterized, both structurally and functionally. Here, we show that in order to obtain eukaryotic levels of frameshifting efficiencies using prokaryotic Escherichia coli ribosomes, which depend upon the structural integrity of the BWYV pseudoknot, it is necessary to shorten the mRNA spacer between the slippery sequence and the pseudoknot by 1 or 2 nucleotides (nt). Shortening of the spacer is likely to re-establish tension and/or ribosomal contacts that were otherwise lost with the smaller E. coli ribosomes. Chemical probing experiments for frameshifting and nonframeshifting BWYV constructs were performed to investigate the structural integrity of the pseudoknot confined locally at the mRNA entry site. These data, obtained in the pretranslocation state, show a compact overall pseudoknot structure, with changes in the conformation of nucleotides (i.e., increase in reactivity to chemical probes) that are first "hit" by the ribosomal helicase center. Interestingly, with the 1-nt shortened spacer, this increase of reactivity extends to a downstream nucleotide in the first base pair (bp) of stem 1, consistent with melting of this base pair. Thus, the 3 bp that will unfold upon translocation are different in both constructs with likely consequences on unfolding kinetics.
Collapse
Affiliation(s)
- Marie-Hélène Mazauric
- Laboratoire de Chimie et Biologie Structurales, FRC3115, ICSN-CNRS, Gif-sur-Yvette 91190, France
| | | | | | | | | |
Collapse
|
357
|
Simonović M, Steitz TA. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:612-23. [PMID: 19595805 PMCID: PMC2783306 DOI: 10.1016/j.bbagrm.2009.06.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
The ribosome is a large ribonucleoprotein particle that translates genetic information encoded in mRNA into specific proteins. Its highly conserved active site, the peptidyl-transferase center (PTC), is located on the large (50S) ribosomal subunit and is comprised solely of rRNA, which makes the ribosome the only natural ribozyme with polymerase activity. The last decade witnessed a rapid accumulation of atomic-resolution structural data on both ribosomal subunits as well as on the entire ribosome. This has allowed studies on the mechanism of peptide bond formation at a level of detail that surpasses that for the classical protein enzymes. A current understanding of the mechanism of the ribosome-catalyzed peptide bond formation is the focus of this review. Implications on the mechanism of peptide release are discussed as well.
Collapse
Affiliation(s)
- Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Thomas A. Steitz
- Department of Chemistry, Yale University, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
- Howard Hughes Medical Institute at Yale University, New Haven, CT 06520
| |
Collapse
|
358
|
Affiliation(s)
- Alexander S Spirin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
359
|
Munro JB, Sanbonmatsu KY, Spahn CMT, Blanchard SC. Navigating the ribosome's metastable energy landscape. Trends Biochem Sci 2009; 34:390-400. [PMID: 19647434 PMCID: PMC2914510 DOI: 10.1016/j.tibs.2009.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms by which tRNA molecules enter and transit the ribosome during mRNA translation remains elusive. However, recent genetic, biochemical and structural studies offer important new findings into the ordered sequence of events underpinning the translocation process that help place the molecular mechanism within reach. In particular, new structural and kinetic insights have been obtained regarding tRNA movements through 'hybrid state' configurations. These dynamic views reveal that the macromolecular ribosome particle, like many smaller proteins, has an intrinsic capacity to reversibly sample an ensemble of similarly stable native states. Such perspectives suggest that substrates, factors and environmental cues contribute to translation regulation by helping the dynamic system navigate through a highly complex and metastable energy landscape.
Collapse
Affiliation(s)
- James B Munro
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
360
|
Frank J. Single-particle reconstruction of biological macromolecules in electron microscopy--30 years. Q Rev Biophys 2009; 42:139-58. [PMID: 20025794 PMCID: PMC2844734 DOI: 10.1017/s0033583509990059] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This essay gives the autho's personal account on the development of concepts underlying single-particle reconstruction, a technique in electron microscopy of macromolecular assemblies with a remarkable record of achievements as of late. The ribosome proved to be an ideal testing ground for the development of specimen preparation methods, cryo-EM techniques, and algorithms, with discoveries along the way as a rich reward. Increasingly, cryo-EM and single-particle reconstruction, in combination with classification techniques, is revealing dynamic information on functional molecular machines uninhibited by molecular contacts.
Collapse
Affiliation(s)
- Joachim Frank
- The Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
361
|
Simons SP, McLellan TJ, Aeed PA, Zaniewski RP, Desbonnet CR, Wondrack LM, Marr ES, Subashi TA, Dougherty TJ, Xu Z, Wang IK, LeMotte PK, Maguire BA. Purification of the large ribosomal subunit via its association with the small subunit. Anal Biochem 2009; 395:77-85. [PMID: 19646947 DOI: 10.1016/j.ab.2009.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 11/17/2022]
Abstract
We have developed an affinity purification of the large ribosomal subunit from Deinococcus radiodurans that exploits its association with FLAG-tagged 30S subunits. Thus, capture is indirect so that no modification of the 50S is required and elution is achieved under mild conditions (low magnesium) that disrupt the association, avoiding the addition of competitor ligands or coelution of common contaminants. Efficient purification of highly pure 50S is achieved, and the chromatography simultaneously sorts the 50S into three classes according to their association status (unassociated, loosely associated, or tightly associated), improving homogeneity.
Collapse
MESH Headings
- Bacterial Proteins/analysis
- Centrifugation, Density Gradient
- Chromatography, Affinity
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Databases, Protein
- Deinococcus/ultrastructure
- Gene Expression
- Magnesium Chloride
- Oligopeptides
- Peptide Fragments/analysis
- Peptides/genetics
- RNA, Bacterial/analysis
- RNA, Ribosomal/analysis
- Recombinant Fusion Proteins
- Ribosomal Proteins/analysis
- Ribosomal Proteins/genetics
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
- Spectrometry, Mass, Electrospray Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Samuel P Simons
- Department of Exploratory Medicinal Sciences, Pfizer Global Research and Development, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Sun FJ, Caetano-Anollés G. The evolutionary history of the structure of 5S ribosomal RNA. J Mol Evol 2009; 69:430-43. [PMID: 19639237 DOI: 10.1007/s00239-009-9264-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 07/03/2009] [Indexed: 02/05/2023]
Abstract
5S rRNA is the smallest nucleic acid component of the large ribosomal subunit, contributing to ribosomal assembly, stability, and function. Despite being a model for the study of RNA structure and RNA-protein interactions, the evolution of this universally conserved molecule remains unclear. Here, we explore the history of the three-domain structure of 5S rRNA using phylogenetic trees that are reconstructed directly from molecular structure. A total of 46 structural characters describing the geometry of 666 5S rRNAs were used to derive intrinsically rooted trees of molecules and molecular substructures. Trees of molecules revealed the tripartite nature of life. In these trees, superkingdom Archaea formed a paraphyletic basal group, while Bacteria and Eukarya were monophyletic and derived. Trees of molecular substructures supported an origin of the molecule in a segment that is homologous to helix I (alpha domain), its initial enhancement with helix III (beta domain), and the early formation of the three-domain structure typical of modern 5S rRNA in Archaea. The delayed formation of the branched structure in Bacteria and Eukarya lends further support to the archaeal rooting of the tree of life. Remarkably, the evolution of molecular interactions between 5S rRNA and associated ribosomal proteins inferred from a census of domain structure in hundreds of genomes established a tight relationship between the age of 5S rRNA helices and the age of ribosomal proteins. Results suggest 5S rRNA originated relatively quickly but quite late in evolution, at a time when primordial metabolic enzymes and translation machinery were already in place. The molecule therefore represents a late evolutionary addition to the ribosomal ensemble that occurred prior to the early diversification of Archaea.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 332 National Soybean Research Center, 1101 West Peabody Drive, Urbana, IL 61801, USA
| | | |
Collapse
|
363
|
Shi X, Chiu K, Ghosh S, Joseph S. Bases in 16S rRNA important for subunit association, tRNA binding, and translocation. Biochemistry 2009; 48:6772-82. [PMID: 19545171 PMCID: PMC2782751 DOI: 10.1021/bi900472a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomes are the cellular machinery responsible for protein synthesis. A well-orchestrated step in the elongation cycle of protein synthesis is the precise translocation of the tRNA-mRNA complex within the ribosome. Here we report the application of a new in vitro modification-interference method for the identification of bases in 16S rRNA that are essential for translocation. Our results suggest that conserved bases U56, U723, A1306, A1319, and A1468 in 16S rRNA are important for translocation. These five bases were deleted or mutated so their role in translation could be studied. Depending on the type of mutation, we observed inhibition of growth rate, subunit association, tRNA binding, and/or translocation. Interestingly, deletion of U56 or A1319 or mutation of A1319 to C showed a lethal phenotype and were defective in protein synthesis in vitro. Further analysis showed that deletion of U56 or A1319 caused defects in 30S subunit assembly, subunit association, and tRNA binding. In contrast, the A1319C mutation showed no defects in subunit association; however, the extent of tRNA binding and translocation was significantly reduced. These results show that conserved bases located as far as 100 A from the tRNA binding sites can be important for translation.
Collapse
Affiliation(s)
- Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Katie Chiu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Srikanta Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| |
Collapse
|
364
|
Poornam GP, Matsumoto A, Ishida H, Hayward S. A method for the analysis of domain movements in large biomolecular complexes. Proteins 2009; 76:201-12. [PMID: 19137621 DOI: 10.1002/prot.22339] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new method for the analysis of domain movements in large, multichain, biomolecular complexes is presented. The method is applicable to any molecule for which two atomic structures are available that represent a conformational change indicating a possible domain movement. The method is blind to atomic bonding and atom type and can, therefore, be applied to biomolecular complexes containing different constituent molecules such as protein, RNA, or DNA. At the heart of the method is the use of blocks located at grid points spanning the whole molecule. The rotation vector for the rotation of atoms from each block between the two conformations is calculated. Treating components of these vectors as coordinates means that each block is associated with a point in a "rotation space" and that blocks with atoms that rotate together, perhaps as part of the same rigid domain, will have colocated points. Thus a domain can be identified from the clustering of points from blocks that span it. Domain pairs are accepted for analysis of their relative movements in terms of screw axes based upon a set of reasonable criteria. Here, we report on the application of the method to biomolecules covering a considerable size range: hemoglobin, liver alcohol dehydrogenase, S-Adenosylhomocysteine hydrolase, aspartate transcarbamylase, and the 70S ribosome. The results provide a depiction of the conformational change within each molecule that is easily understood, giving a perspective that is expected to lead to new insights. Of particular interest is the allosteric mechanism in some of these molecules. Results indicate that common boundaries between subunits and domains are good regions to focus on as movement in one subunit can be transmitted to another subunit through such interfaces.
Collapse
Affiliation(s)
- Guru Prasad Poornam
- School of Computing Sciences and School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
365
|
Sternberg SH, Fei J, Prywes N, McGrath KA, Gonzalez RL. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat Struct Mol Biol 2009; 16:861-8. [PMID: 19597483 DOI: 10.1038/nsmb.1622] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/21/2009] [Indexed: 11/09/2022]
Abstract
Characterizing the structural dynamics of the translating ribosome remains a major goal in the study of protein synthesis. Deacylation of peptidyl-tRNA during translation elongation triggers fluctuations of the pretranslocation ribosomal complex between two global conformational states. Elongation factor G-mediated control of the resulting dynamic conformational equilibrium helps to coordinate ribosome and tRNA movements during elongation and is thus a crucial mechanistic feature of translation. Beyond elongation, deacylation of peptidyl-tRNA also occurs during translation termination, and this deacylated tRNA persists during ribosome recycling. Here we report that specific regulation of the analogous conformational equilibrium by translation release and ribosome recycling factors has a critical role in the termination and recycling mechanisms. Our results support the view that specific regulation of the global state of the ribosome is a fundamental characteristic of all translation factors and a unifying theme throughout protein synthesis.
Collapse
|
366
|
Abstract
In the cell, proteins are synthesized by ribosomes in a multi-step process called translation. The ribosome translocates along the messenger RNA to read the codons that encode the amino acid sequence of a protein. Elongation factors, including EF-G and EF-Tu, are used to catalyze the process. Recently, we have shown that translation can be followed at the single-molecule level using optical tweezers; this technique allows us to study the kinetics of translation by measuring the lifetime the ribosome spends at each codon. Here, we analyze the data from single-molecule experiments and fit the data with simple kinetic models. We also simulate the translation kinetics based on a multi-step mechanism from ensemble kinetic measurements. The mean lifetimes from the simulation were consistent with our experimental single-molecule measurements. We found that the calculated lifetime distributions were fit in general by equations with up to five rate-determining steps. Two rate-determining steps were only obtained at low concentrations of elongation factors. These analyses can be used to design new single-molecule experiments to better understand the kinetics and mechanism of translation.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA.
| | | |
Collapse
|
367
|
Ticu C, Nechifor R, Nguyen B, Desrosiers M, Wilson KS. Conformational changes in switch I of EF-G drive its directional cycling on and off the ribosome. EMBO J 2009; 28:2053-65. [PMID: 19536129 DOI: 10.1038/emboj.2009.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/26/2009] [Indexed: 11/09/2022] Open
Abstract
We have trapped elongation factor G (EF-G) from Escherichia coli in six, functionally defined states, representing intermediates in its unidirectional catalytic cycle, which couples GTP hydrolysis to tRNA-mRNA translocation in the ribosome. By probing EF-G with trypsin in each state, we identified a substantial conformational change involving its conserved switch I (sw1) element, which contacts the GTP substrate. By attaching FeBABE (a hydroxyl radical generating probe) to sw1, we could monitor sw1 movement (by approximately 20 A), relative to the 70S ribosome, during the EF-G cycle. In free EF-G, sw1 is disordered, particularly in GDP-bound and nucleotide-free states. On EF-G*GTP binding to the ribosome, sw1 becomes structured and tucked inside the ribosome, thereby locking GTP onto EF-G. After hydrolysis and translocation, sw1 flips out from the ribosome, greatly accelerating release of GDP and EF-G from the ribosome. Collectively, our results support a central role of sw1 in driving the EF-G cycle during protein synthesis.
Collapse
Affiliation(s)
- Cristina Ticu
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
368
|
Qin H, Grigoriadou C, Cooperman BS. Interaction of IF2 with the ribosomal GTPase-associated center during 70S initiation complex formation. Biochemistry 2009; 48:4699-706. [PMID: 19366171 PMCID: PMC3084514 DOI: 10.1021/bi900222e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Addition of an Escherichia coli 50S subunit (50S(Cy5)) containing a Cy5-labeled L11 N-terminal domain (L11-NTD) within the GTPase-associated center (GAC) to an E. coli 30S initiation complex (30SIC(Cy3)) containing Cy3-labeled initiation factor 2 complexed with GTP leads to rapid development of a FRET signal during formation of the 70S initiation complex (70SIC). Initiation factor 2 (IF2) and elongation factor G (EF-G) induce similar changes in ribosome structure. Here we show that such similarities are maintained on a dynamic level as well. Thus, movement of IF2 toward L11-NTD after initial 70S ribosome formation follows GTP hydrolysis and precedes P(i) release, paralleling movement of EF-G following its binding to the ribosome [Seo, H., et al. (2006) Biochemistry 45, 2504-2514], and in both cases, the rate of such movement is slowed if GTP hydrolysis is prevented. The 30SIC(Cy3):50S(Cy5) FRET signal also provides a sensitive probe of the ability of initiation factor 3 to discriminate between a canonical and a noncanonical initiation codon during 70SIC formation. We employ Bacillus stearothermophilus IF2 as a substitute for E. coli IF2 to take advantage of the higher stability of the complexes it forms with E. coli ribosomes. While Bst-IF2 is fully functional in formation of E. coli 70SIC, relative reactivities toward dipeptide formation of 70SICs formed with the two IF2s suggest that the Bst-IF2.GDP complex is more difficult to displace from the GAC than the E. coli IF2.GDP complex.
Collapse
Affiliation(s)
- Haiou Qin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA 19104-6323
| | | | - Barry S. Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA 19104-6323
| |
Collapse
|
369
|
Kurkcuoglu O, Kurkcuoglu Z, Doruker P, Jernigan RL. Collective dynamics of the ribosomal tunnel revealed by elastic network modeling. Proteins 2009; 75:837-45. [PMID: 19004020 PMCID: PMC2774139 DOI: 10.1002/prot.22292] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The collective dynamics of the nascent polypeptide exit tunnel are investigated with the computationally efficient elastic network model using normal mode analysis. The calculated normal modes are considered individually and in linear combinations with different coefficients mimicking the phase angles between modes, in order to follow the mechanistic motions of tunnel wall residues. The low frequency fluctuations indicate three distinct regions along the tunnel-the entrance, the neck, and the exit-each having distinctly different domain motions. Generally, the lining of the entrance region moves in the exit direction, with the exit region having significantly larger motions, but in a perpendicular direction, whereas the confined neck region has rotational motions. Especially the universally conserved extensions of ribosomal proteins L4 and L22 located at the narrowest and mechanistically strategic region of tunnel undergo generally anti- or non-correlated motions, which may have an important role in nascent polypeptide gating mechanism. These motions appear to be sufficiently robust so as to be unaffected by the presence of a peptide chain in the tunnel.
Collapse
Affiliation(s)
- Ozge Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342, Bebek, Istanbul, Turkey
| | - Zeynep Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342, Bebek, Istanbul, Turkey
| | - Pemra Doruker
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342, Bebek, Istanbul, Turkey
| | - Robert L. Jernigan
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011-3020, USA
- L.H. Baker Center for Bioinformatics and Biological Statistics Iowa State University, Ames, IA 50011-3020, USA
| |
Collapse
|
370
|
Shoji S, Abdi NM, Bundschuh R, Fredrick K. Contribution of ribosomal residues to P-site tRNA binding. Nucleic Acids Res 2009; 37:4033-42. [PMID: 19417061 PMCID: PMC2709574 DOI: 10.1093/nar/gkp296] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Structural studies have revealed multiple contacts between the ribosomal P site and tRNA, but how these contacts contribute to P-tRNA binding remains unclear. In this study, the effects of ribosomal mutations on the dissociation rate (k(off)) of various tRNAs from the P site were measured. Mutation of the 30S P site destabilized tRNAs to various degrees, depending on the mutation and the species of tRNA. These data support the idea that ribosome-tRNA interactions are idiosyncratically tuned to ensure stable binding of all tRNA species. Unlike deacylated elongator tRNAs, N-acetyl-aminoacyl-tRNAs and tRNA(fMet) dissociated from the P site at a similar low rate, even in the presence of various P-site mutations. These data provide evidence for a stability threshold for P-tRNA binding and suggest that ribosome-tRNA(fMet) interactions are uniquely tuned for tight binding. The effects of 16S rRNA mutation G1338U were suppressed by 50S E-site mutation C2394A, suggesting that G1338 is particularly important for stabilizing tRNA in the P/E site. Finally, mutation C2394A or the presence of an N-acetyl-aminoacyl group slowed the association rate (k(on)) of tRNA dramatically, suggesting that deacylated tRNA binds the P site of the ribosome via the E site.
Collapse
Affiliation(s)
- Shinichiro Shoji
- Department of Microbiology, The Ohio State University, 484 W., 12th Ave, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
371
|
Constraint counting on RNA structures: linking flexibility and function. Methods 2009; 49:181-8. [PMID: 19398009 DOI: 10.1016/j.ymeth.2009.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 01/10/2023] Open
Abstract
RNA structures are highly flexible biomolecules that can undergo dramatic conformational changes required to fulfill their diverse functional roles. Constraint counting on a topological network representation of an RNA structure can provide very efficiently detailed insights into the intrinsic flexibility characteristics of the biomolecule. In the network, vertices represent atoms and edges represent covalent and strong non-covalent bonds and angle constraints. Initially, the method has been successfully applied to identify rigid and flexible regions in proteins. Here, we present recent progress in extending the approach to RNA structures. As a case study, we analyze stability characteristics of the ribosomal exit tunnel and relate these findings to the tunnel's active role in co-translational processes.
Collapse
|
372
|
Savelsbergh A, Rodnina MV, Wintermeyer W. Distinct functions of elongation factor G in ribosome recycling and translocation. RNA (NEW YORK, N.Y.) 2009; 15:772-80. [PMID: 19324963 PMCID: PMC2673078 DOI: 10.1261/rna.1592509] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 02/09/2009] [Indexed: 05/22/2023]
Abstract
Elongation factor G (EF-G) promotes the translocation step in bacterial protein synthesis and, together with ribosome recycling factor (RRF), the disassembly of the post-termination ribosome. Unlike translocation, ribosome disassembly strictly requires GTP hydrolysis by EF-G. Here we report that ribosome disassembly is strongly inhibited by vanadate, an analog of inorganic phosphate (Pi), indicating that Pi release is required for ribosome disassembly. In contrast, the function of EF-G in single-round translocation is not affected by vanadate, while the turnover reaction is strongly inhibited. We also show that the antibiotic fusidic acid blocks ribosome disassembly by EF-G/RRF at a 1000-fold lower concentration than required for the inhibition of EF-G turnover in vitro and close to the effective inhibitory concentration in vivo, suggesting that the antimicrobial activity of fusidic acid is primarily due to the direct inhibition of ribosome recycling. Our results indicate that conformational coupling between EF-G and the ribosome is principally different in translocation and ribosome disassembly. Pi release is not required for the mechanochemical function of EF-G in translocation, whereas the interactions between RRF and EF-G introduce tight coupling between the conformational change of EF-G induced by Pi release and ribosome disassembly.
Collapse
Affiliation(s)
- Andreas Savelsbergh
- Institute of Molecular Biology, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | |
Collapse
|
373
|
Weimer KME, Shane BL, Brunetto M, Bhattacharyya S, Hati S. Evolutionary basis for the coupled-domain motions in Thermus thermophilus leucyl-tRNA synthetase. J Biol Chem 2009; 284:10088-99. [PMID: 19188368 PMCID: PMC2665063 DOI: 10.1074/jbc.m807361200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 01/30/2009] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases are multidomain proteins that catalyze the covalent attachment of amino acids to their cognate transfer RNA. Various domains of an aminoacyl-tRNA synthetase perform their specific functions in a highly coordinated manner to maintain high accuracy in protein synthesis in cells. The coordination of their function, therefore, requires communication between domains. In this study we explored the relevance of enzyme motion in domain-domain communications. Specifically, we attempted to probe whether the communication between distantly located domains of a multidomain protein is accomplished through a coordinated movement of structural elements. We investigated the collective motion in Thermus thermophilus leucyl-tRNA synthetase by studying the low frequency normal modes. We identified the mode that best described the experimentally observed conformational changes of T. thermophilus leucyl-tRNA synthetase upon substrate binding and analyzed the correlated and anticorrelated motions between different domains. Furthermore, we used statistical coupling analysis to explore if the amino acid pairs and/or clusters whose motions are thermally coupled have also coevolved. Our study demonstrates that a small number of residues belong to the category whose coupled thermal motions correspond to evolutionary coupling as well. These residue clusters constitute a distinguished set of interacting networks that are sparsely distributed in the domain interface. Residues of these networking clusters are within van der Waals contact, and we suggest that they are critical in the propagation of long range mechanochemical motions in T. thermophilus leucyl-tRNA synthetase.
Collapse
|
374
|
Prestele M, Vogel F, Reichert AS, Herrmann JM, Ott M. Mrpl36 is important for generation of assembly competent proteins during mitochondrial translation. Mol Biol Cell 2009; 20:2615-25. [PMID: 19339279 DOI: 10.1091/mbc.e08-12-1162] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The complexes of the respiratory chain represent mosaics of nuclear and mitochondrially encoded components. The processes by which synthesis and assembly of the various subunits are coordinated remain largely elusive. During evolution, many proteins of the mitochondrial ribosome acquired additional domains pointing at specific properties or functions of the translation machinery in mitochondria. Here, we analyzed the function of Mrpl36, a protein associated with the large subunit of the mitochondrial ribosome. This protein, homologous to the ribosomal protein L31 from bacteria, contains a mitochondria-specific C-terminal domain that is not required for protein synthesis per se; however, its absence decreases stability of Mrpl36. Cells lacking this C-terminal domain can still synthesize proteins, but these translation products fail to be properly assembled into respiratory chain complexes and are rapidly degraded. Surprisingly, overexpression of Mrpl36 seems to even increase the efficiency of mitochondrial translation. Our data suggest that Mrpl36 plays a critical role during translation that determines the rate of respiratory chain assembly. This important function seems to be carried out by a stabilizing activity of Mrpl36 on the interaction between large and small ribosomal subunits, which could influence accuracy of protein synthesis.
Collapse
Affiliation(s)
- Martin Prestele
- Zellbiologie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
375
|
A thermal ratchet model of tRNA–mRNA translocation by the ribosome. Biosystems 2009; 96:19-28. [DOI: 10.1016/j.biosystems.2008.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/23/2022]
|
376
|
Vokácová Z, Budĕsínský M, Rosenberg I, Schneider B, Sponer J, Sychrovský V. Structure and dynamics of the ApA, ApC, CpA, and CpC RNA dinucleoside monophosphates resolved with NMR scalar spin-spin couplings. J Phys Chem B 2009; 113:1182-91. [PMID: 19128019 DOI: 10.1021/jp809762b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The measured NMR scalar coupling constants (J-couplings) in the XpY, (X,Y = adenine (A) or cytosine (C)) RNA dinucleoside monophosphates (DMPs) were assigned to the backbone (alpha, beta, gamma, delta, epsilon, zeta) and glycosidic (chi) torsion angles in order to resolve the global structure of the DMP molecules. The experimental J-couplings were correlated with the theoretical J-couplings obtained as the dynamical averages of the Karplus equations relevant to the torsion angles. The dynamical information was captured using the molecular dynamics (MD) calculation method. The individual conformational flexibility of the four DMP molecules was thus consistently probed with the NMR J-couplings. The calculated structure and flexibility of the DMP molecules depend on the sequence considered with respect to the 5' and 3' end of the DMP molecules (5'-XpY-3'). The dynamical characteristics of the two nucleosides are not equivalent even for the ApA and CpC homologues. An enhancement of the sampling in the MD calculations was achieved using five different starting structural motives classified previously for the RNA backbone in the solid phase (Richardson et al. RNA 2008, 14, 465-481). The initial structures were selected on the basis of a database search for RNA oligonucleotides. Frequent interconversions between the conformers during the MD calculations were actually observed. The structural interpretation of the NMR spectroscopic data based on the MD simulations combined with the Karplus equations indicates that the dominant conformation of the DMP molecules in solution corresponds to the A-RNA form. For 52% of the total simulation time (1000 ns), the zeta(g-)-alpha(g-)-gamma(g+) backbone topology corresponding to the canonical A-RNA form was observed, with roughly equally populated C2'- and C3'-endo sugar puckers interconverting on the nanosecond time scale. However, other noncanonical patterns were also found and thus indicate their relatively high potential to be populated in the dynamical regime. For approximately 72% of the time portion when the A-RNA of the zeta-alpha-gamma combination occurred, the nucleobases were classified as being mutually stacked. The geometries of the nucleobases classified in this work as stacked were significantly more populated for the DMP molecules with adenosine at the 3' end (ApA and CpA DMPs) than the ApC or CpC RNA molecules with C at the 3' end.
Collapse
Affiliation(s)
- Zuzana Vokácová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
377
|
Abstract
Ribonucleoproteins (RNPs) mediate key cellular functions such as gene expression and its regulation. Whereas most RNP enzymes are stable in composition and harbor preformed active sites, the spliceosome, which removes noncoding introns from precursor messenger RNAs (pre-mRNAs), follows fundamentally different strategies. In order to provide both accuracy to the recognition of reactive splice sites in the pre-mRNA and flexibility to the choice of splice sites during alternative splicing, the spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling.
Collapse
Affiliation(s)
- Markus C Wahl
- Makromolekulare Röntgenkristallographie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
378
|
Connell SR, Topf M, Qin Y, Wilson DN, Mielke T, Fucini P, Nierhaus KH, Spahn CMT. A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation. Nat Struct Mol Biol 2009; 15:910-5. [PMID: 19172743 DOI: 10.1038/nsmb.1469] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
EF4 (LepA) is an almost universally conserved translational GTPase in eubacteria. It seems to be essential under environmental stress conditions and has previously been shown to back-translocate the tRNAs on the ribosome, thereby reverting the canonical translocation reaction. In the current work, EF4 was directly visualized in the process of back-translocating tRNAs by single-particle cryo-EM. Using flexible fitting methods, we built a model of ribosome-bound EF4 based on the cryo-EM map and a recently published unbound EF4 X-ray structure. The cryo-EM map establishes EF4 as a noncanonical elongation factor that interacts not only with the elongating ribosome, but also with the back-translocated tRNA in the A-site region, which is present in a previously unseen, intermediate state and deviates markedly from the position of a canonical A-tRNA. Our results, therefore, provide insight into the underlying structural principles governing back-translocation.
Collapse
Affiliation(s)
- Sean R Connell
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
379
|
Following movement of the L1 stalk between three functional states in single ribosomes. Proc Natl Acad Sci U S A 2009; 106:2571-6. [PMID: 19190181 DOI: 10.1073/pnas.0813180106] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The L1 stalk is a mobile domain of the large ribosomal subunit E site that interacts with the elbow of deacylated tRNA during protein synthesis. Here, by using single-molecule FRET, we follow the real-time dynamics of the L1 stalk and observe its movement relative to the body of the large subunit between at least 3 distinct conformational states: open, half-closed, and fully closed. Pretranslocation ribosomes undergo spontaneous fluctuations between the open and fully closed states. In contrast, posttranslocation ribosomes containing peptidyl-tRNA and deacylated tRNA in the classical P/P and E/E states, respectively, are fixed in the half-closed conformation. In ribosomes with a vacant E site, the L1 stalk is observed either in the fully closed or fully open conformation. Several lines of evidence show that the L1 stalk can move independently of intersubunit rotation. Our findings support a model in which the mobility of the L1 stalk facilitates binding, movement, and release of deacylated tRNA by remodeling the structure of the 50S subunit E site between 3 distinct conformations, corresponding to the E/E vacant, P/E hybrid, and classical states.
Collapse
|
380
|
Blanchard SC. Single-molecule observations of ribosome function. Curr Opin Struct Biol 2009; 19:103-9. [PMID: 19223173 PMCID: PMC2673810 DOI: 10.1016/j.sbi.2009.01.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Single-molecule investigations promise to greatly advance our understanding of basic and regulated ribosome functions during the process of translation. Here, recent progress towards directly imaging the elemental translation elongation steps using fluorescence resonance energy transfer (FRET)-based imaging methods is discussed, which provide striking evidence of the highly dynamic nature of the ribosome. In this view, global rates and fidelities of protein synthesis reactions may be regulated by interactions of the ribosome with mRNA, tRNA, translation factors and potentially many other cellular ligands that modify intrinsic conformational equilibria in the translating particle. Future investigations probing this model must aim to visualize translation processes from multiple structural and kinetic perspectives simultaneously, to provide direct correlations between factor binding and conformational events.
Collapse
Affiliation(s)
- Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, United States.
| |
Collapse
|
381
|
Abstract
Programmed ribosomal frameshifting (PRF) is one of the multiple translational recoding processes that fundamentally alters triplet decoding of the messenger RNA by the elongating ribosome. The ability of the ribosome to change translational reading frames in the -1 direction (-1 PRF) is employed by many positive strand RNA viruses, including economically important plant viruses and many human pathogens, such as retroviruses, e.g., HIV-1, and coronaviruses, e.g., the causative agent of severe acute respiratory syndrome (SARS), in order to properly express their genomes. -1 PRF is programmed by a bipartite signal embedded in the mRNA and includes a heptanucleotide "slip site" over which the paused ribosome "backs up" by one nucleotide, and a downstream stimulatory element, either an RNA pseudoknot or a very stable RNA stem-loop. These two elements are separated by six to eight nucleotides, a distance that places the 5' edge of the downstream stimulatory element in direct contact with the mRNA entry channel of the 30S ribosomal subunit. The precise mechanism by which the downstream RNA stimulates -1 PRF by the translocating ribosome remains unclear. This review summarizes the recent structural and biophysical studies of RNA pseudoknots and places this work in the context of our evolving mechanistic understanding of translation elongation. Support for the hypothesis that the downstream stimulatory element provides a kinetic barrier to the ribosome-mediated unfolding is discussed.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405-7102, USA.
| | | |
Collapse
|
382
|
Jang CJ, Lo MCY, Jan E. Conserved element of the dicistrovirus IGR IRES that mimics an E-site tRNA/ribosome interaction mediates multiple functions. J Mol Biol 2009; 387:42-58. [PMID: 19361441 DOI: 10.1016/j.jmb.2009.01.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 02/05/2023]
Abstract
The internal ribosome entry site within the intergenic region (IGR IRES) of the Dicistroviridae family mimics a tRNA to directly assemble 80 S ribosomes and initiate translation at a non-AUG codon from the ribosomal A-site. A comparison of IGR IRESs within this viral family reveals structural similarity but little sequence similarity. However, a few specific conserved elements exist, which likely have important roles in IRES function. In this study, we have generated a battery of mutations to characterize the role of a conserved loop (L1.1) region of the IGR IRES. Mutating specific nucleotides within the L1.1 region inhibited IGR IRES-mediated translation in rabbit reticulocyte lysates. By assaying different steps in IRES function, we found that the mutant L1.1 IRESs had reduced affinity for 80 S ribosomes but not 40 S subunits, indicating that the L1.1 region mediated either binding to preformed 80 S or 60 S joining. Furthermore, mutations in L1.1 altered the position of the ribosome on the mutant IRES, indicating that the tRNA-like anticodon/codon mimic within the ribosomal P-site is disrupted. Structural studies have revealed that the L1.1 region interacts with the L1 stalk of the 60 S subunit, which is similar to the interactions between the T-loop of the E-site tRNA and ribosomal protein rpL1. Our results demonstrate that the conserved L1.1 region directs multiple steps in IGR IRES-mediated translation including ribosome binding and positioning, which are functions that the E-site tRNA may normally mediate during translation.
Collapse
Affiliation(s)
- Christopher J Jang
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | | | | |
Collapse
|
383
|
Fulle S, Gohlke H. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding. J Mol Biol 2009; 387:502-17. [PMID: 19356596 DOI: 10.1016/j.jmb.2009.01.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/18/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
A sophisticated interplay between the static properties of the ribosomal exit tunnel and its functional role in cotranslational processes is revealed by constraint counting on topological network representations of large ribosomal subunits from four different organisms. As for the global flexibility characteristics of the subunit, the results demonstrate a conserved stable structural environment of the tunnel. The findings render unlikely that deformations of the tunnel move peptides down the tunnel in an active manner. Furthermore, the stable environment rules out that the tunnel can adapt widely so as to allow tertiary folding of nascent chains. Nevertheless, there are local zones of flexible nucleotides within the tunnel, between the peptidyl transferase center and the tunnel constriction, and at the tunnel exit. These flexible zones strikingly agree with previously identified folding zones. As for cotranslational elongation regulation, flexible residues in the beta-hairpin of the ribosomal L22 protein were verified, as suggested previously based on structural results. These results support the hypothesis that L22 can undergo conformational changes that regulate the tunnel voyage of nascent polypeptides. Furthermore, rRNA elements, for which conformational changes have been observed upon interaction of the tunnel wall with a nascent SecM peptide, are less strongly coupled to the subunit core. Sequences of coupled rigid clusters are identified between the tunnel and some of these elements, suggesting signal transmission by a domino-like mechanical coupling. Finally, differences in the flexibility of the glycosidic bonds of bases that form antibiotics-binding crevices within the peptidyl transferase center and the tunnel region are revealed for ribosomal structures from different kingdoms. In order to explain antibiotics selectivity, action, and resistance, according to these results, differences in the degrees of freedom of the binding regions may need to be considered.
Collapse
Affiliation(s)
- Simone Fulle
- Department of Biological Sciences, Molecular Bioinformatics Group, Goethe University, Frankfurt, Germany
| | | |
Collapse
|
384
|
Kipper K, Hetényi C, Sild S, Remme J, Liiv A. Ribosomal Intersubunit Bridge B2a Is Involved in Factor-Dependent Translation Initiation and Translational Processivity. J Mol Biol 2009; 385:405-22. [DOI: 10.1016/j.jmb.2008.10.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
385
|
Todorova R, Saihara Y. Link between RRF and the GTP-ase Domain of the Bacterial Ribosome. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10817611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
386
|
Zhang W, Kimmel M, Spahn CM, Penczek PA. Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis. Structure 2008; 16:1770-6. [PMID: 19081053 PMCID: PMC2642923 DOI: 10.1016/j.str.2008.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/08/2008] [Indexed: 11/16/2022]
Abstract
Macromolecular structure determination by cryo-electron microscopy (EM) and single-particle analysis are based on the assumption that imaged molecules have identical structure. With the increased size of processed data sets, it becomes apparent that many complexes coexist in a mixture of conformational states or contain flexible regions. We describe an implementation of the bootstrap resampling technique that yields estimates of voxel-by-voxel variance of a structure reconstructed from the set of its projections. We introduce a highly efficient reconstruction algorithm that is based on direct Fourier inversion and that incorporates correction for the transfer function of the microscope, thus extending the resolution limits of variance estimation. We also describe a validation method to determine the number of resampled volumes required to achieve stable estimate of the variance. The proposed bootstrap method was applied to a data set of 70S ribosome complexed with tRNA and the elongation factor G. The proposed method of variance estimation opens new possibilities for single-particle analysis, by extending applicability of the technique to heterogeneous data sets of macromolecules and to complexes with significant conformational variability.
Collapse
Affiliation(s)
- Wei Zhang
- The University of Texas – Houston Medical School, Department of Biochemistry and Molecular Biology, 6431 Fannin, MSB 6.218, Houston, TX 77030, USA
| | - Marek Kimmel
- Rice University, Department of Statistics, 6100 Main St., MS 138, Houston, TX 77005, USA
| | - Christian M.T. Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Ziegelstr. 5-9, 10117 Berlin, Germany
| | - Pawel A. Penczek
- The University of Texas – Houston Medical School, Department of Biochemistry and Molecular Biology, 6431 Fannin, MSB 6.218, Houston, TX 77030, USA
| |
Collapse
|
387
|
Kurkcuoglu O, Doruker P, Sen TZ, Kloczkowski A, Jernigan RL. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics. Phys Biol 2008; 5:046005. [PMID: 19029596 PMCID: PMC2907240 DOI: 10.1088/1478-3975/5/4/046005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine-Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit.
Collapse
Affiliation(s)
- Ozge Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342, Bebek, Istanbul, Turkey
| | - Pemra Doruker
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342, Bebek, Istanbul, Turkey
| | - Taner Z. Sen
- 1025 Crop Genome Informatics Laboratory, Ames, IA 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Andrzej Kloczkowski
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- L.H. Baker Center for Bioinformatics and Biological Statistics Iowa State University, Ames, IA 50011, USA
| | - Robert L. Jernigan
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- L.H. Baker Center for Bioinformatics and Biological Statistics Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
388
|
Petrov AN, Meskauskas A, Roshwalb SC, Dinman JD. Yeast ribosomal protein L10 helps coordinate tRNA movement through the large subunit. Nucleic Acids Res 2008; 36:6187-98. [PMID: 18824477 PMCID: PMC2577338 DOI: 10.1093/nar/gkn643] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 11/18/2022] Open
Abstract
Yeast ribosomal protein L10 (E. coli L16) is located at the center of a topological nexus that connects many functional regions of the large subunit. This essential protein has previously been implicated in processes as diverse as ribosome biogenesis, translational fidelity and mRNA stability. Here, the inability to maintain the yeast Killer virus was used as a proxy for large subunit defects to identify a series of L10 mutants. These mapped to roughly four discrete regions of the protein. A detailed analysis of mutants located in the N-terminal 'hook' of L10, which inserts into the bulge of 25S rRNA helix 89, revealed strong effects on rRNA structure corresponding to the entire path taken by the tRNA 3' end as it moves through the large subunit during the elongation cycle. The mutant-induced structural changes are wide-ranging, affecting ribosome biogenesis, elongation factor binding, drug resistance/hypersensitivity, translational fidelity and virus maintenance. The importance of L10 as a potential transducer of information through the ribosome, and of a possible role of its N-terminal domain in switching between the pre- and post-translocational states are discussed.
Collapse
Affiliation(s)
| | | | | | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 2135 Microbiology Building, College Park, MD 20742, USA
| |
Collapse
|
389
|
Abstract
During protein synthesis, tRNAs and mRNA move through the ribosome between aminoacyl (A), peptidyl (P), and exit (E) sites of the ribosome in a process called translocation. Translocation is accompanied by the displacement of the tRNAs on the large ribosomal subunit toward the hybrid A/P and P/E states and by a rotational movement (ratchet) of the ribosomal subunits relative to one another. So far, the structure of the ratcheted state has been observed only when translation factors were bound to the ribosome. Using cryo-electron microscopy and classification, we show here that ribosomes can spontaneously adopt a ratcheted conformation with tRNAs in their hybrid states. The peptidyl-tRNA molecule in the A/P state, which is visualized here, is not distorted compared with the A/A state except for slight adjustments of its acceptor end, suggesting that the displacement of the A-site tRNA on the 50S subunit is passive and is induced by the 30S subunit rotation. Simultaneous subunit ratchet and formation of the tRNA hybrid states precede and may promote the subsequent rapid and coordinated tRNA translocation on the 30S subunit catalyzed by elongation factor G.
Collapse
|
390
|
Agirrezabala X, Lei J, Brunelle JL, Ortiz-Meoz RF, Green R, Frank J. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol Cell 2008; 32:190-7. [PMID: 18951087 PMCID: PMC2614368 DOI: 10.1016/j.molcel.2008.10.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/12/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
Abstract
A crucial step in translation is the translocation of tRNAs through the ribosome. In the transition from one canonical site to the other, the tRNAs acquire intermediate configurations, so-called hybrid states. At this stage, the small subunit is rotated with respect to the large subunit, and the anticodon stem loops reside in the A and P sites of the small subunit, while the acceptor ends interact with the P and E sites of the large subunit. In this work, by means of cryo-EM and particle classification procedures, we visualize the hybrid state of both A/P and P/E tRNAs in an authentic factor-free ribosome complex during translocation. In addition, we show how the repositioning of the tRNAs goes hand in hand with the change in the interplay between S13, L1 stalk, L5, H68, H69, and H38 that is caused by the ratcheting of the small subunit.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Protein Biosynthesis
- Protein Subunits/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/physiology
- Ribosome Subunits, Large, Bacterial/ultrastructure
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/physiology
- Ribosome Subunits, Small, Bacterial/ultrastructure
Collapse
Affiliation(s)
- Xabier Agirrezabala
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, 630 168 Street, P&S BB 2-221, New York, NY, USA
| | - Jianlin Lei
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, 630 168 Street, P&S BB 2-221, New York, NY, USA
| | - Julie L. Brunelle
- HHMI, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rodrigo F. Ortiz-Meoz
- HHMI, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rachel Green
- HHMI, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Joachim Frank
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, 630 168 Street, P&S BB 2-221, New York, NY, USA
- Department of Biological Sciences, Columbia University
| |
Collapse
|
391
|
Garcia-Ortega L, Stephen J, Joseph S. Precise alignment of peptidyl tRNA by the decoding center is essential for EF-G-dependent translocation. Mol Cell 2008; 32:292-9. [PMID: 18951096 PMCID: PMC11849654 DOI: 10.1016/j.molcel.2008.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 05/22/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
Translocation is an essential step in the elongation cycle of the protein synthesis that allows for the continual incorporation of new amino acids to the growing polypeptide. Movement of mRNA and tRNAs within the ribosome is catalyzed by EF-G binding and GTP hydrolysis. The 30S subunit decoding center is crucial for the selection of the cognate tRNA. However, it is not clear whether the decoding center participates in translocation. We disrupted the interactions in the decoding center by mutating the universally conserved 16S rRNA bases G530, A1492, and A1493, and the effects of these mutations on translocation were studied. Our results show that point mutation of any of these 16S rRNA bases inhibits EF-G-dependent translocation. Furthermore, the mutant ribosomes showed increased puromycin reactivity in the pretranslocation complexes, indicating that the dynamic equilibrium of the peptidyl tRNA between the classical and hybrid-state configurations is influenced by contacts in the decoding center.
Collapse
MESH Headings
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Mutagenesis, Site-Directed
- Peptide Chain Elongation, Translational/drug effects
- Peptide Chain Elongation, Translational/physiology
- Peptide Elongation Factor G/metabolism
- Point Mutation
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/physiology
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- Ribosome Subunits, Small, Bacterial/physiology
- Ribosomes/drug effects
- Ribosomes/physiology
- Sparsomycin/pharmacology
- Spectrometry, Fluorescence
Collapse
Affiliation(s)
- Lucia Garcia-Ortega
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| | | | | |
Collapse
|
392
|
Path of nascent polypeptide in exit tunnel revealed by molecular dynamics simulation of ribosome. Biophys J 2008; 95:5962-73. [PMID: 18936244 DOI: 10.1529/biophysj.108.134890] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations were carried out on Thermus thermophilus 70S ribosome with and without a nascent polypeptide inside the exit tunnel. Modeling of the polypeptide in the tunnel revealed two possible paths: one over Arg92 of L22 and one under (from the viewpoint of 50S on top of 30S). A strong interaction between L4 and Arg92 was observed without the polypeptide and when it passed over Arg92. However, when the polypeptide passed under, Arg92 repositioned to interact with Ade2059 of 23S rRNA. Using steered molecular dynamics the polypeptide could be pulled through the L4-L22 constriction when situated under Arg92, but did not move when over. These results suggest that the tunnel is closed by the Arg92-L4 interaction before elongation of the polypeptide and the tunnel leads the entering polypeptide from the peptidyl transferase center to the passage under Arg92, causing Arg92 to switch to an open position. It is possible, therefore, that Arg92 plays the role of a gate, opening and closing the tunnel at L4-L22. There is some disagreement over whether the tunnel is dynamic or rigid. At least within the timescale of our simulations conformational analysis showed that global motions mainly involve relative movement of the 50S and 30S subunits and seem not to affect the conformation of the tunnel.
Collapse
|
393
|
Bakowska-Zywicka K, Kietrys AM, Twardowski T. Antisense oligonucleotides targeting universally conserved 26S rRNA domains of plant ribosomes at different steps of polypeptide elongation. Oligonucleotides 2008; 18:175-86. [PMID: 18637734 DOI: 10.1089/oli.2008.0127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A ribosome undergoes significant conformational changes during elongation of polypeptide chain that are correlated with structural changes of rRNAs. We tested nine different antisense oligodeoxynucleotides complementary to the selected, highly conserved sequences of Lupinus luteus 26S rRNA that are engaged in the interactions with tRNA molecules. The ribosomes were converted either to pre- or to posttranslocational states, with or without prehybridized oligonucleotides, using tRNA or mini-tRNA molecules. The activity of those ribosomes was tested via the so-called binding assay. We observed well-defined structural changes of ribosome's conformation during different steps of the elongation cycle of protein biosynthesis. In this article, we present that (i) before and after translocation, fragments of domain V between helices H70/H71 and H74/H89 do not have to interact with nucleotides 72-76 of the acceptor arm of A-site tRNA; (ii) helix H69 does not have to interact with DHU arm of tRNA in positions 25 and 26 after forming the peptide bond, but before translocation; (iii) helices H69 and H70 interact weakly with nucleotides 11, 12, 25, and 26 of A-site tRNA before forming a peptide bond in the ribosome; (iv) interactions between helices H80, H93 and single-stranded region between helices H92 and H93 and CCAend of P-site tRNA are necessary at all steps of elongation cycle; and (v) before and after translocation, helix H89 does not have to interact with nucleotides in positions 64-65 and 50-53 of A-site tRNA TPsiC arm.
Collapse
Affiliation(s)
- Kamilla Bakowska-Zywicka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | | | | |
Collapse
|
394
|
Flexible fitting of high-resolution x-ray structures into cryoelectron microscopy maps using biased molecular dynamics simulations. Biophys J 2008; 95:5692-705. [PMID: 18849406 DOI: 10.1529/biophysj.108.139451] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A methodology for flexible fitting of all-atom high-resolution structures into low-resolution cryoelectron microscopy (cryo-EM) maps is presented. Flexibility of the modeled structure is simulated by classical molecular dynamics and an additional effective potential is introduced to enhance the fitting process. The additional potential is proportional to the correlation coefficient between the experimental cryo-EM map and a synthetic map generated for an all-atom structure being fitted to the map. The additional forces are calculated as a gradient of the correlation coefficient. During the molecular dynamics simulations under the additional forces, the molecule undergoes a conformational transition that maximizes the correlation coefficient, which results in a high-accuracy fit of all-atom structure into a cryo-EM map. Using five test proteins that exhibit structural rearrangement during their biological activity, we demonstrate performance of our method. We also test our method on the experimental cryo-EM of elongation factor G and show that the model obtained is comparable to previous studies. In addition, we show that overfitting can be avoided by assessing the quality of the fitted model in terms of correlation coefficient and secondary structure preservation.
Collapse
|
395
|
Korostelev A, Ermolenko DN, Noller HF. Structural dynamics of the ribosome. Curr Opin Chem Biol 2008; 12:674-83. [PMID: 18848900 DOI: 10.1016/j.cbpa.2008.08.037] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 08/23/2008] [Indexed: 01/01/2023]
Abstract
Protein synthesis is inherently a dynamic process, requiring both small-scale and large-scale movements of tRNA and mRNA. It has long been suspected that these movements might be coupled to conformational changes in the ribosome, and in its RNA moieties in particular. Recently, the nature of ribosome structural dynamics has begun to emerge from a combination of approaches, most notably cryo-EM, X-ray crystallography, and FRET. Ribosome movement occurs both on a grand scale, as in the intersubunit rotational movements that are coupled to tRNA-mRNA translocation, and in intricate localized rearrangements such as those that accompany codon-anticodon recognition and peptide bond formation. In spite of much progress, our understanding of the mechanics of translation is now beset with countless new questions, reflecting the vast molecular architecture of the ribosome itself.
Collapse
Affiliation(s)
- Andrei Korostelev
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
396
|
Irreversible chemical steps control intersubunit dynamics during translation. Proc Natl Acad Sci U S A 2008; 105:15364-9. [PMID: 18824686 DOI: 10.1073/pnas.0805299105] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ribosome, a two-subunit macromolecular machine, deciphers the genetic code and catalyzes peptide bond formation. Dynamic rotational movement between ribosomal subunits is likely required for efficient and accurate protein synthesis, but direct observation of intersubunit dynamics has been obscured by the repetitive, multistep nature of translation. Here, we report a collection of single-molecule fluorescence resonance energy transfer assays that reveal a ribosomal intersubunit conformational cycle in real time during initiation and the first round of elongation. After subunit joining and delivery of correct aminoacyl-tRNA to the ribosome, peptide bond formation results in a rapid conformational change, consistent with the counterclockwise rotation of the 30S subunit with respect to the 50S subunit implied by prior structural and biochemical studies. Subsequent binding of elongation factor G and GTP hydrolysis results in a clockwise rotation of the 30S subunit relative to the 50S subunit, preparing the ribosome for the next round of tRNA selection and peptide bond formation. The ribosome thus harnesses the free energy of irreversible peptidyl transfer and GTP hydrolysis to surmount activation barriers to large-scale conformational changes during translation. Intersubunit rotation is likely a requirement for the concerted movement of tRNA and mRNA substrates during translocation.
Collapse
|
397
|
Sengupta J, Nilsson J, Gursky R, Kjeldgaard M, Nissen P, Frank J. Visualization of the eEF2-80S ribosome transition-state complex by cryo-electron microscopy. J Mol Biol 2008; 382:179-87. [PMID: 18644383 PMCID: PMC2990977 DOI: 10.1016/j.jmb.2008.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/12/2008] [Accepted: 07/03/2008] [Indexed: 11/18/2022]
Abstract
In an attempt to understand ribosome-induced GTP hydrolysis on eEF2, we determined a 12.6-A cryo-electron microscopy reconstruction of the eEF2-bound 80S ribosome in the presence of aluminum tetrafluoride and GDP, with aluminum tetrafluoride mimicking the gamma-phosphate during hydrolysis. This is the first visualization of a structure representing a transition-state complex on the ribosome. Tight interactions are observed between the factor's G domain and the large ribosomal subunit, as well as between domain IV and an intersubunit bridge. In contrast, some of the domains of eEF2 implicated in small subunit binding display a large degree of flexibility. Furthermore, we find support for a transition-state model conformation of the switch I region in this complex where the reoriented switch I region interacts with a conserved rRNA region of the 40S subunit formed by loops of the 18S RNA helices 8 and 14. This complex is structurally distinct from the eEF2-bound 80S ribosome complexes previously reported, and analysis of this map sheds light on the GTPase-coupled translocation mechanism.
Collapse
Affiliation(s)
- Jayati Sengupta
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Jakob Nilsson
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Richard Gursky
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Morten Kjeldgaard
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509, USA
- Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|
398
|
Mutations in conserved helix 69 of 23S rRNA of Thermus thermophilus that affect capreomycin resistance but not posttranscriptional modifications. J Bacteriol 2008; 190:7754-61. [PMID: 18805973 DOI: 10.1128/jb.00984-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translocation during the elongation phase of protein synthesis involves the relative movement of the 30S and 50S ribosomal subunits. This movement is the target of tuberactinomycin antibiotics. Here, we describe the isolation and characterization of mutants of Thermus thermophilus selected for resistance to the tuberactinomycin antibiotic capreomycin. Two base substitutions, A1913U and mU1915G, and a single base deletion, DeltamU1915, were identified in helix 69 of 23S rRNA, a structural element that forms part of an interribosomal subunit bridge with the decoding center of 16S rRNA, the site of previously reported capreomycin resistance base substitutions. Capreomycin resistance in other bacteria has been shown to result from inactivation of the TlyA methyltransferase which 2'-O methylates C1920 of 23S rRNA. Inactivation of the tlyA gene in T. thermophilus does not affect its sensitivity to capreomycin. Finally, none of the mutations in helix 69 interferes with methylation at C1920 or with pseudouridylation at positions 1911 and 1917. We conclude that the resistance phenotype is a consequence of structural changes introduced by the mutations.
Collapse
|
399
|
Abstract
Decades of studies have established translation as a multistep, multicomponent process that requires intricate communication to achieve high levels of speed, accuracy, and regulation. A crucial next step in understanding translation is to reveal the functional significance of the large-scale motions implied by static ribosome structures. This requires determining the trajectories, timescales, forces, and biochemical signals that underlie these dynamic conformational changes. Single-molecule methods have emerged as important tools for the characterization of motion in complex systems, including translation. In this review, we chronicle the key discoveries in this nascent field, which have demonstrated the power and promise of single-molecule techniques in the study of translation.
Collapse
Affiliation(s)
- R Andrew Marshall
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
400
|
Gilbert RJC, Brierley I, McCarthy JEG. Ribosomal acrobatics in post-transcriptional control. Biochem Soc Trans 2008; 36:677-83. [PMID: 18631139 DOI: 10.1042/bst0360677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-resolution structures have given an extremely detailed view of aspects of ribosomes, including some near-functional states. Here, we review the importance of cryo-electron microscopy, among other techniques, in giving an understanding of the higher dynamics of the ribosome accompanying active recruitment of mRNA to the small subunit and translocation of tRNAs. Recent data show that careful use of a variety of different techniques is necessary for a proper understanding of the basis of function in systems such as the ribosome.
Collapse
Affiliation(s)
- Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| | | | | |
Collapse
|