351
|
Sattler M, Salgia R. Activation of hematopoietic growth factor signal transduction pathways by the human oncogene BCR/ABL. Cytokine Growth Factor Rev 1997; 8:63-79. [PMID: 9174663 DOI: 10.1016/s1359-6101(96)00047-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BCR/ABL is a human chimeric oncogene that causes chronic myelogenous leukemia (CML). The BCR/ABL oncogene is generated from the Philadelphia chromosome (Ph) translocation, t(9;22)(q34;q11), and creates a constitutively active tyrosine kinase. There is clonal expansion of hematopoietic stem cells of several different lineages in CML. CML patients in stable phase usually have high white blood counts and immature cells of granulocytic lineages. Stable phase CML evolves to a more aggressive phase typically within 3.5-5 years, where differentiation is blocked and acute leukemia ensues. The transition of CML stable phase to blast phase is reflected in the loss of growth factor requirement of CML cells and correlates with additional cytogenetic alterations. Some biological effects reported in primary CML cells include reduced apoptosis and altered adhesion to fibronectin; however, the cells are dependent on hematopoietic growth factors. On a molecular level, the BCR/ABL translocation is well characterized. However, the actual mechanism of transformation by the BCR/ABL oncogene of hematopoietic cells is largely unknown. Enhancement of the c-ABL tyrosine kinase activity in BCR/ABL appears to be crucial for transformation. This tyrosine kinase activity leads to activation of several signal transduction pathways that are also utilized by hematopoietic growth factors, including steel factor, thrombopoietin, interleukin-3, and granulocyte/macrophage-colony stimulating factor. In several model systems, BCR/ABL has overlapping biological effects with hematopoietic growth factors, and transformation of hematopoietic growth factor-dependent cell lines leads to growth factor independence. In this review, we will describe the molecular and biological abnormalities in CML and several signal transduction mechanisms utilized by BCR/ABL as compared to hematopoietic growth factors.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Cell Adhesion
- Cell Transformation, Neoplastic
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Genes, abl
- Hematopoietic Cell Growth Factors/genetics
- Hematopoietic Cell Growth Factors/physiology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Biological
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Phosphatidylinositol 3-Kinases
- Phosphotransferases (Alcohol Group Acceptor)/physiology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-cbl
- Signal Transduction
- Ubiquitin-Protein Ligases
- ras Proteins/genetics
- ras Proteins/physiology
Collapse
Affiliation(s)
- M Sattler
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
352
|
Yuan ZM, Huang Y, Ishiko T, Kharbanda S, Weichselbaum R, Kufe D. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase. Proc Natl Acad Sci U S A 1997; 94:1437-40. [PMID: 9037071 PMCID: PMC19809 DOI: 10.1073/pnas.94.4.1437] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Activation of the c-Abl protein tyrosine kinase by certain DNA-damaging agents contributes to downregulation of Cdk2 and G1 arrest by a p53-dependent mechanism. The present work investigates the potential role of c-Abl in apoptosis induced by DNA damage. Transient transfection studies with wild-type, but not kinase-inactive, c-Abl demonstrate induction of apoptosis. Cells that stably express inactive c-Abl exhibit resistance to ionizing radiation-induced loss of clonogenic survival and apoptosis. Cells null for c-abl are also impaired in the apoptotic response to ionizing radiation. We further show that cells deficient in p53 undergo apoptosis in response to expression of c-Abl and exhibit decreases in radiation-induced apoptosis when expressing inactive c-Abl. These findings suggest that c-Abl kinase regulates DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Z M Yuan
- Division of Cancer Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
353
|
Seimiya H, Mashima T, Toho M, Tsuruo T. c-Jun NH2-terminal kinase-mediated activation of interleukin-1beta converting enzyme/CED-3-like protease during anticancer drug-induced apoptosis. J Biol Chem 1997; 272:4631-6. [PMID: 9020192 DOI: 10.1074/jbc.272.7.4631] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Upon treatment with various anticancer drugs, myeloid leukemia U937 cells undergo apoptosis. In this study, we found that either etoposide (VP-16) or camptothecin (CPT) activated c-Jun N-terminal kinase 1/stress-activated protein kinase (JNK1/SAPK), transient c-jun expression, and ICE (interleukin-1beta converting enzyme)/CED-3-like proteases in U937 cells. Phorbol ester-resistant U937 variant, UT16 cells, displayed a decreased susceptibility to apoptosis induced by these drugs. The drugs did not cause JNK1 activation, c-jun expression, nor activation of ICE/CED-3-like proteases in UT16 cells. As reported previously, benzyloxycarbonyl-Asp-CH2OC(O)-2,6-dichlorobenzene (Z-Asp), a preferential inhibitor of ICE/CED-3-like proteases, blocked the apoptosis of U937 cells. Interestingly, however, Z-Asp did not inhibit JNK1 activation in either VP-16- or CPT-treated U937 cells. The JNK1 antisense oligonucleotides diminished protein expression of JNK1 and inhibited drug-induced apoptosis of U937 cells, whereas sense control oligonucleotides did not. Consistent with this observation, the antisense oligonucleotide-treated cells did not respond to VP-16 or CPT with Z-Asp-sensitive proteases. These results indicate that JNK1 triggers the DNA damaging drug-induced apoptosis of U937 cells by activating Z-Asp-sensitive ICE/CED-3-like proteases.
Collapse
Affiliation(s)
- H Seimiya
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo 170
| | | | | | | |
Collapse
|
354
|
Maity A, Kao GD, Muschel RJ, McKenna WG. Potential molecular targets for manipulating the radiation response. Int J Radiat Oncol Biol Phys 1997; 37:639-53. [PMID: 9112463 DOI: 10.1016/s0360-3016(96)00598-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent advances in our understanding of the molecular events that occur following ionizing radiation leading to DNA damage and repair, apoptosis, and cell-cycle arrests suggest new ways in which the radiation response might be manipulated. Specific targets which, if inactivated, might increase radiosensitivity include Ras, which has been implicated in the radioresistant phenotype, and components of DNA-dependent protein kinase or other molecules involved in the recognition or repair of DNA damage. In some tumors, apoptosis is an important mode of cell death following radiation, so agents that promote this may prove useful therapeutically. Conversely, side effects may result from radiation-induced apoptosis of normal tissues: for example, pneumonitis following the destruction of endothelial cells in the pulmonary vasculature. Therefore, decreasing apoptosis in these tissues may reduce late effects. It may also be possible to prevent late effects such as fibrosis by blocking the induction of certain genes such as transforming growth factor beta. Cell-cycle regulation is another area that could be manipulated to increase radiosensitivity. There is evidence that the G2 delay following radiation is important in protecting cells from death. Abolition of this delay may increase radiosensitivity, especially in cells with mutant p53 that have lost the G1 checkpoint.
Collapse
Affiliation(s)
- A Maity
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
355
|
Qin S, Minami Y, Hibi M, Kurosaki T, Yamamura H. Syk-dependent and -independent signaling cascades in B cells elicited by osmotic and oxidative stress. J Biol Chem 1997; 272:2098-103. [PMID: 8999908 DOI: 10.1074/jbc.272.4.2098] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It was found that Syk protein-tyrosine kinase is rapidly activated in B cells after H2O2 treatment (oxidative stress) or increased extracellular NaCl concentration (osmotic stress) as well as in response to B cell receptor activation. In this study we examined the involvement of Syk in responses elicited by these types of extracellular stress, particularly Ca2+ responses and c-Jun amino-terminal kinase (JNK) activation, using a chicken B cell line, DT40, as well as the DT40-derived mutant DT40/Syk(-), which does not express Syk. Osmotic stress evokes increases in [Ca2+]i by stimulating an extracellular Ca2+ influx in both DT40 and DT40/Syk(-) cells. In comparison, oxidative stress elicits an increase in [Ca2+]i by stimulating both an extracellular Ca2+ influx and Ca2+ release from internal stores in DT40 cells, but this Ca2+ response is partially abolished in DT40/Syk(-) cells, indicating that the oxidative stress-induced Ca2+ response is at least partly dependent on Syk. Interestingly, the depletion of Ca2+ results in a significantly decreased level of Syk activation in DT40 cells stimulated by oxidative but not osmotic stress. Furthermore, JNK is activated to different extents by these two types of stress. The extent of JNK activation in DT40/Syk(-) cells in response to osmotic stress is comparable to that observed in DT40 cells. Intriguingly, oxidative stress-induced JNK activation is significantly compromised in DT40/Syk(-) cells. Collectively, these results indicate that both the Ca2+ response and JNK activity induced by oxidative stress are partly dependent on Syk, whereas those induced by osmotic stress are independent of Syk.
Collapse
Affiliation(s)
- S Qin
- Department of Biochemistry, Kobe University School of Medicine, Kobe 650, Japan
| | | | | | | | | |
Collapse
|
356
|
Interleukin-6 Inhibits Fas-Induced Apoptosis and Stress-Activated Protein Kinase Activation in Multiple Myeloma Cells. Blood 1997. [DOI: 10.1182/blood.v89.1.227.227_227_234] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fas belongs to the family of type-1 membrane proteins that transduce apoptotic signals. In the present studies, we characterized signaling during Fas-induced apoptosis in RPMI-8226 and IM-9 multiple myeloma (MM) derived cell lines as well as patient plasma cell leukemia cells. Treatment with anti-Fas (7C11) monoclonal antibody (MoAb) induced apoptosis, evidenced by internucleosomal DNA fragmentation and propidium iodide staining, and was associated with increased expression of c-jun early response gene. We also show that anti-Fas MoAb treatment is associated with activation of stress-activated protein kinase (SAPK) and p38 mitogen-activated protein kinase (MAPK); however, no detectable increase in extracellular signal-regulated kinases (ERK1 and ERK2) activity was observed. Because interleukin-6 (IL-6) is a growth factor for MM cells and inhibits apoptosis induced by dexamethasone and serum starvation, we examined whether IL-6 affects anti-Fas MoAb-induced apoptosis and activation of SAPK or p38 MAPK in MM cells. Culture of MM cells with IL-6 before treatment with anti-Fas MoAb significantly reduced both DNA fragmentation and activation of SAPK, without altering induction of p38 MAPK activity. These results therefore suggest that anti-Fas MoAb-induced apoptosis in MM cells is associated with activation of SAPK, and that IL-6 may both inhibit apoptosis and modulate SAPK activity.
Collapse
|
357
|
Bender K, Blattner C, Knebel A, Iordanov M, Herrlich P, Rahmsdorf HJ. UV-induced signal transduction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1997; 37:1-17. [PMID: 9043093 DOI: 10.1016/s1011-1344(96)07459-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Irradiation of cells with wavelength ultraviolet (UVA, B and C) induces the transcription of many genes. The program overlaps with that induced by oxidants and alkylating agents and has both protective and other functions. Genes transcribed in response to UV irradiation include genes encoding transcription factors, proteases and viral proteins. While the transcription factor encoding genes is initiated in minutes after UV irradiation (immediate response genes) and depends exclusively on performed proteins, the transcription of protease encoding occurs only many hours after UV irradiation. Transcription factors controlling the activity of immediate response genes are activated by protein kinases belonging to the group of proline directed protein kinases immediately after UV irradiation. Experimental evidence suggests that these kinases are activated in UV irradiated cells through pathways which are used by growth factors. In fact, the first cellular reaction detectable in UV irradiated cells is the phosphorylation of several growth factor receptors at tyrosine residues. This phosphorylation does not depend on UV induced DNA damage, but is due to an inhibition of the activity of tyrosine phosphatases. In contrast, for late cellular reactions to UV, an obligatory role of DNA damage in transcribed regions of the genome can be demonstrated. Thus, UV is absorbed by several target molecules relevant for cellular signaling, and it appears that numerous signal transduction pathways are stimulated. The combined action of these pathways establishes the genetic program that determines the fate of UV irradiated cells.
Collapse
Affiliation(s)
- K Bender
- Forschungzentrum Karlsruhe, Institut für Genetik, Germany
| | | | | | | | | | | |
Collapse
|
358
|
Affiliation(s)
- C E Canman
- Johns Hopkins Oncology Center, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
359
|
Interleukin-6 Inhibits Fas-Induced Apoptosis and Stress-Activated Protein Kinase Activation in Multiple Myeloma Cells. Blood 1997. [DOI: 10.1182/blood.v89.1.227] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractFas belongs to the family of type-1 membrane proteins that transduce apoptotic signals. In the present studies, we characterized signaling during Fas-induced apoptosis in RPMI-8226 and IM-9 multiple myeloma (MM) derived cell lines as well as patient plasma cell leukemia cells. Treatment with anti-Fas (7C11) monoclonal antibody (MoAb) induced apoptosis, evidenced by internucleosomal DNA fragmentation and propidium iodide staining, and was associated with increased expression of c-jun early response gene. We also show that anti-Fas MoAb treatment is associated with activation of stress-activated protein kinase (SAPK) and p38 mitogen-activated protein kinase (MAPK); however, no detectable increase in extracellular signal-regulated kinases (ERK1 and ERK2) activity was observed. Because interleukin-6 (IL-6) is a growth factor for MM cells and inhibits apoptosis induced by dexamethasone and serum starvation, we examined whether IL-6 affects anti-Fas MoAb-induced apoptosis and activation of SAPK or p38 MAPK in MM cells. Culture of MM cells with IL-6 before treatment with anti-Fas MoAb significantly reduced both DNA fragmentation and activation of SAPK, without altering induction of p38 MAPK activity. These results therefore suggest that anti-Fas MoAb-induced apoptosis in MM cells is associated with activation of SAPK, and that IL-6 may both inhibit apoptosis and modulate SAPK activity.
Collapse
|
360
|
Abstract
Intracellular signal transduction following the extracellular ligation of a wide variety of different types of surface molecules on leukocytes involves the activation of protein tyrosine kinases. The dependence of successful intracellular signaling on the functions of the nontransmembrane class of protein tyrosine kinases coupled with the cell type-specific expression patterns for several of these enzymes makes them appealing targets for therapeutic intervention. Development of drugs that can interfere with the catalytic functions of the nontransmembrane protein tyrosine kinases or that can disrupt critical interactions with regulatory molecules and/or substrates should find clinical applications in the treatment of allergic diseases, autoimmunity, transplantation rejection, and cancer.
Collapse
Affiliation(s)
- J B Bolen
- DNAX Research Institute, Palo Alto, California 94304, USA.
| | | |
Collapse
|
361
|
Chen YR, Wang X, Templeton D, Davis RJ, Tan TH. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 1996; 271:31929-36. [PMID: 8943238 DOI: 10.1074/jbc.271.50.31929] [Citation(s) in RCA: 693] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) participate in cellular responses to mitogenic stimuli, environmental stresses, and apoptotic agents. The mechanisms by which JNK integrates with other signaling pathways and regulates the diverse cellular events are unclear. We found JNK, but not p38-mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase 2, to be persistently activated in apoptosis induced by gamma radiation, UV-C, and anti-Fas treatment. Direct correlation was found between JNK activation and apoptosis induced by UV-C and gamma radiation; however, JNK induction and apoptosis induced by Fas signaling were not well correlated. Overexpression of activated JNK1 caused cell death in transfected cells, and the expression of a dominant-negative mutant of MAPK kinase 1 or JNK1 (but not a dominant-negative mutant of p38-MAPK or c-Raf) prevented the UV-C- and gamma radiation-induced cell death. The inductions of JNK in T-cell activation and apoptosis were distinguished by the different activation patterns, transient versus persistent, respectively. Co-treatment with a tyrosine phosphatase inhibitor (sodium orthovanadate) and T-cell activation signals (phorbol 12-myristate 13-acetate plus ionomycin) prolonged JNK induction, followed by T-cell apoptosis. Our data revealed the requirement of the JNK pathway in radiation-induced apoptosis and implicated the importance of the duration of JNK activation in determining the cell fates.
Collapse
Affiliation(s)
- Y R Chen
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
362
|
Osborn MT, Chambers TC. Role of the stress-activated/c-Jun NH2-terminal protein kinase pathway in the cellular response to adriamycin and other chemotherapeutic drugs. J Biol Chem 1996; 271:30950-5. [PMID: 8940082 DOI: 10.1074/jbc.271.48.30950] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
c-Jun NH2-terminal protein kinase (JNK), a member of the mitogen-activated protein kinase family, is activated in response to many stressful stimuli including heat shock, UV irradiation, protein synthesis inhibitors, and inflammatory cytokines. In this study, we investigated whether JNK plays a role in the cellular response to different drugs commonly used in cancer chemotherapy. Treatment of human KB-3 carcinoma cells with Adriamycin resulted in a time- and dose-dependent activation of JNK of up to 40-fold. Treatment with vinblastine or etoposide (VP-16) also activated JNK, with maximum increases of 6.5- and 4.3-fold, respectively. Consistent with these findings, increased c-Jun phosphorylation was observed after drug treatment of cells. In contrast, none of the drugs significantly activated the extracellular response kinase/mitogen-activated protein kinase pathway. Since these drugs are transport substrates for the MDR1 gene product, P-glycoprotein, JNK was assayed in two multidrug-resistant (MDR) KB cell lines, KB-A1 and KB-V1, selected for resistance to Adriamycin and vinblastine, respectively. Relative to KB-3 cells, basal JNK activity was increased 7-fold in KB-A1 cells and 4-fold in KB-V1 cells, with no change in JNK protein expression, indicating that JNK is present in a more highly activated form in the MDR cell lines. Under conditions optimal for JNK activation, Adriamycin, vinblastine, and VP-16 all induced MDR1 mRNA expression in KB-3 cells. Our findings suggest that JNK activation is an important component of the cellular response to several structurally and functionally distinct anticancer drugs and may also play a role in the MDR phenotype.
Collapse
Affiliation(s)
- M T Osborn
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA
| | | |
Collapse
|
363
|
Liu ZG, Baskaran R, Lea-Chou ET, Wood LD, Chen Y, Karin M, Wang JY. Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature 1996; 384:273-6. [PMID: 8918879 DOI: 10.1038/384273a0] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genotoxic stress triggers signalling pathways that mediate either the protection or killing of affected cells. Whereas induction of p53 involves events in the cell nucleus, the activation of transcription factors AP-1 and NF-kappaB by ultraviolet radiation is mediated through membrane-associated signalling proteins, ruling out a nuclear signal. An early event in AP-1 induction by ultraviolet radiation is activation of Jun kinases (JNKs), which mediate the induction of the immediate-early genes c-jun and c-fos. The JNKs have also been proposed to mediate the apoptopic response to genotoxins. The non-receptor tyrosine kinase c-Abl is also activated by genotoxic stress. To understand the relationship between these events, we compared the activation of p53, JNK and c-Abl by several DNA-damaging agents in murine fibroblasts. We found that whereas p53 was induced by every genotoxic stimulus tested, c-Abl was activated by most stimuli except ultraviolet irradiation and JNK was strongly stimulated only by ultraviolet light and the alkylating agent methyl methanesulphonate. Activation of JNK by this alkylating agent was normal in c-Abl-null cells but was reduced in c-Src-null cells. Unlike p53 induction, c-Abl activation occurs in the S phase of the cell cycle and does not affect cell proliferation. These findings show that signals generated by genotoxins are transduced by multiple, independent pathways. Only p53 appears to be a universal sensor of genotoxic stress.
Collapse
Affiliation(s)
- Z G Liu
- Department of Pharmacology, Program in Biomedical Science, School of Medicine, University of California, San Diego 92093, USA
| | | | | | | | | | | | | |
Collapse
|
364
|
|
365
|
Piret B, Piette J. Topoisomerase poisons activate the transcription factor NF-kappaB in ACH-2 and CEM cells. Nucleic Acids Res 1996; 24:4242-8. [PMID: 8932379 PMCID: PMC146228 DOI: 10.1093/nar/24.21.4242] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nuclear factor kappaB (NF-kappaB) is involved in T cell activation and enhances HIV-1 gene expression. It is activated in response to numerous stimuli, including oxidative stress. Oxidative stress damages membrane lipids, proteins and nucleic acids. We have shown previously that oxidative DNA damage generated by photosensitization could trigger activation of NF-kappaB. We now show that a series of topoisomerase poisons (actinomycin D, camptothecin, daunomycin and etoposide) also activate NF-kappaB (NFKB1/RelA dimer) in ACH-2 and CEM cells. This activation is inhibited by pyrrolidine dithiocarbamate. In ACH-2 cells latently infected by HIV-1, camptothecin, daunomycin and etoposide are able to enhance virus production. Since topoisomerase poisons cause the formation of single- and double-strand breaks in DNA, these lesions might be capable of triggering NF-kappaB activation. Indeed, DNA damaging agents generating adducts (trans-platin and 4-nitroquinoline 1-oxide) and/or crosslinks in DNA (cisplatin and mitomycin C) do not or only weakly activate NF-kappaB in T cell lines.
Collapse
Affiliation(s)
- B Piret
- Laboratory of Fundamental Virology, Institute of Pathology, University of Liège, Belgium
| | | |
Collapse
|
366
|
Yuan ZM, Huang Y, Fan MM, Sawyers C, Kharbanda S, Kufe D. Genotoxic drugs induce interaction of the c-Abl tyrosine kinase and the tumor suppressor protein p53. J Biol Chem 1996; 271:26457-60. [PMID: 8900110 DOI: 10.1074/jbc.271.43.26457] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The function of the c-Abl protein tyrosine kinase is unknown. The present studies demonstrate that the antimetabolite 1-beta-D-arabinofuranosylcytosine (ara-C) induces binding of c-Abl and p53. Ara-C treatment of cells that express wild type or a dominant negative, kinase-inactive c-Abl(K-R) was associated with formation of c-Abl-p53 complexes and increased expression of the cyclin-dependent kinase (Cdk) inhibitor p21. However, down-regulation of Cdk2 by ara-C was found in cells expressing wild type c-Abl and not in cells expressing c-Abl(K-R) or those deficient in p53. Similar findings were obtained following treatment of cells with the alkylating agent methyl methanesulfonate (MMS). Cells that express the c-Abl dominant negative or are null for c-Abl exhibited partial abrogation of Cdk2 down-regulation and G1 arrest in response to MMS exposure. Cells lacking the c-abl gene also responded to ara-C and MMS with increases in p53 levels and induction of p21. These findings indicate that the cellular response to certain genotoxic drugs involves binding of c-Abl to p53 and down-regulation of Cdk2 by a c-Abl kinase/p53-dependent mechanism.
Collapse
Affiliation(s)
- Z M Yuan
- Division of Cancer Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
367
|
Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 1996; 271:24313-6. [PMID: 8798679 DOI: 10.1074/jbc.271.40.24313] [Citation(s) in RCA: 865] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- J M Kyriakis
- Diabetes Unit, Medical Services, Massachusetts General Hospital and the Department of Medicine, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
368
|
Pandey P, Raingeaud J, Kaneki M, Weichselbaum R, Davis RJ, Kufe D, Kharbanda S. Activation of p38 mitogen-activated protein kinase by c-Abl-dependent and -independent mechanisms. J Biol Chem 1996; 271:23775-9. [PMID: 8798604 DOI: 10.1074/jbc.271.39.23775] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The p38 mitogen-activated protein (MAP) kinase defines a subgroup of the mammalian MAP kinases that are induced in response to lipopolysaccharide, hyperosmolarity, and interleukin 1. p38 MAP kinase appears to play a role in regulating inflammatory responses, including cytokine secretion and apoptosis. Here we show that diverse classes of DNA-damaging agents such as cisplatinum, 1-beta-D-arabinofuranosylcytosine, UV light, ionizing radiation, and methyl methanesulfonate activate p38 MAP kinase. We also demonstrate that cells deficient in c-Abl fail to activate p38 MAP kinase after treatment with cisplatinum and 1-beta-D-arabinofuranosylcytosine but not after exposure to UV and methyl methanesulfonate. Reconstitution of c-Abl in the Abl-/- cells restores that response. Similar results were obtained for induction of the Jun-NH2-kinase/stress-activated protein kinase. These findings indicate that p38 MAP and Jun-NH2-kinase/stress-activated protein kinases are differentially regulated in response to different classes of DNA-damaging agents.
Collapse
Affiliation(s)
- P Pandey
- Division of Cancer Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
369
|
Mattioni T, Mayer BJ, Picard D. Growth inhibition by Abl requires an interplay of its SH2 and tyrosine kinase domains. FEBS Lett 1996; 390:170-4. [PMID: 8706852 DOI: 10.1016/0014-5793(96)00650-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Overexpression of c-Abl tyrosine kinase can be growth inhibitory in certain fibroblast cell lines. Using a series of conditional chimeras between Abl and Src, we have now further dissected the Abl protein to determine which domains are required for this function. We found that growth inhibition, unlike transformation by oncogenic forms of Abl, is dependent on the presence of the cognate SH2 and tyrosine kinase domains. Since growth inhibition correlates with low tyrosine kinase activity, it may involve highly specific interactions of target proteins with both domains without the processivity of phosphorylation associated with oncogenic Abl.
Collapse
Affiliation(s)
- T Mattioni
- Département de Biologie Cellulaire, Université de Genève, Switzerland
| | | | | |
Collapse
|
370
|
Yuan ZM, Huang Y, Whang Y, Sawyers C, Weichselbaum R, Kharbanda S, Kufe D. Role for c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature 1996; 382:272-4. [PMID: 8717045 DOI: 10.1038/382272a0] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The c-Abl protein tyrosine kinase is activated by certain DNA-damaging agents, and its overexpression causes arrest in the G1 phase of the cell cycle by a mechanism dependent on the tumour-suppressor protein p53 (refs 2-4). Here we investigate the possible role of c-Abl in growth arrest induced by DNA damage. Transient transfection experiments using wild-type or inactivated c-Abl show that both induce expression of p21, an effector of p53, but only wild-type c-Abl downregulates the activity of the cyclin-dependent kinase Cdk2 and causes growth arrest. Exposure to ionizing radiation of cells that stably express active or inactive c-Abl is associated with induction of c-Abl/p53 complexes and p21 expression. However, cells expressing the dominant-negative c-Abl mutant and cells lacking the c-abl gene are impaired in their ability to downregulate Cdk2 or undergo G1 arrest in response to ionizing radiation. We also show that expression of c-Abl kinase in p21(-1-), but not in p53(-1-), cells results in downregulation of Cdk2. Our results suggest that c-Abl kinase contributes to the regulation of growth arrest induced by ionizing radiation by a p53-dependent, p21-independent mechanism.
Collapse
Affiliation(s)
- Z M Yuan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
371
|
Kharbanda S, Bharti A, Pei D, Wang J, Pandey P, Ren R, Weichselbaum R, Walsh CT, Kufe D. The stress response to ionizing radiation involoves c-Abl-dependent phosphorylation of SHPTP1. Proc Natl Acad Sci U S A 1996; 93:6898-901. [PMID: 8692915 PMCID: PMC38905 DOI: 10.1073/pnas.93.14.6898] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
c-Abl is a nonreceptor tyrosine kinase that is activated by certain DNA-damaging agents. The present studies demonstrate that nuclear c-Abl binds constitutively to the protein tyrosine phosphatase SHPTP1. Treatment with ionizing radiation is associated with c-Abl-dependent tyrosine phosphorylation of SHPTP1. The results demonstrate that the SH3 domain of c-Abl interacts with a WPDHGVPSEP motif (residues 417-426) in the catalytic domain of SHPTP1 and that c-Abl phosphorylates C terminal Y536 and Y564 sites. The functional significance of the c-Abl-SHPTP1 interaction is supported by the demonstration that, like c-Abl, SHPTP1 regulates the induction of Jun kinase activity following DNA damage. These findings indicate that SHPTP1 is involved in the response to genotoxic stress through a c-Abl-dependent mechanism.
Collapse
Affiliation(s)
- S Kharbanda
- Division of Cancer Pharmacology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Santos JA, Logarinho E, Tapia C, Allende CC, Allende JE, Sunkel CE. The casein kinase 1 alpha gene of Drosophila melanogaster is developmentally regulated and the kinase activity of the protein induced by DNA damage. J Cell Sci 1996; 109 ( Pt 7):1847-56. [PMID: 8832407 DOI: 10.1242/jcs.109.7.1847] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the molecular cloning and characterisation of the first CK1(casein kinase) gene of Drosophila melanogaster (dmCK1). The protein sequence (DMCK1) shares significant homology with other mammalian CK1 protein kinases of the alpha sub-class. The dmCK1 gene is expressed only in adult females and during early embryonic development as a single transcript. Western blot analysis of total protein extracts of different stages of development show that the gene product is likewise present during early embryogenesis and in adult females. Kinase activity studies show that DMCK1 is active when in vitro translated but inactive when immunoprecipitated from total early embryo extracts. However, after dephosphorylation treatment the immunoprecipitates show high kinase activity. More significantly, DMCK1 kinase activity present in the immunoprecipitates can be specifically activated by gamma-irradiation of early embryos. Also, when DMCK1 is immunoprecipitated after irradiation it appears to undergo phosphorylation. Immunolocalization of DMCK1 in early embryos shows that the protein is predominantly cytoplasmic but after irradiation there is a significant relocalization to the interphase nucleus. The results suggest a possible requirement of the Drosophila CK1 alpha for mechanisms associated with DNA repair during early embryogenesis.
Collapse
Affiliation(s)
- J A Santos
- Centro de Citologia Experimental da Universidade do Porto, Portugal
| | | | | | | | | | | |
Collapse
|
373
|
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of serine/threonine specific, proline directed, protein kinases which are activated by a wide spectrum of extracellular stimuli. MAPK activation is achieved through kinase cascades, which include a MAPK kinase (MAPKK or MEK) and a MAPKK/MEK kinase (MAPKKK/MEKK). These cascades serve as information relays, connecting cell-surface receptors to specific transcription factors and other regulatory proteins, thus allowing extracellular signals to regulate the expression of specific genes. Genetic and biochemical analyses have revealed many tiers in the regulation of the activities of MAPKs, as well as different routes that lead to the activation of an individual MAPK. An emerging topic of great interest is the basis for specificity in the activation of individual MAPKs and their ability to recognize their substrates.
Collapse
Affiliation(s)
- B Su
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston 77030, USA.
| | | |
Collapse
|
374
|
Zanke BW, Boudreau K, Rubie E, Winnett E, Tibbles LA, Zon L, Kyriakis J, Liu FF, Woodgett JR. The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr Biol 1996; 6:606-13. [PMID: 8805279 DOI: 10.1016/s0960-9822(02)00547-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Stimuli that stress cells, including inflammatory cytokines, ultra-violet irradiation, DNA-damaging chemotherapeutic drugs and heat shock, stimulate a recently identified cytoplasmic signaling system that is structurally related to the mitogen-activated protein kinase pathway. This pathway consists of a cascade of protein kinases including stress-activated protein kinase (SAPK), also termed Jun N-terminal kinase (JNK), and two kinases that activate it, MEKK and SEK/MKK4. Despite rapid progress in delineating the components of this pathway, the cellular consequence of its activation remains to be defined. RESULTS We have screened cells for defects in SAPK signaling and identified a cell line, previously characterized for its thermotolerance properties, as being more refractive to SAPK activation induced by heat stress than its thermosensitive parental line. Stable expression of dominant inhibiting SEK mutants in thermosensitive parental cells specifically and effectively blocked SAPK activation after heat shock. These lines also became markedly resistant to the cytocidal effects of thermal stress, confirming the phenotype of the thermotolerant line. These cell lines defective in SAPK activation were also resistant to the lethal effects of the DNA-damaging drug cis-platinum. CONCLUSIONS Experimentally induced stable blockade of SAPK activation in cells with normal thermosensitivity is sufficient to confer resistance to cell death induced by diverse stimuli including heat and the chemotherapeutic agent cis-platinum. These results suggest that activation of the SAPK pathway by diverse cell stressors plays a critical part in mediating the toxicity of these treatments and inducing cell death. SAPK activation in this context could broadly influence cellular response to stress, modulate apoptosis during development or determine the clinical response of tumor cells to cytotoxic therapies.
Collapse
Affiliation(s)
- B W Zanke
- Department of Medicine, The Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada, M5G 2M9
| | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2:561-6. [PMID: 8616716 DOI: 10.1038/nm0596-561] [Citation(s) in RCA: 2550] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The bcr-abl oncogene, present in 95% of patients with chronic myelogenous leukemia (CML), has been implicated as the cause of this disease. A compound, designed to inhibit the Abl protein tyrosine kinase, was evaluated for its effects on cells containing the Bcr-Abl fusion protein. Cellular proliferation and tumor formation by Bcr-Abl-expressing cells were specifically inhibited by this compound. In colony-forming assays of peripheral blood or bone marrow from patients with CML, there was a 92-98% decrease in the number of bcr-abl colonies formed but no inhibition of normal colony formation. This compound may be useful in the treatment of bcr-abl-positive leukemias.
Collapse
Affiliation(s)
- B J Druker
- Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland, USA
| | | | | | | | | | | | | | | |
Collapse
|
376
|
Abstract
The notion of a critical role for protein tyrosine kinases in the nucleus is supported by recent findings linking these proteins with components of the cell cycle and with the transcription machinery. Several of these tyrosine kinases localize to both nuclear and cytoplasmic compartments of the cell, and may coordinate signal transduction events in the cytoplasm with specific changes in the nucleus. Among these proteins are Abl, Rak, Fes and Fer. The past year has brought significant progress both towards the elucidation of the pathways that lead to activation of the Abl tyrosine kinase and towards the identification of novel Abl targets. Recent advances have also been made in understanding the regulation of the nucleus-specific human WEE1 tyrosine kinase. Nuclear tyrosine kinases may participate in the regulation of multiple cellular processes including transcription, DNA repair and the cell cycle.
Collapse
Affiliation(s)
- A M Pendergast
- Department of Pharmacology, Box 3813, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
377
|
Dikstein R, Agami R, Heffetz D, Shaul Y. p140/c-Abl that binds DNA is preferentially phosphorylated at tyrosine residues. Proc Natl Acad Sci U S A 1996; 93:2387-91. [PMID: 8637883 PMCID: PMC39806 DOI: 10.1073/pnas.93.6.2387] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
EP is a DNA element found in the enhancer and promoter regions of several cellular and viral genes. Previously, we have identified the DNA binding p140/c-Abl protein that specifically recognizes this element. Here we show that phosphorylation is essential for the p140/c-Abl DNA binding activity and for the formation of DNA-protein complexes. Furthermore, by 32P labeling of cells and protein purification, we demonstrate that in vivo the EP-DNA-associated p140/c-Abl is a tyrosine phosphoprotein. By employing two different c-Abl antibodies, we demonstrate the existence of two distinct c-Abl populations in cellular extracts. p140/c-Abl is quantitatively the minor population, is heavily phosphorylated at both serine and tyrosine residues, and is active in autophosphorylation reactions.
Collapse
Affiliation(s)
- R Dikstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
378
|
Johnson NL, Gardner AM, Diener KM, Lange-Carter CA, Gleavy J, Jarpe MB, Minden A, Karin M, Zon LI, Johnson GL. Signal transduction pathways regulated by mitogen-activated/extracellular response kinase kinase kinase induce cell death. J Biol Chem 1996; 271:3229-37. [PMID: 8621725 DOI: 10.1074/jbc.271.6.3229] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mitogen-activated/extracellular response kinase kinase (MEK) kinase (MEKK) is a serine-threonine kinase that regulates sequential protein phosphorylation pathways, leading to the activation of mitogen-activated protein kinases (MAPK), including members of the Jun kinase (JNK)/stress-activated protein kinase (SAPK) family. In Swiss 3T3 and REF52 fibroblasts, activated MEKK induces cell death involving cytoplasmic shrinkage, nuclear condensation, and DNA fragmentation characteristic of apoptosis. Expression of activated MEKK enhanced the apoptotic response to ultraviolet irradiation, indicating that MEKK-regulated pathways sensitize cells to apoptotic stimuli. Inducible expression of activated MEKK stimulated the transactivation of c-Myc and Elk-1. Activated Raf, the serine-threonine protein kinase that activates the ERK members of the MAPK family, stimulated Elk-1 transactivation but not c-Myc; expression of activated Raf does not induce any of the cellular changes associated with MEKK-mediated cell death. Thus, MEKK selectively regulates signal transduction pathways that contribute to the apoptotic response.
Collapse
Affiliation(s)
- N L Johnson
- Division of Basic Sciences, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Chmura SJ, Nodzenski E, Crane MA, Virudachalam S, Hallahan DE, Weichselbaum RR, Quintans J. Cross-talk between ceramide and PKC activity in the control of apoptosis in WEHI-231. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 406:39-55. [PMID: 8910670 DOI: 10.1007/978-1-4899-0274-0_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
WEHI-231, a murine B-cell lymphoma, readily undergoes programmed cell death following surface immunoglobulin (Ig) cross-linking [1]. Ceramide has been shown to induce apoptosis in WEHI-231 following its exposure to anti-lg antibodies, dexamethasone, and irradiation [2]. Recently, Haimovitz-Friedman et al. have demonstrated in endothelial cells that PMA not only prevented ceramide mediated apoptosis, but inhibited the generation of ceramide following irradiation [3]. In this paper we use highly specific PKC inhibitors to explore the connection between PKC activity, ceramide signaling and apoptosis. Both chelerythrine chloride and calphostin C triggered rapid apoptosis in WEHI-231 and acted in synergy with exogenous ceramide to induce apoptosis. Detailed studies of chelerythrine's mechanism of action revealed that 30 minutes following addition of 10 microM chelerythrine, sphingomyelin and phosphatidylcholine (PC) mass decreased confirming our previous findings of neutral, but not acidic, sphingomyelinase activation following treatment with PKC inhibitors [4]. The novel observation that inhibition of PKC isoforms present in WEHI-231 leads to a rapid rise in cellular ceramide as a results of sphingomyelin hydrolysis further suggests an antagonistic relationship between PKC activity and ceramide in the signaling events preceding apoptosis.
Collapse
Affiliation(s)
- S J Chmura
- Department of Pathology, University of Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
380
|
|
381
|
Kharbanda S, Pandey P, Ren R, Mayer B, Zon L, Kufe D. c-Abl activation regulates induction of the SEK1/stress-activated protein kinase pathway in the cellular response to 1-beta-D-arabinofuranosylcytosine. J Biol Chem 1995; 270:30278-81. [PMID: 8530447 DOI: 10.1074/jbc.270.51.30278] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previous work has shown that treatment of cells with the antimetabolite 1-beta-D-arabinofuranosylcytosine (ara-C) is associated with induction of the c-jun gene. The present studies demonstrate that ara-C activates the c-Abl non-receptor tyrosine kinase. We also demonstrate that activity of the stress-activated protein kinase (SAP kinase/JNK) is increased in ara-C-treated cells. Using cells deficient in c-Abl (Abl-/-) and after introduction of the c-abl gene, we show that ara-C-induced c-Abl activity is necessary for the stimulation of SAP kinase. Other studies using cells transfected with a SEK1 dominant negative demonstrate that ara-C-induced SAP kinase activity is SEK1-dependent. Furthermore, we show that overexpression of truncated c-Abl results in activation of the SEK1/SAP kinase cascade.
Collapse
Affiliation(s)
- S Kharbanda
- Division of Cancer Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|