351
|
Monje-Casas F, Prabhu VR, Lee BH, Boselli M, Amon A. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 2007; 128:477-90. [PMID: 17289568 PMCID: PMC1808280 DOI: 10.1016/j.cell.2006.12.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/31/2006] [Accepted: 12/13/2006] [Indexed: 11/23/2022]
Abstract
Kinetochores of sister chromatids attach to microtubules emanating from the same pole (coorientation) during meiosis I and microtubules emanating from opposite poles (biorientation) during meiosis II. We find that the Aurora B kinase Ipl1 regulates kinetochore-microtubule attachment during both meiotic divisions and that a complex known as the monopolin complex ensures that the protein kinase coorients sister chromatids during meiosis I. Furthermore, the defining of conditions sufficient to induce sister kinetochore coorientation during mitosis provides insight into monopolin complex function. The monopolin complex joins sister kinetochores independently of cohesins, the proteins that hold sister chromatids together. We propose that this function of the monopolin complex helps Aurora B coorient sister chromatids during meiosis I.
Collapse
Affiliation(s)
| | | | | | - Monica Boselli
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, MA 02139, USA
| | - Angelika Amon
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, MA 02139, USA
| |
Collapse
|
352
|
Gómez R, Valdeolmillos A, Parra MT, Viera A, Carreiro C, Roncal F, Rufas JS, Barbero JL, Suja JA. Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis. EMBO Rep 2007; 8:173-80. [PMID: 17205076 PMCID: PMC1796771 DOI: 10.1038/sj.embor.7400877] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 11/09/2006] [Accepted: 11/09/2006] [Indexed: 11/10/2022] Open
Abstract
Shugoshin (SGO) is a family of proteins that protect centromeric cohesin complexes from release during mitotic prophase and from degradation during meiosis I. Two mammalian SGO paralogues - SGO1 and SGO2 - have been identified, but their distribution and function during mammalian meiosis have not been reported. Here, we analysed the expression of SGO2 during male mouse meiosis and mitosis. During meiosis I, SGO2 accumulates at centromeres during diplotene, and colocalizes differentially with the cohesin subunits RAD21 and REC8 at metaphase I centromeres. However, SGO2 and RAD21 change their relative distributions during telophase I when sister-kinetochore association is lost. During meiosis II, SGO2 shows a striking tension-dependent redistribution within centromeres throughout chromosome congression during prometaphase II, as it does during mitosis. We propose a model by which the redistribution of SGO2 would unmask cohesive centromere proteins, which would be then released or cleaved by separase, to trigger chromatid segregation to opposite poles.
Collapse
Affiliation(s)
- Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, Calle Darwin 2, E-28049 Madrid, Spain
| | - Ana Valdeolmillos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Calle Darwin 3, E-28049 Madrid, Spain
| | - María Teresa Parra
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, Calle Darwin 2, E-28049 Madrid, Spain
| | - Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, Calle Darwin 2, E-28049 Madrid, Spain
| | - Candelas Carreiro
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Calle Darwin 3, E-28049 Madrid, Spain
| | - Fernando Roncal
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Calle Darwin 3, E-28049 Madrid, Spain
| | - Julio S Rufas
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, Calle Darwin 2, E-28049 Madrid, Spain
| | - José L Barbero
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Calle Darwin 3, E-28049 Madrid, Spain
| | - José A Suja
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, Calle Darwin 2, E-28049 Madrid, Spain
| |
Collapse
|
353
|
Bogdanov YF, Grishaeva TM, Dadashev SY. Similarity of the domain structure of proteins as a basis for the conservation of meiosis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 257:83-142. [PMID: 17280896 DOI: 10.1016/s0074-7696(07)57003-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Meiosis is conserved in all eucaryotic kingdoms, and homologous rows of variability are revealed for the cytological traits of meiosis. To find the nature of these phenomenons, we reviewed the most-studied meiosis-specific proteins and studied them with the methods of bioinformatics. We found that synaptonemal complex proteins have no homology of amino-acid sequence, but are similar in the domain organization and three-dimensional (3D) structure of functionally important domains in budding yeast, nematode, Drosophila, Arabidopsis, and human. Recombination proteins of Rad51/Dmc1 family are conserved to the extent which permits them to make filamentous single-strand deoxyribonucleic acid (ssDNA)-protein intermediates of meiotic recombination. The same structural principles are valid for conservation of the ultrastructure of kinetochores, cell gap contacts, and nuclear pore complexes, such as in the cases when ultrastructure 3D parameters are important for the function. We suggest that self-assembly of protein molecules plays a significant role in building-up of all biological structures mentioned.
Collapse
Affiliation(s)
- Yu F Bogdanov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | |
Collapse
|
354
|
Kueng S, Hegemann B, Peters BH, Lipp JJ, Schleiffer A, Mechtler K, Peters JM. Wapl controls the dynamic association of cohesin with chromatin. Cell 2006; 127:955-67. [PMID: 17113138 DOI: 10.1016/j.cell.2006.09.040] [Citation(s) in RCA: 465] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/09/2006] [Accepted: 09/26/2006] [Indexed: 11/24/2022]
Abstract
Cohesin establishes sister-chromatid cohesion from S phase until mitosis or meiosis. To allow chromosome segregation, cohesion has to be dissolved. In vertebrate cells, this process is mediated in part by the protease separase, which destroys a small amount of cohesin, but most cohesin is removed from chromosomes without proteolysis. How this is achieved is poorly understood. Here, we show that the interaction between cohesin and chromatin is controlled by Wapl, a protein implicated in heterochromatin formation and tumorigenesis. Wapl is associated with cohesin throughout the cell cycle, and its depletion blocks cohesin dissociation from chromosomes during the early stages of mitosis and prevents the resolution of sister chromatids until anaphase, which occurs after a delay. Wapl depletion also increases the residence time of cohesin on chromatin in interphase. Our data indicate that Wapl is required to unlock cohesin from a particular state in which it is stably bound to chromatin.
Collapse
Affiliation(s)
- Stephanie Kueng
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
355
|
Dai J, Sullivan BA, Higgins JMG. Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Dev Cell 2006; 11:741-50. [PMID: 17084365 DOI: 10.1016/j.devcel.2006.09.018] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/22/2006] [Accepted: 09/19/2006] [Indexed: 01/19/2023]
Abstract
In vertebrate mitosis, cohesion between sister chromatids is lost in two stages. In prophase and prometaphase, cohesin release from chromosome arms occurs under the control of Polo-like kinase 1 and Aurora B, while Shugoshin is thought to prevent removal of centromeric cohesin until anaphase. The regulatory enzymes that act to sustain centromeric cohesion are incompletely described, however. Haspin/Gsg2 is a histone H3 threonine-3 kinase required for normal mitosis. We report here that both H3 threonine-3 phosphorylation and cohesin are located at inner centromeres. Haspin depletion disrupts cohesin binding and sister chromatid association in mitosis, preventing normal chromosome alignment and activating the spindle assembly checkpoint, leading to arrest in a prometaphase-like state. Overexpression of Haspin hinders cohesin release and stabilizes arm cohesion. We conclude that Haspin is required to maintain centromeric cohesion during mitosis. We also suggest that Aurora B regulates cohesin removal through its effect on the localization of Shugoshin.
Collapse
Affiliation(s)
- Jun Dai
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
356
|
Vaur S, Cubizolles F, Plane G, Genier S, Rabitsch PK, Gregan J, Nasmyth K, Vanoosthuyse V, Hardwick KG, Javerzat JP. Control of Shugoshin function during fission-yeast meiosis. Curr Biol 2006; 15:2263-70. [PMID: 16360688 DOI: 10.1016/j.cub.2005.11.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/20/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Meiosis consists of a single round of DNA replication followed by two consecutive nuclear divisions. During the first division (MI), sister kinetochores must orient toward the same pole to favor reductional segregation. Correct chromosome segregation during the second division (MII) requires the retention of centromeric cohesion until anaphase II. The spindle checkpoint protein Bub1 is essential for both processes in fission yeast . When bub1 is deleted, the Shugoshin protein Sgo1 is not recruited to centromeres, cohesin Rec8 does not persist at centromeres, and sister-chromatid cohesion is lost by the end of MI. Deletion of bub1 also affects kinetochore orientation because sister centromeres can move to opposite spindle poles in approximately 30% of MI divisions. We show here that these two functions are separable within the Bub1 protein. The N terminus of Bub1 is necessary and sufficient for Sgo1 targeting to centromeres and the protection of cohesion, whereas the C-terminal kinase domain acts together with Sgo2, the second fission-yeast Shugoshin protein, to promote sister-kinetochore co-orientation during MI. Additional analyses suggest that the protection of centromeric cohesion does not operate when sister kinetochores attach to opposite spindle poles during MI. Sgo1-mediated protection of centromere cohesion might therefore be regulated by the mode of kinetochore attachment.
Collapse
Affiliation(s)
- Sabine Vaur
- Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, Unité mixte de recherche 5095, Bordeaux, F-33077, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Hayashi A, Asakawa H, Haraguchi T, Hiraoka Y. Reconstruction of the kinetochore during meiosis in fission yeast Schizosaccharomyces pombe. Mol Biol Cell 2006; 17:5173-84. [PMID: 17035632 PMCID: PMC1679682 DOI: 10.1091/mbc.e06-05-0388] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During the transition from mitosis to meiosis, the kinetochore undergoes significant reorganization, switching from a bipolar to a monopolar orientation. To examine the centromere proteins that are involved in fundamental reorganization in meiosis, we observed the localization of 22 mitotic and 2 meiotic protein components of the kinetochore during meiosis in living cells of the fission yeast. We found that the 22 mitotic proteins can be classified into three groups: the Mis6-like group, the NMS (Ndc80-Mis12-Spc7) group, and the DASH group, based on their meiotic behavior. Mis6-like group proteins remain at the centromere throughout meiosis. NMS group proteins disappear from the centromere at the onset of meiosis and reappear at the centromere in two steps in late prophase. DASH group proteins appear shortly before metaphase of meiosis I. These observations suggest that Mis6-like group proteins constitute the structural basis of the centromere and that the NMS and DASH group proteins reassemble to establish the functional metaphase kinetochore. On the other hand, the meiosis-specific protein Moa1, which plays an important role in forming the meiotic monopolar kinetochore, is loaded onto the centromere significantly earlier than the NMS group, whereas another meiosis-specific protein, Sgo1, is loaded at times similar to the NMS group.
Collapse
Affiliation(s)
- Aki Hayashi
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
| | - Haruhiko Asakawa
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
| | - Tokuko Haraguchi
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan
| | - Yasushi Hiraoka
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan
| |
Collapse
|
358
|
Mining meiosis with genomic models. Nat Rev Genet 2006. [DOI: 10.1038/nrg1614-c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
359
|
Polanski Z, Hoffmann S, Tsurumi C. Oocyte nucleus controls progression through meiotic maturation. Dev Biol 2006; 281:184-95. [PMID: 15893972 DOI: 10.1016/j.ydbio.2005.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 11/26/2022]
Abstract
We analyzed progression through the meiotic maturation in oocytes manipulated to replace the prophase oocyte nucleus with the nucleus from a cumulus cell, a pachytene spermatocyte or the pronucleus from a fertilized egg. Removal of the oocyte nucleus led to a significant reduction in histone H1 kinase activity. Replacement of the oocyte nucleus by a pronucleus followed by culture resulted in premature pseudomeiotic division and occasional abnormal cytokinesis; however, histone H1 kinase activity was rescued, microtubules formed a bipolar spindle, and chromosomes were condensed. In addition to the anomalies observed after pronuclear transfer, those after transfer of the nucleus from a cumulus cell or spermatocyte included a dramatically impaired ability to form the bipolar spindle or to condense chromosomes, and histone H1 kinase activity was not rescued. Expression of a cyclin B-YFP in enucleated oocytes receiving the cumulus cell nucleus rescued histone H1 kinase activity, but spindle formation and chromosome condensation remained impaired, indicating a pleiotropic effect of oocyte nucleus removal. However, when the cumulus cell nucleus was first transformed into pronuclei (transfer into a metaphase II oocyte followed by activation), such pronuclei supported maturation after transfer into the oocyte in a manner similar to that of normal pronuclei. These results show that the oocyte nucleus contains specific components required for the control of progression through the meiotic maturation and that some of these components are also present in pronuclei.
Collapse
Affiliation(s)
- Zbigniew Polanski
- Department of Developmental Biology, Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
360
|
Holland AJ, Taylor SS. Cyclin-B1-mediated inhibition of excess separase is required for timely chromosome disjunction. J Cell Sci 2006; 119:3325-36. [PMID: 16868023 DOI: 10.1242/jcs.03083] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Separase, the cysteine protease that cleaves cohesin and thereby triggers chromosome disjunction, is inhibited by both securin- and phosphorylation-dependent cyclin B1 binding. Using a novel phosphorylation-specific antibody, we show that mitotic-specific phosphorylation of human separase on S1126 is required to establish, but not maintain, cyclin B1 binding. Cells expressing a non-phosphorylatable S1126A mutant maintain cohesion early in mitosis, aligning their chromosomes. Cohesion is then synchronously lost 5 minutes ahead of schedule, without degrading securin or cyclin B1. This premature chromatid disjunction requires the catalytic activity of separase, indicating that it is dependent on cohesin cleavage. Single chromatids then attempt to realign but the lack of tension results in unstable kinetochore-microtubule interactions and Aurora-B-dependent spindle checkpoint activation. Separase mutants that cannot bind cyclin B1 but are phosphorylated on S1126 phenocopy separase S1126A, indicating that cyclin B1 binding, rather than phosphorylation, is the key inhibitory event. Significantly, by overexpressing separase S1126A, we have simultaneously overridden the two known inhibitory mechanisms. First, by elevating separase levels above securin, securin-mediated inhibition is alleviated. Second, by preventing phosphorylation, cyclin-B1-mediated inhibition is also alleviated. Surprisingly, however, cohesion is maintained during the early stages of mitosis, indicating the existence of another mechanism that either inhibits separase or protects its substrate during early mitosis.
Collapse
Affiliation(s)
- Andrew J Holland
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, University of Manchester, Manchester, M13 9PT, UK
| | | |
Collapse
|
361
|
Abstract
Sister chromatid cohesion mediated by the ring-shaped cohesin complex is essential for faithful chromosome segregation. A tight spatial and temporal control of cohesin release is observed in mitosis and meiosis, and a family of proteins known as shugoshins play a major role in this process. Shugoshin (Sgo) protects centromeric cohesin from dissociation in early mitosis and from cleavage by separase in meiosis I. Three exciting new reports indicate that this is accomplished by recruiting the serine/threonine protein phosphatase 2A (PP2A) to centromeres.((1-3)) The proposed targets of PP2A activity include cohesin and Sgo, both of which would otherwise dissociate from chromosomes upon phosphorylation by Polo kinase. Thus, a balance of kinase and phosphatase activities seems to be the key to the conserved mechanism that regulates the stepwise release of cohesin from mitotic and meiotic chromosomes. Additional evidence, however, suggests that this is only part of the story, and that Sgo has also a role independent of PP2A.
Collapse
Affiliation(s)
- Teresa Rivera
- Chromosome Dynamics Group, Spanish National Cancer Center (CNIO), Madrid, Spain
| | | |
Collapse
|
362
|
Resnick TD, Satinover DL, MacIsaac F, Stukenberg PT, Earnshaw WC, Orr-Weaver TL, Carmena M. INCENP and Aurora B promote meiotic sister chromatid cohesion through localization of the Shugoshin MEI-S332 in Drosophila. Dev Cell 2006; 11:57-68. [PMID: 16824953 PMCID: PMC7115953 DOI: 10.1016/j.devcel.2006.04.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/28/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
The chromosomal passenger complex protein INCENP is required in mitosis for chromosome condensation, spindle attachment and function, and cytokinesis. Here, we show that INCENP has an essential function in the specialized behavior of centromeres in meiosis. Mutations affecting Drosophila incenp profoundly affect chromosome segregation in both meiosis I and II, due, at least in part, to premature sister chromatid separation in meiosis I. INCENP binds to the cohesion protector protein MEI-S332, which is also an excellent in vitro substrate for Aurora B kinase. A MEI-S332 mutant that is only poorly phosphorylated by Aurora B is defective in localization to centromeres. These results implicate the chromosomal passenger complex in directly regulating MEI-S332 localization and, therefore, the control of sister chromatid cohesion in meiosis.
Collapse
Affiliation(s)
- Tamar D. Resnick
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142
| | - David L. Satinover
- University of Virginia, Department of Biochemistry and Molecular Genetics, Jordan Hall, Room 6017, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908
| | - Fiona MacIsaac
- Wellcome Trust Centre for Cell Biology, School of Biology, King’s Buildings, University of Edinburgh, EH9 3JR Edinburgh, Scotland
| | - P. Todd Stukenberg
- University of Virginia, Department of Biochemistry and Molecular Genetics, Jordan Hall, Room 6017, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, School of Biology, King’s Buildings, University of Edinburgh, EH9 3JR Edinburgh, Scotland
| | - Terry L. Orr-Weaver
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142
| | - Mar Carmena
- Wellcome Trust Centre for Cell Biology, School of Biology, King’s Buildings, University of Edinburgh, EH9 3JR Edinburgh, Scotland
| |
Collapse
|
363
|
Zhang T, Lim HH, Cheng CS, Surana U. Deficiency of centromere-associated protein Slk19 causes premature nuclear migration and loss of centromeric elasticity. J Cell Sci 2006; 119:519-31. [PMID: 16443750 DOI: 10.1242/jcs.02757] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The cohesin complex prevents premature segregation of duplicated chromosomes by providing resistance to the pole-ward pull by spindle microtubules. The centromeric region (or sister kinetochores) bears the majority of this force and undergoes transient separation prior to anaphase, indicative of its elastic nature. A cysteine protease, separase, cleaves the cohesin subunit Scc1 and dissolves cohesion between sister chromatids, initiating their separation. Separase also cleaves the kinetochore protein Slk19 during anaphase. Slk19 has been implicated in stabilization of the mitotic spindle and regulation of mitotic exit, but it is not known what role it plays at the kinetochores. We show that during pre-anaphase arrest, the spindle in slk19Delta cells is excessively dynamic and the nuclei move into mother-daughter junction prematurely. As a result, the chromatin mass undergoes partial division that requires neither anaphase promoting complex (APC) activity nor Scc1 cleavage. Partial division of the chromatin mass is accompanied by the loss of the centromeric region's ability to resist pole-ward pull by the spindle. Slk19 physically associates with Scc1 and this association appears necessary for efficient cleavage of Slk19 by separase. Our results suggest that Slk19 participates in regulating nuclear migration and, in conjunction with cohesin complex, may be involved in the maintenance of centromeric tensile strength to resist the pole-ward pull.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
| | | | | | | |
Collapse
|
364
|
Dai W, Wang X. The Yin and Yang of centromeric cohesion of sister chromatids: mitotic kinases meet protein phosphatase 2A. Cell Div 2006; 1:9. [PMID: 16759372 PMCID: PMC1524732 DOI: 10.1186/1747-1028-1-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 05/26/2006] [Indexed: 11/10/2022] Open
Abstract
Accurate chromosome segregation during meiosis and mitosis is essential for the maintenance of genomic stability. Defects in the regulation of chromosome segregation during division predispose cells to undergo mitotic catastrophe or neoplastic transformation. Cohesin, a molecular glue holding sister chromatids together, is removed from chromosomes in a stepwise fashion during mitosis and meiosis. Cohesin at centromeres but not on chromosome arm remains intact until anaphase onset during early mitosis and the initiation of anaphase II during meiosis. Several recent studies indicate that the activity of protein phosphatase 2A is essential for maintaining the integrity of centromeric cohesin. Shugoshin, a guardian for sister chromatid segregation, may cooperate with and/or mediate PP2A function by suppressing the phosphorylation status of centromeric proteins including cohesin.
Collapse
Affiliation(s)
- Wei Dai
- Division of Molecular Carcinogenesis, Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Xiaoxing Wang
- Division of Molecular Carcinogenesis, Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
365
|
Brar GA, Kiburz BM, Zhang Y, Kim JE, White F, Amon A. Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 2006; 441:532-6. [PMID: 16672979 DOI: 10.1038/nature04794] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/10/2006] [Indexed: 12/13/2022]
Abstract
During meiosis, cohesins--protein complexes that hold sister chromatids together--are lost from chromosomes in a step-wise manner. Loss of cohesins from chromosome arms is necessary for homologous chromosomes to segregate during meiosis I. Retention of cohesins around centromeres until meiosis II is required for the accurate segregation of sister chromatids. Here we show that phosphorylation of the cohesin subunit Rec8 contributes to step-wise cohesin removal. Our data further implicate two other key regulators of meiotic chromosome segregation, the cohesin protector Sgo1 and meiotic recombination in bringing about the step-wise loss of cohesins and thus the establishment of the meiotic chromosome segregation pattern. Understanding the interplay between these processes should provide insight into the events underlying meiotic chromosome mis-segregation, the leading cause of miscarriages and mental retardation in humans.
Collapse
Affiliation(s)
- Gloria A Brar
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233 40 Ames Street, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
366
|
Kitajima TS, Sakuno T, Ishiguro KI, Iemura SI, Natsume T, Kawashima SA, Watanabe Y. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 2006; 441:46-52. [PMID: 16541025 DOI: 10.1038/nature04663] [Citation(s) in RCA: 450] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 02/21/2006] [Indexed: 11/08/2022]
Abstract
Sister chromatid cohesion, mediated by a complex called cohesin, is crucial--particularly at centromeres--for proper chromosome segregation in mitosis and meiosis. In animal mitotic cells, phosphorylation of cohesin promotes its dissociation from chromosomes, but centromeric cohesin is protected by shugoshin until kinetochores are properly captured by the spindle microtubules. However, the mechanism of shugoshin-dependent protection of cohesin is unknown. Here we find a specific subtype of serine/threonine protein phosphatase 2A (PP2A) associating with human shugoshin. PP2A colocalizes with shugoshin at centromeres and is required for centromeric protection. Purified shugoshin complex has an ability to reverse the phosphorylation of cohesin in vitro, suggesting that dephosphorylation of cohesin is the mechanism of protection at centromeres. Meiotic shugoshin of fission yeast also associates with PP2A, with both proteins collaboratively protecting Rec8-containing cohesin at centromeres. Thus, we have revealed a conserved mechanism of centromeric protection of eukaryotic chromosomes in mitosis and meiosis.
Collapse
Affiliation(s)
- Tomoya S Kitajima
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
367
|
|
368
|
Riedel CG, Katis VL, Katou Y, Mori S, Itoh T, Helmhart W, Gálová M, Petronczki M, Gregan J, Cetin B, Mudrak I, Ogris E, Mechtler K, Pelletier L, Buchholz F, Shirahige K, Nasmyth K. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 2006; 441:53-61. [PMID: 16541024 DOI: 10.1038/nature04664] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 02/20/2006] [Indexed: 11/08/2022]
Abstract
Segregation of homologous maternal and paternal centromeres to opposite poles during meiosis I depends on post-replicative crossing over between homologous non-sister chromatids, which creates chiasmata and therefore bivalent chromosomes. Destruction of sister chromatid cohesion along chromosome arms due to proteolytic cleavage of cohesin's Rec8 subunit by separase resolves chiasmata and thereby triggers the first meiotic division. This produces univalent chromosomes, the chromatids of which are held together by centromeric cohesin that has been protected from separase by shugoshin (Sgo1/MEI-S332) proteins. Here we show in both fission and budding yeast that Sgo1 recruits to centromeres a specific form of protein phosphatase 2A (PP2A). Its inactivation causes loss of centromeric cohesin at anaphase I and random segregation of sister centromeres at the second meiotic division. Artificial recruitment of PP2A to chromosome arms prevents Rec8 phosphorylation and hinders resolution of chiasmata. Our data are consistent with the notion that efficient cleavage of Rec8 requires phosphorylation of cohesin and that this is blocked by PP2A at meiosis I centromeres.
Collapse
Affiliation(s)
- Christian G Riedel
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Tang Z, Shu H, Qi W, Mahmood NA, Mumby MC, Yu H. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev Cell 2006; 10:575-85. [PMID: 16580887 DOI: 10.1016/j.devcel.2006.03.010] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 03/21/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
Loss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs through two mechanisms in vertebrate cells: (1) phosphorylation and removal of cohesin from chromosome arms by mitotic kinases, including Plk1, during prophase, and (2) cleavage of centromeric cohesin by separase at the metaphase-anaphase transition. Bub1 and the MEI-S332/Shugoshin (Sgo1) family of proteins protect centromeric cohesin from mitotic kinases during prophase. We show that human Sgo1 binds to protein phosphatase 2A (PP2A). PP2A localizes to centromeres in a Bub1-dependent manner. The Sgo1-PP2A interaction is required for centromeric localization of Sgo1 and proper chromosome segregation in human cells. Depletion of Plk1 by RNA interference (RNAi) restores centromeric localization of Sgo1 and prevents chromosome missegregation in cells depleted of PP2A_Aalpha. Our findings suggest that Bub1 targets PP2A to centromeres, which in turn maintains Sgo1 at centromeres by counteracting Plk1-mediated chromosome removal of Sgo1.
Collapse
Affiliation(s)
- Zhanyun Tang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
370
|
Gregan J, Rabitsch PK, Sakem B, Csutak O, Latypov V, Lehmann E, Kohli J, Nasmyth K. Novel genes required for meiotic chromosome segregation are identified by a high-throughput knockout screen in fission yeast. Curr Biol 2006; 15:1663-9. [PMID: 16169489 DOI: 10.1016/j.cub.2005.07.059] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/16/2005] [Accepted: 07/19/2005] [Indexed: 11/20/2022]
Abstract
Two rounds of chromosome segregation after only a single round of DNA replication enable the production of haploid gametes from diploid precursors during meiosis. To identify genes involved in meiotic chromosome segregation, we developed an efficient strategy to knock out genes in the fission yeast on a large scale. We used this technique to delete 180 functionally uncharacterized genes whose expression is upregulated during meiosis. Deletion of two genes, sgo1 and mde2, caused massive chromosome missegregation. sgo1 is required for retention of centromeric sister-chromatid cohesion after anaphase I. We show here that mde2 is required for formation of the double-strand breaks necessary for meiotic recombination.
Collapse
Affiliation(s)
- Juraj Gregan
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
371
|
Colaiácovo MP. The many facets of SC function during C. elegans meiosis. Chromosoma 2006; 115:195-211. [PMID: 16555015 DOI: 10.1007/s00412-006-0061-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 11/27/2022]
Abstract
Sexually reproducing organisms rely on meiosis for the formation of haploid gametes. This is achieved through two consecutive rounds of cell division (meiosis I and II) after one round of DNA replication. During the meiotic divisions, chromosomes face several challenges to ultimately ensure proper chromosome segregation. Unique events unfold during meiosis I to overcome these challenges. Homologous chromosomes pair, synapse, and recombine. A remarkable feature throughout this process is the formation of an evolutionarily conserved tripartite proteinaceous structure known as the synaptonemal complex (SC). It is comprised of two lateral elements, assembled along each axis of a pair of homologous chromosomes, and a central region consisting of transverse filaments bridging the gap between lateral elements. While the presence of the SC during meiosis has been appreciated now for 50 years (Moses, Biophys Biochem Cytol 2:215-218, 1956; Fawcett, J Biophys Biochem Cytol 2:403-406, 1956), its role(s) remain a matter of intense investigation. This review concentrates on studies performed in Caenorhabditis elegans, a powerful system for investigating meiosis. Studies in this organism are contributing to the unraveling of the various processes leading to the formation of the SC and the various facets of the functions it exerts throughout meiosis.
Collapse
|
372
|
Abstract
When a cell prepares to divide, the chromosomes need to separate at just the right moment. Regulating the cohesion of chromosomes is key to achieving this
Collapse
|
373
|
Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 2006; 10:303-15. [PMID: 16516834 PMCID: PMC3192491 DOI: 10.1016/j.devcel.2006.01.014] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 01/09/2006] [Accepted: 01/27/2006] [Indexed: 01/14/2023]
Abstract
The centromere-specific histone variant CENP-A (CID in Drosophila) is a structural and functional foundation for kinetochore formation and chromosome segregation. Here, we show that overexpressed CID is mislocalized into normally noncentromeric regions in Drosophila tissue culture cells and animals. Analysis of mitoses in living and fixed cells reveals that mitotic delays, anaphase bridges, chromosome fragmentation, and cell and organismal lethality are all direct consequences of CID mislocalization. In addition, proteins that are normally restricted to endogenous kinetochores assemble at a subset of ectopic CID incorporation regions. The presence of microtubule motors and binding proteins, spindle attachments, and aberrant chromosome morphologies demonstrate that these ectopic kinetochores are functional. We conclude that CID mislocalization promotes formation of ectopic centromeres and multicentric chromosomes, which causes chromosome missegregation, aneuploidy, and growth defects. Thus, CENP-A mislocalization is one possible mechanism for genome instability during cancer progression, as well as centromere plasticity during evolution.
Collapse
Affiliation(s)
- Patrick Heun
- Department of Genome Biology Lawrence Berkeley National Lab One Cyclotron Road
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley, California 94720
| | - Sylvia Erhardt
- Department of Genome Biology Lawrence Berkeley National Lab One Cyclotron Road
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley, California 94720
| | - Michael D. Blower
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley, California 94720
| | - Samara Weiss
- Department of Genome Biology Lawrence Berkeley National Lab One Cyclotron Road
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley, California 94720
| | - Andrew D. Skora
- Department of Biology Johns Hopkins University 3400 North Charles Street Baltimore, Maryland 21208
| | - Gary H. Karpen
- Department of Genome Biology Lawrence Berkeley National Lab One Cyclotron Road
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley, California 94720
| |
Collapse
|
374
|
Asakawa K, Toya M, Sato M, Kanai M, Kume K, Goshima T, Garcia MA, Hirata D, Toda T. Mal3, the fission yeast EB1 homologue, cooperates with Bub1 spindle checkpoint to prevent monopolar attachment. EMBO Rep 2006; 6:1194-200. [PMID: 16179942 PMCID: PMC1369205 DOI: 10.1038/sj.embor.7400540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 08/22/2005] [Accepted: 08/24/2005] [Indexed: 11/09/2022] Open
Abstract
Bipolar microtubule attachment is central to genome stability. Here, we investigate the mitotic role of the fission yeast EB1 homologue Mal3. Mal3 shows dynamic inward movement along the spindle, initial emergence at the spindle pole body (SPB) and translocation towards the equatorial plane, followed by sudden disappearance. Deletion of Mal3 results in early mitotic delay, which is dependent on the Bub1, but not the Mad2, spindle checkpoint. Consistently, Bub1, but not Mad2, shows prolonged kinetochore localization. Double mutants between mal3 and a subset of checkpoint mutants, including bub1, bub3, mad3 and mph1, but not mad1 or mad2, show massive chromosome mis-segregation defects. In mal3bub1 mutants, both sister centromeres tend to remain in close proximity to one of the separating SPBs. Further analysis indicates that mis-segregated centromeres are exclusively associated with the mother SPB. Mal3, therefore, has a role in preventing monopolar attachment in cooperation with the Bub1/Bub3/Mad3/Mph1-dependent checkpoint.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Mika Toya
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Masamitsu Sato
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Muneyoshi Kanai
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi Hiroshima 739-8530, Japan
| | - Kazunori Kume
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi Hiroshima 739-8530, Japan
| | - Tetsuya Goshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi Hiroshima 739-8530, Japan
| | - Miguel Angel Garcia
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi Hiroshima 739-8530, Japan
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
- Tel: +44 20 7269 3535; Fax: 44 20 7269 3258; E-mail:
| |
Collapse
|
375
|
Yokobayashi S, Watanabe Y. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 2006; 123:803-17. [PMID: 16325576 DOI: 10.1016/j.cell.2005.09.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 07/16/2005] [Accepted: 09/05/2005] [Indexed: 11/16/2022]
Abstract
Meiosis resembles mitosis but employs a unique "reductional" nuclear division to allow the production of haploid gametes from diploid cells. The crucial ploidy reduction step requires that sister kinetochores attach to microtubules emanating from the same spindle pole, achieving "monopolar attachment," which ensures that maternal and paternal chromosomes are segregated. Here we screened for factors required to establish monopolar attachment in fission yeast and identified a novel protein, Moa1. Moa1 is meiosis specific and localizes exclusively to the central core of the centromere, a region that binds meiotic Rec8-containing cohesin complexes but not mitotic Rad21/Scc1-containing complexes. Enforced cleavage of Rec8 in the central core region led to the disruption of monopolar attachment, as in moa1Delta cells, without diminishing Moa1 localization. Moa1 physically interacts with Rec8, implying that Moa1 functions only through Rec8, presumably to facilitate central core cohesion. These results prove that monoorientation of kinetochores is established in a cohesion-mediated manner.
Collapse
Affiliation(s)
- Shihori Yokobayashi
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, SORST, Japan Science and Technology Agency, Yayoi, Tokyo 113-0032, Japan
| | | |
Collapse
|
376
|
Kalejs M, Ivanov A, Plakhins G, Cragg MS, Emzinsh D, Illidge TM, Erenpreisa J. Upregulation of meiosis-specific genes in lymphoma cell lines following genotoxic insult and induction of mitotic catastrophe. BMC Cancer 2006; 6:6. [PMID: 16401344 PMCID: PMC1351196 DOI: 10.1186/1471-2407-6-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 01/09/2006] [Indexed: 05/06/2023] Open
Abstract
Background We have previously reported that p53 mutated radioresistant lymphoma cell lines undergo mitotic catastrophe after irradiation, resulting in metaphase arrest and the generation of endopolyploid cells. A proportion of these endopolyploid cells then undergo a process of de-polyploidisation, stages of which are partially reminiscent of meiotic prophase. Furthermore, expression of meiosis-specific proteins of the cancer/testis antigens group of genes has previously been reported in tumours. We therefore investigated whether expression of meiosis-specific genes was associated with the polyploidy response in our tumour model. Methods Three lymphoma cell lines, Namalwa, WI-L2-NS and TK6, of varying p53 status were exposed to a single 10 Gy dose of gamma radiation and their responses assessed over an extended time course. DNA flow cytometry and mitotic counts were used to assess the kinetics and extent of polyploidisation and mitotic progression. Expression of meiotic genes was analysed using RT-PCR and western blotting. In addition, localisation of the meiotic cohesin REC8 and its relation to centromeres was analysed by immunofluorescence. Results The principal meiotic regulator MOS was found to be significantly post-transcriptionally up-regulated after irradiation in p53 mutated but not p53 wild-type lymphoma cells. The maximum expression of MOS coincided with the maximal fraction of metaphase arrested cells and was directly proportional to both the extent of the arrest and the number of endopolyploid cells that subsequently emerged. The meiotic cohesin REC8 was also found to be up-regulated after irradiation, linking sister chromatid centromeres in the metaphase-arrested and subsequent giant cells. Finally, RT-PCR revealed expression of the meiosis-prophase genes, DMC1, STAG3, SYCP3 and SYCP1. Conclusion We conclude that multiple meiotic genes are aberrantly activated during mitotic catastrophe in p53 mutated lymphoma cells after irradiation. Furthermore, we suggest that the coordinated expression of MOS and REC8 regulate the extent of arrested mitoses and polyploidy.
Collapse
Affiliation(s)
- Martins Kalejs
- Biomedical Research and Study Centre, Latvian University, Ratsupites 1, Riga, LV-1067, Latvia
| | - Andrey Ivanov
- Biomedical Research and Study Centre, Latvian University, Ratsupites 1, Riga, LV-1067, Latvia
- Paterson Institute Cancer Research, Christie Hospital, Cancer Sciences Division University of Manchester, Manchester, Wilmslow Road, M20 4BX, UK
| | - Gregory Plakhins
- Biomedical Research and Study Centre, Latvian University, Ratsupites 1, Riga, LV-1067, Latvia
| | - Mark S Cragg
- Tenovus Research Laboratory, Cancer Sciences Division, School of Medicine, Southampton University Hospital, Southampton SO16 6YD, UK
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | - Timothy M Illidge
- Paterson Institute Cancer Research, Christie Hospital, Cancer Sciences Division University of Manchester, Manchester, Wilmslow Road, M20 4BX, UK
| | - Jekaterina Erenpreisa
- Biomedical Research and Study Centre, Latvian University, Ratsupites 1, Riga, LV-1067, Latvia
| |
Collapse
|
377
|
Abstract
The fundamental problems in duplicating and transmitting genetic information posed by the geometric and topological features of DNA, combined with its large size, are qualitatively similar for prokaryotic and eukaryotic chromosomes. The evolutionary solutions to these problems reveal common themes. However, depending on differences in their organization, ploidy, and copy number, chromosomes and plasmids display distinct segregation strategies as well. In bacteria, chromosome duplication, likely mediated by a stationary replication factory, is accompanied by rapid, directed migration of the daughter duplexes with assistance from DNA-compacting and perhaps translocating proteins. The segregation of unit-copy or low-copy bacterial plasmids is also regulated spatially and temporally by their respective partitioning systems. Eukaryotic chromosomes utilize variations of a basic pairing and unpairing mechanism for faithful segregation during mitosis and meiosis. Rather surprisingly, the yeast plasmid 2-micron circle also resorts to a similar scheme for equal partitioning during mitosis.
Collapse
Affiliation(s)
- Santanu Kumar Ghosh
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712-0612, USA.
| | | | | | | |
Collapse
|
378
|
Kiburz BM, Reynolds DB, Megee PC, Marston AL, Lee BH, Lee TI, Levine SS, Young RA, Amon A. The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I. Genes Dev 2005; 19:3017-30. [PMID: 16357219 PMCID: PMC1315405 DOI: 10.1101/gad.1373005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 11/07/2005] [Indexed: 11/25/2022]
Abstract
The stepwise loss of cohesins, the complexes that hold sister chromatids together, is required for faithful meiotic chromosome segregation. Cohesins are removed from chromosome arms during meiosis I but are maintained around centromeres until meiosis II. Here we show that Sgo1, a protein required for protecting centromeric cohesins from removal during meiosis I, localizes to cohesin-associated regions (CARs) at the centromere and the 50-kb region surrounding it. Establishment of this Sgo1-binding domain requires the 120-base-pair (bp) core centromere, the kinetochore component Bub1, and the meiosis-specific factor Spo13. Interestingly, cohesins and the kinetochore proteins Iml3 and Chl4 are necessary for Sgo1 to associate with pericentric regions but less so for Sgo1 to associate with the core centromeric regions. Finally, we show that the 50-kb Sgo1-binding domain is the chromosomal region where cohesins are protected from removal during meiosis I. Our results identify the portions of chromosomes where cohesins are protected from removal during meiosis I and show that kinetochore components and cohesins themselves are required to establish this cohesin protective domain.
Collapse
Affiliation(s)
- Brendan M Kiburz
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Watanabe Y. Shugoshin: guardian spirit at the centromere. Curr Opin Cell Biol 2005; 17:590-5. [PMID: 16229998 DOI: 10.1016/j.ceb.2005.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 10/03/2005] [Indexed: 11/18/2022]
Abstract
A recently emerging protein family, shugoshin, plays a crucial role in the centromeric protection of cohesin, which is responsible for sister chromatid cohesion. This is especially important at the first meiotic division, where cohesin is cleaved by separase only along chromosome arms while the centromeric cohesin must be preserved. In vertebrate cells, arm cohesion is largely lost during prophase and prometaphase in order to facilitate sister chromatid resolution, whereas centromeric cohesion is preserved until the bipolar attachment of sister chromatids is established. Vertebrate shugoshin plays an essential role in protecting centromeric cohesin from prophase dissociation. In yeast, shugoshin also has a crucial role in sensing the loss of tension at kinetochores and in generating the spindle checkpoint signal.
Collapse
Affiliation(s)
- Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi1-1-1, Tokyo 113-0032, Japan.
| |
Collapse
|
380
|
Abstract
Meiosis poses unique challenges to chromosome dynamics. Before entry into meiosis, each chromosome is duplicated and gives rise to two sister chromatids linked to each other by cohesion. Production of haploid gametes requires segregation of homologous chromosomes in the first meiotic division and of sister chromatids in the second. To ensure precise distribution of chromosomes to the daughter cells, sister chromatid cohesion (SCC) has to be dissolved in two steps. Maintenance and regulation of SCC is performed by the cohesin protein complex. This short review will primarily focus on the core cohesin proteins before venturing into adjacent territories with an emphasis on interacting proteins and complexes. It will also concentrate on mammalian meiosis and only occasionally discuss cohesion in other organisms.
Collapse
Affiliation(s)
- E Revenkova
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
381
|
Abstract
To ensure accurate chromosome segregation during mitosis, the spindle checkpoint monitors chromosome alignment on the mitotic spindle. Indjeian and colleagues have investigated the precise role of the shugoshin 1 protein (Sgo1p) in this process in budding yeast. The Sgo proteins were originally identified as highly conserved proteins that protect cohesion at centromeres during the first meiotic division. Together with other recent findings, the study highlighted here has identified Sgo1 as a component that informs the mitotic spindle checkpoint when spindle tension is perturbed. This discovery has provided a molecular link between sister chromatid cohesion and tension-sensing at the kinetochore-microtubule interface.
Collapse
Affiliation(s)
- Sarah E Goulding
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Scotland, UK
| | | |
Collapse
|
382
|
Wang X, Dai W. Shugoshin, a guardian for sister chromatid segregation. Exp Cell Res 2005; 310:1-9. [PMID: 16112668 DOI: 10.1016/j.yexcr.2005.07.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/05/2005] [Accepted: 07/10/2005] [Indexed: 02/06/2023]
Abstract
To ensure sister chromatids to be equally transmitted to daughter cells, it is imperative that physical association of sister chromatids is maintained during S, G2, and early mitosis until the onset of anaphase. Cohesion of sister chromatids in eukaryotes is largely achieved by the cohesin complex. In vertebrates, cohesin molecules are dissociated from chromosome arms but not from centromeres during prophase by the so-called prophase pathway. Although it remains unclear what is the molecular basis by which centromeric cohesin is retained, a flurry of recent studies have shed light on a family of proteins named Shugoshin (Sgo) that are evolutionarily conserved across eukaryotes. Sgo1 functions as a protector of centromeric cohesin during meiosis in yeast and during mitosis in high eukaryotes. Suppression of Sgo1 function results in premature separation of sister chromatids in both meiosis and mitosis. The discovery of members of the Sgo family may help to explain how centromeric cohesin is protected from dissociation from DNA until the onset of anaphase. Given the importance of chromosome cohesion in the maintenance of genomic stability, further characterization of Sgo1 and related molecules may also open up new avenues of research for developing new strategies for cancer intervention.
Collapse
Affiliation(s)
- Xiaoxing Wang
- Division of Molecular Carcinogenesis, Department of Medicine, New York Medical College, Basic Science Building, Room A22, Valhalla, NY 10595, USA
| | | |
Collapse
|
383
|
Monen J, Maddox PS, Hyndman F, Oegema K, Desai A. Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 2005; 7:1248-55. [PMID: 16273096 DOI: 10.1038/ncb1331] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 10/06/2005] [Indexed: 12/22/2022]
Abstract
Two distinct chromosome architectures are prevalent among eukaryotes: monocentric, in which localized centromeres restrict kinetochore assembly to a single chromosomal site, and holocentric, in which diffuse kinetochores form along the entire chromosome length. During mitosis, both chromosome types use specialized chromatin, containing the histone H3 variant CENP-A, to direct kinetochore assembly. For the segregation of recombined homologous chromosomes during meiosis, monocentricity is thought to be crucial for limiting spindle-based forces to one side of a crossover and to prevent recombined chromatids from being simultaneously pulled towards both spindle poles. The mechanisms that allow holocentric chromosomes to avert this fate remain uncharacterized. Here, we show that markedly different mechanisms segregate holocentric chromosomes during meiosis and mitosis in the nematode Caenorhabditis elegans. Immediately prior to oocyte meiotic segregation, outer-kinetochore proteins were recruited to cup-like structures on the chromosome surface via a mechanism that is independent of CENP-A. In striking contrast to mitosis, both oocyte meiotic divisions proceeded normally following depletion of either CENP-A or the closely associated centromeric protein CENP-C. These findings highlight a pronounced difference between the segregation of holocentric chromosomes during meiosis and mitosis and demonstrate the potential to uncouple assembly of outer-kinetochore proteins from CENP-A chromatin.
Collapse
Affiliation(s)
- Joost Monen
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, UCSD Biomedical Sciences Graduate Program, UCSD CMM-E, Room 3052, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | | | | | | | | |
Collapse
|
384
|
Yu HG, Koshland D. Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis. Cell 2005; 123:397-407. [PMID: 16269332 DOI: 10.1016/j.cell.2005.09.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/25/2005] [Accepted: 09/12/2005] [Indexed: 01/06/2023]
Abstract
During meiosis, segregation of homologous chromosomes necessitates the coordination of sister chromatid cohesion, chromosome condensation, and recombination. Cohesion and condensation require the SMC complexes, cohesin and condensin, respectively. Here we use budding yeast Saccharomyces cerevisiae to show that condensin and Cdc5, a Polo-like kinase, facilitate the removal of cohesin from chromosomes prior to the onset of anaphase I when homologs segregate. This cohesin removal is critical for homolog segregation because it helps dissolve the recombination-dependent links between homologs that form during prophase I. Condensin enhances the association of Cdc5 with chromosomes and its phosphorylation of cohesin, which in turn likely stimulates cohesin removal. Condensin/Cdc5-dependent removal of cohesin underscores the potential importance of crosstalk between chromosome structural components in chromosome morphogenesis and provides a mechanism to couple chromosome morphogenesis with other meiotic events.
Collapse
Affiliation(s)
- Hong-Guo Yu
- Howard Hughes Medical Institute/Carnegie Institution, Department of Embryology, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
385
|
Yuen KWY, Montpetit B, Hieter P. The kinetochore and cancer: what's the connection? Curr Opin Cell Biol 2005; 17:576-82. [PMID: 16233975 DOI: 10.1016/j.ceb.2005.09.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 09/29/2005] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms ensuring accurate chromosome segregation during meiosis and mitosis are critical to the conservation of euploidy (normal chromosome number) in eukaryotic cells. A dysfunctional kinetochore represents one possible source for chromosome instability (CIN) and the generation of aneuploidy. The kinetochore is a large complex of proteins and associated centromeric DNA that is responsible for mediating the segregation of sister chromatids to daughter cells via its interactions with the mitotic spindle. Continued identification of conserved kinetochore components in model systems such as yeast has provided a rich resource of candidate genes that may be mutated or misregulated in human cancers. Systematic mutational testing and transcriptional profiling of CIN candidate kinetochore genes should shed light on the kinetochore's role in tumorigenesis, and on the general role CIN plays in cancer development.
Collapse
Affiliation(s)
- Karen W Y Yuen
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | |
Collapse
|
386
|
Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, Belcram K, Rocques N, Márquez-Lema A, Bhatt AM, Horlow C, Mercier R, Mézard C, Grelon M. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 2005; 118:4621-32. [PMID: 16176934 DOI: 10.1242/jcs.02583] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The success of the first meiotic division relies (among other factors) on the formation of bivalents between homologous chromosomes, the monopolar orientation of the sister kinetochores at metaphase I and the maintenance of centromeric cohesion until the onset of anaphase II. The meiotic cohesin subunit, Rec8 has been reported to be one of the key players in these processes, but its precise role in kinetochore orientation is still under debate. By contrast, much less is known about the other non-SMC cohesin subunit, Scc3. We report the identification and the characterisation of AtSCC3, the sole Arabidopsis homologue of Scc3. The detection of AtSCC3 in mitotic cells, the embryo lethality of a null allele Atscc3-2, and the mitotic defects of the weak allele Atscc3-1 suggest that AtSCC3 is required for mitosis. AtSCC3 was also detected in meiotic nuclei as early as interphase, and bound to the chromosome axis from early leptotene through to anaphase I. We show here that both AtREC8 and AtSCC3 are necessary not only to maintain centromere cohesion at anaphase I, but also for the monopolar orientation of the kinetochores during the first meiotic division. We also found that AtREC8 is involved in chromosome axis formation in an AtSPO11-1-independent manner. Finally, we provide evidence for a role of AtSPO11-1 in the stability of the cohesin complex.
Collapse
Affiliation(s)
- Liudmila Chelysheva
- Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes, INRA de Versailles, Route de Saint-Cyr, 78026 Versailles CEDEX, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Holt SV, Vergnolle MAS, Hussein D, Wozniak MJ, Allan VJ, Taylor SS. Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint. J Cell Sci 2005; 118:4889-900. [PMID: 16219694 DOI: 10.1242/jcs.02614] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cenp-F is an unusual kinetochore protein in that it localizes to the nuclear matrix in interphase and the nuclear envelope at the G2/M transition; it is farnesylated and rapidly degraded after mitosis. We have recently shown that farnesylation of Cenp-F is required for G2/M progression, its localization to kinetochores, and its degradation. However, the role Cenp-F plays in mitosis has remained enigmatic. Here we show that, following repression of Cenp-F by RNA interference (RNAi), the processes of metaphase chromosome alignment, anaphase chromosome segregation and cytokinesis all fail. Although kinetochores attach to microtubules in Cenp-F-deficient cells, the oscillatory movements that normally occur following K-fibre formation are severely dampened. Consistently, inter-kinetochore distances are reduced. In addition, merotelic associations are observed, suggesting that whereas kinetochores can attach microtubules in the absence of Cenp-F, resolving inappropriate interactions is inhibited. Repression of Cenp-F does not appear to compromise the spindle checkpoint. Rather, the chromosome alignment defect induced by Cenp-F RNA interference is accompanied by a prolonged mitosis, indicating checkpoint activation. Indeed, the prolonged mitosis induced by Cenp-F RNAi is dependent on the spindle checkpoint kinase BubR1. Surprisingly, chromosomes in Cenp-F-deficient cells frequently show a premature loss of chromatid cohesion. Thus, in addition to regulating kinetochore-microtubule interactions, Cenp-F might be required to protect centromeric cohesion prior to anaphase commitment. Intriguingly, whereas most of the sister-less kinetochores cluster near the spindle poles, some align at the spindle equator, possibly through merotelic or lateral orientations.
Collapse
Affiliation(s)
- Sarah V Holt
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
388
|
DeWall KM, Davidson MK, Sharif WD, Wiley CA, Wahls WP. A DNA binding motif of meiotic recombinase Rec12 (Spo11) defined by essential glycine-202, and persistence of Rec12 protein after completion of recombination. Gene 2005; 356:77-84. [PMID: 16009511 PMCID: PMC3119478 DOI: 10.1016/j.gene.2005.04.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/31/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
The Rec12 (Spo11) protein of the fission yeast Schizosaccharomyces pombe is a meiosis-specific ortholog of the catalytic subunit of type VI topoisomerases and is thought to catalyze double-strand DNA breaks that initiate recombination. We tested the hypothesis that the rec12-117 allele affects the choice of pathways by which recombination is resolved. DNA sequence analysis revealed a single missense mutation in the coding region (rec12-G202E). The corresponding glycine-202 residue of Rec12 protein is strictly conserved in proteins of the Rec12/Spo11/Top6A family. It maps to the base of the DNA binding pocket in the crystal structure of the archaeal ortholog, Top6A. The rec12-G202E mutants lacked crossover and non-crossover recombination, demonstrating that rec12-G202E does not affect choice of resolution pathway. Like rec12-D15 null mutants, the rec12-G202E mutants suffered chromosome segregation errors in meiosis I. The Rec12-G202E protein was as stable as wild-type Rec12, demonstrating that glycine-202 is essential for a biochemical activity of Rec12 protein, rather than for its stability. These findings suggest that Rec12 facilitates binding of the meiotic recombinase to its substrate, DNA. Interestingly, the bulk of Rec12 protein persisted until the time of anaphase I, and a portion of Rec12 protein persisted until the time of anaphase II, after which it was undetectable. This suggests that Rec12 protein has additional meiotic functions after completion of recombination in prophase, as inferred previously from genetic studies [Sharif, W.D., Glick, G.G., Davidson, M.K., Wahls, W.P., 2002. Distinct functions of S. pombe Rec12 (Spo11) protein and Rec12-dependent crossover recombination (chiasmata) in meiosis I; and a requirement for Rec12 in meiosis II. Cell Chromo. 1, 1].
Collapse
Affiliation(s)
| | | | | | | | - Wayne P. Wahls
- Corresponding author. Tel.: +1 501 686 5787; fax: +1 501 526 7008. (W.P. Wahls)
| |
Collapse
|
389
|
Huang X, Hatcher R, York JP, Zhang P. Securin and separase phosphorylation act redundantly to maintain sister chromatid cohesion in mammalian cells. Mol Biol Cell 2005; 16:4725-32. [PMID: 16030258 PMCID: PMC1237078 DOI: 10.1091/mbc.e05-03-0190] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 07/08/2005] [Accepted: 07/11/2005] [Indexed: 11/11/2022] Open
Abstract
The spindle assembly checkpoint monitors the integrity of the spindle microtubules, which attach to sister chromatids at kinetochores and play a vital role in preserving genome stability by preventing missegregation. A key target of the spindle assembly checkpoint is securin, the separase inhibitor. In budding yeast, loss of securin results in precocious sister chromatid separation when the microtubule spindle is disrupted. However, in contrast to budding yeast, mammalian securin is not required for spindle checkpoint, suggesting that there are redundant mechanisms controlling the dissolution of sister chromatid cohesion in the absence of securin. One candidate mechanism is the inhibitory phosphorylation of separase. We generated a nonphosphorylable point mutant (S1121A) separase allele in securin-/- mouse embryonic stem cells. Securin(-/-)separase(+/S1121A) cells are viable but fail to maintain sister chromatid cohesion in response to the disruption of spindle microtubules, show enhanced sensitivity to nocodazole, and cannot recover from prometaphase arrest.
Collapse
Affiliation(s)
- Xingxu Huang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
390
|
Abstract
Structural maintenance of chromosomes (SMC) proteins are chromosomal ATPases, highly conserved from bacteria to humans, that play fundamental roles in many aspects of higher-order chromosome organization and dynamics. In eukaryotes, SMC1 and SMC3 act as the core of the cohesin complexes that mediate sister chromatid cohesion, whereas SMC2 and SMC4 function as the core of the condensin complexes that are essential for chromosome assembly and segregation. Another complex containing SMC5 and SMC6 is implicated in DNA repair and checkpoint responses. The SMC complexes form unique ring- or V-shaped structures with long coiled-coil arms, and function as ATP-modulated, dynamic molecular linkers of the genome. Recent studies shed new light on the mechanistic action of these SMC machines and also expanded the repertoire of their diverse cellular functions. Dissecting this class of chromosomal ATPases is likely to be central to our understanding of the structural basis of genome organization, stability, and evolution.
Collapse
Affiliation(s)
- Ana Losada
- Spanish National Cancer Center (CNIO), Madrid
| | | |
Collapse
|
391
|
Mailhes JB, Marchetti F. Mechanisms and chemical induction of aneuploidy in rodent germ cells. Cytogenet Genome Res 2005; 111:384-91. [PMID: 16192721 DOI: 10.1159/000086916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/07/2005] [Indexed: 11/19/2022] Open
Abstract
The objective of this review is to suggest that the advances being made in our understanding of the molecular events surrounding chromosome segregation in non-mammalian and somatic cell models be considered when designing experiments for studying aneuploidy in mammalian germ cells. Accurate chromosome segregation requires the temporal control and unique interactions among a vast array of proteins and cellular organelles. Abnormal function and temporal disarray among these, and others to be identified, biochemical reactions and cellular organelles have the potential for predisposing cells to aneuploidy. Although numerous studies have demonstrated that certain chemicals (mainly those that alter microtubule function) can induce aneuploidy in mammalian germ cells, it seems relevant to point out that such data can be influenced by gender, meiotic stage, and time of cell-fixation post-treatment. Additionally, a consensus has not been reached regarding which of several germ cell aneuploidy assays most accurately reflects the human condition. More recent studies have shown that certain kinase, phosphatase, proteasome, and topoisomerase inhibitors can also induce aneuploidy in rodent germ cells. We suggest that molecular approaches be prudently incorporated into mammalian germ cell aneuploidy research in order to eventually understand the causes and mechanisms of human aneuploidy. Such an enormous undertaking would benefit from collaboration among scientists representing several disciplines.
Collapse
Affiliation(s)
- J B Mailhes
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | |
Collapse
|
392
|
Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A, Nasmyth K, Cande WZ. A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol 2005; 15:948-54. [PMID: 15916952 DOI: 10.1016/j.cub.2005.04.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 04/14/2005] [Accepted: 04/18/2005] [Indexed: 11/23/2022]
Abstract
During meiosis, sequential release of sister chromatid cohesion (SSC) during two successive nuclear divisions allows the production of haploid gametes from diploid progenitor cells. Release of SSC along chromosome arms allows first a reductional segregation of homologs, and, subsequently, release of centromeric cohesion at anaphase II allows the segregation of chromatids. The Shugoshin (SGO) protein family plays a major role in the protection of centromeric cohesion in Drosophila and yeast. We have isolated a maize mutant that displays premature loss of centromeric cohesion at anaphase I. We showed that this phenotype is due to the absence of ZmSGO1 protein, a maize shugoshin homolog. We also show that ZmSGO1 is localized to the centromeres. The ZmSGO1 protein is not found on mitotic chromosomes and has no obvious mitotic function. On the basis of these results, we propose that ZmSGO1 specifically maintains centromeric cohesion during meiosis I and therefore suggest that SGO1 core functions during meiosis are conserved across kingdoms and in large-genome species. However, in contrast to other Shugoshins, we observed an early and REC8-dependent recruitment of ZmSGO1 in maize, suggesting that control of SGO1 recruitment to chromosomes is different in plants than in other model organisms.
Collapse
Affiliation(s)
- Olivier Hamant
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
393
|
Gagos S, Irminger-Finger I. Chromosome instability in neoplasia: chaotic roots to continuous growth. Int J Biochem Cell Biol 2005; 37:1014-33. [PMID: 15743675 DOI: 10.1016/j.biocel.2005.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 01/06/2005] [Accepted: 01/07/2005] [Indexed: 12/31/2022]
Abstract
Multiple rearrangements of chromosome number and structure are common manifestations of genomic instability encountered in mammalian tumors. In neoplasia, in continuous immortalized growth in vitro, and in animal models, the accumulation of various defects on DNA repair and telomere maintenance machineries, mitotic spindle abnormalities, and breakage-fusion-bridge cycles, deteriorate the precise mitotic distribution of the genomic content, thus producing various types of chromosomal anomalies. These lesions generate tremendous genomic imbalances, which are evolutionary selected, since they force the function of the whole genome towards continuous growth. For more than a century chromosomal rearrangements and aneuploidy in neoplasia have been discussed and a vast number of genes and pathways, directly or indirectly implicated, have been described. In this review, we focus on the biological mechanisms that generate numerical or structural deviations of the normal diploid chromosomal constitution in epithelial neoplasia. There is growing evidence that chromosomal instability is both an epiphenomenon and a leading cause of cancer. We will discuss the roles of genes, chromosome structure, and telomere dysfunction in the initiation of chromosomal instability. We will explore research strategies that can be applied to identify rates of chromosomal instability in a specimen, and the putative biological consequences of karyotypic heterogeneity. Finally, we will re-examine the longstanding hypothesis of the generation of aneuploidy in the context of telomere dysfunction and restoration.
Collapse
Affiliation(s)
- Sarantis Gagos
- Laboratory of Genetics, Foundation for Biomedical Research of the Academy of Athens Greece, Soranou Efessiou 4, Athens 11527, Greece.
| | | |
Collapse
|
394
|
Morrow CJ, Tighe A, Johnson VL, Scott MIF, Ditchfield C, Taylor SS. Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J Cell Sci 2005; 118:3639-52. [PMID: 16046481 DOI: 10.1242/jcs.02487] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The spindle checkpoint maintains genome stability by inhibiting Cdc20-mediated activation of the anaphase promoting complex/cyclosome (APC/C) until all the chromosomes correctly align on the microtubule spindle apparatus via their kinetochores. BubR1, an essential component of this checkpoint, localises to kinetochores and its kinase activity is regulated by the kinesin-related motor protein Cenp-E. BubR1 also inhibits APC/CCdc20 in vitro, thus providing a molecular link between kinetochore-microtubule interactions and the proteolytic machinery that regulates mitotic progression. Several other protein kinases, including Bub1 and members of the Ipl1/aurora family, also regulate anaphase onset. However, in human somatic cells Bub1 and aurora B kinase activity do not appear to be essential for spindle checkpoint function. Specifically, when Bub1 is inhibited by RNA interference, or aurora kinase activity is inhibited with the small molecule ZM447439, cells arrest transiently in mitosis following exposure to spindle toxins that prevent microtubule polymerisation. Here, we show that mitotic arrest of Bub1-deficient cells is dependent on aurora kinase activity, and vice versa. We suggest therefore that the checkpoint is composed of two arms, one dependent on Bub1, the other on aurora B. Analysis of BubR1 complexes suggests that both of these arms converge on the mitotic checkpoint complex (MCC), which includes BubR1, Bub3, Mad2 and Cdc20. Although it is known that MCC components can bind and inhibit the APC/C, we show here for the first time that the binding of the MCC to the APC/C is dependent on an active checkpoint signal. Furthermore, we show that both Bub1 and aurora kinase activity are required to promote binding of the MCC to the APC/C. These observations provide a simple explanation of why BubR1 and Mad2 are essential for checkpoint function following spindle destruction, yet Bub1 and aurora B kinase activity are not. Taken together with other observations, we suggest that these two arms respond to different spindle cues: whereas the Bub1 arm monitors kinetochore-microtubule attachment, the aurora B arm monitors biorientation. This bifurcation in the signalling mechanism may help explain why many tumour cells mount a robust checkpoint response following spindle damage, despite exhibiting chromosome instability.
Collapse
Affiliation(s)
- Christopher J Morrow
- Faculty of Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
395
|
Bolanos-Garcia VM, Beaufils S, Renault A, Grossmann JG, Brewerton S, Lee M, Venkitaraman A, Blundell TL. The conserved N-terminal region of the mitotic checkpoint protein BUBR1: a putative TPR motif of high surface activity. Biophys J 2005; 89:2640-9. [PMID: 16040755 PMCID: PMC1366764 DOI: 10.1529/biophysj.105.063511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BUBR1, a key component of the mitotic spindle checkpoint, is a multidomain protein kinase that is activated in response to kinetochore tension. Although BUB1 and BUBR1 play an important role in cell division, very little is known about their structural characteristics. We show that the conserved N-terminal region of BUBR1, comprising residues 1-204, is a globular domain of high alpha-helical content ( approximately 60%), stable in the pH range 4-9 and probably organized as a tetratricopeptide motif repeat (TPR), most closely resembling residues 16-181 of protein phosphatase 5. Because the latter presents a continuous amphipathic groove and is regulated by binding certain fatty acids, we compared the properties of BUBR1(1-204) and TPR-PP5(16-181) at air/water interfaces and found that both proteins exhibited a similar surface activity and formed stable, rigid monolayers. The deletion of a region that probably comprises several alpha-helices of BUBR1 indicates that long-range interactions are essential for the stability of the N-terminal domain. The presence of the putative TPR motif strongly suggests that the N-terminal domain of BUBR1 is involved in direct protein-protein interactions and/or protein-lipid interactions.
Collapse
Affiliation(s)
- V M Bolanos-Garcia
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
396
|
Watanabe Y. Sister chromatid cohesion along arms and at centromeres. Trends Genet 2005; 21:405-12. [PMID: 15946764 DOI: 10.1016/j.tig.2005.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 03/16/2005] [Accepted: 05/10/2005] [Indexed: 12/21/2022]
Abstract
There is an obvious difference between the regulation of sister chromatid cohesion at centromeres and along chromosome arms during meiosis, because centromeric cohesion, but not arm cohesion, persists throughout anaphase of the first meiotic division. This regional difference of sister chromatid cohesion is also observed during mitosis; the cohesion is much more robust at the centromere at metaphase, where it antagonizes the pulling force of spindle microtubules that attach to the kinetochores from opposite poles. Recent studies have illuminated the underlying molecular mechanisms that strengthen and protect centromeric cohesion in mitosis and meiosis, and the central role of a conserved protein, shugoshin.
Collapse
Affiliation(s)
- Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
397
|
Kitajima TS, Hauf S, Ohsugi M, Yamamoto T, Watanabe Y. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr Biol 2005; 15:353-9. [PMID: 15723797 DOI: 10.1016/j.cub.2004.12.044] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 12/15/2004] [Accepted: 12/16/2004] [Indexed: 11/20/2022]
Abstract
Shugoshin (Sgo) proteins constitute a conserved protein family defined as centromeric protectors of Rec8-containing cohesin complexes in meiosis . In vertebrate mitosis, Scc1/Rad21-containing cohesin complexes are also protected at centromeres because arm cohesin, but not centromeric cohesin, is largely dissociated in pro- and prometaphase . The dissociation process is dependent on the activity of polo-like kinase (Plk1) and partly dependent on Aurora B . Recently, it has been demonstrated that vertebrate shugoshin is required for preserving centromeric cohesion during mitosis ; however, it was not addressed whether human shugoshin protects cohesin itself. Here, we show that the persistence of human Scc1 at centromeres in mitosis is indeed dependent on human Sgo1. In fission yeast, Sgo localization depends on Bub1, a conserved spindle checkpoint protein, which is enigmatically also required for chromosome congression during prometaphase in vertebrate cells. We demonstrate that human Sgo1 fails to localize at centromeres in Bub1-repressed cells, and centromeric cohesion is significantly loosened. Remarkably, in these cells, Sgo1 relocates to chromosomes all along their length and provokes ectopic protection from dissociation of Scc1 on chromosome arms. These results reveal a hitherto concealed role for human Bub1 in defining the persistent cohesion site of mitotic chromosomes.
Collapse
Affiliation(s)
- Tomoya S Kitajima
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
398
|
Oelschlaegel T, Schwickart M, Matos J, Bogdanova A, Camasses A, Havlis J, Shevchenko A, Zachariae W. The yeast APC/C subunit Mnd2 prevents premature sister chromatid separation triggered by the meiosis-specific APC/C-Ama1. Cell 2005; 120:773-88. [PMID: 15797379 DOI: 10.1016/j.cell.2005.01.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 12/01/2004] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
Cohesion established between sister chromatids during pre-meiotic DNA replication mediates two rounds of chromosome segregation. The first division is preceded by an extended prophase wherein homologous chromosomes undergo recombination. The persistence of cohesion during prophase is essential for recombination and both meiotic divisions. Here we show that Mnd2, a subunit of the anaphase-promoting complex (APC/C) from budding yeast, is essential to prevent premature destruction of cohesion in meiosis. During S- and prophase, Mnd2 prevents activation of the APC/C by a meiosis-specific activator called Ama1. In cells lacking Mnd2 the APC/C-Ama1 enzyme triggers degradation of Pds1, which causes premature sister chromatid separation due to unrestrained separase activity. In vitro, Mnd2 inhibits ubiquitination of Pds1 by APC/C-Ama1 but not by other APC/C holo-enzymes. We conclude that chromosome segregation in meiosis depends on the selective inhibition of a meiosis-specific form of the APC/C.
Collapse
Affiliation(s)
- Tobias Oelschlaegel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
399
|
Katis VL, Matos J, Mori S, Shirahige K, Zachariae W, Nasmyth K. Spo13 facilitates monopolin recruitment to kinetochores and regulates maintenance of centromeric cohesion during yeast meiosis. Curr Biol 2005; 14:2183-96. [PMID: 15620645 DOI: 10.1016/j.cub.2004.12.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 11/15/2004] [Accepted: 11/18/2004] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cells undergoing meiosis perform two consecutive divisions after a single round of DNA replication. During the first meiotic division, homologous chromosomes segregate to opposite poles. This is achieved by (1) the pairing of maternal and paternal chromosomes via recombination producing chiasmata, (2) coorientation of homologous chromosomes such that sister chromatids attach to the same spindle pole, and (3) resolution of chiasmata by proteolytic cleavage by separase of the meiotic-specific cohesin Rec8 along chromosome arms. Crucially, cohesin at centromeres is retained to allow sister centromeres to biorient at the second division. Little is known about how these meiosis I-specific events are regulated. RESULTS Here, we show that Spo13, a centromere-associated protein produced exclusively during meiosis I, is required to prevent sister kinetochore biorientation by facilitating the recruitment of the monopolin complex to kinetochores. Spo13 is also required for the reaccumulation of securin, the persistence of centromeric cohesin during meiosis II, and the maintenance of a metaphase I arrest induced by downregulation of the APC/C activator CDC20. CONCLUSION Spo13 is a key regulator of several meiosis I events. The presence of Spo13 at centromere-surrounding regions is consistent with the notion that it plays a direct role in both monopolin recruitment to centromeres during meiosis I and maintenance of centromeric cohesion between the meiotic divisions. Spo13 may also limit separase activity after the first division by ensuring securin reaccumulation and, in doing so, preventing precocious removal from chromatin of centromeric cohesin.
Collapse
Affiliation(s)
- Vittorio L Katis
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
400
|
Lee BH, Kiburz BM, Amon A. Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr Biol 2005; 14:2168-82. [PMID: 15620644 DOI: 10.1016/j.cub.2004.12.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 10/05/2004] [Accepted: 10/15/2004] [Indexed: 11/21/2022]
Abstract
BACKGROUND The meiotic cell cycle, the cell division cycle that leads to the generation of gametes, is unique in that a single DNA replication phase is followed by two chromosome segregation phases. During meiosis I, homologous chromosomes are segregated, and during meiosis II, as in mitosis, sister chromatids are partitioned. For homolog segregation to occur during meiosis I, physical linkages called chiasmata need to form between homologs, sister chromatid cohesion has to be lost in a stepwise manner, and sister kinetochores must attach to microtubules emanating from the same spindle pole (coorientation). RESULTS Here we show that the meiosis-specific factor Spo13 functions in two key aspects of meiotic chromosome segregation. In cells lacking SPO13, cohesin, which is the protein complex that holds sister chromatids together, is not protected from removal around kinetochores during meiosis I but is instead lost along the entire length of the chromosomes. We furthermore find that Spo13 promotes sister kinetochore coorientation by maintaining the monopolin complex at kinetochores. In the absence of SPO13, Mam1 and Lrs4 disassociate from kinetochores prematurely during pro-metaphase I and metaphase I, resulting in a partial defect in sister kinetochore coorientation in spo13 Delta cells. CONCLUSIONS Our results indicate that Spo13 has the ability to regulate both the stepwise loss of sister chromatid cohesion and kinetochore coorientation, two essential features of meiotic chromosome segregation.
Collapse
Affiliation(s)
- Brian H Lee
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | | | | |
Collapse
|