351
|
Seibel NL, Janeway K, Allen CE, Chi SN, Cho YJ, Glade Bender JL, Kim A, Laetsch TW, Irwin MS, Takebe N, Tricoli JV, Parsons DW. Pediatric oncology enters an era of precision medicine. Curr Probl Cancer 2017; 41:194-200. [PMID: 28343740 DOI: 10.1016/j.currproblcancer.2017.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the use of high-throughput molecular profiling technologies, precision medicine trials are ongoing for adults with cancer. Similarly, there is an interest in how these techniques can be applied to tumors in children and adolescents to expand our understanding of the biology of pediatric cancers and evaluate the clinical implications of genomic testing for these patients. This article reviews the early studies in pediatric oncology showing the feasibility of this approach, describe the future plans to evaluate the clinical implications in a multicenter clinical trial and identify the challenges of applying genomics in this patient population.
Collapse
Affiliation(s)
- Nita L Seibel
- Division of Cancer Treatment and Diagnosis, Clinical Investigations Branch, National Cancer Institute, Rockville, Maryland.
| | - Katherine Janeway
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer Center and Blood Disorder Center, Boston, Massachusetts
| | - Carl E Allen
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas; Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Susan N Chi
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer Center and Blood Disorder Center, Boston, Massachusetts
| | - Yoon-Jae Cho
- Department of Pediatrics, Oregon Health & Science University, Papé Family Research Institute, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | | | - AeRang Kim
- Division of Oncology, Children's National Health System, Washington, DC
| | - Theodore W Laetsch
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas
| | - Meredith S Irwin
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, Investigational Drug Branch, National Cancer Institute, Rockville, Maryland
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, Cancer Diagnosis Program, National Cancer Institute, Rockville, Maryland
| | - Donald Williams Parsons
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
352
|
Speleman F, Park JR, Henderson TO. Neuroblastoma: A Tough Nut to Crack. Am Soc Clin Oncol Educ Book 2017; 35:e548-57. [PMID: 27249766 DOI: 10.1200/edbk_159169] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuroblastoma, an embryonal tumor arising from neural crest-derived progenitor cells, is the most common solid tumor in childhood, with more than 700 cases diagnosed per year in the United States. In the past several decades, significant advances have been made in the treatment of neuroblastoma. Treatment advances reflect improved understanding of the biology of neuroblastoma. Although amplification of MYCN was discovered in the early 1980s, our understanding of neuroblastoma oncogenesis has advanced in the last decade as a result of high-throughput genomic analysis, exome and whole-genome sequencing, genome-wide association studies, and synthetic lethal drug screens. Our refined understanding of neuroblastoma biology and genetics is reflected in improved prognostic stratification and appropriate tailoring of therapy in recent clinical trials. Moreover, for high-risk neuroblastoma, a disease that was uniformly fatal 3 decades ago, recent clinical trials incorporating autologous hematopoietic transplant and immunotherapy utilizing anti-GD2 antibody plus cytokines have shown improved event-free and overall survival. These advances have resulted in a growing population of long-term survivors of neuroblastoma. Examination of the late effects and second malignant neoplasms (SMNs) in both older generations of survivors and more recently treated survivors will inform both design of future trials and surveillance guidelines for long-term follow-up. As a consequence of advances in understanding of the biology of neuroblastoma, successful clinical trials, and refined understanding of the late effects and SMNs of survivors, the promise of precision medicine is becoming a reality for patients with neuroblastoma.
Collapse
Affiliation(s)
- Frank Speleman
- From the Center for Medical Genetics Ghent, Cancer Research Institute Ghent, Ghent, Belgium; Seattle Children's Hospital, Seattle, WA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; University of Chicago Comer Children's Hospital, Chicago, IL
| | - Julie R Park
- From the Center for Medical Genetics Ghent, Cancer Research Institute Ghent, Ghent, Belgium; Seattle Children's Hospital, Seattle, WA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; University of Chicago Comer Children's Hospital, Chicago, IL
| | - Tara O Henderson
- From the Center for Medical Genetics Ghent, Cancer Research Institute Ghent, Ghent, Belgium; Seattle Children's Hospital, Seattle, WA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; University of Chicago Comer Children's Hospital, Chicago, IL
| |
Collapse
|
353
|
The Use of Pediatric Patient-Derived Xenografts for Identifying Novel Agents and Combinations. MOLECULAR AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/978-3-319-57424-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
354
|
Salazar BM, Balczewski EA, Ung CY, Zhu S. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology. Int J Mol Sci 2016; 18:E37. [PMID: 28035989 PMCID: PMC5297672 DOI: 10.3390/ijms18010037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/13/2022] Open
Abstract
Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring "big data" applications in pediatric oncology. Computational strategies derived from big data science-network- and machine learning-based modeling and drug repositioning-hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which "big data" and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.
Collapse
Affiliation(s)
- Brittany M Salazar
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Emily A Balczewski
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
355
|
Riehl LM, Schulte JH, Mulaw MA, Dahlhaus M, Fischer M, Schramm A, Eggert A, Debatin KM, Beltinger C. The mitochondrial genetic landscape in neuroblastoma from tumor initiation to relapse. Oncotarget 2016; 7:6620-5. [PMID: 26735174 PMCID: PMC4872737 DOI: 10.18632/oncotarget.6776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
Little is known about changes within the mitochondrial (mt) genome during tumor progression in general and during initiation and progression of neuroblastoma (NB) in particular. Whole exome sequencing of corresponding healthy tissue, primary tumor and relapsed tumor from 16 patients with NB revealed that most NB harbor tumor-specific mitochondrial variants. In relapsed tumors, the status of mt variants changed in parallel to the status of nuclear variants, as shown by increased number and spatio-temporal differences of tumor-specific variants, and by a concomitant decrease of germline variants. As mt variants are present in most NB patients, change during relapse and have a higher copy number compared to nuclear variants, they represent a promising new source of biomarkers for monitoring and phylogenetic analysis of NB.
Collapse
Affiliation(s)
- Lara M Riehl
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Johannes H Schulte
- Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Medhanie A Mulaw
- Institute for Experimental Cancer Research, University Medical Center Ulm, Ulm, Germany.,Core Facility Genomics, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Meike Dahlhaus
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, University Children's Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany
| | - Angelika Eggert
- Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
356
|
Enrichment of Targetable Mutations in the Relapsed Neuroblastoma Genome. PLoS Genet 2016; 12:e1006501. [PMID: 27997549 PMCID: PMC5172533 DOI: 10.1371/journal.pgen.1006501] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/22/2016] [Indexed: 01/21/2023] Open
Abstract
Neuroblastoma is characterized by a relative paucity of recurrent somatic mutations at diagnosis. However, recent studies have shown that the mutational burden increases at relapse, likely as a result of clonal evolution of mutation-carrying cells during primary treatment. To inform the development of personalized therapies, we sought to further define the frequency of potentially actionable mutations in neuroblastoma, both at diagnosis and after chemotherapy. We performed a retrospective study to determine mutation frequency, the only inclusion criterion being availability of cancer gene panel sequencing data from Foundation Medicine. We analyzed 151 neuroblastoma tumor samples: 44 obtained at diagnosis, 42 at second look surgery or biopsy for stable disease after chemotherapy, and 59 at relapse (6 were obtained at unknown time points). Nine patients had multiple tumor biopsies. ALK was the most commonly mutated gene in this cohort, and we observed a higher frequency of suspected oncogenic ALK mutations in relapsed disease than at diagnosis. Patients with relapsed disease had, on average, a greater number of mutations reported to be recurrent in cancer, and a greater number of mutations in genes that are potentially targetable with available therapeutics. We also observed an enrichment of reported recurrent RAS/MAPK pathway mutations in tumors obtained after chemotherapy. Our data support recent evidence suggesting that neuroblastomas undergo substantial mutational evolution during therapy, and that relapsed disease is more likely to be driven by a targetable oncogenic pathway, highlighting that it is critical to base treatment decisions on the molecular profile of the tumor at the time of treatment. However, it will be necessary to conduct prospective clinical trials that match sequencing results to targeted therapeutic intervention to determine if cancer genomic profiling improves patient outcomes. Neuroblastoma is a pediatric cancer that usually affects children within the first five years of life. The survival rate for the high-risk form of the disease is 40–50%, and patients suffering metastatic recurrences have no known curative therapeutic options. Drugs targeted to specific genetic alterations in neuroblastoma may be more effective. Although neuroblastomas generally have few actionable genetic alterations at diagnosis, targetable mutations that confer therapy resistance may be selected for over time. Here, we analyzed cancer gene panel sequencing data from 151 neuroblastomas acquired at various time points during therapy to further define how the genomic landscape of neuroblastoma evolves. We found that relapsed tumors tended to have a higher frequency of mutations potentially targetable with currently available therapies, particularly in the RAS/MAPK pathway. Our data support the concept that therapeutic decisions targeting specific oncogenic mutations should be based on sequencing data obtained as close to the intervention as possible, and not be reliant on archived diagnostic material. Prospective clinical trials will be required to determine if sequencing data obtained at the time of tumor progression can lend to improved neuroblastoma patient outcomes.
Collapse
|
357
|
Wood AC, Krytska K, Ryles HT, Infarinato NR, Sano R, Hansel TD, Hart LS, King FJ, Smith TR, Ainscow E, Grandinetti KB, Tuntland T, Kim S, Caponigro G, He YQ, Krupa S, Li N, Harris JL, Mossé YP. Dual ALK and CDK4/6 Inhibition Demonstrates Synergy against Neuroblastoma. Clin Cancer Res 2016; 23:2856-2868. [PMID: 27986745 DOI: 10.1158/1078-0432.ccr-16-1114] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023]
Abstract
Purpose: Anaplastic lymphoma kinase (ALK) is the most frequently mutated oncogene in the pediatric cancer neuroblastoma. We performed an in vitro screen for synergistic drug combinations that target neuroblastomas with mutations in ALK to determine whether drug combinations could enhance antitumor efficacy.Experimental Design: We screened combinations of eight molecularly targeted agents against 17 comprehensively characterized human neuroblastoma-derived cell lines. We investigated the combination of ceritinib and ribociclib on in vitro proliferation, cell cycle, viability, caspase activation, and the cyclin D/CDK4/CDK6/RB and pALK signaling networks in cell lines with representative ALK status. We performed in vivo trials in CB17 SCID mice bearing conventional and patient-derived xenograft models comparing ceritinib alone, ribociclib alone, and the combination, with plasma pharmacokinetics to evaluate for drug-drug interactions.Results: The combination of ribociclib, a dual inhibitor of cyclin-dependent kinase (CDK) 4 and 6, and the ALK inhibitor ceritinib demonstrated higher cytotoxicity (P = 0.008) and synergy scores (P = 0.006) in cell lines with ALK mutations as compared with cell lines lacking mutations or alterations in ALK Compared with either drug alone, combination therapy enhanced growth inhibition, cell-cycle arrest, and caspase-independent cell death. Combination therapy achieved complete regressions in neuroblastoma xenografts with ALK-F1174L and F1245C de novo resistance mutations and prevented the emergence of resistance. Murine ribociclib and ceritinib plasma concentrations were unaltered by combination therapy.Conclusions: This preclinical combination drug screen with in vivo validation has provided the rationale for a first-in-children trial of combination ceritinib and ribociclib in a molecularly selected pediatric population. Clin Cancer Res; 23(11); 2856-68. ©2016 AACR.
Collapse
Affiliation(s)
- Andrew C Wood
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hannah T Ryles
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nicole R Infarinato
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Renata Sano
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Theodore D Hansel
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lori S Hart
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Frederick J King
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | - Timothy R Smith
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | - Edward Ainscow
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | | | - Tove Tuntland
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | - Sunkyu Kim
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | | | - You Qun He
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | - Shiva Krupa
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | - Nanxin Li
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | - Jennifer L Harris
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | - Yaël P Mossé
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
358
|
MEK inhibitors as a novel therapy for neuroblastoma: Their in vitro effects and predicting their efficacy. J Pediatr Surg 2016; 51:2074-2079. [PMID: 27686482 DOI: 10.1016/j.jpedsurg.2016.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND A recent study reported that relapsed neuroblastomas had frequent RAS-ERK pathway mutations. We herein investigated the effects and pathways of MEK inhibitors, which inhibit the RAS-ERK pathway, as a new molecular-targeted therapy for refractory neuroblastomas. METHOD Five neuroblastoma cell lines were treated with trametinib (MEK inhibitor) or CH5126766 (RAF/MEK inhibitor). Growth inhibition was analyzed using a cell viability assay. ERK phosphorylation and the MYCN expression were analyzed by immunoblotting or immunohistochemistry. RAS/RAF mutations were identified by direct sequencing or through the COSMIC database. RESULTS Both MEK inhibitors showed growth inhibition effects on cells with ERK phosphorylation, but almost no effect on cells without. In immunoblotting analyses, ERK phosphorylation and MYCN expression were suppressed in ERK active cells by these drugs. Furthermore, phosphorylated-ERK immunohistochemistry corresponded to the drug responses. Regarding the relationship between RAS/Raf mutations and ERK phosphorylation, ERK was phosphorylated in one cell line (NLF) without RAS/Raf mutations. CONCLUSION MEK inhibitors are a promising molecular-targeted therapeutic option for ERK active neuroblastomas. The efficacy of MEK inhibitors corresponds to ERK phosphorylation, while RAS/RAF mutations are not always detected in drug-sensitive cells. Phosphorylated-ERK immunohistochemistry is thus a useful method to analyze ERK activity and predict the therapeutic effects of MEK inhibitors.
Collapse
|
359
|
Seong BKA, Fathers KE, Hallett R, Yung CK, Stein LD, Mouaaz S, Kee L, Hawkins CE, Irwin MS, Kaplan DR. A Metastatic Mouse Model Identifies Genes That Regulate Neuroblastoma Metastasis. Cancer Res 2016; 77:696-706. [PMID: 27899382 DOI: 10.1158/0008-5472.can-16-1502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/06/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022]
Abstract
Metastatic relapse is the major cause of death in pediatric neuroblastoma, where there remains a lack of therapies to target this stage of disease. To understand the molecular mechanisms mediating neuroblastoma metastasis, we developed a mouse model using intracardiac injection and in vivo selection to isolate malignant cell subpopulations with a higher propensity for metastasis to bone and the central nervous system. Gene expression profiling revealed primary and metastatic cells as two distinct cell populations defined by differential expression of 412 genes and of multiple pathways, including CADM1, SPHK1, and YAP/TAZ, whose expression independently predicted survival. In the metastatic subpopulations, a gene signature was defined (MET-75) that predicted survival of neuroblastoma patients with metastatic disease. Mechanistic investigations demonstrated causal roles for CADM1, SPHK1, and YAP/TAZ in mediating metastatic phenotypes in vitro and in vivo Notably, pharmacologic targeting of SPHK1 or YAP/TAZ was sufficient to inhibit neuroblastoma metastasis in vivo Overall, we identify gene expression signatures and candidate therapeutics that could improve the treatment of metastatic neuroblastoma. Cancer Res; 77(3); 696-706. ©2017 AACR.
Collapse
Affiliation(s)
- Bo Kyung A Seong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Kelly E Fathers
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Robin Hallett
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Christina K Yung
- Informatics and Bio-computing, Ontario Institute of Cancer Research, Toronto, Canada
| | - Lincoln D Stein
- Informatics and Bio-computing, Ontario Institute of Cancer Research, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Samar Mouaaz
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Lynn Kee
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Cynthia E Hawkins
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Meredith S Irwin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
360
|
Charlet J, Tomari A, Dallosso AR, Szemes M, Kaselova M, Curry TJ, Almutairi B, Etchevers HC, McConville C, Malik KTA, Brown KW. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma. Mol Carcinog 2016; 56:1290-1301. [PMID: 27862318 PMCID: PMC5396313 DOI: 10.1002/mc.22591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 01/07/2023]
Abstract
Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Charlet
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ayumi Tomari
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Anthony R Dallosso
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Marianna Szemes
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Martina Kaselova
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Thomas J Curry
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Bader Almutairi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Heather C Etchevers
- Faculté de Médecine, Aix-Marseille University, GMGF, UMR_S910, Marseille, France.,Faculté de Médecine, INSERM U910, Marseille, France
| | - Carmel McConville
- Institute of Cancer & Genomic Sciences, University of Birmingham, UK
| | - Karim T A Malik
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Keith W Brown
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
361
|
Abstract
Neuroblastoma is the most common extracranial solid tumour occurring in childhood and has a diverse clinical presentation and course depending on the tumour biology. Unique features of these neuroendocrine tumours are the early age of onset, the high frequency of metastatic disease at diagnosis and the tendency for spontaneous regression of tumours in infancy. The most malignant tumours have amplification of the MYCN oncogene (encoding a transcription factor), which is usually associated with poor survival, even in localized disease. Although transgenic mouse models have shown that MYCN overexpression can be a tumour-initiating factor, many other cooperating genes and tumour suppressor genes are still under investigation and might also have a role in tumour development. Segmental chromosome alterations are frequent in neuroblastoma and are associated with worse outcome. The rare familial neuroblastomas are usually associated with germline mutations in ALK, which is mutated in 10-15% of primary tumours, and provides a potential therapeutic target. Risk-stratified therapy has facilitated the reduction of therapy for children with low-risk and intermediate-risk disease. Advances in therapy for patients with high-risk disease include intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy; these have improved 5-year overall survival to 50%. Currently, new approaches targeting the noradrenaline transporter, genetic pathways and the tumour microenvironment hold promise for further improvements in survival and long-term quality of life.
Collapse
|
362
|
Althoff K, Schulte JH, Schramm A. Towards diagnostic application of non-coding RNAs in neuroblastoma. Expert Rev Mol Diagn 2016; 16:1307-1313. [PMID: 27813435 DOI: 10.1080/14737159.2016.1256207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Neuroblastoma is a solid cancer of childhood, which is devastating upon recurrence. Markers for minimal residual disease and early detection of relapse are eagerly awaited to improve the outcome of affected patients. Several miRNAs have been identified as key regulators of neuroblastoma pathogenesis. Areas covered: Here, we focus on miRNAs that have been linked to MYCN, a prominent oncogenic driver, and we review the hitherto known interactions between miRNAs and other important players in neuroblastoma. Expert commentary: Existing diagnostic miRNA signatures remain to be established in clinical settings. Moreover, inhibition of individual oncogenic miRNAs or enhancement of tumor suppressive miRNA function could represent a new therapeutic approach in cancer treatment, including NB.
Collapse
Affiliation(s)
- Kristina Althoff
- a Department of Pediatric Oncology and Hematology , University Children's Hospital Essen , Essen , Germany
| | - Johannes H Schulte
- b Department of Pediatric Oncology and Hematology , Charité University Medicine , Berlin , Germany.,c Berlin Institute of Health (BIH) , Germany.,d German Cancer Consortium (DKTK Berlin) , Germany
| | - Alexander Schramm
- a Department of Pediatric Oncology and Hematology , University Children's Hospital Essen , Essen , Germany
| |
Collapse
|
363
|
Abbou S, Valteau-Couanet D. Thérapeutiques ciblées dans les tumeurs solides de l’enfant et de l’adolescent. ONCOLOGIE 2016. [DOI: 10.1007/s10269-016-2670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
364
|
Abstract
In this issue, Infarinato and colleagues report the results of preclinical testing of a novel ALK/ROS1 inhibitor, PF-06463922, in neuroblastoma. This small-molecule inhibitor was shown to efficiently inhibit the growth of patient-derived and established neuroblastoma xenograft models expressing mutated ALK. Although the in vivo data are impressive and the authors suggest that clinical trials are warranted, the presented data also suggest that it is as yet too early to welcome the new drug as a magic bullet.
Collapse
Affiliation(s)
- Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Rani E George
- Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
365
|
Hart LS, Rader J, Raman P, Batra V, Russell MR, Tsang M, Gagliardi M, Chen L, Martinez D, Li Y, Wood A, Kim S, Parasuraman S, Delach S, Cole KA, Krupa S, Boehm M, Peters M, Caponigro G, Maris JM. Preclinical Therapeutic Synergy of MEK1/2 and CDK4/6 Inhibition in Neuroblastoma. Clin Cancer Res 2016; 23:1785-1796. [PMID: 27729458 DOI: 10.1158/1078-0432.ccr-16-1131] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/29/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Neuroblastoma is treated with aggressive multimodal therapy, yet more than 50% of patients experience relapse. We recently showed that relapsed neuroblastomas frequently harbor mutations leading to hyperactivated ERK signaling and sensitivity to MEK inhibition therapy. Here we sought to define a synergistic therapeutic partner to potentiate MEK inhibition.Experimental Design: We first surveyed 22 genetically annotated human neuroblastoma-derived cell lines (from 20 unique patients) for sensitivity to the MEK inhibitor binimetinib. After noting an inverse correlation with sensitivity to ribociclib (CDK4/6 inhibitor), we studied the combinatorial effect of these two agents using proliferation assays, cell-cycle analysis, Ki67 immunostaining, time-lapse microscopy, and xenograft studies.Results: Sensitivity to binimetinib and ribociclib was inversely related (r = -0.58, P = 0.009). MYCN amplification status and expression were associated with ribociclib sensitivity and binimetinib resistance, whereas increased MAPK signaling was the main determinant of binimetinib sensitivity and ribociclib resistance. Treatment with both compounds resulted in synergistic or additive cellular growth inhibition in all lines tested and significant inhibition of tumor growth in three of four xenograft models of neuroblastoma. The augmented growth inhibition was attributed to diminished cell-cycle progression that was reversible upon removal of drugs.Conclusions: Here we demonstrate that combined binimetinib and ribociclib treatment shows therapeutic synergy across a broad panel of high-risk neuroblastoma preclinical models. These data support testing this combination therapy in relapsed high-risk neuroblastoma patients, with focus on cases with hyperactivated RAS-MAPK signaling. Clin Cancer Res; 23(7); 1785-96. ©2016 AACR.
Collapse
Affiliation(s)
- Lori S Hart
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - JulieAnn Rader
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pichai Raman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Vandana Batra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mike R Russell
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maria Gagliardi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lucy Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel Martinez
- Division of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yimei Li
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Wood
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sunkyu Kim
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Sudha Parasuraman
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Scott Delach
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Kristina A Cole
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shiva Krupa
- Novartis Pharmaceuticals, Basel, Switzerland
| | | | | | | | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
366
|
Müller J, Reichel R, Vogt S, Müller SP, Sauerwein W, Brandau W, Eggert A, Schramm A. Identification and Tumour-Binding Properties of a Peptide with High Affinity to the Disialoganglioside GD2. PLoS One 2016; 11:e0163648. [PMID: 27716771 PMCID: PMC5055303 DOI: 10.1371/journal.pone.0163648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Neuroectodermal tumours are characterized by aberrant processing of disialogangliosides concomitant with high expression of GD2 or GD3 on cell surfaces. Antibodies targeting GD2 are already in clinical use for therapy of neuroblastoma, a solid tumour of early childhood. Here, we set out to identify peptides with high affinity to human disialoganglioside GD2. To this end, we performed a combined in vivo and in vitro screen using a recombinant phage displayed peptide library. We isolated a phage displaying the peptide sequence WHWRLPS that specifically binds to the human disialoganglioside GD2. Binding specificity was confirmed by mutational scanning and by comparative analyses using structurally related disialogangliosides. In vivo, significant enrichment of phage binding to xenografts of human neuroblastoma cells in mice was observed. Tumour-specific phage accumulation could be blocked by intravenous coinjection of the corresponding peptide. Comparative pharmacokinetic analyses revealed higher specific accumulation of 68Ga-labelled GD2-binding peptide compared to 111In-labelled peptide in xenografts of human neuroblastoma. In contrast to 124I-MIBG, which is currently evaluated as a neuroblastoma marker in PET/CT, 68Ga-labelled GD2-specific peptide spared the thyroid but was enriched in the kidneys, which could be partially blocked by infusion of amino acids.In summary, we here report on a novel tumour-homing peptide that specifically binds to the disialoganglioside GD2, accumulates in xenografts of neuroblastoma cells in mice and bears the potential for tumour detection using PET/CT. Thus, this peptide may serve as a new scaffold for diagnosing GD2-positive tumours of neuroectodermal origin.
Collapse
Affiliation(s)
- Jan Müller
- Pediatric Oncology and Hematology, University Children’s Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robin Reichel
- Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Vogt
- Pediatric Oncology and Hematology, University Children’s Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan P. Müller
- Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang Sauerwein
- Radiation Oncology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang Brandau
- Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Angelika Eggert
- Pediatric Oncology and Hematology, Charité Universitätsmedizin, Berlin, Germany
| | - Alexander Schramm
- Pediatric Oncology and Hematology, University Children’s Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
367
|
Duffy DJ, Krstic A, Halasz M, Schwarzl T, Fey D, Iljin K, Mehta JP, Killick K, Whilde J, Turriziani B, Haapa-Paananen S, Fey V, Fischer M, Westermann F, Henrich KO, Bannert S, Higgins DG, Kolch W. Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma. Oncotarget 2016; 6:43182-201. [PMID: 26673823 PMCID: PMC4791225 DOI: 10.18632/oncotarget.6568] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022] Open
Abstract
Despite intensive study, many mysteries remain about the MYCN oncogene's functions. Here we focus on MYCN's role in neuroblastoma, the most common extracranial childhood cancer. MYCN gene amplification occurs in 20% of cases, but other recurrent somatic mutations are rare. This scarcity of tractable targets has hampered efforts to develop new therapeutic options. We employed a multi-level omics approach to examine MYCN functioning and identify novel therapeutic targets for this largely un-druggable oncogene. We used systems medicine based computational network reconstruction and analysis to integrate a range of omic techniques: sequencing-based transcriptomics, genome-wide chromatin immunoprecipitation, siRNA screening and interaction proteomics, revealing that MYCN controls highly connected networks, with MYCN primarily supressing the activity of network components. MYCN's oncogenic functions are likely independent of its classical heterodimerisation partner, MAX. In particular, MYCN controls its own protein interaction network by transcriptionally regulating its binding partners. Our network-based approach identified vulnerable therapeutically targetable nodes that function as critical regulators or effectors of MYCN in neuroblastoma. These were validated by siRNA knockdown screens, functional studies and patient data. We identified β-estradiol and MAPK/ERK as having functional cross-talk with MYCN and being novel targetable vulnerabilities of MYCN-amplified neuroblastoma. These results reveal surprising differences between the functioning of endogenous, overexpressed and amplified MYCN, and rationalise how different MYCN dosages can orchestrate cell fate decisions and cancerous outcomes. Importantly, this work describes a systems-level approach to systematically uncovering network based vulnerabilities and therapeutic targets for multifactorial diseases by integrating disparate omic data types.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,European Molecular Biology Laboratory (EMBL), Meyerhofstraße, Heidelberg, Germany
| | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Jai Prakash Mehta
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Kate Killick
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Jenny Whilde
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | | | - Vidal Fey
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matthias Fischer
- Department of Paediatric Haematology and Oncology and Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Frank Westermann
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai-Oliver Henrich
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Bannert
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
368
|
Rojas Y, Jaramillo S, Lyons K, Mahmood N, Wu MF, Liu H, Vasudevan SA, Guillerman RP, Louis CU, Russell HV, Nuchtern JG, Kim ES. The optimal timing of surgical resection in high-risk neuroblastoma. J Pediatr Surg 2016; 51:1665-9. [PMID: 27318861 DOI: 10.1016/j.jpedsurg.2016.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND While most high-risk neuroblastoma (HRNB) patients are enrolled in cooperative group or institutional protocols, variability exists within these protocols as to when surgical resection of the primary tumor should be performed after neoadjuvant induction chemotherapy. We sought to determine if the number of chemotherapy cycles prior to surgery affects surgical or survival outcomes in HRNB patients. METHODS We performed a retrospective review of all HRNB patients <18years of age from 2000 to 2010, at Texas Children's Hospital. Patients were stratified based on the number of neoadjuvant induction chemotherapy cycles prior to surgical resection. Pre and post- chemotherapy tumor size, MYCN status, iodine-131-metaiodobenzylguanidine (MIBG) score at diagnosis, extent of surgical resection, estimated surgical blood loss, post-operative outcomes, and event free (EFS) and overall survival (OS) were evaluated. Data were analyzed using Wilcoxon rank-sum test, Kruskal-Wallis test, Fisher's exact test, Kaplan-Meier analyses, and Cox regression analyses. P-value <0.05 was considered significant. RESULTS Data from 50 patients with HRNB were analyzed. Patients were stratified by the number of cycles of chemotherapy received prior to surgery. Six patients received 2cycles of chemotherapy (12%), 20 patients received 3cycles (40%), 13 patients received 4cycles (26%), and 11 patients received 5cycles (22%) prior to surgical resection of the primary tumor. The 5-year OS was 33%, 45%, 83% and 36% in patients who received 2, 3, 4 and 5cycles of chemotherapy prior to surgery, respectively (p=0.07). Multivariate analysis revealed that patients who received 4cycles of chemotherapy had a significantly lower mortality (HR: 0.11, 95% CI: 0.01-0.87, p=0.04) compared to those with 2cycles of chemotherapy. Among the different cohorts, there were no differences with respect to MYCN status, MIBG score at diagnosis, incidence of bone marrow metastasis, extent of surgical resection, estimated blood loss, incidence of post-operative complications, or length of stay. CONCLUSION HRNB patients who receive 4cycles of chemotherapy prior to surgical resection have a superior OS than patients who receive 2. Based on the superior survival of patients who received 4cycles of chemotherapy prior to surgery, further studies are warranted to elucidate these differences.
Collapse
Affiliation(s)
- Yesenia Rojas
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Sergio Jaramillo
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX
| | - Karen Lyons
- Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Nadia Mahmood
- Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Meng-Fen Wu
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Hao Liu
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Sanjeev A Vasudevan
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - R Paul Guillerman
- Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Chrystal U Louis
- Section of Hematology-Oncology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Heidi V Russell
- Section of Hematology-Oncology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Jed G Nuchtern
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Eugene S Kim
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Division of Pediatric Surgery, Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
369
|
Cimmino F, Pezone L, Avitabile M, Persano L, Vitale M, Sassi M, Bresolin S, Serafin V, Zambrano N, Scaloni A, Basso G, Iolascon A, Capasso M. Proteomic Alterations in Response to Hypoxia Inducible Factor 2α in Normoxic Neuroblastoma Cells. J Proteome Res 2016; 15:3643-3655. [PMID: 27596920 DOI: 10.1021/acs.jproteome.6b00457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia inducible factor (HIF)-2α protein expression in solid tumors promotes stem-like phenotype in cancer stem cells and increases tumorigenic potential in nonstem cancer cells. Recently, we have shown that HIF-1/2α gene expression is correlated to neuroblastoma (NB) poor survival and to undifferentiated tumor state; HIF-2α protein was demonstrated to enhance aggressive features of the disease. In this study, we used proteomic experiments on NB cells to investigate HIF-2α downstream-regulated proteins or pathways with the aim of providing novel therapeutic targets or bad prognosis markers. We verified that pathways mostly altered by HIF-2α perturbation are involved in tumor progression. In particular, HIF-2α induces alteration of central metabolism and splicing control pathways. Simultaneously, WNT, RAS/MAPK, and PI3K/AKT activity or expression are affected and may impact the sensitivity and the intensity of HIF-2α-regulated pathways. Furthermore, genes coding the identified HIF-2α-related markers built a signature able to stratify NB patients with unfavorable outcome. Taken together, our findings underline the relevance of dissecting the downstream effects of a poor survival marker in developing targeted therapy and improving patient stratification. Future prospective studies are needed to translate the use of these data into the clinical practice.
Collapse
Affiliation(s)
- Flora Cimmino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Lucia Pezone
- CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy.,Scuola di Medicina e Chirurgia, Università degli Studi di Verona , 37129 Verona, Italy
| | - Marianna Avitabile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Luca Persano
- Istituto di Ricerca Pediatrica Città della Speranza - IRP , 35121 Padua, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Mauro Sassi
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council , 80147 Naples, Italy
| | - Silvia Bresolin
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova , 35128 Padua, Italy
| | - Valentina Serafin
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova , 35128 Padua, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council , 80147 Naples, Italy
| | - Giuseppe Basso
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova , 35128 Padua, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , via Pansini, 5, 80131 Naples, Italy.,CEINGE Biotecnologie Avanzate , Via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
370
|
Vieira GC, Chockalingam S, Melegh Z, Greenhough A, Malik S, Szemes M, Park JH, Kaidi A, Zhou L, Catchpoole D, Morgan R, Bates DO, Gabb PD, Malik K. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma. Oncotarget 2016; 6:40053-67. [PMID: 26517508 PMCID: PMC4741879 DOI: 10.18632/oncotarget.5548] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022] Open
Abstract
LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5.
Collapse
Affiliation(s)
- Gabriella Cunha Vieira
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - S Chockalingam
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Zsombor Melegh
- Department of Cellular Pathology, Southmead Hospital, Bristol, UK
| | - Alexander Greenhough
- Colorectal Cancer Laboratory, School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Sally Malik
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Marianna Szemes
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Ji Hyun Park
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Abderrahmane Kaidi
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Li Zhou
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Daniel Catchpoole
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Rhys Morgan
- Colorectal Cancer Laboratory, School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Peter David Gabb
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
371
|
Guan J, Tucker ER, Wan H, Chand D, Danielson LS, Ruuth K, El Wakil A, Witek B, Jamin Y, Umapathy G, Robinson SP, Johnson TW, Smeal T, Martinsson T, Chesler L, Palmer RH, Hallberg B. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN. Dis Model Mech 2016; 9:941-52. [PMID: 27483357 PMCID: PMC5047689 DOI: 10.1242/dmm.024448] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/04/2016] [Indexed: 12/24/2022] Open
Abstract
The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALK(F1174L)/MYCN Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients.
Collapse
Affiliation(s)
- J Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - E R Tucker
- Division of Clinical Studies Cancer Therapeutics, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - H Wan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - D Chand
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - L S Danielson
- Division of Clinical Studies Cancer Therapeutics, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - K Ruuth
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden Department of Molecular Biology, Building 6L, Umeå University, Umeå 901 87, Sweden
| | - A El Wakil
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden Department of Molecular Biology, Building 6L, Umeå University, Umeå 901 87, Sweden
| | - B Witek
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden Department of Molecular Biology, Building 6L, Umeå University, Umeå 901 87, Sweden
| | - Y Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - G Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - S P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - T W Johnson
- La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, CA 92121, USA
| | - T Smeal
- La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, CA 92121, USA
| | - T Martinsson
- Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - L Chesler
- Division of Clinical Studies Cancer Therapeutics, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - R H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - B Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|
372
|
Vinayanuwattikun C, Le Calvez-Kelm F, Abedi-Ardekani B, Zaridze D, Mukeria A, Voegele C, Vallée M, Purnomosari D, Forey N, Durand G, Byrnes G, Mckay J, Brennan P, Scelo G. Elucidating Genomic Characteristics of Lung Cancer Progression from In Situ to Invasive Adenocarcinoma. Sci Rep 2016; 6:31628. [PMID: 27545006 PMCID: PMC4992872 DOI: 10.1038/srep31628] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
To examine the diversity of somatic alterations and clonal evolution according to aggressiveness of disease, nineteen tumor-blood pairs of 'formerly bronchiolo-alveolar carcinoma (BAC)' which had been reclassified into preinvasive lesion (adenocarcinoma in situ; AIS), focal invasive lesion (minimally invasive adenocarcinoma; MIA), and invasive lesion (lepidic predominant adenocarcinoma; LPA and non-lepidic predominant adenocarcinoma; non-LPA) according to IASLC/ATS/ERS 2011 classification were explored by whole exome sequencing. Several distinct somatic alterations were observed compare to the lung adenocarcinoma study from the Cancer Genome Atlas (TCGA). There were higher numbers of tumors with significant APOBEC mutation fold enrichment (73% vs. 58% TCGA). The frequency of KRAS mutations was lower in our study (5% vs. 32% TCGA), while a higher number of mutations of RNA-splicing genes, RBM10 and U2AF1, were found (37% vs. 11% TCGA). We found neither mutational pattern nor somatic copy number alterations that were specific to AIS/MIA. We demonstrated that clonal cell fraction was the only distinctive feature that discriminated LPA/non-LPA from AIS/MIA. The broad range of clonal frequency signified a more branched clonal evolution at the time of diagnosis. Assessment of tumor clonal cell fraction might provide critical information for individualized therapy as a prognostic factor, however this needs further study.
Collapse
Affiliation(s)
- Chanida Vinayanuwattikun
- International Agency for Research on Cancer, Lyon, France
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | | | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Anush Mukeria
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | | | - Maxime Vallée
- International Agency for Research on Cancer, Lyon, France
- Department of Molecular Medicine, CHUQ Research Center, Laval University, Quebec, Canada
| | - Dewajani Purnomosari
- International Agency for Research on Cancer, Lyon, France
- Department of Histology and Cell Biology and Molecular Biology Laboratory, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Nathalie Forey
- International Agency for Research on Cancer, Lyon, France
| | | | - Graham Byrnes
- International Agency for Research on Cancer, Lyon, France
| | - James Mckay
- International Agency for Research on Cancer, Lyon, France
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
373
|
Ortiz MV, Kobos R, Walsh M, Slotkin EK, Roberts S, Berger MF, Hameed M, Solit D, Ladanyi M, Shukla N, Kentsis A. Integrating Genomics Into Clinical Pediatric Oncology Using the Molecular Tumor Board at the Memorial Sloan Kettering Cancer Center. Pediatr Blood Cancer 2016; 63:1368-74. [PMID: 27082517 PMCID: PMC5429592 DOI: 10.1002/pbc.26002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/19/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pediatric oncologists have begun to leverage tumor genetic profiling to match patients with targeted therapies. At the Memorial Sloan Kettering Cancer Center (MSKCC), we developed the Pediatric Molecular Tumor Board (PMTB) to track, integrate, and interpret clinical genomic profiling and potential targeted therapeutic recommendations. PROCEDURE This retrospective case series includes all patients reviewed by the MSKCC PMTB from July 2014 to June 2015. Cases were submitted by treating oncologists and potential treatment recommendations were based upon the modified guidelines of the Oxford Centre for Evidence-Based Medicine. RESULTS There were 41 presentations of 39 individual patients during the study period. Gliomas, acute myeloid leukemia, and neuroblastoma were the most commonly reviewed cases. Thirty nine (87%) of the 45 molecular sequencing profiles utilized hybrid-capture targeted genome sequencing. In 30 (73%) of the 41 presentations, the PMTB provided therapeutic recommendations, of which 19 (46%) were implemented. Twenty-one (70%) of the recommendations involved targeted therapies. Three (14%) targeted therapy recommendations had published evidence to support the proposed recommendations (evidence levels 1-2), eight (36%) recommendations had preclinical evidence (level 3), and 11 (50%) recommendations were based upon hypothetical biological rationales (level 4). CONCLUSIONS The MSKCC PMTB enabled a clinically relevant interpretation of genomic profiling. Effective use of clinical genomics is anticipated to require new and improved tools to ascribe pathogenic significance and therapeutic actionability. The development of specific rule-driven clinical protocols will be needed for the incorporation and evaluation of genomic and molecular profiling in interventional prospective clinical trials.
Collapse
Affiliation(s)
- Michael V. Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachel Kobos
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily K. Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F. Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York , New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York , New York
| | - David Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York , New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alex Kentsis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Correspondence to: Alex Kentsis, 1275 York Avenue, New York, NY 10021.
| |
Collapse
|
374
|
Chicard M, Boyault S, Colmet Daage L, Richer W, Gentien D, Pierron G, Lapouble E, Bellini A, Clement N, Iacono I, Bréjon S, Carrere M, Reyes C, Hocking T, Bernard V, Peuchmaur M, Corradini N, Faure-Conter C, Coze C, Plantaz D, Defachelles AS, Thebaud E, Gambart M, Millot F, Valteau-Couanet D, Michon J, Puisieux A, Delattre O, Combaret V, Schleiermacher G. Genomic Copy Number Profiling Using Circulating Free Tumor DNA Highlights Heterogeneity in Neuroblastoma. Clin Cancer Res 2016; 22:5564-5573. [DOI: 10.1158/1078-0432.ccr-16-0500] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/04/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022]
|
375
|
ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene 2016; 35:3681-91. [PMID: 26616860 PMCID: PMC4885798 DOI: 10.1038/onc.2015.434] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 09/15/2015] [Accepted: 10/11/2015] [Indexed: 12/14/2022]
Abstract
The crizotinib-resistant ALK(F1174L) mutation arises de novo in neuroblastoma (NB) and is acquired in ALK translocation-driven cancers, lending impetus to the development of novel anaplastic lymphoma kinase (ALK) inhibitors with different modes of action. The diaminopyrimidine TAE684 and its derivative ceritinib (LDK378), which are structurally distinct from crizotinib, are active against NB cells expressing ALK(F1174L). Here we demonstrate acquired resistance to TAE684 and LDK378 in ALK(F1174L)-driven human NB cells that is linked to overexpression and activation of the AXL tyrosine kinase and epithelial-to-mesenchymal transition (EMT). AXL phosphorylation conferred TAE684 resistance to NB cells through upregulated extracellular signal-regulated kinase (ERK) signaling. Inhibition of AXL partly rescued TAE684 resistance, resensitizing these cells to this compound. AXL activation in resistant cells was mediated through increased expression of the active form of its ligand, GAS6, that also served to stabilize the AXL protein. Although ectopic expression of AXL and TWIST2 individually in TAE684-sensitive parental cells led to the elevated expression of mesenchymal markers and invasive capacity, only AXL overexpression induced resistance to TAE684 as well. TAE684-resistant cells showed greater sensitivity to HSP90 inhibition than did their parental counterparts, with downregulation of AXL and AXL-mediated ERK signaling. Our studies indicate that aberrant AXL signaling and development of an EMT phenotype underlie resistance of ALK(F1174L)-driven NB cells to TAE684 and its derivatives. We suggest that the combination of ALK and AXL or HSP90 inhibitors be considered to delay the emergence of such resistance.
Collapse
|
376
|
Kemper K, Krijgsman O, Kong X, Cornelissen-Steijger P, Shahrabi A, Weeber F, van der Velden DL, Bleijerveld OB, Kuilman T, Kluin RJC, Sun C, Voest EE, Ju YS, Schumacher TNM, Altelaar AFM, McDermott U, Adams DJ, Blank CU, Haanen JB, Peeper DS. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Rep 2016; 16:263-277. [PMID: 27320919 PMCID: PMC4929150 DOI: 10.1016/j.celrep.2016.05.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/08/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022] Open
Abstract
The therapeutic landscape of melanoma is improving rapidly. Targeted inhibitors show promising results, but drug resistance often limits durable clinical responses. There is a need for in vivo systems that allow for mechanistic drug resistance studies and (combinatorial) treatment optimization. Therefore, we established a large collection of patient-derived xenografts (PDXs), derived from BRAFV600E, NRASQ61, or BRAFWT/NRASWT melanoma metastases prior to treatment with BRAF inhibitor and after resistance had occurred. Taking advantage of PDXs as a limitless source, we screened tumor lysates for resistance mechanisms. We identified a BRAFV600E protein harboring a kinase domain duplication (BRAFV600E/DK) in ∼10% of the cases, both in PDXs and in an independent patient cohort. While BRAFV600E/DK depletion restored sensitivity to BRAF inhibition, a pan-RAF dimerization inhibitor effectively eliminated BRAFV600E/DK-expressing cells. These results illustrate the utility of this PDX platform and warrant clinical validation of BRAF dimerization inhibitors for this group of melanoma patients. Patient-derived xenograft (PDX) platform comprises 89 metastatic melanoma tumors Platform includes several pre-vemurafenib and vemurafenib-resistant PDXs Duplication of the BRAFV600E kinase domain is identified as a resistance mechanism Pan-RAF dimerization inhibitor LY3009120 eliminates melanoma cells with this duplication
Collapse
Affiliation(s)
- Kristel Kemper
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Xiangjun Kong
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paulien Cornelissen-Steijger
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Aida Shahrabi
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Fleur Weeber
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Daphne L van der Velden
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Mass Spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Thomas Kuilman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Roel J C Kluin
- Central Genomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Chong Sun
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Young Seok Ju
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Ton N M Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - A F Maarten Altelaar
- Mass Spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ultan McDermott
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Christian U Blank
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - John B Haanen
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
377
|
Naveen CR, Gaikwad S, Agrawal-Rajput R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:736-744. [PMID: 27235712 DOI: 10.1016/j.phymed.2016.03.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/12/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Berberine, a plant alkaloid, has been used since many years for treatment of gastrointestinal disorders. It also shows promising medicinal use against metabolic disorders, neurodegenerative disorders and cancer; however its efficacy in neuroblastoma (NB) is poorly explored. HYPOTHESIS EMT is important in cancer stemness and metastasis resulting in failure to differentiate; thus targeting EMT and related pathways can have clinical benefits. STUDY DESIGN Potential of berberine was investigated for (i) neuronal differentiation and cancer stemness inhibition, (ii) underlying molecular mechanisms regulating cancer-stemness and (iii) EMT reversal. METHODS Using neuro2a (N2a) neuroblastoma cells (NB); we investigated effect of berberine on neuronal differentiation, cancer-stemness, EMT and underlying signalling by immunofluorescence, RT-PCR, Western blot. High glucose-induced TGF-β mediated EMT model was used to test EMT reversal potential by Western blot and RT-PCR. STRING analysis was done to determine and validate functional protein-interaction networks. RESULTS We demonstrate berberine induces neuronal differentiation accompanying increased neuronal differentiation markers like MAP2, β-III tubulin and NCAM; generated neurons were viable. Berberine attenuated cancer stemness markers CD133, β-catenin, n-myc, sox2, notch2 and nestin. Berberine potentiated G0/G1 cell cycle arrest by inhibiting proliferation, cyclin dependent kinases and cyclins resulting in apoptosis through increased bax/bcl-2 ratio. Restoration of tumor suppressor proteins, p27 and p53, indicate promising anti-cancer property. The induction of NCAM and reduction in its polysialylation indicates anti-migratory potential which is supported by down regulation of MMP-2/9. It increased epithelial marker laminin and smad and increased Hsp70 levels also suggest its protective role. Molecular insights revealed that berberine regulates EMT via downregulation of PI3/Akt and Ras-Raf-ERK signalling and subsequent upregulation of p38-MAPK. TGF-β secretion from N2a cells was potentiated by high glucose and negatively regulated by berberine through modulation of TGF-β receptors II and III. Berberine reverted mesenchymal markers, vimentin and fibronectin, with restoration of epithelial marker E-cadherin, highlighting the role of berberine in reversal of EMT. CONCLUSION Collectively, the study demonstrates prospective use of berberine against neuroblastoma as elucidated through inhibition of fundamental characteristics of cancer stem cells: tumorigenicity and failure to differentiation and instigates reversal in the EMT.
Collapse
Affiliation(s)
- C R Naveen
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India
| | - Sagar Gaikwad
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India
| | - Reena Agrawal-Rajput
- Laboratory of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar (382 007), Gujarat, India..
| |
Collapse
|
378
|
Craig BT, Rellinger EJ, Alvarez AL, Dusek HL, Qiao J, Chung DH. Induced differentiation inhibits sphere formation in neuroblastoma. Biochem Biophys Res Commun 2016; 477:255-9. [PMID: 27297102 DOI: 10.1016/j.bbrc.2016.06.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023]
Abstract
Neuroblastoma arises from the neural crest, the precursor cells of the sympathoadrenal axis, and differentiation status is a key prognostic factor used for clinical risk group stratification and treatment strategies. Neuroblastoma tumor-initiating cells have been successfully isolated from patient tumor samples and bone marrow using sphere culture, which is well established to promote growth of neural crest stem cells. However, accurate quantification of sphere-forming frequency of commonly used neuroblastoma cell lines has not been reported. Here, we show that MYCN-amplified neuroblastoma cell lines form spheres more frequently than non-MYCN-amplified cell lines. We also show that sphere formation is directly sensitive to cellular differentiation status. 13-cis-retinoic acid is a clinically used differentiating agent that induces a neuronal phenotype in neuroblastoma cells. Induced differentiation nearly completely blocked sphere formation. Furthermore, sphere formation was specifically FGF-responsive and did not respond to increasing doses of EGF. Taken together, these data suggest that sphere formation is an accurate method of quantifying the stemness phenotype in neuroblastoma.
Collapse
Affiliation(s)
- Brian T Craig
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric J Rellinger
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandra L Alvarez
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Haley L Dusek
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jingbo Qiao
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dai H Chung
- Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
379
|
Eskilsson E, Verhaak RGW. Longitudinal genomic characterization of brain tumors for identification of therapeutic vulnerabilities. Neuro Oncol 2016; 18:1037-9. [PMID: 27236194 DOI: 10.1093/neuonc/now064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Eskil Eskilsson
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas (E.E., R.G.W.V.); Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (R.G.W.V.)
| | - Roel G W Verhaak
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas (E.E., R.G.W.V.); Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (R.G.W.V.)
| |
Collapse
|
380
|
Ratner N, Brodeur GM, Dale RC, Schor NF. The "neuro" of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder. Ann Neurol 2016; 80:13-23. [PMID: 27043043 DOI: 10.1002/ana.24659] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a childhood cancer derived from cells of neural crest origin. The hallmarks of its enigmatic character include its propensity for spontaneous regression under some circumstances and its association with paraneoplastic opsoclonus, myoclonus, and ataxia. The neurodevelopmental underpinnings of its origins may provide important clues for development of novel therapeutic and preventive agents for this frequently fatal malignancy and for the associated paraneoplastic syndromes. Ann Neurol 2016;80:13-23.
Collapse
Affiliation(s)
- Nancy Ratner
- Department of Pediatrics, Cincinnati Children's Hospital and University of Cincinnati, Cincinnati, OH
| | - Garrett M Brodeur
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Russell C Dale
- Clinical School, the Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Nina F Schor
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
381
|
He S, Mansour MR, Zimmerman MW, Ki DH, Layden HM, Akahane K, Gjini E, de Groh ED, Perez-Atayde AR, Zhu S, Epstein JA, Look AT. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. eLife 2016; 5. [PMID: 27130733 PMCID: PMC4900799 DOI: 10.7554/elife.14713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
Earlier reports showed that hyperplasia of sympathoadrenal cell precursors during embryogenesis in Nf1-deficient mice is independent of Nf1’s role in down-modulating RAS-MAPK signaling. We demonstrate in zebrafish that nf1 loss leads to aberrant activation of RAS signaling in MYCN-induced neuroblastomas that arise in these precursors, and that the GTPase-activating protein (GAP)-related domain (GRD) is sufficient to suppress the acceleration of neuroblastoma in nf1-deficient fish, but not the hypertrophy of sympathoadrenal cells in nf1 mutant embryos. Thus, even though neuroblastoma is a classical “developmental tumor”, NF1 relies on a very different mechanism to suppress malignant transformation than it does to modulate normal neural crest cell growth. We also show marked synergy in tumor cell killing between MEK inhibitors (trametinib) and retinoids (isotretinoin) in primary nf1a-/- zebrafish neuroblastomas. Thus, our model system has considerable translational potential for investigating new strategies to improve the treatment of very high-risk neuroblastomas with aberrant RAS-MAPK activation. DOI:http://dx.doi.org/10.7554/eLife.14713.001 Neuroblastoma is one of the most common childhood cancers and is responsible for about 15% of childhood deaths due to cancer. The neuroblastoma tumors arise in cells that develop into and form part of the body’s nervous system. Many researchers have studied the genetics of this disease and have recognised common patterns. In particular, neuroblastomas can occur when a protein called MYCN is over-produced and a tumor suppressor protein called NF1 is lost. NF1 is a large protein with several distinct parts or domains. The most studied domain of NF1 is called the GRD, and it is mainly responsible for dampening down signals that cause cells to grow, specialize and survive. However, experiments in mice have revealed that this protein uses its other domains to control the normal development of part of the nervous system. He et al. wanted to know which domains of NF1 are important for suppressing the growth of neuroblastomas. The experiments were conducted in zebrafish that had been engineered to produce an excess of the human version of MYCN. When He et al. also deleted the gene for the zebrafish’s version of NF1, the fish quickly developed neuroblastomas. Supplying the zebrafish with just the GRD of NF1 was enough to supress the growth of the tumors. These experiments show that NF1 uses different domains and signalling pathways to regulate the normal development of part of the nervous system and to prevent formation of neuroblastoma. These engineered zebrafish represent an animal model of neuroblastoma that mimics the human disease in many ways. This model will make it possible to test new drug combinations and to find more effective treatments for neuroblastoma patients. DOI:http://dx.doi.org/10.7554/eLife.14713.002
Collapse
Affiliation(s)
- Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Marc R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Hematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Dong Hyuk Ki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Hillary M Layden
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Koshi Akahane
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Evisa Gjini
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Eric D de Groh
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Antonio R Perez-Atayde
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, United States
| | - Shizhen Zhu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, United States
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
382
|
Nikbakht H, Panditharatna E, Mikael LG, Li R, Gayden T, Osmond M, Ho CY, Kambhampati M, Hwang EI, Faury D, Siu A, Papillon-Cavanagh S, Bechet D, Ligon KL, Ellezam B, Ingram WJ, Stinson C, Moore AS, Warren KE, Karamchandani J, Packer RJ, Jabado N, Majewski J, Nazarian J. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat Commun 2016; 7:11185. [PMID: 27048880 PMCID: PMC4823825 DOI: 10.1038/ncomms11185] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M--including H3.2K27M--mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (TP53/PPM1D) or specific growth factor pathways (ACVR1/PIK3R1). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.
Collapse
Affiliation(s)
- Hamid Nikbakht
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Eshini Panditharatna
- Research Center for Genetic Medicine, Children's National Health System, Washington, District Of Columbia 20010, USA.,Institute for Biomedical Sciences, George Washington University School of Medicine and Health Sciences, Washington, District Of Columbia 20052, USA
| | - Leonie G Mikael
- Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Québec, Canada H4A 3J1
| | - Rui Li
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Tenzin Gayden
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1
| | - Matthew Osmond
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Cheng-Ying Ho
- Division of Pathology, Children's National Health System, Washington, District Of Columbia 20010, USA
| | - Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, District Of Columbia 20010, USA
| | - Eugene I Hwang
- Center for Cancer and Blood Disorders, Children's National Health System, Washington, District Of Columbia 20010, USA
| | - Damien Faury
- Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Québec, Canada H4A 3J1
| | - Alan Siu
- The Department of Neurological Surgery, George Washington University School of Medicine and Health Sciences, Washington, District Of Columbia 20052, USA
| | - Simon Papillon-Cavanagh
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Denise Bechet
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1
| | - Keith L Ligon
- Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusett 02115, USA
| | - Benjamin Ellezam
- Department of Pathology, CHU Ste-Justine, Université de Montréal, Montreal, Québec, Canada H3T 1C5
| | - Wendy J Ingram
- UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland 4101, Australia
| | - Caedyn Stinson
- University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Andrew S Moore
- UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland 4101, Australia.,University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia.,Oncology Service, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland 4101, Australia
| | - Katherine E Warren
- National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Hospital, McGill University, Montreal, Québec, Canada H3A 2B4
| | - Roger J Packer
- Brain Tumour Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, District Of Columbia, 20010, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Québec, Canada H4A 3J1
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, District Of Columbia 20010, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, District Of Columbia 20052, USA
| |
Collapse
|
383
|
Woodfield SE, Guo RJ, Liu Y, Major AM, Hollingsworth EF, Indiviglio S, Whittle SB, Mo Q, Bean AJ, Ittmann M, Lopez-Terrada D, Zage PE. Neuroblastoma patient outcomes, tumor differentiation, and ERK activation are correlated with expression levels of the ubiquitin ligase UBE4B. Genes Cancer 2016; 7:13-26. [PMID: 27014418 PMCID: PMC4773702 DOI: 10.18632/genesandcancer.97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND UBE4B is an E3/E4 ubiquitin ligase whose gene is located in chromosome 1p36.22. We analyzed the associations of UBE4B gene and protein expression with neuroblastoma patient outcomes and with tumor prognostic features and histology. METHODS We evaluated the association of UBE4B gene expression with neuroblastoma patient outcomes using the R2 Platform. We screened neuroblastoma tumor samples for UBE4B protein expression using immunohistochemistry. FISH for UBE4B and 1p36 deletion was performed on tumor samples. We then evaluated UBE4B expression for associations with prognostic factors and with levels of phosphorylated ERK in neuroblastoma tumors and cell lines. RESULTS Low UBE4B gene expression is associated with poor outcomes in patients with neuroblastoma and with worse outcomes in all patient subgroups. UBE4B protein expression was associated with neuroblastoma tumor differentiation, and decreased UBE4B protein levels were associated with high-risk features. UBE4B protein levels were also associated with levels of phosphorylated ERK. CONCLUSIONS We have demonstrated associations between UBE4B gene expression and neuroblastoma patient outcomes and prognostic features. Reduced UBE4B protein expression in neuroblastoma tumors was associated with high-risk features, a lack of differentiation, and with ERK activation. These results suggest UBE4B may contribute to the poor prognosis of neuroblastoma tumors with 1p36 deletions and that UBE4B expression may mediate neuroblastoma differentiation.
Collapse
Affiliation(s)
- Sarah E Woodfield
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Rong Jun Guo
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Yin Liu
- Department of Neurobiology and Anatomy, The University of Texas Medical School & Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Angela M Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | - Sandra Indiviglio
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Sarah B Whittle
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Qianxing Mo
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Andrew J Bean
- Department of Neurobiology and Anatomy, The University of Texas Medical School & Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; The Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| | - Dolores Lopez-Terrada
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Peter E Zage
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
384
|
Chang W, Brohl AS, Patidar R, Sindiri S, Shern JF, Wei JS, Song YK, Yohe ME, Gryder B, Zhang S, Calzone KA, Shivaprasad N, Wen X, Badgett TC, Miettinen M, Hartman KR, League-Pascual JC, Trahair TN, Widemann BC, Merchant MS, Kaplan RN, Lin JC, Khan J. MultiDimensional ClinOmics for Precision Therapy of Children and Adolescent Young Adults with Relapsed and Refractory Cancer: A Report from the Center for Cancer Research. Clin Cancer Res 2016; 22:3810-20. [PMID: 26994145 DOI: 10.1158/1078-0432.ccr-15-2717] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/21/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE We undertook a multidimensional clinical genomics study of children and adolescent young adults with relapsed and refractory cancers to determine the feasibility of genome-guided precision therapy. EXPERIMENTAL DESIGN Patients with non-central nervous system solid tumors underwent a combination of whole exome sequencing (WES), whole transcriptome sequencing (WTS), and high-density single-nucleotide polymorphism array analysis of the tumor, with WES of matched germline DNA. Clinically actionable alterations were identified as a reportable germline mutation, a diagnosis change, or a somatic event (including a single nucleotide variant, an indel, an amplification, a deletion, or a fusion gene), which could be targeted with drugs in existing clinical trials or with FDA-approved drugs. RESULTS Fifty-nine patients in 20 diagnostic categories were enrolled from 2010 to 2014. Ages ranged from 7 months to 25 years old. Seventy-three percent of the patients had prior chemotherapy, and the tumors from these patients with relapsed or refractory cancers had a higher mutational burden than that reported in the literature. Thirty patients (51% of total) had clinically actionable mutations, of which 24 (41%) had a mutation that was currently targetable in a clinical trial setting, 4 patients (7%) had a change in diagnosis, and 7 patients (12%) had a reportable germline mutation. CONCLUSIONS We found a remarkably high number of clinically actionable mutations in 51% of the patients, and 12% with significant germline mutations. We demonstrated the clinical feasibility of next-generation sequencing in a diverse population of relapsed and refractory pediatric solid tumors. Clin Cancer Res; 22(15); 3810-20. ©2016 AACR.
Collapse
Affiliation(s)
- Wendy Chang
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Department of Pediatrics, Molecular Genetics, Columbia University Medical Center, New York, New York
| | - Andrew S Brohl
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Sarcoma Department, Moffitt Cancer Center, Tampa, Florida
| | - Rajesh Patidar
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sivasish Sindiri
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jack F Shern
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Young K Song
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Marielle E Yohe
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Berkley Gryder
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Shile Zhang
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kathleen A Calzone
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Nityashree Shivaprasad
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Thomas C Badgett
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Pediatric Hematology-Oncology, Kentucky Children's Hospital, Lexington, Kentucky
| | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kip R Hartman
- Walter Reed National Military Medical Center, Bethesda, Maryland. Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - James C League-Pascual
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Toby N Trahair
- Centre for Children's Cancer and Blood Disorders, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Melinda S Merchant
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jimmy C Lin
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
385
|
Woodfield SE, Zhang L, Scorsone KA, Liu Y, Zage PE. Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression. BMC Cancer 2016; 16:172. [PMID: 26925841 PMCID: PMC4772351 DOI: 10.1186/s12885-016-2199-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Novel therapies are needed for children with high-risk and relapsed neuroblastoma. We hypothesized that MAPK/ERK kinase (MEK) inhibition with the novel MEK1/2 inhibitor binimetinib would be effective in neuroblastoma preclinical models. METHODS Levels of total and phosphorylated MEK and extracellular signal-regulated kinase (ERK) were examined in primary neuroblastoma tumor samples and in neuroblastoma cell lines by Western blot. A panel of established neuroblastoma tumor cell lines was treated with increasing concentrations of binimetinib, and their viability was determined using MTT assays. Western blot analyses were performed to examine changes in total and phosphorylated MEK and ERK and to measure apoptosis in neuroblastoma tumor cells after binimetinib treatment. NF1 protein levels in neuroblastoma cell lines were determined using Western blot assays. Gene expression of NF1 and MEK1 was examined in relationship to neuroblastoma patient outcomes. RESULTS Both primary neuroblastoma tumor samples and cell lines showed detectable levels of total and phosphorylated MEK and ERK. IC50 values for cells sensitive to binimetinib ranged from 8 nM to 1.16 μM, while resistant cells did not demonstrate any significant reduction in cell viability with doses exceeding 15 μM. Sensitive cells showed higher endogenous expression of phosphorylated MEK and ERK. Gene expression of NF1, but not MEK1, correlated with patient outcomes in neuroblastoma, and NF1 protein expression also correlated with responses to binimetinib. CONCLUSIONS Neuroblastoma tumor cells show a range of sensitivities to the novel MEK inhibitor binimetinib. In response to binimetinib, sensitive cells demonstrated complete loss of phosphorylated ERK, while resistant cells demonstrated either incomplete loss of ERK phosphorylation or minimal effects on MEK phosphorylation, suggesting alternative mechanisms of resistance. NF1 protein expression correlated with responses to binimetinib, supporting the use of NF1 as a biomarker to identify patients that may respond to MEK inhibition. MEK inhibition therefore represents a potential new therapeutic strategy for neuroblastoma.
Collapse
Affiliation(s)
- Sarah E Woodfield
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA.
| | - Linna Zhang
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA.
| | - Kathleen A Scorsone
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA.
| | - Yin Liu
- Department of Neurobiology and Anatomy, The University of Texas Medical School, Houston, TX, USA. .,Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | - Peter E Zage
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA. .,Texas Children's Cancer Center, Houston, TX, USA.
| |
Collapse
|
386
|
Morrison MA, Zimmerman MW, Look AT, Stewart RA. Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods Cell Biol 2016; 134:97-138. [PMID: 27312492 DOI: 10.1016/bs.mcb.2015.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The zebrafish serves as an excellent model to study vertebrate development and disease. Optically clear embryos, combined with tissue-specific fluorescent reporters, permit direct visualization and measurement of peripheral nervous system formation in real time. Additionally, the model is amenable to rapid cellular, molecular, and genetic approaches to determine how developmental mechanisms contribute to disease states, such as cancer. In this chapter, we describe the development of the peripheral sympathetic nervous system (PSNS) in general, and our current understanding of genetic pathways important in zebrafish PSNS development specifically. We also illustrate how zebrafish genetics is used to identify new mechanisms controlling PSNS development and methods for interrogating the potential role of PSNS developmental pathways in neuroblastoma pathogenesis in vivo using the zebrafish MYCN-driven neuroblastoma model.
Collapse
Affiliation(s)
- M A Morrison
- University of Utah, Salt Lake City, UT, United States
| | | | - A T Look
- Harvard Medical School, Boston, MA, United States
| | - R A Stewart
- University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
387
|
Büchel G, Schulte JH, Harrison L, Batzke K, Schüller U, Hansen W, Schramm A. Immune response modulation by Galectin-1 in a transgenic model of neuroblastoma. Oncoimmunology 2016; 5:e1131378. [PMID: 27467948 DOI: 10.1080/2162402x.2015.1131378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 01/11/2023] Open
Abstract
Galectin-1 (Gal-1) has been described to promote tumor growth by inducing angiogenesis and to contribute to tumor immune escape by promoting apoptosis of activated T cells. We had previously identified upregulation of Gal-1 in preclinical models of aggressive neuroblastoma (NB), a solid tumor of childhood. However, the clinical and biological relevance of Gal-1 in this tumor entity is unclear. Here, the effect of Gal-1 on the immune system and tumorigenesis was assessed using modulation of Gal-1 expression in immune effector cells and in a transgenic NB model, designated TH-MYCN. The fraction of CD4(+) T cells was decreased in tumor-bearing TH-MYCN mice compared to tumor-free littermates, while both CD4(+) T cells as well as CD8(+) T cells were less activated, compatible with a reduced immune response in tumor-bearing mice. Tumor incidence was not significantly altered by decreasing Gal-1/LGALS1 gene dosage in TH-MYCN mice, but TH-MYCN/Gal-1(-/-) double transgenic mice displayed impaired tumor angiogenesis, splenomegaly, and impaired T cell tumor-infiltration with no differences in T cell activation and apoptosis rate. Additionally, a lower migratory capacity of Gal-1 deficient CD4(+) T cells toward tumor cells was observed in vitro. Transplantation of TH-MYCN-derived tumor cells into syngeneic mice resulted in significantly reduced tumor growth and elevated immune cell infiltration when Gal-1 was downregulated by shRNA. We therefore conclude that T cell-derived Gal-1 mediates T cell tumor-infiltration, whereas NB-derived Gal-1 promotes tumor growth. This opposing effect of Gal-1 in NB should be considered in therapeutic targeting strategies, as currently being developed for other tumor entities.
Collapse
Affiliation(s)
- Gabriele Büchel
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Johannes H Schulte
- Pediatric Oncology and Hematology, Charité University Medicine , Berlin, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig-Maximilians-University , Munich, Germany
| | - Katharina Batzke
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University , Munich, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen , Essen, Germany
| | - Alexander Schramm
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen , Essen, Germany
| |
Collapse
|
388
|
Ruggeri P, Cappabianca L, Farina AR, Gneo L, Mackay AR. NGF sensitizes TrkA SH-SY5Y neuroblastoma cells to TRAIL-induced apoptosis. Cell Death Discov 2016; 2:16004. [PMID: 27551499 PMCID: PMC4979468 DOI: 10.1038/cddiscovery.2016.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022] Open
Abstract
We report a novel pro-apoptotic function for nerve growth factor (NGF) and its tropomyosin-related kinase A (TrkA) receptor in sensitizing TRAIL (TNF-related apoptotis-inducing ligand)-resistant SH-SY5Y neuroblastoma (NB) cells to TRAIL-induced apoptosis, resulting in the abrogation of anchorage-independent tumourigenic growth in vitro. We show that the TRAIL-resistant SH-SY5Y phenotype is cFLIP (cellular FLICE-like inhibitory protein) dependent and not due to low-level functional TRAIL receptor or caspase expression or an inhibitory equilibrium between functional and decoy TRAIL receptors or B-cell lymphoma 2 (Bcl-2) and BH3-only (Bcl-2 homology domain 3-only) family proteins. NGF sensitization of SH-SY5Y cells to TRAIL-induced apoptosis was dependent upon TrkA expression, activation and subsequent sequestration of cFLIP. This reduces cFLIP recruitment to TRAIL-activated death receptors and increases the recruitment of caspase-8, leading to TRAIL-induced, caspase-dependent, type II apoptosis via the intrinsic mitochondrial pathway. This effect was temporary, inhibited within 6 h by nuclear factor-κ binding (NF-κB)-mediated increase in myeloid cell leukaemia-1 (Mcl-1) expression, abrogated by transient cFLIP or B-cell lymphoma-extra large (Bcl-xL) overexpression and optimized by NF-κB and Mcl-1 inhibitors. This novel mechanism adds an important pro-apoptotic immunological dimension to NGF/TrkA interaction that may not only help to explain the association between TrkA expression, better prognosis and spontaneous remission in NB, but also provides a novel potential pro-apoptotic therapeutic use for NGF, TRAIL and inhibitors of NF-κB and/or Mcl-1 in favourable and unfavourable NBs that express TrkA and exhibit cFLIP-mediated TRAIL resistance.
Collapse
Affiliation(s)
- P Ruggeri
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L’Aquila 67100, Italy
| | - L Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L’Aquila 67100, Italy
| | - A R Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L’Aquila 67100, Italy
| | - L Gneo
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L’Aquila 67100, Italy
| | - A R Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L’Aquila 67100, Italy
| |
Collapse
|
389
|
Abstract
PURPOSE OF REVIEW Major advances in our understanding of the genetic basis of neuroblastoma, and the role somatic alterations play in driving tumor growth, have led to improvements in risk-stratified therapy and have provided the rationale for targeted therapies. In this review, we highlight current risk-based treatment approaches and discuss the opportunities and challenges of translating recent genomic discoveries into the clinic. RECENT FINDINGS Significant progress in the treatment of neuroblastoma has been realized using risk-based treatment strategies. Outcome has improved for all patients, including those classified as high-risk, although survival remains poor for this cohort. Integration of whole-genome DNA copy number and comprehensive molecular profiles into neuroblastoma classification systems will allow more precise prognostication and refined treatment assignment. Promising treatments that include targeted systemic radiotherapy, pathway-targeted small molecules, and therapy targeted at cell surface molecules are being evaluated in clinical trials, and recent genomic discoveries in relapsed tumor samples have led to the identification of new actionable mutations. SUMMARY The integration of refined treatment stratification based on whole-genome profiles with therapeutics that target the molecular drivers of malignant behavior in neuroblastoma has the potential to dramatically improve survival, with decreased toxicity.
Collapse
|
390
|
Kiessling MK, Curioni-Fontecedro A, Samaras P, Lang S, Scharl M, Aguzzi A, Oldrige DA, Maris JM, Rogler G. Targeting the mTOR Complex by Everolimus in NRAS Mutant Neuroblastoma. PLoS One 2016; 11:e0147682. [PMID: 26821351 PMCID: PMC4731059 DOI: 10.1371/journal.pone.0147682] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022] Open
Abstract
High-risk neuroblastoma remains lethal in about 50% of patients despite multimodal treatment. Recent attempts to identify molecular targets for specific therapies have shown that Neuroblastoma RAS (NRAS) is significantly mutated in a small number of patients. However, few inhibitors for the potential treatment for NRAS mutant neuroblastoma have been investigated so far. In this in-vitro study, we show that MEK inhibitors AZD6244, MEK162 and PD0325901 block cell growth in NRAS mutant neuroblastoma cell lines but not in NRAS wild-type cell lines. Several studies show that mutant NRAS leads to PI3K pathway activation and combined inhibitors of PI3K/mTOR effectively block cell growth. However, we observed the combination of MEK inhibitors with PI3K or AKT inhibitors did not show synergestic effects on cell growth. Thus, we tested single mTOR inhibitors Everolimus and AZD8055. Interestingly, Everolimus and AZD8055 alone were sufficient to block cell growth in NRAS mutant cell lines but not in wild-type cell lines. We found that Everolimus alone induced apoptosis in NRAS mutant neuroblastoma. Furthermore, the combination of mTOR and MEK inhibitors resulted in synergistic growth inhibition. Taken together, our results show that NRAS mutant neuroblastoma can be targeted by clinically available Everolimus alone or in combination with MEK inhibitors which could impact future clinical studies.
Collapse
Affiliation(s)
- Michael K. Kiessling
- Department of Gastroenterology and Hepatology, UniversityHospital Zurich, Zurich, Switzerland
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| | | | | | - Silvia Lang
- Department of Gastroenterology and Hepatology, UniversityHospital Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, UniversityHospital Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Derek A. Oldrige
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - John M. Maris
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, UniversityHospital Zurich, Zurich, Switzerland
| |
Collapse
|
391
|
Stafman LL, Beierle EA. Cell Proliferation in Neuroblastoma. Cancers (Basel) 2016; 8:E13. [PMID: 26771642 PMCID: PMC4728460 DOI: 10.3390/cancers8010013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.
Collapse
Affiliation(s)
- Laura L Stafman
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
392
|
Cortes CL, Veiga SR, Almacellas E, Hernández-Losa J, Ferreres JC, Kozma SC, Ambrosio S, Thomas G, Tauler A. Effect of low doses of actinomycin D on neuroblastoma cell lines. Mol Cancer 2016; 15:1. [PMID: 26728659 PMCID: PMC4698870 DOI: 10.1186/s12943-015-0489-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/21/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Neuroblastoma is a malignant embryonal tumor occurring in young children, consisting of undifferentiated neuroectodermal cells derived from the neural crest. Current therapies for high-risk neuroblastoma are insufficient, resulting in high mortality rates and high incidence of relapse. With the intent to find new therapies for neuroblastomas, we investigated the efficacy of low-doses of actinomycin D, which at low concentrations preferentially inhibit RNA polymerase I-dependent rRNA trasncription and therefore, ribosome biogenesis. METHODS Neuroblastoma cell lines with different p53 genetic background were employed to determine the response on cell viability and apoptosis of low-dose of actinomycin D. Subcutaneously-implanted SK-N-JD derived neuroblastoma tumors were used to assess the effect of low-doses of actinomycin D on tumor formation. RESULTS Low-dose actinomycin D treatment causes a reduction of cell viability in neuroblastoma cell lines and that this effect is stronger in cells that are wild-type for p53. MYCN overexpression contributes to enhance this effect, confirming the importance of this oncogene in ribosome biogenesis. In the wild-type SK-N-JD cell line, apoptosis was the major mechanism responsible for the reduction in viability and we demonstrate that treatment with the MDM2 inhibitor Nutlin-3, had a similar effect to that of actinomycin D. Apoptosis was also detected in p53(-/-)deficient LA1-55n cells treated with actinomycin D, however, only a small recovery of cell viability was found when apoptosis was inhibited by a pan-caspase inhibitor, suggesting that the treatment could activate an apoptosis-independent cell death pathway in these cells. We also determined whether actinomycin D could increase the efficacy of the histone deacetylase inhibitor, SAHA, which is in being used in neuroblastoma clinical trials. We show that actinomycin D synergizes with SAHA in neuroblastoma cell lines. Moreover, on subcutaneously-implanted neuroblastoma tumors derived from SK-N-JD cells, actinomycin D led to tumor regression, an effect enhanced in combination with SAHA. CONCLUSIONS The results presented in this work demonstrate that actinomycin D, at low concentrations, inhibits proliferation and induces cell death in vitro, as well as tumor regression in vivo. From this study, we propose that use of ribosome biogenesis inhibitors should be clinically considered as a potential therapy to treat neuroblastomas.
Collapse
Affiliation(s)
- Constanza L Cortes
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.,Laboratory of Cancer Metabolism, IDIBELL, Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Sonia R Veiga
- Laboratory of Cancer Metabolism, IDIBELL, Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Eugènia Almacellas
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.,Laboratory of Cancer Metabolism, IDIBELL, Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Javier Hernández-Losa
- Pathology Department, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Joan C Ferreres
- Pathology Department, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, Institut Català d'Oncologia, Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, 45267, USA
| | - Santiago Ambrosio
- Unit de Biochemistry, Department of Physiological Sciences II, Faculty of Medicine, Campus Universitari de Bellvitge - IDIBELL, University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, Institut Català d'Oncologia, Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, 45267, USA.,Unit de Biochemistry, Department of Physiological Sciences II, Faculty of Medicine, Campus Universitari de Bellvitge - IDIBELL, University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Albert Tauler
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain. .,Laboratory of Cancer Metabolism, IDIBELL, Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.
| |
Collapse
|
393
|
Bradford D, Reilly KM, Widemann BC, Sandler A, Kummar S. Developing therapies for rare tumors: opportunities, challenges and progress. Expert Opin Orphan Drugs 2016; 4:93-103. [PMID: 32765971 DOI: 10.1517/21678707.2016.1120663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Introduction Rare tumors account for one fourth of adult tumors; in children, rare tumors represent approximately 15-20% of childhood malignancies, thus accounting for a significant burden of disease. The rarity of these individual diseases creates many challenges, from developing a thorough understanding of the disease pathophysiology, clinical characterization, to the conduct of meaningful clinical trials and eventually the development of effective therapies. Areas covered Despite these challenges, substantial advances have been made in recent years including the development of novel clinical trial designs and endpoints including molecularly driven treatment trials that have resulted in approval of novel therapies for rare diseases. Collaboration amongst basic and clinical researchers, patient advocacy groups, industry and regulatory agencies has proven successful in select cases and holds promise for future progress in the treatment of rare tumors. In this review, we will highlight several examples of trials for rare tumors, with a focus on examples from pediatric oncology, where strong, nationwide collaborative groups have existed for many years. Expert opinion Future progress in developing therapies for rare tumors will depend not only on continued scientific advances, but also on collaboration between investigators from various disciplines, institutions, regulatory agencies and patient advocacy groups.
Collapse
Affiliation(s)
- Diana Bradford
- Department of Hematology/Oncology, Children's National Medical Center, Washington, DC 20010, USA.,National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karlyne M Reilly
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brigitte C Widemann
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abby Sandler
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shivaani Kummar
- Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
394
|
Ramaswamy V, Taylor MD. Fingering the Correct Culprit: NonRANdom Target Selection for Therapy of Neuroblastoma. Trends Cancer 2015; 1:213-215. [PMID: 28741513 DOI: 10.1016/j.trecan.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/15/2022]
Abstract
Despite major advances in the genomics of neuroblastoma, high-risk patients still have considerable morbidity and mortality even with aggressive chemotherapy. In a recent article published in Cancer Cell, Schnepp et al. used an integrated genomic approach to identify the Ras-related nuclear protein (RAN) pathway as being integral in neuroblastoma pathogenesis and provided compelling validation for a role of the LIN28B-RAN-Aurora Kinase A (AURKA) pathway in neuroblastoma. This opens the door to less-toxic and more-effective therapy for high-risk neuroblastoma in the near future.
Collapse
Affiliation(s)
- Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
395
|
Infarinato NR, Park JH, Krytska K, Ryles HT, Sano R, Szigety KM, Li Y, Zou HY, Lee NV, Smeal T, Lemmon MA, Mossé YP. The ALK/ROS1 Inhibitor PF-06463922 Overcomes Primary Resistance to Crizotinib in ALK-Driven Neuroblastoma. Cancer Discov 2015; 6:96-107. [PMID: 26554404 DOI: 10.1158/2159-8290.cd-15-1056] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Neuroblastomas harboring activating point mutations in anaplastic lymphoma kinase (ALK) are differentially sensitive to the ALK inhibitor crizotinib, with certain mutations conferring intrinsic crizotinib resistance. To overcome this clinical obstacle, our goal was to identify inhibitors with improved potency that can target intractable ALK variants such as F1174L. We find that PF-06463922 has high potency across ALK variants and inhibits ALK more effectively than crizotinib in vitro. Most importantly, PF-06463922 induces complete tumor regression in both crizotinib-resistant and crizotinib-sensitive xenograft mouse models of neuroblastoma, as well as in patient-derived xenografts harboring the crizotinib-resistant F1174L or F1245C mutations. These studies demonstrate that PF-06463922 has the potential to overcome crizotinib resistance and exerts unprecedented activity as a single targeted agent against F1174L and F1245C ALK-mutated xenograft tumors, while also inducing responses in an R1275Q xenograft model. Taken together, these results provide the rationale to move PF-06463922 into clinical trials for treatment of patients with ALK-mutated neuroblastoma. SIGNIFICANCE The next-generation ALK/ROS1 inhibitor PF-06463922 exerts unparalleled activity in ALK-driven neuroblastoma models with primary crizotinib resistance. Our biochemical and in vivo data provide the preclinical rationale for fast-tracking the development of this agent in children with relapsed/refractory ALK-mutant neuroblastoma.
Collapse
Affiliation(s)
- Nicole R Infarinato
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jin H Park
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hannah T Ryles
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Renata Sano
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Katherine M Szigety
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yimei Li
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Helen Y Zou
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California
| | - Nathan V Lee
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California
| | - Tod Smeal
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California
| | - Mark A Lemmon
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
396
|
Bosse KR, Maris JM. Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations. Cancer 2015; 122:20-33. [PMID: 26539795 DOI: 10.1002/cncr.29706] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 12/21/2022]
Abstract
Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma.
Collapse
Affiliation(s)
- Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
397
|
George RE. Seek and Ye Shall Find: Subclonal Anaplastic Lymphoma Kinase Mutations. Clin Cancer Res 2015; 21:4747-9. [PMID: 26362998 DOI: 10.1158/1078-0432.ccr-15-1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 11/16/2022]
Abstract
Bellini and colleagues demonstrate the importance of next-generation sequencing to uncover subclonal anaplastic lymphoma kinase (ALK) mutations in neuroblastoma. Although the significance of these subclonal aberrations is not yet understood, deep sequencing could identify patients whose tumors may respond to ALK inhibitors.
Collapse
Affiliation(s)
- Rani E George
- Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
398
|
Abstract
Relapsed neuroblastoma is common, frequently lethal and poorly studied and poses a major treatment challenge. Two new studies shed light on the genomic landscape of recurrent neuroblastoma and demonstrate profound differences between the disease at diagnosis and relapse.
Collapse
Affiliation(s)
- Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
399
|
Grünewald TGP, Delattre O. Cooperation between somatic mutations and germline susceptibility variants in tumorigenesis - a dangerous liaison. Mol Cell Oncol 2015; 3:e1086853. [PMID: 27314638 DOI: 10.1080/23723556.2015.1086853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
High-throughput genotyping and sequencing generate comprehensive catalogs of inherited genetic variations and acquired somatic mutations. However, their possible interactions and roles in tumorigenesis remain largely unexplored. We recently reported cooperation between the EWSR1-FLI1 (Ewing sarcoma breakpoint region 1 - Friend leukemia virus integration 1) fusion oncogene and a germline variant that regulates the EGR2 (early growth response 2) Ewing sarcoma susceptibility gene via a GGAA-microsatellite.
Collapse
Affiliation(s)
- Thomas G P Grünewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Munich, Germany; Institut Curie, PSL Research University, "Genetics and Biology of Cancers" unit, Paris, France; INSERM U830, Institut Curie Research Center, Paris, France
| | - Olivier Delattre
- Institut Curie, PSL Research University, "Genetics and Biology of Cancers" unit, Paris, France; INSERM U830, Institut Curie Research Center, Paris, France; Unité Génétique Somatique (UGS), Institut Curie Centre Hospitalier, Paris, France
| |
Collapse
|
400
|
Abstract
In this issue of Cancer Cell, studies from Mazor and colleagues and Kim and colleagues use a combination of epigenetic and genetic approaches to reveal a complex evolutionary process underlying two of the biggest challenges facing neuro-oncology, specifically glioblastoma malignant progression and treatment resistance.
Collapse
Affiliation(s)
- Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|