351
|
Roopnarine O, Leinwand LA. Functional analysis of myosin mutations that cause familial hypertrophic cardiomyopathy. Biophys J 1998; 75:3023-30. [PMID: 9826622 PMCID: PMC1299973 DOI: 10.1016/s0006-3495(98)77743-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have studied the actin-activated ATPase activities of three mutations in the motor domain of the myosin heavy chain that cause familial hypertrophic cardiomyopathy. We placed these mutations in rodent alpha-cardiac myosin to establish the relevance of using rodent systems for studying the biochemical mechanisms of the human disease. We also wished to determine whether the biochemical defects in these mutant alleles correlate with the severity of the clinical phenotype of patients with these alleles. We expressed histidine-tagged rat cardiac myosin motor domains along with rat ventricular light chain 1 in mammalian COS cells. Those myosins studied were wild-type alpha-cardiac and three mutations in the alpha-cardiac myosin heavy chain head (Arg249Gln, Arg403Gln, and Val606Met). These mutations in human beta-cardiac myosin heavy chain have predominantly moderate, severe, and mild clinical phenotypes, respectively. The crystal structure of the skeletal myosin head shows that the Arg249Gln mutation is near the ATP-binding site and the Arg403Gln and Val606Met mutations are in the actin-binding region. Expressed histidine-tagged alpha-motor domains retain physiological ATPase properties similar to those derived from cardiac tissue. All three myosin mutants show defects in the ATPase activity, with the degree of enzymatic impairment of the mutant myosins correlated with the clinical phenotype of patients with the disease caused by the corresponding mutation.
Collapse
Affiliation(s)
- O Roopnarine
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309 USA
| | | |
Collapse
|
352
|
McKenna WJ, Elliott PM. Hypertrophic cardiomyopathy. EVIDENCE-BASED CARDIOVASCULAR MEDICINE 1998; 2:89-91. [PMID: 16379843 DOI: 10.1016/s1361-2611(98)80032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
353
|
Arbustini E, Fasani R, Morbini P, Diegoli M, Grasso M, Dal Bello B, Marangoni E, Banfi P, Banchieri N, Bellini O, Comi G, Narula J, Campana C, Gavazzi A, Danesino C, Viganò M. Coexistence of mitochondrial DNA and beta myosin heavy chain mutations in hypertrophic cardiomyopathy with late congestive heart failure. HEART (BRITISH CARDIAC SOCIETY) 1998; 80:548-58. [PMID: 10065021 PMCID: PMC1728869 DOI: 10.1136/hrt.80.6.548] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the possible coexistence of mitochondrial DNA (mtDNA) mutations in patients with beta myosin heavy chain (beta MHC) linked hypertrophic cardiomyopathy (HCM) who develop congestive heart failure. DESIGN Molecular analysis of beta MHC and mtDNA gene defects in patients with HCM. SETTING Cardiovascular molecular diagnostic and heart transplantation reference centre in north Italy. PATIENTS Four patients with HCM who underwent heart transplantation for end stage heart failure, and after pedigree analysis of 60 relatives, eight additional affected patients and 27 unaffected relatives. A total of 111 unrelated healthy adult volunteers served as controls. Disease controls included an additional 27 patients with HCM and 102 with dilated cardiomyopathy. INTERVENTION Molecular analysis of DNA from myocardial and skeletal muscle tissue and from peripheral blood specimens. MAIN OUTCOME MEASURES Screening for mutations in beta MHC (exons 3-23) and mtDNA tRNA (n = 22) genes with denaturing gradient gel electrophoresis or single strand conformational polymorphism followed by automated DNA sequencing. RESULTS One proband (kindred A) (plus seven affected relatives) had arginine 249 glutamine (Arg249Gln) beta MHC and heteroplasmic mtDNA tRNAIle A4300G mutations. Another unrelated patient (kindred B) with sporadic HCM had identical mutations. The remaining two patients (kindred C), a mother and son, had a novel beta MHC mutation (lysine 450 glutamic acid) (Lys450Glu) and a heteroplasmic missense (T9957C, phenylalanine (Phe)-->leucine (Leu)) mtDNA mutation in subunit III of the cytochrome C oxidase gene. The amount of mutant mtDNA was higher in the myocardium than in skeletal muscle or peripheral blood and in affected patients than in asymptomatic relatives. Mutations were absent in the controls. Pathological and biochemical characteristics of patients with mutations Arg249Gln plus A4300G (kindreds A and B) were identical, but different from those of the two patients with Lys450Glu plus T9957C(Phe-->Leu) mutations (kindred C). Cytochrome C oxidase activity and histoenzymatic staining were severely decreased in the two patients in kindreds A and B, but were unaffected in the two in kindred C. CONCLUSIONS beta MHC gene and mtDNA mutations may coexist in patients with HCM and end stage congestive heart failure. Although beta MHC gene mutations seem to be the true determinants of HCM, both mtDNA mutations in these patients have known prerequisites for pathogenicity. Coexistence of other genetic abnormalities in beta MHC linked HCM, such as mtDNA mutations, may contribute to variable phenotypic expression and explain the heterogeneous behaviour of HCM.
Collapse
Affiliation(s)
- E Arbustini
- Department of Cardiovascular Pathology and Molecular Diagnostics, University School of Medicine of Pavia-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico, San Matteo, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Sweeney HL, Feng HS, Yang Z, Watkins H. Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc Natl Acad Sci U S A 1998; 95:14406-10. [PMID: 9826713 PMCID: PMC24386 DOI: 10.1073/pnas.95.24.14406] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1998] [Indexed: 11/18/2022] Open
Abstract
Mutations in a number of cardiac sarcomeric protein genes cause hypertrophic cardiomyopathy (HCM). Previous findings indicate that HCM-causing mutations associated with a truncated cardiac troponin T (TnT) and missense mutations in the beta-myosin heavy chain share abnormalities in common, acting as dominant negative alleles that impair contractile performance. In contrast, Lin et al. [Lin, D., Bobkova, A., Homsher, E. & Tobacman, L. S. (1996) J. Clin. Invest. 97, 2842-2848] characterized a TnT point mutation (Ile79Asn) and concluded that it might lead to hypercontractility and, thus, potentially a different mechanism for HCM pathogenesis. In this study, three HCM-causing cardiac TnT mutations (Ile79Asn, Arg92Gln, and DeltaGlu160) were studied in a myotube expression system. Functional studies of wild-type and mutant transfected myotubes revealed that all three mutants decreased the calcium sensitivity of force production and that the two missense mutations (Ile79Asn and Arg92Gln) increased the unloaded shortening velocity nearly 2-fold. The data demonstrate that TnT can alter the rate of myosin cross-bridge detachment, and thus the troponin complex plays a greater role in modulating muscle contractile performance than was recognized previously. Furthermore, these data suggest that these TnT mutations may cause disease via an increased energetic load on the heart. This would represent a second paradigm for HCM pathogenesis.
Collapse
Affiliation(s)
- H L Sweeney
- Department of Physiology, A700 Richards Building, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA.
| | | | | | | |
Collapse
|
355
|
Jääskeläinen P, Soranta M, Miettinen R, Saarinen L, Pihlajamäki J, Silvennoinen K, Tikanoja T, Laakso M, Kuusisto J. The cardiac beta-myosin heavy chain gene is not the predominant gene for hypertrophic cardiomyopathy in the Finnish population. J Am Coll Cardiol 1998; 32:1709-16. [PMID: 9822100 DOI: 10.1016/s0735-1097(98)00448-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The aim of the study was to screen 36 unrelated patients with hypertrophic cardiomyopathy (HCM; 16 familial and 20 sporadic cases) from a genetically homogeneous area in eastern Finland for variants in the cardiac beta-myosin heavy chain (beta-MHC) and alpha-tropomyosin (alpha-TM) genes. BACKGROUND Mutations in the beta-MHC and alpha-TM genes have been reported to be responsible for 30% to 40% and less than 5% of familial HCM cases, respectively. However, most genetic studies have included patients from tertiary care centers and are subject to referral bias. METHODS Exons 3-26 and 40 of the beta-MHC gene and the nine exons of the alpha-TM gene were screened with the PCR-SSCP (polymerase chain reaction-single strand conformation polymorphism) method. Linkage analyses between familial HCM locus and two intragenic polymorphic markers (MYO I and MYO II) of the beta-MHC gene were performed in 16 familial HCM kindreds. RESULTS A previously reported Arg719Trp (arginine converted to tryptophan in codon 719) mutation of the beta-MHC gene was found in one proband and two relatives. In addition, a novel Asn696Ser (asparagine converted to serine in codon 696) substitution was found in one HCM patient. No linkage between familial HCM and the beta-MHC gene was observed in 16 familial kindreds. A previously reported Aspl75Asn (aspartic acid converted to asparagine in codon 175) mutation of the alpha-TM gene was found in four probands and 16 relatives. Mutations in the beta-MHC and alpha-TM genes accounted for 6% and 25% familial HCM cases and 3% and 11% of all cases, respectively. CONCLUSIONS Our results indicate that the beta-MHC gene is not the predominant gene for HCM in the Finnish population, whereas HCM caused by the Aspl75Asn mutation of the a-TM gene is more common than previously reported.
Collapse
|
356
|
Osterop AP, Kofflard MJ, Sandkuijl LA, ten Cate FJ, Krams R, Schalekamp MA, Danser AH. AT1 receptor A/C1166 polymorphism contributes to cardiac hypertrophy in subjects with hypertrophic cardiomyopathy. Hypertension 1998; 32:825-30. [PMID: 9822439 DOI: 10.1161/01.hyp.32.5.825] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of left ventricular hypertrophy (LVH) in subjects with hypertrophic cardiomyopathy (HCM) is variable, suggesting a role for modifying factors such as angiotensin II. We investigated whether the angiotensin II type 1 receptor (AT1-R) A/C1166 polymorphism, the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism, and/or plasma renin influence LVH in HCM. Left ventricular mass index (LVMI) and interventricular septal thickness were determined by 2-dimensional echocardiography in 104 genetically independent subjects with HCM. Extent of hypertrophy was quantified by a point score (Wigle score). Plasma prorenin, renin, and ACE were measured by immunoradiometric or fluorometric assays, and ACE and AT1-R genotyping were performed by polymerase chain reactions. The ACE D allele did not affect any of the measured parameters except plasma ACE (P<0.04). LVMI was higher (P<0.05) in patients carrying the AT1-R C allele (190+/-8.3 g/m2) than in AA homozygotes (168+/-7.2 g/m2), and similar patterns were observed for interventricular septal thickness (23.0+/-0.7 versus 21. 6+/-0.7 mm) and Wigle score (7.0+/-0.3 versus 6.3+/-0.3). Plasma renin was higher (P=0.05) in carriers of the C allele than in AA homozygotes. Multivariate regression analysis, however, revealed no independent role for renin in the prediction of LVMI. Plasma prorenin and ACE were not affected by the AT1-R A/C1166 polymorphism, nor did the ACE and AT1-R polymorphisms interact with regard to any of the measured parameters. We conclude that the AT1-R C1166 allele modulates the phenotypic expression of hypertrophy in HCM, independently of plasma renin and the ACE I/D polymorphism.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Analysis of Variance
- Biomarkers/blood
- Cardiomyopathy, Hypertrophic/blood
- Cardiomyopathy, Hypertrophic/genetics
- Enzyme Precursors/blood
- Female
- Genotype
- Humans
- Hypertrophy, Left Ventricular/blood
- Hypertrophy, Left Ventricular/genetics
- Male
- Middle Aged
- Peptidyl-Dipeptidase A/genetics
- Polymorphism, Genetic
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Regression Analysis
- Renin/blood
Collapse
Affiliation(s)
- A P Osterop
- Departments of Internal Medicine I, Cardiology, Clinical Genetics, and Pharmacology, Cardiovasculair Onderzoeksinstituut Erasmus Universiteit Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
357
|
Oberst L, Zhao G, Park JT, Brugada R, Michael LH, Entman ML, Roberts R, Marian AJ. Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. J Clin Invest 1998; 102:1498-505. [PMID: 9788962 PMCID: PMC508999 DOI: 10.1172/jci4088] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease of sarcomeric proteins. The mechanism by which mutant sarcomeric proteins cause HCM is unknown. The leading hypothesis proposes that mutant sarcomeric proteins exert a dominant-negative effect on myocyte structure and function. To test this, we produced transgenic mice expressing low levels of normal or mutant human cardiac troponin T (cTnT). We constructed normal (cTnT-Arg92) and mutant (cTnT-Gln92) transgenes, driven by a murine cTnT promoter, and produced three normal and five mutant transgenic lines, which were identified by PCR and Southern blotting. Expression levels of the transgene proteins, detected using a specific antibody, ranged from 1 to 10% of the total cTnT pool. M-mode and Doppler echocardiography showed normal left ventricular dimensions and systolic function, but diastolic dysfunction in the mutant mice evidenced by a 50% reduction in the E/A ratio of mitral inflow velocities. Histological examination showed cardiac myocyte disarray in the mutant mice, which amounted to 1-15% of the total myocardium, and a twofold increase in the myocardial interstitial collagen content. Thus, the mutant cTnT-Gln92, responsible for human HCM, exerted a dominant-negative effect on cardiac structure and function leading to disarray, increased collagen synthesis, and diastolic dysfunction in transgenic mice.
Collapse
Affiliation(s)
- L Oberst
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
358
|
Affiliation(s)
- W J McKenna
- Department of Cardiological Sciences, St George's Hospital Medical School, London, UK
| | | | | |
Collapse
|
359
|
Weissbach L, Bernards A, Herion DW. Binding of myosin essential light chain to the cytoskeleton-associated protein IQGAP1. Biochem Biophys Res Commun 1998; 251:269-76. [PMID: 9790945 DOI: 10.1006/bbrc.1998.9371] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 190 kD human IQGAP1 protein, by virtue of its N-terminal calponin-homology domain, is found associated with the actin cytoskeleton, and is capable of cross-linking actin filaments. IQGAP1 complexes with several proteins, including the Rho family GTPases Cdc42 and Rac, as well as calmodulin. It was previously noted that one of the IQ motifs of IQGAP1 displays significant similarity to a myosin heavy chain IQ motif responsible for binding the calmodulin-related myosin essential light chain (ELC). Employing the yeast two-hybrid methodology as well as in vitro binding experiments, we present evidence that a truncated version of IQGAP1 can interact with the myosin ELC. This interaction may have significant consequences for various cellular processes that involve actomyosin contractility, and suggests that the biological targets of the ELC may not be restricted to the myosin heavy chain.
Collapse
Affiliation(s)
- L Weissbach
- Orthopaedic Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.
| | | | | |
Collapse
|
360
|
Maron BJ, Moller JH, Seidman CE, Vincent GM, Dietz HC, Moss AJ, Towbin JA, Sondheimer HM, Pyeritz RE, McGee G, Epstein AE. Impact of Laboratory Molecular Diagnosis on Contemporary Diagnostic Criteria for Genetically Transmitted Cardiovascular Diseases: Hypertrophic Cardiomyopathy, Long-QT Syndrome, and Marfan Syndrome. Circulation 1998. [DOI: 10.1161/01.cir.98.14.1460] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
361
|
Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J. A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J Clin Invest 1998; 102:1292-300. [PMID: 9769321 PMCID: PMC508976 DOI: 10.1172/jci3880] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Familial hypertrophic cardiomyopathy can be caused by mutations in genes encoding sarcomeric proteins, including the cardiac isoform of myosin binding protein C (MyBP-C), and multiple mutations which cause truncated forms of the protein to be made are linked to the disease. We have created transgenic mice in which varying amounts of a mutated MyBP-C, lacking the myosin and titin binding domains, are expressed in the heart. The transgenically encoded, truncated protein is stable but is not incorporated efficiently into the sarcomere. The transgenic muscle fibers showed a leftward shift in the pCa2+-force curve and, importantly, their power output was reduced. Additionally, expression of the mutant protein leads to decreased levels of endogenous MyBP-C, resulting in a striking pattern of sarcomere disorganization and dysgenesis.
Collapse
Affiliation(s)
- Q Yang
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
362
|
Bonne G, Carrier L, Richard P, Hainque B, Schwartz K. Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res 1998; 83:580-93. [PMID: 9742053 DOI: 10.1161/01.res.83.6.580] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertrophic cardiomyopathy is characterized by left and/or right ventricular hypertrophy, which is usually asymmetric and involves the interventricular septum. Typical morphological changes include myocyte hypertrophy and disarray surrounding the areas of increased loose connective tissue. Arrhythmias and premature sudden deaths are common. Hypertrophic cardiomyopathy is familial in the majority of cases and is transmitted as an autosomal-dominant trait. The results of molecular genetics studies have shown that familial hypertrophic cardiomyopathy is a disease of the sarcomere involving mutations in 7 different genes encoding proteins of the myofibrillar apparatus: ss-myosin heavy chain, ventricular myosin essential light chain, ventricular myosin regulatory light chain, cardiac troponin T, cardiac troponin I, alpha-tropomyosin, and cardiac myosin binding protein C. In addition to this locus heterogeneity, there is a wide allelic heterogeneity, since numerous mutations have been found in all these genes. The recent development of animal models and of in vitro analyses have allowed a better understanding of the pathophysiological mechanisms associated with familial hypertrophic cardiomyopathy. One can thus tentatively draw the following cascade of events: The mutation leads to a poison polypeptide that would be incorporated into the sarcomere. This would alter the sarcomeric function that would result (1) in an altered cardiac function and then (2) in the alteration of the sarcomeric and myocyte structure. Some mutations induce functional impairment and support the pathogenesis hypothesis of a "hypocontractile" state followed by compensatory hypertrophy. Other mutations induce cardiac hyperfunction and determine a "hypercontractile" state that would directly induce cardiac hypertrophy. The development of other animal models and of other mechanistic studies linking the genetic mutation to functional defects are now key issues in understanding how alterations in the basic contractile unit of the cardiomyocyte alter the phenotype and the function of the heart.
Collapse
Affiliation(s)
- G Bonne
- From the INSERM Unit 153, the Service de Biochimie B, and the IFR de Physiologie et Génétique Cardiovasculaire, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
363
|
Levine RJ, Yang Z, Epstein ND, Fananapazir L, Stull JT, Sweeney HL. Structural and functional responses of mammalian thick filaments to alterations in myosin regulatory light chains. J Struct Biol 1998; 122:149-61. [PMID: 9724616 DOI: 10.1006/jsbi.1998.3980] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ordered array of myosin heads, characteristic of relaxed striated muscle thick filaments, is reversibly disordered by phosphorylating myosin regulatory light chains, decreasing temperature and/or ionic strength, increasing pH, and depleting nucleotide. In the case of light chain phosphorylation, disorder, most likely due to a change in charge affecting the light chain amino-terminus, reflects increased myosin head mobility, thus increased accessibility to actin, and results in increased calcium sensitivity of tension development. Thus, interactions between the unphosphorylated regulatory light chain and the filament backbone may help maintain the overall order of the relaxed filament. To define this relationship, we have examined the structural and functional effects of such manipulations as exchanging wild-type smooth and skeletal myosin light chains into permeabilized rabbit psoas fibers and removing regulatory light chains (without exchange) from such fibers. We have also compared the structural and functional parameters of biopsied fibers from patients with severe familial hypertrophic cardiomyopathy due to a single amino acid substitution in the regulatory light chains to those exhibited by fibers from normal relatives. Our results support a role for regulatory light chains in reversible ordering of myosin heads and suggest that economy of energy utilization may provide for evolutionary preservation of this function in vertebrate striated muscle.
Collapse
Affiliation(s)
- R J Levine
- Department of Neurobiology and Anatomy, MCPdiamondHahnemann School of Medicine, Allegheny University of the Health Sciences, 3200 Henry Avenue, Philadelphia, Pennsylvania, 19129, USA
| | | | | | | | | | | |
Collapse
|
364
|
Anan R, Shono H, Kisanuki A, Arima S, Nakao S, Tanaka H. Patients with familial hypertrophic cardiomyopathy caused by a Phe110Ile missense mutation in the cardiac troponin T gene have variable cardiac morphologies and a favorable prognosis. Circulation 1998; 98:391-397. [PMID: 9714088 DOI: 10.1161/01.cir.98.5.391] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/1998] [Accepted: 04/01/1998] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mutations that cause familial hypertrophic cardiomyopathy have been identified in several genes that encode contractile proteins. Patients with mutations in the cardiac troponin T (cTnT) gene have particularly poor prognosis but only mild hypertrophy. To date, no benign mutation in the cTnT gene has been reported. The clinical characteristics and prognosis of patients with the Phe110Ile mutation in the cTnT gene is unclear because few affected individuals have been identified. METHODS AND RESULTS Forty-six probands with familial hypertrophic cardiomyopathy were screened for mutations in the cTnT gene. The Phe110Ile missense mutation was found in 6 probands. Individuals in the 6 families were analyzed genetically and clinically. Haplotype analysis was performed with markers encompassing the cTnT gene. Left ventricular hypertrophy was classified as type I, II, III, or IV according to the criteria of Maron et al. The Phe110Ile mutation in the cTnT gene was identified in 16 individuals. Two of the 6 families shared the same flanking haplotype, and 4 were different from each other. Affected individuals exhibited different cardiac morphologies: 4 had type II, 6 had type III, and 3 had type IV hypertrophy with apical involvement. Three individuals with the disease-causing mutation did not fulfill clinical criteria for the disease. The product-limit survival curve analysis demonstrated a favorable prognosis. CONCLUSIONS Multiple independent mutations of residue 340 in the cTnT gene have been described, suggesting that this may be a "hot spot" for such events. The Phe110Ile substitution causes hypertrophic cardiomyopathy with variable cardiac morphologies and a favorable prognosis.
Collapse
Affiliation(s)
- R Anan
- First Department of Medicine, Kagoshima University, Sakuragaoka, Japan.
| | | | | | | | | | | |
Collapse
|
365
|
Morimoto S, Yanaga F, Minakami R, Ohtsuki I. Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C200-7. [PMID: 9688851 DOI: 10.1152/ajpcell.1998.275.1.c200] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several mutations in human cardiac troponin T (TnT) gene have been reported to cause hypertrophic cardiomyopathy (HCM). To explore the effects of the mutations on cardiac muscle contractile function under physiological conditions, human cardiac TnT mutants, Ile79Asn and Arg92Gln, as well as wild type, were expressed in Escherichia coli and exchanged into permeabilized rabbit cardiac muscle fibers, and Ca2+-activated force was determined. The free Ca2+ concentrations required for tension generation were found to be significantly lower in the mutant TnT-exchanged fibers than in the wild-type TnT-exchanged fibers, whereas no significant differences were found in tension-generating capability under maximal activating conditions and in cooperativity. These results suggest that a heightened Ca2+ sensitivity of cardiac muscle contraction is one of the factors to cause HCM associated with these TnT mutations.
Collapse
Affiliation(s)
- S Morimoto
- Department of Clinical Pharmacology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812, Japan
| | | | | | | |
Collapse
|
366
|
Charron P, Dubourg O, Desnos M, Bennaceur M, Carrier L, Camproux AC, Isnard R, Hagege A, Langlard JM, Bonne G, Richard P, Hainque B, Bouhour JB, Schwartz K, Komajda M. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene. Circulation 1998; 97:2230-6. [PMID: 9631872 DOI: 10.1161/01.cir.97.22.2230] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Little information is available on phenotype-genotype correlations in familial hypertrophic cardiomyopathy that are related to the cardiac myosin binding protein C (MYBPC3) gene. The aim of this study was to perform this type of analysis. METHODS AND RESULTS We studied 76 genetically affected subjects from nine families with seven recently identified mutations (SASint20, SDSint7, SDSint23, branch point int23, Glu542Gln, a deletion in exon 25, and a duplication/deletion in exon 33) in the MYBPC3 gene. Detailed clinical, ECG, and echocardiographic parameters were analyzed. An intergene analysis was performed by comparing the MYBPC3 group to seven mutations in the beta-myosin heavy-chain gene (beta-MHC) group (n=52). There was no significant phenotypic difference among the different mutations in the MYBPC3 gene. However, in the MYBPC3 group compared with the beta-MHC group, (1) prognosis was significantly better (P<0.0001), and no deaths occurred before the age of 40 years; (2) the age at onset of symptoms was delayed (41+/-19 versus 35+/-17 years, P<0.002); and (3) before 30 years of age, the phenotype was particularly mild because penetrance was low (41% versus 62%), maximal wall thicknesses lower (12+/-4 versus 16+/-7 mm, P<0.03), and abnormal T waves less frequent (9% versus 45%, P<0.02). CONCLUSIONS These results are consistent with specific clinical features related to the MYBPC3 gene: onset of the disease appears delayed and the prognosis is better than that associated with the beta-MHC gene. These findings could be particularly important for the purpose of clinical management and genetic counseling in familial hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- P Charron
- Service de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
|
368
|
Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman CE. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 1998; 338:1248-57. [PMID: 9562578 DOI: 10.1056/nejm199804303381802] [Citation(s) in RCA: 495] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mutations in the gene for cardiac myosin-binding protein C account for approximately 15 percent of cases of familial hypertrophic cardiomyopathy. The spectrum of disease-causing mutations and the associated clinical features of these gene defects are unknown. METHODS DNA sequences encoding cardiac myosin-binding protein C were determined in unrelated patients with familial hypertrophic cardiomyopathy. Mutations were found in 16 probands, who had 574 family members at risk of inheriting these defects. The genotypes of these family members were determined, and the clinical status of 212 family members with mutations in the gene for cardiac myosin-binding protein C was assessed. RESULTS Twelve novel mutations were identified in probands from 16 families. Four were missense mutations; eight defects (insertions, deletions, and splice mutations) were predicted to truncate cardiac myosin-binding protein C. The clinical expression of either missense or truncation mutations was similar to that observed for other genetic causes of hypertrophic cardiomyopathy, but the age at onset of the disease differed markedly. Only 58 percent of adults under the age of 50 years who had a mutation in the cardiac myosin-binding protein C gene (68 of 117 patients) had cardiac hypertrophy; disease penetrance remained incomplete through the age of 60 years. Survival was generally better than that observed among patients with hypertrophic cardiomyopathy caused by other mutations in the genes for sarcomere proteins. Most deaths due to cardiac causes in these families occurred suddenly. CONCLUSIONS The clinical expression of mutations in the gene for cardiac myosin-binding protein C is often delayed until middle age or old age. Delayed expression of cardiac hypertrophy and a favorable clinical course may hinder recognition of the heritable nature of mutations in the cardiac myosin-binding protein C gene. Clinical screening in adult life may be warranted for members of families characterized by hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- H Niimura
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Vosberg HP. [Genetic causes of hypertrophic cardiomyopathy]. MEDIZINISCHE KLINIK (MUNICH, GERMANY : 1983) 1998; 93:252-9. [PMID: 9594535 DOI: 10.1007/bf03044801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypertrophic cardiomyopathy is a dominantly inherited disease of the heart. Heterogeneous sets of mutations responsible for this condition have been identified in seven genes coding for proteins involved in the contraction mechanism or in the control of contraction of the myocardium. Known mutations imply structural and functional changes in the following proteins: in ventricle specific beta-myosin heavy chain, in essential and regulatory myosin light chains, in troponin subunits T and I, in alpha-tropomyosin and in myosin binding protein-C. The gene of one additional genomic HCM-locus is not known. Since two thirds or more of all cases can be traced to one of the respective genes, HCM has been classified as a disease of the cardiac sarcomere. Heterogeneity does not only exist between genes, but also within genes. At least 84 different mutations have been identified to date. More than half of them have been detected in the beta-myosin heavy chain gene. Thus, mutations in this gene account for most of the cases of HCM. The extent of data about causes is in contrast to the lack of definite knowledge about pathogenic mechanisms. Since the disorder is in many cases mild with symptoms developing frequently not before the end of the second decade, myocardial dysfunctions can presumably not directly be traced to altered contractility, but rather to effects which accumulate with a long asymptomatic lag period and which gradually lead to hypertrophy, conduction problems and ultimately to cardiac failure. The disease may be considered as an indirect and secondary response to a mildly distorted contraction process. The rapid progress in the analysis of causes suggests that the study of genes will assume a role in the context of the clinical management of HCM, in particular regarding diagnosis, prognosis, counselling of patients and families and--possibly--therapy.
Collapse
Affiliation(s)
- H P Vosberg
- Max-Planck-Institut für physiologische und klinische Forschung, Abteilung Experimentelle Kardiologie, Bad Nauheim.
| |
Collapse
|
370
|
Abstract
We have long known that there are diseases which are inherited from the parents, but it has not been until this last decade, with the introduction of the techniques of molecular biology, that we have been able to study them. These techniques have enable us to localize and detect the gene that causes a disease in the members of a family. The identification of a disease-causing gene does not lead only to the diagnosis and possible treatment of a very select patient population (the one with the familial disease), but also to a better understanding of the molecular basis and pathogenesis of the non-familial forms of the disease. Cardiology, despite having received these techniques more slowly, is now completely. Involved in the study of the molecular basis of cardiac diseases. The first gene to be mapped was that of hypertrophic cardiomyopathy in 1989. Since then, advances have been achieved at all levels in familial cardiac diseases. Hypertension, atherosclerosis, congenital heart diseases, and arrhythmias have all benefitted from the new techniques. Spectacular progress has been achieved in understanding familial heart rhythm disturbances, like long QT syndrome, both as congenital and acquired diseases. In the last five years 4 loci and 3 genes have been identified. The first studies of genetic based therapy have shown that in the near future patients with receive medication depending on the affected gene. Other familial arrhythmias are presently under study. Loci have been detected in some, such as bundle branch block and familial atrial fibrillation. At the speed that the techniques are evolving, and with the impressive advances of the Human Genome Project, we can expect to find the rest of the genes causing familial diseases in the next few years. These results are encouraging and clearly indicate the need for genetic diagnosis in all patients with these diseases. The diagnostic and therapeutic implications of all these discoveries could be of paramount importance.
Collapse
Affiliation(s)
- R Brugada
- Servicio de Cardiología, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
371
|
Hoshijima M, Sah VP, Wang Y, Chien KR, Brown JH. The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. Involvement of Rho kinase. J Biol Chem 1998; 273:7725-30. [PMID: 9516480 DOI: 10.1074/jbc.273.13.7725] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The assembly of contractile proteins into organized sarcomeric units is one of the most distinctive features of cardiac myocyte hypertrophy. In a well characterized in vitro model system using cultured neonatal rat ventricular myocytes, a subset of G protein-coupled receptor agonists has been shown to induce actin-myosin filament organization. Pretreatment of myocytes with C3 exoenzyme ADP-ribosylated Rho and inhibited the characteristic alpha1-adrenergic receptor agonist-induced myofibrillar organization, suggesting involvement of the Rho GTPase in cardiac myofibrillogenesis. We used adenoviral mediated gene transfer to examine the effects of activated Rho and inhibitory mutants of one of its effectors, Rho kinase, in myocytes. Rho immunoreactivity was increased in the particulate fraction of myocytes infected with a recombinant adenovirus expressing constitutively activated Rho. Rho-infected cells demonstrated a striking increase in the assembly and organization of sarcomeric units and in the expression of the atrial natriuretic factor protein. These Rho-induced responses were markedly inhibited by co-infection with adenoviruses expressing putative dominant negative forms of Rho kinase. A parallel pathway involving Ras-induced myofibrillar organization and atrial natriuretic factor expression was only minimally affected. alpha1-Adrenergic receptor agonist-induced myofibrillogenesis was inhibited by some but not all of the Rho kinase mutants. Our data demonstrate that activated Rho has profound effects on myofibrillar organization in cardiac myocytes and suggest that Rho kinase mediates Rho-induced hypertrophic responses.
Collapse
Affiliation(s)
- M Hoshijima
- Department of Medicine and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
372
|
Yu B, French JA, Carrier L, Jeremy RW, McTaggart DR, Nicholson MR, Hambly B, Semsarian C, Richmond DR, Schwartz K, Trent RJ. Molecular pathology of familial hypertrophic cardiomyopathy caused by mutations in the cardiac myosin binding protein C gene. J Med Genet 1998; 35:205-10. [PMID: 9541104 PMCID: PMC1051243 DOI: 10.1136/jmg.35.3.205] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA studies in familial hypertrophic cardiomyopathy (FHC) have shown that it is caused by mutations in genes coding for proteins which make up the muscle sarcomere. The majority of mutations in the FHC genes result from missense changes, although one of the most recent genes to be identified (cardiac myosin binding protein C gene, MYBPC3) has predominantly DNA mutations which produce truncated proteins. Both dominant negative and haploinsufficiency models have been proposed to explain the molecular changes in FHC. This study describes two Australian families with FHC caused by different mutations in MYBPC3. The first produces a de novo Asn755Lys change in a cardiac specific domain of MYBPC3. The second is a Gln969X nonsense mutation which results in a truncated protein. Neither mutation has previously been found in the MYBPC3 gene. The consequences of DNA changes on the function of cardiac myosin binding protein C are discussed in relation to current molecular models for this disorder.
Collapse
Affiliation(s)
- B Yu
- Department of Molecular and Clinical Genetics, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Moolman-Smook JC, Mayosi B, Brink P, Corfield VA. Identification of a new missense mutation in MyBP-C associated with hypertrophic cardiomyopathy. J Med Genet 1998; 35:253-4. [PMID: 9541115 PMCID: PMC1051254 DOI: 10.1136/jmg.35.3.253] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertrophic cardiomyopathy is a primary cardiac disease, characterised by idiopathic myocardial hypertrophy, and is caused by defects in sarcomeric protein encoding genes. One of these genes is cardiac myosin binding protein C (MyBP-C), in which a number of splice site and duplication mutations causing HCM have been described. During mutation screening of a South African HCM population by PCR-SSCP, a missense mutation, Arg654His, was detected in one proband. Although the mutation was present in his three adult children, only the proband himself was markedly affected. This is the first report of a disease associated missense mutation in MyBP-C which does not affect the myosin or titin binding domains.
Collapse
Affiliation(s)
- J C Moolman-Smook
- University of Stellenbosch and South African Medical Research Council Centre for Molecular and Cellular Biology, Department of Medical Physiology and Biochemistry, Tygerberg
| | | | | | | |
Collapse
|
374
|
Yu B, French JA, Jeremy RW, French P, McTaggart DR, Nicholson MR, Semsarian C, Richmond DR, Trent RJ. Counselling issues in familial hypertrophic cardiomyopathy. J Med Genet 1998; 35:183-8. [PMID: 9541100 PMCID: PMC1051239 DOI: 10.1136/jmg.35.3.183] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To illustrate the variable clinical presentations and rates of progression in familial hypertrophic cardiomyopathy (FHC), phenotypes and genotypes were compared in three FHC families with different genetic defects. In the first family, the FHC abnormality was a protein truncating mutation (Gln969X) in the cardiac myosin binding protein C gene. The second family had a missense change (Asn755Lys) in the same gene. A missense mutation (Arg453Cys) in the cardiac beta myosin heavy chain gene was present in the third family. Penetrance associated with the Gln969X defect was 27% in the age range 0 to 40 years. This was considerably less than the 93% penetrance (0 to 40 years) observed in the two families with missense mutations. The variable penetrance in FHC, as well as the unpredictability of sudden cardiac death, complicates clinical diagnosis and management, including genetic counselling. Although a genetic disease with a predominantly adult onset, there are counselling issues in FHC which set it aside from other adult onset disorders.
Collapse
Affiliation(s)
- B Yu
- Department of Molecular and Clinical Genetics, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Abstract
Cardiomyopathies are serious heart muscle disorders in children and adults, which result in morbidity and premature death. These disorders include hypertrophic cardiomyopathy, dilated cardiomyopathy and restrictive cardiomyopathy. Recently, mutations in seven genes, all encoding sarcomeric proteins, have been identified as causes of familial hypertrophic cardiomyopathy. The genes include those encoding the beta-myosin heavy chain, alpha-tropomyosin, cardiac troponin T, myosin binding protein-C, myosin essential light chain, myosin regulatory light chain, and troponin I. Advances in the understanding of dilated cardiomyopathy have been made recently as well and it appears as if cytoskeletal proteins play a central role. Dystrophin has been identified as the gene responsible for X-linked dilated cardiomyopathy and this protein, which is also responsible for Duchenne and Becker muscular dystrophy, plays an important role in myocyte and cardiomyocyte function. Mutations in other cytoskeletal proteins such as metavinculin, alpha-dystroglycan, alpha- and gamma-sarcoglycan, and muscle LIM protein have also been found to result in dilated cardiomyopathy, suggesting that cytoskeletal proteins play a central role in cardiac function.
Collapse
Affiliation(s)
- J A Towbin
- Department of Pediatrics (Cardiology), Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA.
| |
Collapse
|
376
|
Schaub MC, Hefti MA, Zuellig RA, Morano I. Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms. Cardiovasc Res 1998; 37:381-404. [PMID: 9614495 DOI: 10.1016/s0008-6363(97)00258-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiac hypertrophy is an adaptive response that normalizes wall stress and compensates for increased workload. It is accompanied by distinct qualitative and quantitative changes in the expression of protein isoforms concerning contractility, intracellular Ca(2+)-homeostasis and metabolism. Changes in the myosin subunit isoform expression improves contractility by an increase in force generation at a given Ca(2+)-concentration (increased Ca(2+)-sensitivity) and by improving the economy of the chemo-mechanical transduction process per amount of utilised ATP (increased duty ratio). In the human atrium this is achieved by partial replacement of the endogenous fast myosin by the ventricular slow-type heavy and light chains. In the hypertrophic human ventricle the slow-type beta-myosin heavy chains remain unchanged, but the ectopic expression of the atrial myosin essential light chain (ALC1) partially replaces the endogenous ventricular isoform (VLC1). The ventricular contractile apparatus with myosin containing ALC1 is characterised by faster cross-bridge kinetics, a higher Ca(2+)-sensitivity of force generation and an increased duty ratio. The mechanism for cross-bridge modulation relies on the extended Ala-Pro-rich N-terminus of the essential light chains of which the first eleven residues interact with the C-terminus of actin. A change in charge in this region between ALC1 and VLC1 explains their functional difference. The intracellular Ca(2+)-handling may be impaired in heart failure, resulting in either higher or lower cytosolic Ca(2+)-levels. Thus the state of the cardiomyocyte determines whether this hypertrophic adaptation remains beneficial or becomes detrimental during failure. Also discussed are the effects on contractility of long-term changes in isoform expression of other sarcomeric proteins. Positive and negative modulation of contractility by short-term phosphorylation reactions at multiple sites in the myosin regulatory light chain, troponin-I, troponin-T, alpha-tropomyosin and myosin binding protein-C are considered in detail.
Collapse
Affiliation(s)
- M C Schaub
- Institute of Pharmacology, University of Zurich, Switzerland.
| | | | | | | |
Collapse
|
377
|
Chen J, Kubalak SW, Minamisawa S, Price RL, Becker KD, Hickey R, Ross J, Chien KR. Selective requirement of myosin light chain 2v in embryonic heart function. J Biol Chem 1998; 273:1252-6. [PMID: 9422794 DOI: 10.1074/jbc.273.2.1252] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two major myosin light chain 2 isoforms are coexpressed in the early stages of murine cardiogenesis, a cardiac ventricular isoform and a cardiac atrial isoform, each of which is tightly regulated in a muscle cell-type-specific manner during embryogenesis (Chien, K. R., Zhu, H., Knowlton, K. U., Miller-Hance, W., van Bilsen, M., O'Brien, T. X., and Evans, S. M. (1993) Annu. Rev. Physiol. 55, 77-95). We have disrupted myosin light chain 2v gene in mice and monitored in vivo cardiac function in living myosin light chain 2v -/- embryos. The mutant embryos die at approximately embryonic day 12.5. In mutant ventricles, the myosin light chain 2a protein level is increased and reaches levels comparable to the myosin light chain 2v in the ventricles of wild type littermates and is appropriately incorporated into the thick filaments of mutant embryonic hearts. However, despite the substitution of myosin light chain 2a, ultrastructural analysis revealed defects in sarcomeric assembly and an embryonic form of dilated cardiomyopathy characterized by a significantly reduced left ventricular ejection fraction in mutant embryos compared with wild type littermates. We conclude that myosin light chain 2v may have a unique function in the maintenance of cardiac contractility and ventricular chamber morphogenesis during mammalian cardiogenesis and that a chamber-specific combinatorial code for sarcomeric assembly may exist that ultimately requires myosin light chain 2v in ventricular muscle cells.
Collapse
Affiliation(s)
- J Chen
- Department of Medicine, University of California at San Diego, School of Medicine, La Jolla, California 92093-0613, USA
| | | | | | | | | | | | | | | |
Collapse
|
378
|
Bottinelli R, Coviello DA, Redwood CS, Pellegrino MA, Maron BJ, Spirito P, Watkins H, Reggiani C. A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity. Circ Res 1998; 82:106-15. [PMID: 9440709 DOI: 10.1161/01.res.82.1.106] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutant contractile protein genes that cause familial hypertrophic cardiomyopathy (FHC) are presumed to encode mutant proteins that interfere with contractile function. However, it has generally not been possible to show mutant protein expression and incorporation into the sarcomere in vivo. This study aimed to assess whether a mutant alpha-fast tropomyosin (TM) responsible for FHC is actually expressed and determines abnormal contractile function. Since alpha-fast TM is expressed in heart and skeletal muscle, samples from vastus lateralis muscles were studied from two FHC patients carrying an Asp175Asn alpha-fast TM mutation and two healthy control subjects. TM isoforms from whole biopsy samples and single fibers were identified by gel electrophoresis and Western blot analysis. An additional faster-migrating TM band was observed in both FHC patients. The aberrant TM was identified as the Asp175Asn alpha-fast TM by comigration with purified recombinant human Asp175Asn alpha-fast TM. Densitometric quantification of mutant and wild-type alpha-fast TMs suggested equal expression of the two proteins. Contractile parameters of single skinned muscle fibers from FHC patients and healthy control subjects were compared. Calcium sensitivity was significantly increased in muscle fibers containing Asp175Asn alpha-fast Tm compared with fibers lacking the mutant TM. No discernible difference was found regarding cooperativity, maximum force, and maximum shortening velocity. This is the first demonstration that the mutant TM that causes FHC is indeed expressed and almost certainly incorporated into muscle in vivo and does result in altered contractile function; this confirms a dominant-negative, rather than null allele, action. Since the mutant TM was associated with increased calcium sensitivity, this mutation might be associated with an enhancement and not a depression of cardiac contractile performance. If so, this contrasts with the hypothesis that FHC mutations induce contractile impairment followed by compensatory hypertrophy.
Collapse
Affiliation(s)
- R Bottinelli
- Institute of Human Physiology, University of Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
379
|
|
380
|
Marian AJ, Roberts R. Molecular genetic basis of hypertrophic cardiomyopathy: genetic markers for sudden cardiac death. J Cardiovasc Electrophysiol 1998; 9:88-99. [PMID: 9475582 DOI: 10.1111/j.1540-8167.1998.tb00871.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease caused by mutations in sarcomeric proteins. The disease is characterized by left ventricular hypertrophy in the absence of an increased external load, and myofibrillar disarray. A large number of mutations in genes coding for the beta-myosin heavy chain (beta-MyHC), cardiac troponin T (cTnT), cardiac troponin I, alpha-tropomyosin, myosin binding protein C (MyBP-C), and myosin light chain 1 and 2 in patients with HCM have been identified. Genotype-phenotype correlation studies have shown that mutations carry prognostic significance. The Gly256Glu, Val606Met, and Leu908Val mutations in the beta-MyHC are associated with a benign prognosis. In contrast, Arg403Gln, Arg719Trp, and Arg453Cys mutations are associated with a high incidence of sudden cardiac death (SCD). Mutations in cTnT are associated with a mild degree of hypertrophy, but a high incidence of SCD. Mutations in MyBP-C are associated with mild hypertrophy and a benign prognosis. However, it has become evident that factors other than the underlying mutations, such as genetic background and possibly environmental factors, also modulate phenotypic expression of HCM.
Collapse
Affiliation(s)
- A J Marian
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
381
|
Dickinson MH, Hyatt CJ, Lehmann FO, Moore JR, Reedy MC, Simcox A, Tohtong R, Vigoreaux JO, Yamashita H, Maughan DW. Phosphorylation-dependent power output of transgenic flies: an integrated study. Biophys J 1997; 73:3122-34. [PMID: 9414224 PMCID: PMC1181215 DOI: 10.1016/s0006-3495(97)78338-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examine how the structure and function of indirect flight muscle (IFM) and the entire flight system of Drosophila melanogaster are affected by phosphorylation of the myosin regulatory light chain (MLC2). This integrated study uses site-directed mutagenesis to examine the relationship between removal of the myosin light chain kinase (MLCK) phosphorylation site, in vivo function of the flight system (flight tests, wing kinematics, metabolism, power output), isolated IFM fiber mechanics, MLC2 isoform pattern, and sarcomeric ultrastructure. The MLC2 mutants exhibit graded impairment of flight ability that correlates with a reduction in both IFM and flight system power output and a reduction in the constitutive level of MLC2 phosphorylation. The MLC2 mutants have wild-type IFM sarcomere and cross-bridge structures, ruling out obvious changes in the ultrastructure as the cause of the reduced performance. We describe a viscoelastic model of cross-bridge dynamics based on sinusoidal length perturbation analysis (Nyquist plots) of skinned IFM fibers. The sinusoidal analysis suggests the high power output of Drosophila IFM required for flight results from a phosphorylation-dependent recruitment of power-generating cross-bridges rather than a change in kinetics of the power generating step. The reduction in cross-bridge number appears to affect the way mutant flies generate flight forces of sufficient magnitude to keep them airborne. In two MLC2 mutant strains that exhibit a reduced IFM power output, flies appear to compensate by lowering wingbeat frequency and by elevating wingstroke amplitude (and presumably muscle strain). This behavioral alteration is not seen in another mutant strain in which the power output and estimated number of recruited cross-bridges is similar to that of wild type.
Collapse
Affiliation(s)
- M H Dickinson
- Department of Integrative Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
382
|
James J, Robbins J. Molecular remodeling of cardiac contractile function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:H2105-18. [PMID: 9374742 DOI: 10.1152/ajpheart.1997.273.5.h2105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of techniques are now available that allow the contractile apparatus of the heart to be altered in a defined manner. This review focuses on those approaches that result in germ-line transmission of the remodeling event(s). Thus the desired modifications can be propagated stably throughout multiple generations and result in the creation of stable, new animal models. Necessarily, such stable changes need to be performed at the level of the genome, and two distinct but complementary approaches have been developed: transgenesis and gene targeting. Each results in the stable modification of the mammalian genome. Via gene targeting or gene ablation of sequences encoding various components of the sarcomere, the contractile apparatus of the heart can be altered dramatically. Ablating a gene may lead to a loss in function, which can help establish a function of the candidate sequence. Gene targeting can also be used to effect changes in the sequences encoding a functional domain of the contractile protein or at a single-amino acid residue, resulting in the establishment of precise structure-function relationships. With the use of transgenesis, the contractile apparatus of the heart can also be significantly remodeled. These approaches are rapidly creating a group of animals in which altered contractile protein complements will lead to a fundamental understanding of the structure-function relationships that underlie the function of the heart at the molecular, biochemical, whole organ, and whole animal levels.
Collapse
Affiliation(s)
- J James
- Children's Hospital Research Foundation, Department of Pediatrics, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
383
|
Affiliation(s)
- D Dizon-Townson
- Maternal-Fetal Medicine, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
384
|
Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, Hiroi S, Sasaoka T, Ohbuchi N, Nakamura T, Koyanagi T, Hwang TH, Choo JA, Chung KS, Hasegawa A, Nagai R, Okazaki O, Nakamura H, Matsuzaki M, Sakamoto T, Toshima H, Koga Y, Imaizumi T, Sasazuki T. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet 1997; 16:379-82. [PMID: 9241277 DOI: 10.1038/ng0897-379] [Citation(s) in RCA: 368] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hypertrophic cardiomyopathy (HCM), the most common cause of sudden death in the young, is an autosomal dominant disease characterized by ventricular hypertrophy accompanied by myofibrillar disarrays. Linkage studies and candidate-gene approaches have demonstrated that about half of the patients have mutations in one of six disease genes: cardiac beta-myosin heavy chain (c beta MHC), cardiac troponin T (cTnT), alpha-tropomyosin (alpha TM), cardiac myosin binding protein C (cMBPC), ventricular myosin essential light chain (vMLC1) and ventricular myosin regulatory light chain (vMLC2) genes. Other disease genes remain unknown. Because all the known disease genes encode major contractile elements in cardiac muscle, we have systematically characterized the cardiac sarcomere genes, including cardiac troponin I (cTnI), cardiac actin (cACT) and cardiac troponin C (cTnC) in 184 unrelated patients with HCM and found mutations in the cTnI gene in several patients. Family studies showed that an Arg145Gly mutation was linked to HCM and a Lys206Gln mutation had occurred de novo, thus strongly suggesting that cTnI is the seventh HCM gene.
Collapse
Affiliation(s)
- A Kimura
- Department of Tissue Physiology, Tokyo Medical and Dental University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Bing W, Redwood CS, Purcell IF, Esposito G, Watkins H, Marston SB. Effects of two hypertrophic cardiomyopathy mutations in alpha-tropomyosin, Asp175Asn and Glu180Gly, on Ca2+ regulation of thin filament motility. Biochem Biophys Res Commun 1997; 236:760-4. [PMID: 9245729 DOI: 10.1006/bbrc.1997.7045] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The functional properties of wild type alpha-tropomyosin expressed in E. coli with an alanine-serine N-terminal leader (AS-alpha-Tm) were compared with those of AS-alpha-Tm with either of two missense mutations (Asp175Asn and Glu180Gly) shown to cause familial hypertrophic cardiomyopathy (FHC). Wild type AS-alpha-Tm and AS-alpha-Tm(Asp175Asn) binding to actin was indistinguishable from rabbit skeletal muscle ab-tropomyosin whilst the affinity of AS-alpha-Tm(Glu180Gly) was about threefold weaker. In vitro motility assays were performed with AS-alpha-tropomyosin incorporated into skeletal muscle actin-rhodamine phalloidin filaments moving over skeletal muscle heavy meromyosin. Under relaxing conditions (pCa9), troponin added to actin filaments containing AS-alpha-tropomyosin or mutant tropomyosins resulted in normal switch-off, with a decrease in the fraction filaments moving from >80% to <20%. Under activating conditions (pCa5), troponin had a minor effect upon actin-AS-alpha-tropomyosin filament velocity (increased by 5 +/- 1%, n=10), whereas the velocity increased by 18 +/- 3% (n=7) with actin filaments containing AS-alpha-tropomyosin(Asp175Asn) and by 21 +/- 2% (n=8) with filaments containing AS-alpha-tropomyosin(Glu180Gly) (p<0.05 compared with AS-alpha-tropomyosin). Thus FHC mutations in alpha-tropomyosin produce detectable changes in the Ca2+-regulation of thin filaments, presumably via altered interaction with troponin.
Collapse
Affiliation(s)
- W Bing
- Cardiac Medicine, Imperial College School of Medicine, National Heart and Lung Institute, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
386
|
Charron P, Dubourg O, Desnos M, Isnard R, Hagege A, Millaire A, Carrier L, Bonne G, Tesson F, Richard P, Bouhour JB, Schwartz K, Komajda M. Diagnostic value of electrocardiography and echocardiography for familial hypertrophic cardiomyopathy in a genotyped adult population. Circulation 1997; 96:214-9. [PMID: 9236436 DOI: 10.1161/01.cir.96.1.214] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The diagnostic value of ECG and echocardiography for familial hypertrophic cardiomyopathy (FHC) has not been reassessed since the development of molecular genetics. The aim of the study was to evaluate it in adults, with the genetic status used as the criterion of reference. METHODS AND RESULTS Ten families with previously identified mutations were studied (9 mutations in 3 genes). ECG and echocardiography were analyzed in 155 adults, of whom 77 were genetically affected and 78 unaffected. The major diagnostic criteria were, for echocardiography, a left ventricular wall thickness > 13 mm and, for ECG, abnormal Q waves, left ventricular hypertrophy, and marked ST-T changes. Minor ECG and echographic abnormalities were also analyzed. (1) Sensitivity and specificity of major criteria were 61% and 97% for ECG and 62% and 100% for echocardiography. (2) Sensitivity but not specificity was age related (from 50% at < 30 years to 94% at > 50 years old, P < .01) and sex related (83% in men versus 57% in women, P = .01). (3) Sensitivity was improved by the addition of minor criteria and by the association of ECG and echocardiography. The negative predictive value was therefore very good (95%) at > 30 years of age. (4) Healthy carriers without any ECG or echocardiographic abnormality represented 17% of genetically affected adults. CONCLUSIONS ECG and echocardiography have similar diagnostic values for FHC in adults, with an excellent specificity and a lower sensitivity. The association of the two techniques allows a better evaluation of the risk of being genetically affected in families with hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- P Charron
- Service de Cardiologie, Hôpital Pitié-Salpetrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Marian AJ, Zhao G, Seta Y, Roberts R, Yu QT. Expression of a mutant (Arg92Gln) human cardiac troponin T, known to cause hypertrophic cardiomyopathy, impairs adult cardiac myocyte contractility. Circ Res 1997; 81:76-85. [PMID: 9201030 DOI: 10.1161/01.res.81.1.76] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanism(s) by which mutations in sarcomeric proteins cause hypertrophic cardiomyopathy (HCM) remains unknown. A leading hypothesis proposes that mutant sarcomeric proteins impair cardiac myocyte contractility, providing an impetus for compensatory hypertrophy. To test this hypothesis, we determined the impact of expression of a mutant (Arg92Gln) human cardiac troponin T (cTnT), known to cause HCM in humans, on adult cardiac myocyte contractility. A full-length human cTnT cDNA was cloned, and the Arg92Gln mutation was induced. Recombinant adenoviruses Ad5/CMV/cTnT-N and Ad5/CMV/cTnT-Arg92Gln were generated through homologous recombination. Adult feline cardiac myocytes were infected with recombinant adenoviruses or a control viral vector (Ad5 delta E1) at a multiplicity of infection of 100. Expression levels of the full-length normal and mutant cTnT proteins were equal on Western blots. Expression of the exogenous cTnT proteins in cardiac myocytes was also shown by immunocytochemistry and immunofluorescence, and their incorporation into myofibrils was confirmed by Western blotting on myofibrillar extracts. Electron microscopy showed intact sarcomere structure in rod-shaped cardiac myocytes in all groups. Cell fractional shortening and the peak velocity of shortening were not significantly different among the groups 24 hours after transduction. However, 48 hours after transduction, both fractional shortening and the peak velocity of shortening were significantly reduced (24% [P < .001] and 26% [P < .001], respectively) in cardiac myocytes in the Ad5/CMV/cTnT-Arg92Gln compared with the Ad5/CMV/cTnT-N groups. The magnitude of the reductions was greater at 72 hours after transduction (45% and 39%, respectively; P < .001). Our results indicated that expression of the mutant (Arg92Gln) cTnT, known to cause HCM in humans, impaired intact adult cardiac myocyte contractility. Our data also show that both normal and mutant cTnT were incorporated into myofibrils. These results provide a potential mechanism by which mutations in sarcomeric proteins cause HCM.
Collapse
Affiliation(s)
- A J Marian
- Department of Medicine, Baylor College of Medicine, Houston, Tex, USA.
| | | | | | | | | |
Collapse
|
388
|
Cuda G, Fananapazir L, Epstein ND, Sellers JR. The in vitro motility activity of beta-cardiac myosin depends on the nature of the beta-myosin heavy chain gene mutation in hypertrophic cardiomyopathy. J Muscle Res Cell Motil 1997; 18:275-83. [PMID: 9172070 DOI: 10.1023/a:1018613907574] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several mutations in the beta-myosin heavy chain gene cause hypertrophic cardiomyopathy. This study investigates (1) the in vitro velocities of translocation of fluorescently-labelled actin by beta-myosin purified from soleus muscle of 30 hypertrophic cardiomyopathy patients with seven distinct beta-myosin heavy chain gene mutations: Thr124Ile, Tyr162Cys, Gly256Glu, Arg403Gln, Val606Met, Arg870His, and Leu908Val mutations; and (2) motility activity of beta-myosin purified from cardiac and soleus muscle biopsies in the same patients. The velocity of translocation of actin by beta-myosin purified from soleus or cardiac muscle of 22 normal controls was 0.48 +/- 0.09 micron s-1. By comparison, the motility activity was reduced in all 30 patients with beta-myosin heavy chain gene mutations (range, 0.112 +/- 0.041 to 0.292 +/- 0.066 micron s-1. Notably, the Tyr162Cys and Arg403Gln mutations demonstrated significantly lower actin sliding velocities: 0.123 +/- 0.044, and 0.112 +/- 0.041 micron s-1, respectively. beta-myosin purified from soleus muscle from four patients with the Arg403Gln mutation had a similar actomyosin motility activity compared to beta-myosin purified from their cardiac biopsies (0.127 +/- 0.045 micron s-1 versus 0.119 +/- 0.068 micron s-1, respectively). Since these seven mutations lie in several distinct functional domains, it is likely that the mechanisms of their inhibitions of motility are different.
Collapse
Affiliation(s)
- G Cuda
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
389
|
Kelly R, Buckingham M. Manipulating myosin light chain 2 isoforms in vivo: a transgenic approach to understanding contractile protein diversity. Circ Res 1997; 80:751-3. [PMID: 9130457 DOI: 10.1161/01.res.80.5.751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
390
|
Gulick J, Hewett TE, Klevitsky R, Buck SH, Moss RL, Robbins J. Transgenic remodeling of the regulatory myosin light chains in the mammalian heart. Circ Res 1997; 80:655-64. [PMID: 9130446 DOI: 10.1161/01.res.80.5.655] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The regulatory myosin light chain (MLC) regulates contraction in smooth muscle. However, its function in striated muscle remains obscure, and the different functional activities of the various isoforms that are expressed in the mammalian heart (ventricle- and atrium-specific MLC2) remain undefined. To begin to explore these issues, we used transgenesis to determine the feasibility of effecting a complete or partial replacement of the cardiac regulatory light chains with the isoform that is normally expressed in fast skeletal muscle fibers (fast muscle-specific MLC2). Multiple lines of transgenic mice were generated that expressed the transgene at varying levels in the heart in a copy number-dependent fashion. There is a major discordance in the manner in which the different cardiac compartments respond to high levels of overexpression of the transgene. In atria, isoform replacement with the skeletal protein was quite efficient, even at low copy number. The ventricle is much more refractory to replacement, and despite high levels of transgenic transcript, protein replacement was incomplete. Replacement could be further increased by breeding the transgenic lines with one another. Despite very high levels of transgenic transcript in these mice, the overall level of the regulatory light chain in both compartments remained essentially constant; only the protein isoform ratios were altered. The partial replacement of the ventricular with the skeletal isoform reduced both left ventricular contractility and relaxation, although the unloaded shortening velocity of isolated ventricular cardiomyocytes was not significantly different.
Collapse
Affiliation(s)
- J Gulick
- Children's Hospital Research Foundation, Department of Pediatrics, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
391
|
Gottshall KR, Hunter JJ, Tanaka N, Dalton N, Becker KD, Ross J, Chien KR. Ras-dependent pathways induce obstructive hypertrophy in echo-selected transgenic mice. Proc Natl Acad Sci U S A 1997; 94:4710-5. [PMID: 9114056 PMCID: PMC20789 DOI: 10.1073/pnas.94.9.4710] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/1996] [Accepted: 03/03/1997] [Indexed: 02/04/2023] Open
Abstract
To overcome the genetic and interindividual variability frequently noted in complex phenotypes, we used echocardiographic selection to develop a substrain of myosin light chain (MLC)-Ras (RAS) transgenic mice with an enhanced ventricular hypertrophic phenotype. These echo-selected mice were then compared with wild-type (WT) animals and a pressure overload hypertrophy model (transverse aortic constriction; TAC). Echocardiography demonstrated increased wall thickness in RAS compared with the other groups. We developed novel miniaturized physiological technology to quantitatively identify in vivo intraventricular gradients; increased systolic Doppler velocity was seen in the left ventricle (LV) in 69% of RAS vs. none of WT or TAC. Intracavitary pressure gradients were present in 3 of 10 RAS vs. none of TAC or WT. Passive diastolic LV stiffness was not different among the three groups. Myofibrillar disarray was present in all RAS animals and was significantly more extensive (21.7% area fraction) than in TAC (1.5%) or WT (0.0%). RAS mice had selective induction of natriuretic peptide genes in the LV, a pattern distinct from that induced by pressure overload. Juvenile mortality was significantly increased in the offspring of echo-selected RAS parents. We conclude that adaptation of echocardiography to the mouse permits selection for cardiac phenotypes, and that selectively inbred MLC-Ras transgenic mice faithfully reproduce the molecular, physiological, and pathological features of human hypertrophic cardiomyopathy (HCM). Because previous studies support the concept that hypertrophy in human HCM is secondary to dysfunction created by sarcomeric protein mutations, the current studies suggest that Ras-dependent pathways might play a similar role in forms of human HCM.
Collapse
Affiliation(s)
- K R Gottshall
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0613, USA
| | | | | | | | | | | | | |
Collapse
|
392
|
Golitsina N, An Y, Greenfield NJ, Thierfelder L, Iizuka K, Seidman JG, Seidman CE, Lehrer SS, Hitchcock-DeGregori SE. Effects of two familial hypertrophic cardiomyopathy-causing mutations on alpha-tropomyosin structure and function. Biochemistry 1997; 36:4637-42. [PMID: 9109674 DOI: 10.1021/bi962970y] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Missense mutations in alpha-tropomyosin can cause familial hypertrophic cardiomyopathy. The effects of two of these, Asp175Asn and Glu180Gly, have been tested on the structure and function of recombinant human tropomyosin expressed in Escherichia coli. The F-actin affinity (measured by cosedimentation) of Glu180Gly was similar to that of wild-type, but Asp175Asn was more than 2-fold weaker, whether or not troponin was present. The mutations had no apparent effect on the affinity of tropomyosin for troponin. The mutations had a small effect on the overall stability (measured using circular dichroism) but caused increased local flexibility or decreased local stability, as evaluated by the higher excimer/monomer ratios of tropomyosin labeled with pyrene maleimide at Cys 190. The pyrene-labeled tropomyosins differed in their response to myosin S1 binding to the actin-tropomyosin filament. The conformations of the two mutants were different from each other and from wild-type in the myosin S1-induced on-state of the thin filament. Even though both mutant tropomyosins bound cooperatively to actin, they did not respond with the same conformational change as wild-type when myosin S1 switched the thin filament from the off- to the on-state.
Collapse
Affiliation(s)
- N Golitsina
- Boston Biomedical Research Institute, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
393
|
Becker KD, Gottshall KR, Hickey R, Perriard JC, Chien KR. Point mutations in human beta cardiac myosin heavy chain have differential effects on sarcomeric structure and assembly: an ATP binding site change disrupts both thick and thin filaments, whereas hypertrophic cardiomyopathy mutations display normal assembly. J Cell Biol 1997; 137:131-40. [PMID: 9105042 PMCID: PMC2139848 DOI: 10.1083/jcb.137.1.131] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1996] [Revised: 01/14/1997] [Indexed: 02/04/2023] Open
Abstract
Hypertrophic cardiomyopathy is a human heart disease characterized by increased ventricular mass, focal areas of fibrosis, myocyte, and myofibrillar disorganization. This genetically dominant disease can be caused by mutations in any one of several contractile proteins, including beta cardiac myosin heavy chain (beta MHC). To determine whether point mutations in human beta MHC have direct effects on interfering with filament assembly and sarcomeric structure, full-length wild-type and mutant human beta MHC cDNAs were cloned and expressed in primary cultures of neonatal rat ventricular cardiomyocytes (NRC) under conditions that promote myofibrillogenesis. A lysine to arginine change at amino acid 184 in the consensus ATP binding sequence of human beta MHC resulted in abnormal subcellular localization and disrupted both thick and thin filament structure in transfected NRC. Diffuse beta MHC K184R protein appeared to colocalize with actin throughout the myocyte, suggesting a tight interaction of these two proteins. Human beta MHC with S472V mutation assembled normally into thick filaments and did not affect sarcomeric structure. Two mutant myosins previously described as causing human hypertrophic cardiomyopathy, R249Q and R403Q, were competent to assemble into thick filaments producing myofibrils with well defined I bands, A bands, and H zones. Coexpression and detection of wild-type beta MHC and either R249Q or R403Q proteins in the same myocyte showed these proteins are equally able to assemble into the sarcomere and provided no discernible differences in subcellular localization. Thus, human beta MHC R249Q and R403Q mutant proteins were readily incorporated into NRC sarcomeres and did not disrupt myofilament formation. This study indicates that the phenotype of myofibrillar disarray seen in HCM patients which harbor either of these two mutations may not be directly due to the failure of the mutant myosin heavy chain protein to assemble and form normal sarcomeres, but may rather be a secondary effect possibly resulting from the chronic stress of decreased beta MHC function.
Collapse
Affiliation(s)
- K D Becker
- Department of Medicine, American Heart Association Bugher Foundation Center for Molecular Biology, University of California, San Diego, La Jolla 92093, USA.
| | | | | | | | | |
Collapse
|
394
|
Affiliation(s)
- P Spirito
- Servizio di Cardiologia, Ospedale Sant'Andrea, La Spezia, Italy
| | | | | | | |
Collapse
|
395
|
Fujita H, Sugiura S, Momomura S, Omata M, Sugi H, Sutoh K. Characterization of mutant myosins of Dictyostelium discoideum equivalent to human familial hypertrophic cardiomyopathy mutants. Molecular force level of mutant myosins may have a prognostic implication. J Clin Invest 1997; 99:1010-5. [PMID: 9062359 PMCID: PMC507909 DOI: 10.1172/jci119228] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent studies have revealed that familial hypertrophic cardiomyopathy (FHC) is caused by missence mutations in myosin heavy chain or other sarcomeric proteins. To investigate the functional impact of FHC mutations in myosin heavy chain, mutants of Dictyostelium discoideum myosin II equivalent to human FHC mutations were generated by site-directed mutagenesis, and their motor function was characterized at the molecular level. These mutants, i.e., R397Q, F506C, G575R, A699R, K703Q, and K703W are respectively equivalent to R403Q, F513C, G584R, G716R, R719Q, and R719W FHC mutants. We measured the force generated by these myosin mutants as well as the sliding velocity and the actin-activated ATPase activity. These measurements showed that the A699R, K703Q, and K703W myosins exhibited unexpectedly weak affinity with actin and the lowest level of force, though their ATPase activity remained rather high. F506C mutant which has been reported to have benign prognosis exhibited the least impairment of the motile and enzymatic activities. The motor functions of R397Q and G575R myosins were classified as intermediate. These results suggest that the force level of mutant myosin molecule may be one of the key factors for pathogenesis which affect the prognosis of human FHC.
Collapse
Affiliation(s)
- H Fujita
- Second Department of Internal Medicine, University of Tokyo, Hongo, Japan.
| | | | | | | | | | | |
Collapse
|
396
|
Affiliation(s)
- Peter A. Frenkel
- From the Molecular Cardiology Unit, Departments of Medicine, Cell Biology, and Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Tex
| | - Michael D. Schneider
- From the Molecular Cardiology Unit, Departments of Medicine, Cell Biology, and Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Tex
| |
Collapse
|
397
|
Coviello DA, Maron BJ, Spirito P, Watkins H, Vosberg HP, Thierfelder L, Schoen FJ, Seidman JG, Seidman CE. Clinical features of hypertrophic cardiomyopathy caused by mutation of a "hot spot" in the alpha-tropomyosin gene. J Am Coll Cardiol 1997; 29:635-40. [PMID: 9060904 DOI: 10.1016/s0735-1097(96)00538-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES We studied the clinical and genetic features of familial hypertrophic cardiomyopathy (FHC) caused by an Asp175Asn mutation in the alpha-tropomyosin gene in affected subjects from three unrelated families. BACKGROUND Correlation of genotype and phenotype has provided important information in FHC caused by beta-cardiac myosin and cardiac troponin T mutations. Comparable analyses of hypertrophic cardiomyopathy caused by alpha-tropomyosin mutations have been hampered by the rarity of these genetic defects. METHODS The haplotypes of three kindreds with FHC due to an alpha-tropomyosin gene mutation, Asp175Asn, were analyzed. The cardiac histopathologic findings of this mutation are reported. Distribution of left ventricular hypertrophy in affected members was assessed by two-dimensional echocardiography, and patient survival rates were compared. RESULTS Genetic studies defined unique haplotypes in the three families, demonstrating that independent mutations caused the disease in each. The Asp175Asn mutation caused cardiac histopathologic findings of myocyte hypertrophy, disarray and replacement fibrosis. The severity and distribution of left ventricular hypertrophy varied considerably in affected members from the three families (mean maximal wall thickness +/- SD: 24 +/- 4.5 mm in anterior septum of Family DT; 15 +/- 2.7 mm in anterior septum and free wall of Family DB; 18 +/- 2.1 mm in posterior septum of Family MI), but survival was comparable and favorable. CONCLUSIONS Nucleotide residue 579 in the alpha-tropomyosin gene may have increased susceptibility to mutation. On cardiac histopathologic study, defects in this sarcomere thin filament component are indistinguishable from other genetic etiologies of hypertrophic cardiomyopathy. The Asp175Asn mutation can elicit different morphologic responses, suggesting that the hypertrophic phenotype is modulated not by genetic etiologic factors alone. In contrast, prognosis reflected genotype; near normal life expectancy is found in hypertrophic cardiomyopathy caused by the alpha-tropomyosin mutation Asp175Asn.
Collapse
Affiliation(s)
- D A Coviello
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Ho G, Chisholm RL. Substitution mutations in the myosin essential light chain lead to reduced actin-activated ATPase activity despite stoichiometric binding to the heavy chain. J Biol Chem 1997; 272:4522-7. [PMID: 9020178 DOI: 10.1074/jbc.272.7.4522] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myosin essential light chain (ELC) wraps around an alpha-helix that extends from the myosin head, where it is believed to play a structural support role. To identify other role(s) of the ELC in myosin function, we have used an alanine scanning mutagenesis approach to convert charged residues in loops I, II, III, and helix G of the Dictyostelium ELC into uncharged alanines. Dictyostelium was used as a host system to study the phenotypic and biochemical consequences associated with the mutations. The ELC carrying loop mutations bound with normal stoichiometry to the myosin heavy chain when expressed in ELC-minus cells. When expressed in wild type cells these mutants competed efficiently with the endogenous ELC for binding, suggesting that the affinity of their interaction with the heavy chain is comparable to that of wild type. However, despite apparently normal association of ELC the cells still exhibited a reduced efficiency to undergo cytokinesis in suspension. Myosin purified from these cells exhibited 4-5-fold reduction in actin-activated ATPase activity and a decrease in motor function as assessed by an in vitro motility assay. These results suggest that the ELC contributes to myosin's enzymatic activity in addition to providing structural support for the alpha-helical neck region of myosin heavy chain.
Collapse
Affiliation(s)
- G Ho
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
399
|
Bachinski LL, Abchee A, Durand JB, Roberts R, Krahe R, Hobson GM. Polymorphic trinucleotide repeat in the MEF2A gene at 15q26 is not expanded in familial cardiomyopathies. Mol Cell Probes 1997; 11:55-8. [PMID: 9076715 DOI: 10.1006/mcpr.1996.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A trinucleotide repeat polymorphism in the MEF2A gene is described. MEF2A is expressed early in cardiac muscle development; thus the possibility of linkage between this polymorphism and familial cardiomyopathies was investigated in three families not linked to genes coding for known sarcomeric proteins. MEF2A was excluded as a candidate for dilated cardiomyopathy (DCM)(LOD of -9.03) and hypertrophic cardiomyopathy (HCM)(LODs of -5.43 and -2.44) in these families. Because expansion of triplet repeats has been shown to be responsible for several inherited diseases, 121 unrelated HCM probands and 28 unrelated DCM probands were examined for evidence of expansion of this repeat. No expansion of this trinucleotide repeat was seen in any of the 149 cardiomyopathy probands.
Collapse
Affiliation(s)
- L L Bachinski
- Department of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
400
|
Fananapazir L, McAreavey D. Hypertrophic cardiomyopathy: evaluation and treatment of patients at high risk for sudden death. Pacing Clin Electrophysiol 1997; 20:478-501. [PMID: 9058851 DOI: 10.1111/j.1540-8159.1997.tb06206.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a heritable disease characterized by LV hypertrophy with markedly variable clinical, morphological, and genetic manifestations. It is the most common cause of sudden death in otherwise healthy young individuals. HCM patients often have disabling symptoms and are prone to arrhythmias. Frequently, there is associated LV systolic and diastolic dysfunction, LV outflow obstruction, and myocardial ischemia. Over the past decade, progress has been made in identifying patients who are at high risk for sudden death, in elucidating potential mechanisms of sudden death, and in defining therapeutic algorithms that may improve prognosis. It has also been possible to determine the genetic defect in some of the patients and to correlate clinical findings with the molecular defects. An exciting development has been the use of dual chamber pacemaker as an alternative to cardiac surgery to improve symptoms and relieve LV outflow obstruction.
Collapse
MESH Headings
- Age Factors
- Cardiomyopathy, Hypertrophic/diagnosis
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/therapy
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Electrophysiology/methods
- Humans
- Risk Assessment
- Syncope/diagnosis
- Syncope/etiology
- Tachycardia, Ventricular/diagnosis
- Tachycardia, Ventricular/etiology
- Tachycardia, Ventricular/therapy
Collapse
Affiliation(s)
- L Fananapazir
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1650 USA.
| | | |
Collapse
|