351
|
Abstract
Neutrophils are produced in the bone marrow from stem cells that proliferate and differentiate to mature neutrophils fully equipped with an armory of granules. These contain proteins that enable the neutrophil to deliver lethal hits against microorganisms, but also to cause great tissue damage. Neutrophils circulate in the blood as dormant cells. At sites of infection, endothelial cells capture bypassing neutrophils and guide them through the endothelial cell lining whereby the neutrophils are activated and tuned for the subsequent interaction with microbes. Once in tissues, neutrophils kill microorganisms by microbicidal agents liberated from granules or generated by metabolic activation. As a final act, neutrophils can extrude stands of DNA with bactericidal proteins attached that act as extracellular traps for microorganisms.
Collapse
Affiliation(s)
- Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital (Rigshospitalet), University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
352
|
Tassone L, Moratto D, Vermi W, De Francesco M, Notarangelo LD, Porta F, Lougaris V, Facchetti F, Plebani A, Badolato R. Defect of plasmacytoid dendritic cells in warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome patients. Blood 2010; 116:4870-3. [PMID: 20736454 DOI: 10.1182/blood-2010-03-272096] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome is a genetic disease that is caused by heterozygous mutations of the CXCR4 gene. These mutations confer an increased leukocyte response to the CXCR4-ligand CXCL12, resulting in abnormal homeostasis of many leukocyte types, including neutrophils and lymphocytes. Analysis of the myeloid and plasmacytoid dendritic cell blood counts in WHIM patients revealed a striking defect in the number of plasmacytoid dendritic cells as well as a partial reduction of the number of myeloid dendritic cells, compared with healthy subjects. Moreover, the production of interferon-α by mononuclear cells in response to herpes simplex infection, or after stimulation with the Toll-like receptor 9 ligand CpG, was undetectable in WHIM patients. Because plasmacytoid dendritic cells play a key role in the defense against viruses and their generation and motility are in part dependent on CXCR4, we hypothesized that the susceptibility of WHIM patients to warts is related to the abnormal homeostasis of plasmacytoid dendritic cells.
Collapse
Affiliation(s)
- Laura Tassone
- Department of Pediatrics, Institute of Molecular Medicine Angelo Nocivelli, Brescia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Chow KY, Brotin É, Ben Khalifa Y, Carthagena L, Teissier S, Danckaert A, Galzi JL, Arenzana-Seisdedos F, Thierry F, Bachelerie F. A Pivotal Role for CXCL12 Signaling in HPV-Mediated Transformation of Keratinocytes: Clues to Understanding HPV-Pathogenesis in WHIM Syndrome. Cell Host Microbe 2010; 8:523-33. [DOI: 10.1016/j.chom.2010.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/26/2010] [Accepted: 11/22/2010] [Indexed: 12/31/2022]
|
354
|
Cronshaw DG, Nie Y, Waite J, Zou YR. An essential role of the cytoplasmic tail of CXCR4 in G-protein signaling and organogenesis. PLoS One 2010; 5:e15397. [PMID: 21124917 PMCID: PMC2988825 DOI: 10.1371/journal.pone.0015397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/06/2010] [Indexed: 11/22/2022] Open
Abstract
CXCR4 regulates cell proliferation, enhances cell survival and induces chemotaxis, yet molecular mechanisms underlying its signaling remain elusive. Like all other G-protein coupled receptors (GPCRs), CXCR4 delivers signals through G-protein-dependent and -independent pathways, the latter involving its serine-rich cytoplasmic tail. To evaluate the signaling and biological contribution of this G-protein-independent pathway, we generated mutant mice that express cytoplasmic tail-truncated CXCR4 (ΔT) by a gene knock-in approach. We found that ΔT mice exhibited multiple developmental defects, with not only G-protein-independent but also G-protein-dependent signaling events completely abolished, despite ΔT's ability to still associate with G-proteins. These results reveal an essential positive regulatory role of the cytoplasmic tail in CXCR4 signaling and suggest the tail is crucial for mediating G-protein activation and initiating crosstalk between G-protein-dependent and G-protein-independent pathways for correct GPCR signaling.
Collapse
Affiliation(s)
- Darran G Cronshaw
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | |
Collapse
|
355
|
Abstract
In this issue of Blood, Walters and colleagues describe an elegant model of WHIM syndrome in the zebrafish embryo. By allowing the movement of WHIM neutrophils to be observed in live animals, this model dramatically illustrates the dynamics of the interaction between the neutrophil chemokine receptor CXCR4 and its receptor ligand (stromal-derived factor-1 [SDF-1], also known as CXCL12) in th hallmark of WHIM-excessive neutrophil adhesion to the marrow stroma.
Collapse
|
356
|
O’Hayre M, Salanga CL, Handel TM, Hamel DJ. Emerging concepts and approaches for chemokine-receptor drug discovery. Expert Opin Drug Discov 2010; 5:1109-22. [PMID: 21132095 PMCID: PMC2995586 DOI: 10.1517/17460441.2010.525633] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE OF THE FIELD Chemokine receptors are most noted for their role in cell migration. However, inappropriate utilization or regulation of these receptors is implicated in many inflammatory diseases, cancer and HIV, making them important drug targets. AREAS COVERED IN THIS REVIEW Allostery, oligomerization and ligand bias are presented as they pertain to chemokine receptors and their associated pathologies.Specific examples of each are described from the recent literature and their implications are discussed in terms of drug discovery efforts targeting chemokine receptors. WHAT THE READER WILL GAIN Insight into the expanding view of the multitude of pharmacological variables that need to be considered or that may be exploited in chemokine receptor drug discovery. TAKE HOME MESSAGE Since 2007, two drugs targeting chemokine receptors have been approved by the FDA, Maraviroc for preventing HIV infection and Mozobil™ for hematopoietic stem cell mobilization. While these successes permit optimism for chemokine receptors as drug targets, only recently has the complexity of this system begun to be appreciated. The concepts of allosteric inhibitors, biased ligands and functional selectivity raise the possibility that drugs with precisely-defined properties can be developed. Other complexities such as receptor oligomerization and tissue-specific functional states of receptors also offer opportunities for increased target and response specificity, although it will be more challenging to translate these ideas into approved therapeutics compared to traditional approaches.
Collapse
Affiliation(s)
| | | | - Tracy M. Handel
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92093, USA
| | | |
Collapse
|
357
|
Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach. J Comput Aided Mol Des 2010; 24:1023-33. [PMID: 20960031 DOI: 10.1007/s10822-010-9393-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
CXCR4 is a G-protein coupled receptor for CXCL12 that plays an important role in human immunodeficiency virus infection, cancer growth and metastasization, immune cell trafficking and WHIM syndrome. In the absence of an X-ray crystal structure, theoretical modeling of the CXCR4 receptor remains an important tool for structure-function analysis and to guide the discovery of new antagonists with potential clinical use. In this study, the combination of experimental data and molecular modeling approaches allowed the development of optimized ligand-receptor models useful for elucidation of the molecular determinants of small molecule binding and functional antagonism. The ligand-guided homology modeling approach used in this study explicitly re-shaped the CXCR4 binding pocket in order to improve discrimination between known CXCR4 antagonists and random decoys. Refinement based on multiple test-sets with small compounds from single chemotypes provided the best early enrichment performance. These results provide an important tool for structure-based drug design and virtual ligand screening of new CXCR4 antagonists.
Collapse
|
358
|
Abstract
The chemokine receptor CXCR4 belongs to the large superfamily of G protein-coupled receptors and has been identified to play a crucial role in a number of biological processes, including the trafficking and homeostasis of immune cells such as T lymphocytes. CXCR4 has also been found to be a prognostic marker in various types of cancer, including leukemia and breast cancer, and recent evidence has highlighted the role of CXCR4 in prostate cancer. Furthermore, CXCR4 expression is upregulated in cancer metastasis, leading to enhanced signaling. These observations suggest that CXCR4 is important for the progression of cancer. The CXCR4-CXCL12 (stromal cell-derived factor 1 (SDF-1)) axis has additionally been identified to have a role in normal stem cell homing. Interestingly, cancer stem cells also express CXCR4, indicating that the CXCR4-SDF-1 axis may direct the trafficking and metastasis of these cells to organs that express high levels of SDF-1, such as the lymph nodes, lungs, liver, and bone. This review focuses on the current knowledge of CXCR4 regulation and how deregulation of this protein may contribute to the progression of cancer.
Collapse
Affiliation(s)
- Bungo Furusato
- Center for Prostate Disease Research, Department of Surgery, Uniformed Service University of the Health Sciences, 1530 E. Jefferson Street, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
359
|
Chiriac A, Terzic A, Park S, Ikeda Y, Faustino R, Nelson TJ. SDF-1-enhanced cardiogenesis requires CXCR4 induction in pluripotent stem cells. J Cardiovasc Transl Res 2010; 3:674-82. [PMID: 20842469 DOI: 10.1007/s12265-010-9219-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/19/2010] [Indexed: 12/11/2022]
Abstract
Transformation of pluripotent stem cells into cardiac tissue is the hallmark of cardiogenesis, yet pro-cardiogenic signals remain partially understood. Preceding cardiogenic induction, a surge in CXCR4 chemokine receptor expression in the early stages of stem cell lineage specification coincides with the acquisition of pre-cardiac profiles. Accordingly, CXCR4 selection, in conjunction with mesoderm-specific VEGF type II receptor FLK-1 co-expression, segregates cardiogenic populations. To assess the functionality of the CXCR4 biomarker, targeted activation and disruption were here exploited in the context of embryonic stem cell-derived cardiogenesis. Implicated as a cardiogenic hub through unbiased bioinformatics analysis, induction of the CXCR4/SDF-1 receptor-ligand axis triggered enhanced beating activity in stem cell progeny. Gene expression knockdown of CXCR4 disrupted spontaneous embryoid body differentiation and blunted the expression of cardiogenic markers MEF2C, Nkx2.5, MLC2a, MLC2v, and cardiac-MHC. Exogenous SDF-1 treatment failed to rescue cardiogenic-deficient phenotype, demonstrating a requirement for CXCR4 expression in mediating SDF-1 effects. Thus, a pro-cardiogenic signaling role for the CXCR4/SDF1 axis is herein revealed within pluripotent stem cell progenitors, exposing a functional target to promote lineage-specific differentiation.
Collapse
Affiliation(s)
- Anca Chiriac
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medical Genetics, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
360
|
Mansour S, Connell F, Steward C, Ostergaard P, Brice G, Smithson S, Lunt P, Jeffery S, Dokal I, Vulliamy T, Gibson B, Hodgson S, Cottrell S, Kiely L, Tinworth L, Kalidas K, Mufti G, Cornish J, Keenan R, Mortimer P, Murday V, Lymphoedema Research Consortium. Emberger syndrome-primary lymphedema with myelodysplasia: report of seven new cases. Am J Med Genet A 2010; 152A:2287-96. [PMID: 20803646 DOI: 10.1002/ajmg.a.33445] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Four reports have been published on an association between acute myeloid leukaemia (AML) and primary lymphedema, with or without congenital deafness. We report seven new cases, including one extended family, confirming this entity as a genetic syndrome. The lymphedema typically presents in one or both lower limbs, before the hematological abnormalities, with onset between infancy and puberty and frequently affecting the genitalia. The AML is often preceded by pancytopenia or myelodysplasia with a high incidence of monosomy 7 in the bone marrow (five propositi and two relatives). Associated anomalies included hypotelorism, epicanthic folds, long tapering fingers and/or neck webbing (four patients), recurrent cellulitis in the affected limb (four patients), generalized warts (two patients), and congenital, high frequency sensorineural deafness (one patient). Children with lower limb and genital lymphedema should be screened for hematological abnormalities and immunodeficiency.
Collapse
MESH Headings
- Abnormalities, Multiple
- Adolescent
- Adult
- Child
- Child, Preschool
- Chromosomes, Human, Pair 7
- Female
- Genitalia/abnormalities
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid, Acute/complications
- Leukemia, Myeloid, Acute/genetics
- Lower Extremity Deformities, Congenital
- Lymphedema/complications
- Lymphedema/genetics
- Male
- Monosomy
- Myelodysplastic Syndromes/complications
- Myelodysplastic Syndromes/genetics
- Young Adult
Collapse
Affiliation(s)
- Sahar Mansour
- SW Thames Regional Genetics Service, St. George's, University of London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
361
|
Bouma G, Ancliff PJ, Thrasher AJ, Burns SO. Recent advances in the understanding of genetic defects of neutrophil number and function. Br J Haematol 2010; 151:312-26. [DOI: 10.1111/j.1365-2141.2010.08361.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
362
|
Chua AWL, Hay HS, Rajendran P, Shanmugam MK, Li F, Bist P, Koay ESC, Lim LHK, Kumar AP, Sethi G. Butein downregulates chemokine receptor CXCR4 expression and function through suppression of NF-κB activation in breast and pancreatic tumor cells. Biochem Pharmacol 2010; 80:1553-62. [PMID: 20699088 DOI: 10.1016/j.bcp.2010.07.045] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/21/2010] [Accepted: 07/27/2010] [Indexed: 12/12/2022]
Abstract
The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is known to be expressed in various tumors. This receptor mediates homing of tumor cells to specific organs that express the ligand CXCL12 for this receptor and plays an important role in tumor growth, invasion, metastasis, and angiogenesis. Thus, a priori, agents that can downregulate CXCR4/CXCL12 signaling cascade have potential against cancer metastasis. In this study, we report the identification of butein (3, 4, 2', 4'-tetrahydroxychalcone) as a novel regulator of CXCR4 expression and function. We found that butein downregulated the expression of CXCR4 in HER2-overexpressing breast cancer cells in a dose- and time-dependent manner. The decrease in CXCR4 expression induced by butein was not cell type-specific as the inhibition also occurred in pancreatic, prostate, multiple myeloma, head and neck, and hepatocellular cancer cell lines. When investigated for the molecular mechanism(s), it was found that the downregulation of CXCR4 was not due to proteolytic degradation but rather to transcriptional regulation as indicated by downregulation of mRNA expression, inhibition of NF-κB activation evident by both DNA binding, and reporter assays, and suppression of chromatin immunoprecipitation activity. Suppression of CXCR4 expression by butein correlated with the inhibition of CXCL12-induced migration and invasion of both breast and pancreatic cancer cells. Overall, our results demonstrate for the first time that butein is a novel inhibitor of CXCR4 expression and thus has a potential in suppressing metastasis of cancer.
Collapse
Affiliation(s)
- Angeline Wei Ling Chua
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol 2010; 31:318-24. [PMID: 20620114 PMCID: PMC2930213 DOI: 10.1016/j.it.2010.05.006] [Citation(s) in RCA: 822] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/21/2010] [Accepted: 05/28/2010] [Indexed: 12/20/2022]
Abstract
Neutrophils play a key role in the elimination of pathogens. They are remarkably short-lived with a circulating half life of 6-8h and hence are produced at a rate of 5x10(10)-10x10(10) cells/day. Tight regulation of these cells is vital because they have significant histotoxic capacity and are widely implicated in tissue injury. This review outlines our current understanding of how neutrophils are released from the bone marrow; in particular, the role of the CXC chemokine receptor 4/stromal-derived factor 1 axis, the relative size and role of the freely circulating and marginated (i.e. slowly transiting) pools within the vascular compartment, and the events that result in the uptake and removal of circulating neutrophils. We also review current understanding of how systemic stress and inflammation affect this finely balanced system.
Collapse
Affiliation(s)
- Charlotte Summers
- Department of Medicine, University of Cambridge School of Medicine, UK
| | - Sara M. Rankin
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, UK
| | | | - Nanak Singh
- Department of Medicine, University of Cambridge School of Medicine, UK
| | - A. Michael Peters
- Division of Clinical and Laboratory Investigation, Brighton and Sussex Medical School, UK
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Medicine, UK
| |
Collapse
|
364
|
Eash KJ, Greenbaum AM, Gopalan PK, Link DC. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 2010; 120:2423-31. [PMID: 20516641 DOI: 10.1172/jci41649] [Citation(s) in RCA: 580] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 04/07/2010] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are a major component of the innate immune response. Their homeostasis is maintained, in part, by the regulated release of neutrophils from the bone marrow. Constitutive expression of the chemokine CXCL12 by bone marrow stromal cells provides a key retention signal for neutrophils in the bone marrow through activation of its receptor, CXCR4. Attenuation of CXCR4 signaling leads to entry of neutrophils into the circulation through unknown mechanisms. We investigated the role of CXCR2-binding ELR+ chemokines in neutrophil trafficking using mouse mixed bone marrow chimeras reconstituted with Cxcr2(-/-) and WT cells. In this context, neutrophils lacking CXCR2 were preferentially retained in the bone marrow, a phenotype resembling the congenital disorder myelokathexis, which is characterized by chronic neutropenia. Additionally, transient disruption of CXCR4 failed to mobilize Cxcr2(-/-) neutrophils. However, neutrophils lacking both CXCR2 and CXCR4 displayed constitutive mobilization, showing that CXCR4 plays a dominant role in neutrophil trafficking. With regard to CXCR2 ligands, bone marrow endothelial cells and osteoblasts constitutively expressed the ELR+ chemokines CXCL1 and CXCL2, and CXCL2 expression was induced in endothelial cells during G-CSF-induced neutrophil mobilization. Collectively, these data suggest that CXCR2 signaling is a second chemokine axis that interacts antagonistically with CXCR4 to regulate neutrophil release from the bone marrow.
Collapse
Affiliation(s)
- Kyle J Eash
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
365
|
Handisurya A, Schellenbacher C, Reininger B, Koszik F, Vyhnanek P, Heitger A, Kirnbauer R, Förster-Waldl E. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine 2010; 28:4837-41. [PMID: 20472031 PMCID: PMC3792336 DOI: 10.1016/j.vaccine.2010.04.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 04/07/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
WHIM-syndrome is an inherited immunodeficiency disorder with abnormal susceptibility to human papillomavirus (HPV) infection and diseases. We determined safety and immunogenicity to a quadrivalent HPV vaccine in WHIM-syndrome by detection of HPV-specific antibodies and lymphoproliferation. In virus-like-particle (VLP)-ELISA, a WHIM patient showed antibody titers up to 400 for HPV-6/11/16/18, whereas immuno-competent controls developed titers of 6400-25,600. In pseudovirion assays, the patient's neutralization titers ranged from 20 to 400 to the four HPV vaccine types, while titers of 1600-25,600 were detected in healthy vaccinees. Specific proliferation of PBMC of the WHIM patient to the HPV vaccine was demonstrated. This first report on response to HPV vaccination in WHIM-immunodeficiency highlights that patients with WHIM-syndrome, and probably other immunodeficiencies, may benefit from HPV immunoprophylaxis.
Collapse
Affiliation(s)
- Alessandra Handisurya
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Christina Schellenbacher
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Bärbel Reininger
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Frieder Koszik
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Philipp Vyhnanek
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna, Vienna, Austria
| | | | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University Vienna, Vienna, Austria
| | | |
Collapse
|
366
|
Abstract
CXCR4 is a G protein-coupled chemokine receptor that has been implicated in the pathogenesis of primary immunodeficiency disorders and cancer. Autosomal dominant gain-of-function truncations of CXCR4 are associated with warts, hypo-gammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a primary immunodeficiency disorder characterized by neutropenia and recurrent infections. Recent progress has implicated CXCR4-SDF1 (stromal cell-derived factor 1) signaling in regulating neutrophil homeostasis, but the precise role of CXCR4-SDF1 interactions in regulating neutrophil motility in vivo is not known. Here, we use the optical transparency of zebrafish to visualize neutrophil trafficking in vivo in a zebrafish model of WHIM syndrome. We demonstrate that expression of WHIM mutations in zebrafish neutrophils induces neutrophil retention in hematopoietic tissue, impairing neutrophil motility and wound recruitment. The neutrophil retention signal induced by WHIM truncation mutations is SDF1 dependent, because depletion of SDF1 with the use of morpholino oligonucleotides restores neutrophil chemotaxis to wounds. Moreover, localized activation of a genetically encoded, photoactivatable Rac guanosine triphosphatase is sufficient to direct migration of neutrophils that express the WHIM mutation. The findings suggest that this transgenic zebrafish model of WHIM syndrome may provide a valuable tool to screen for agents that modify CXCR4-SDF1 retention signals.
Collapse
|
367
|
Orth G. Génétique et sensibilité aux papillomavirus: le modèle de l’épidermodysplasie verruciforme. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2010. [DOI: 10.1016/s0001-4079(19)32253-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
368
|
Mc Guire PJ, Cunningham-Rundles C, Ochs H, Diaz GA. Oligoclonality, impaired class switch and B-cell memory responses in WHIM syndrome. Clin Immunol 2010; 135:412-21. [PMID: 20226738 PMCID: PMC2868121 DOI: 10.1016/j.clim.2010.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 11/25/2022]
Abstract
Heterozygous truncating mutations in CXCR4 have been identified as a cause of WHIM syndrome (warts, hypogammaglobulinemia, immunodeficiency and myelokathexis). The receptor truncations have been proposed to lead to altered lymphocyte trafficking. The purpose of the described studies was to characterize the B-cell repertoire in WHIM subjects. We confirmed profound B-cell lymphopenia and demonstrated oligoclonality of the circulating B-cell pool by HCDR3 spectratyping. The response to immunization was studied in one subject utilizing a bacteriophage PhiX174 immunization protocol. Spectratyping showed oligoclonality at baseline with normalization of the HCDR3 length distribution by 5 months after immunization with PhiX174 with eventual return to the baseline state. Isotype switching from phage specific neutralizing antibody of the IgM class to IgG was markedly reduced. Overall, these data suggest that impaired CXCR4 signaling in WHIM syndrome results in defective B-cell function and abnormal isotype switching, possibly through effects on germinal center trafficking of lymphocytes.
Collapse
Affiliation(s)
- Peter J. Mc Guire
- Department of Genetics and Genomic Sciences, Mount Sinai Medical Center, New York, NY
| | | | - Hans Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - George A. Diaz
- Department of Genetics and Genomic Sciences, Mount Sinai Medical Center, New York, NY
| |
Collapse
|
369
|
Xu H, Li M, Gui J, Hong Y. Fish germ cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:435-46. [PMID: 20596909 DOI: 10.1007/s11427-010-0058-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/02/2009] [Indexed: 01/15/2023]
Abstract
Fish, like many other animals, have two major cell lineages, namely the germline and soma. The germ-soma separation is one of the earliest events of embryonic development. Germ cells can be specifically labeled and isolated for culture and transplantation, providing tools for reproduction of endangered species in close relatives, such as surrogate production of trout in salmon. Haploid cell cultures, such as medaka haploid embryonic stem cells have recently been obtained, which are capable of mimicking sperm to produce fertile offspring, upon nuclear being directly transferred into normal eggs. Such fish originated from a mosaic oocyte that had a haploid meiotic nucleus and a transplanted haploid mitotic cell culture nucleus. The first semi-cloned fish is Holly. Here we review the current status and future directions of understanding and manipulating fish germ cells in basic research and reproductive technology.
Collapse
Affiliation(s)
- HongYan Xu
- Department of Biological Sciences, National University of Singapore, Singapore 119260, Singapore
| | | | | | | |
Collapse
|
370
|
Abstract
Congenital neutropenia syndromes comprise a heterogeneous group of disorders leading to increased susceptibility to bacterial infections. Recent work has elucidated the molecular basis of several congenital neutropenia syndromes such as mutations in ELA2, HAX1, GF11, and WAS. In addition, a number of complex clinical syndromes associating congenital neutropenia have been recognized and elucidated on a genetic level, e.g. p14-deficiency or G6PC3-deficiency. The clinical and genetic findings of various neutropenia syndromes are being discussed.
Collapse
|
371
|
|
372
|
Kriván G, Erdős M, Kállay K, Benyó G, Tóth Á, Sinkó J, Goda V, Tóth B, Maródi L. Successful umbilical cord blood stem cell transplantation in a child with WHIM syndrome. Eur J Haematol 2010; 84:274-5. [DOI: 10.1111/j.1600-0609.2009.01368.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
373
|
Abstract
OBJECTIVE Mutations of the gsp oncogene are responsible for 30-40% of GH-producing pituitary adenomas and 10% of nonfunctioning pituitary adenomas (NFPAs). However, the pathogenetic mechanism of the remaining pituitary tumours still remains to be identified. Recently, the interaction between the chemokine stromal cell-derived factor 1 and its receptor CXCR4 was found to play an important role in GH production and cell proliferation in various pituitary adenoma cell lines. As CXCR4 is a Gi-coupled chemokine receptor, its constitutive activating mutations may be involved in pituitary tumour formation by cyclic adenosine monophosphate (cAMP)-independent, ERK-related pathways. PATIENTS AND METHODS We investigated whether somatic activating-mutations of CXCR4 might be a possible tumourigenic mechanism for gsp-negative GH-secreting pituitary adenomas and NFPAs. Direct sequencing of polymerase chain reaction-amplified products for coding exons of CXCR4 were performed using genomic deoxyribonucleic acid samples from 37 GH-producing pituitary tumour tissues that were negative for the gsp mutation and 14 CXCR4 expressing NFPAs. RESULTS Immunohistochemical analyses and double immunofluorescent staining of sectioned paraffin-embedded pituitary tissues revealed that CXCR4 is highly expressed in GH-producing pituitary adenomas and NFPAs. Direct sequencing showed that two synonymous mutations in exon 2 (87 C > T and 414 C > T) were detected in 4 out of 51 pituitary tumours. CONCLUSION Our results indicate that an activating mutation of the CXCR4 may not be a common pathogenetic mechanism in GH-producing pituitary tumours and NFPAs.
Collapse
Affiliation(s)
- Yong-ho Lee
- Endocrinology, Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
374
|
Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, Benovic JL. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem 2010; 285:7805-17. [PMID: 20048153 DOI: 10.1074/jbc.m109.091173] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptor CXCR4 is a widely expressed G protein-coupled receptor that has been implicated in a number of diseases including human immunodeficiency virus, cancer, and WHIM syndrome, with the latter two involving dysregulation of CXCR4 signaling. To better understand the role of phosphorylation in regulating CXCR4 signaling, tandem mass spectrometry and phospho-specific antibodies were used to identify sites of agonist-promoted phosphorylation. These studies demonstrated that Ser-321, Ser-324, Ser-325, Ser-330, Ser-339, and two sites between Ser-346 and Ser-352 were phosphorylated in HEK293 cells. We show that Ser-324/5 was rapidly phosphorylated by protein kinase C and G protein-coupled receptor kinase 6 (GRK6) upon CXCL12 treatment, whereas Ser-339 was specifically and rapidly phosphorylated by GRK6. Ser-330 was also phosphorylated by GRK6, albeit with slower kinetics. Similar results were observed in human astroglia cells, where endogenous CXCR4 was rapidly phosphorylated on Ser-324/5 by protein kinase C after CXCL12 treatment, whereas Ser-330 was slowly phosphorylated. Analysis of CXCR4 signaling in HEK293 cells revealed that calcium mobilization was primarily negatively regulated by GRK2, GRK6, and arrestin3, whereas GRK3, GRK6, and arrestin2 played a primary role in positively regulating ERK1/2 activation. In contrast, GRK2 appeared to play a negative role in ERK1/2 activation. Finally, we show that arrestin association with CXCR4 is primarily driven by the phosphorylation of far C-terminal residues on the receptor. These studies reveal that site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases resulting in both positive and negative modulation of CXCR4 signaling.
Collapse
Affiliation(s)
- John M Busillo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
375
|
Abstract
Pharmacological manipulation of CXCR4 has proven clinically useful for mobilization of stem and progenitor cells and in several preclinical models of disease. It is a key component in the localization of leukocytes and stem cells. For patients with multiple myeloma and non-Hodgkin's Lymphoma, treatment with plerixafor, an inhibitor of CXCL12 binding to CXCR4, plus G-CSF mobilizes stem cells for autologous transplantation to a greater degree than the treatment with G-CSF alone, and in some cases when patients could not be mobilized with cytokines, chemotherapy, or the combination. Stem cells from healthy donors mobilized with single agent plerixafor have been used for allogeneic transplantation in acute myelogenous leukemia (AML) patients, although this is still in the early phase of clinical development. Plerixafor is also undergoing evaluation to mobilize tumor cells in patients with AML and chronic lymphocytic leukemia (CLL) to enhance the effectiveness of chemotherapy regimens. Plerixafor's effect on neutrophils may also restore circulating neutrophil counts to normal levels in patients with chronic neutropenias such as in WHIMs syndrome. Other areas where inhibition of CXCR4 may be useful based upon preclinical or clinical data include peripheral vascular disease, autoimmune diseases such as rheumatoid arthritis, pulmonary inflammation, and HIV.
Collapse
|
376
|
WHIM syndrome and oral squamous cell carcinoma. ACTA ACUST UNITED AC 2010; 109:105-8. [DOI: 10.1016/j.tripleo.2009.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/06/2009] [Indexed: 11/21/2022]
|
377
|
Carlisle AJ, Lyttle CA, Carlisle RY, Maris JM. CXCR4 expression heterogeneity in neuroblastoma cells due to ligand-independent regulation. Mol Cancer 2009; 8:126. [PMID: 20028517 PMCID: PMC2807429 DOI: 10.1186/1476-4598-8-126] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/22/2009] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND CXCR4, the receptor for the chemokine stromal-derived factor 1 (SDF-1), has been shown to mediate many of the processes essential for cancer progression such as tumor cell proliferation, metastasis, and angiogenesis. To understand the role of CXCR4 in the biology of neuroblastoma, a disease that presents with wide spread metastases in over 50% of patients, we screened ten patient derived-neuroblastoma cell-lines for basal CXCR4 expression and sought to identify characteristics that correlate with tumor cell phenotype. RESULTS All cell lines expressed CXCR4 mRNA at variable levels, that correlated well with three distinct classes of CXCR4 surface expression (low, moderate, or high) as defined by flow cytometry. Analysis of the kinetics of CXCR4 surface expression on moderate and high expressing cell lines showed a time-dependent down-regulation of the receptor that directly correlated with cell confluency, and was independent of SDF1. Cell lysates showed the presence of multiple CXCR4 isoforms with three major species of approximately 87, 67 and 55 kDa associating with high surface expression, and two distinct species of 45 and 38 kDa correlating with low to null surface expression. Western blot analysis of CXCR4 immunoprecipitates showed that the 87 and 67 kDa forms were ubiquitinated, while the others were not. Finally, treatment of cells with a proteasome inhibitor resulted in down regulation of CXCR4 surface expression. CONCLUSIONS Taken together, these data show that regulation of CXCR4 surface expression in neuroblastoma cells can occur independently of SDF-1 contribution arguing against an autocrine mechanism. Additionally these data suggest that post-translational modifications of CXCR4, in part through direct ubiquitination, can influence trafficking of CXCR4 to the surface of neuroblastoma cells in a ligand-independent manner.
Collapse
Affiliation(s)
- Alex J Carlisle
- Division of Oncology, Abramson Research Center, Children's Hospital of Philadelphia, ARC-907A, 3615 Civic Center Blvd, Philadelphia, Pennsylvania 19104-4399, USA.
| | | | | | | |
Collapse
|
378
|
Impaired recruitment of Grk6 and beta-Arrestin 2 causes delayed internalization and desensitization of a WHIM syndrome-associated CXCR4 mutant receptor. PLoS One 2009; 4:e8102. [PMID: 19956569 PMCID: PMC2779657 DOI: 10.1371/journal.pone.0008102] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/31/2009] [Indexed: 12/11/2022] Open
Abstract
WHIM (warts, hypogammaglobulinemia, infections, and myelokatexis) syndrome is a rare immunodeficiency syndrome linked to heterozygous mutations of the chemokine receptor CXCR4 resulting in truncations of its cytoplasmic tail. Leukocytes from patients with WHIM syndrome display impaired CXCR4 internalization and enhanced chemotaxis in response to its unique ligand SDF-1/CXCL12, which likely contribute to the clinical manifestations. Here, we investigated the biochemical mechanisms underlying CXCR4 deficiency in WHIM syndrome. We report that after ligand activation, WHIM-associated mutant CXCR4 receptors lacking the carboxy-terminal 19 residues internalize and activate Erk 1/2 slower than wild-type (WT) receptors, while utilizing the same trafficking endocytic pathway. Recruitment of β-Arrestin 2, but not β-Arrestin 1, to the active WHIM-mutant receptor is delayed compared to the WT CXCR4 receptor. In addition, while both kinases Grk3 and Grk6 bind to WT CXCR4 and are critical to its trafficking to the lysosomes, Grk6 fails to associate with the WHIM-mutant receptor whereas Grk3 associates normally. Since β-Arrestins and Grks play critical roles in phosphorylation and internalization of agonist-activated G protein-coupled receptors, these results provide a molecular basis for CXCR4 dysfunction in WHIM syndrome.
Collapse
|
379
|
Takaya J, Fujii Y, Higashino H, Taniuchi S, Nakamura M, Kaneko K. A case of WHIM syndrome associated with diabetes and hypothyroidism. Pediatr Diabetes 2009; 10:484-6. [PMID: 19476565 DOI: 10.1111/j.1399-5448.2009.00503.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The WHIM syndrome is a rare immunological disorder characterized by warts, hypogammaglobulinemia, infections, and myelokathexis. We hypothesized that immunological or genetic mechanisms may link WHIM syndrome and type 1 diabetes. We report that the young girl with WHIM syndrome developed diabetes and transient hypothyroidism. A nonsense mutation (C-->T) truncating the CXC chemokine receptor 4 (CXCR4) C-terminal cytoplasmic tail domain occurred at nucleotide position 1000(R334X) of the CXCR4 gene in one allele of the patient was identified, and the person was diagnosed as having WHIM syndrome. Recent observation suggested that the CXCR4, a G-protein-coupled receptor with a unique ligand, CXCL12, might be involved in the pathogenesis for type 1 diabetes. Taken into consideration the concurrent prevalence of the two disorders and the speculated common pathogenesis associated with the CXCR4, our patient may enable us to understand the genetic damage related to accelerated apoptosis.
Collapse
Affiliation(s)
- Junji Takaya
- Department of Pediatrics, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan.
| | | | | | | | | | | |
Collapse
|
380
|
Abstract
A genome-wide linkage scan has provided evidence for a chronic lymphocytic leukemia (CLL) susceptibility locus at 2q21 to which the chemokine receptor CXCR4 gene maps. Recent data provide some evidence for common variation in CXCR4 according to the polymorphic variant rs2228014 defining CLL risk. To examine the role of genetic variation in CXCR4 on CLL risk, we screened 188 familial CLL cases and 213 controls for germline mutations in the coding regions of CXCR4 and genotyped rs2228014 in 1058 CLL cases and 1807 controls. No association between rs2228014 and risk of CLL was seen (P = .83). One truncating (W195X) and 2 missense mutations with possible functional consequences (V139I and G335S) were identified among 186 familial cases and 0 in 213 controls sequenced. Our analysis provides no evidence that common variation in CXCR4 defined by rs228014 influences the risk of CLL, but that functional coding mutations in CXCR4 may contribute to familial CLL.
Collapse
|
381
|
Boztug K, Klein C. Novel genetic etiologies of severe congenital neutropenia. Curr Opin Immunol 2009; 21:472-80. [PMID: 19782549 DOI: 10.1016/j.coi.2009.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 08/24/2009] [Accepted: 09/10/2009] [Indexed: 11/19/2022]
Abstract
Severe congenital neutropenia (SCN) comprises a heterogenous group of primary immunodeficiency disorders collectively characterized by paucity of mature neutrophils. In recent years, progress has been made with respect to the elucidation of genetic causes underlying syndromic and non-syndromic variants of SCN. Most cases of autosomal dominant SCN are associated with mutations in the neutrophil elastase (ELA-2/ELANE) gene, autosomal recessive forms of this disorder can be caused by mutations in the gene encoding the mitochondrial protein HAX-1. Rarely, SCN can be caused by mutations in the gene encoding the transcription factor GFI1 or activating mutations in the Wiskott-Aldrich syndrome (WAS) gene, respectively. More recently, a complex disorder associating SCN and developmental aberrations was identified, caused by mutations in the glucose-6-phosphatase catalytic subunit 3 (G6PC3) gene. Despite our increasing knowledge of the genetic etiologies of SCN, the molecular pathophysiology underlying these disorders remains only partially understood.
Collapse
Affiliation(s)
- Kaan Boztug
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | |
Collapse
|
382
|
Maley SN, Schwartz SM, Johnson LG, Malkki M, Du Q, Daling JR, Li SS, Zhao LP, Petersdorf EW, Madeleine MM. Genetic variation in CXCL12 and risk of cervical carcinoma: a population-based case-control study. Int J Immunogenet 2009; 36:367-75. [PMID: 19788587 DOI: 10.1111/j.1744-313x.2009.00877.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CXCL12 provides a chemotactic signal-directing leucocyte migration and regulates metastatic behaviour of tumour cells. We conducted a population-based case-control study to test the hypothesis that common genetic variation in CXCL12 individual single nucleotide polymorphism (SNP) alleles and haplotypes] is associated with the risk of cervical carcinoma. Cases (n = 917) were residents of western Washington State diagnosed with invasive squamous cell cervical carcinoma (SCC), invasive adenocarcinoma or adenosquamous carcinoma, or adenocarcinoma in situ of the cervix. Control participants (n = 849) were identified from the source population by random digit telephone dialling and frequency matched to cases on county and age. Nine CXCL12 tagSNPs chosen from the SeattleSNPs database were genotyped. The minor allele of intronic SNP rs266085 was inversely associated with cervical cancer under a recessive genetic effects model (OR = 0.74, 95% CI: 0.56-0.98). Among the ten common haplotypes inferred from the nine tagSNPs, one haplotype defined by minor alleles at 5'-flanking SNP rs17885289 and rs266085, and common alleles at the other seven SNPs occurred among 7.8% of cases and 10.6% of controls (dominant model OR = 0.72, 95% CI: 0.56-0.93; recessive model OR = 0.35, 95% CI: 0.12-0.97; and log-additive model OR = 0.72, 95% CI: 0.57-0.90). A stepwise procedure identified rs17885289, rs266085 and 3'-untranslated region (UTR) SNP rs266093 as the most parsimonious subset of SNPs necessary to define the haplotype inversely associated with cervical cancer risk in our study. A 3'-UTR SNP, rs1801157, previously found to be related to HIV pathogenesis, was not associated with cervical cancer risk. Further population-based studies are warranted to confirm these associations between genetic variation in CXCL12 and cervical cancer risk.
Collapse
Affiliation(s)
- S N Maley
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
383
|
|
384
|
Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S, Pogacic V, Villa A, Ehret S, Berridge G, Spoo A, Dierks C, Biondi A, Knapp S, Duyster J, Schwaller J. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. ACTA ACUST UNITED AC 2009; 206:1957-70. [PMID: 19687226 PMCID: PMC2737164 DOI: 10.1084/jem.20082074] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
FLT3-ITD–mediated leukemogenesis is associated with increased expression of oncogenic PIM serine/threonine kinases. To dissect their role in FLT3-ITD–mediated transformation, we performed bone marrow reconstitution assays. Unexpectedly, FLT3-ITD cells deficient for PIM1 failed to reconstitute lethally irradiated recipients, whereas lack of PIM2 induction did not interfere with FLT3-ITD–induced disease. PIM1-deficient bone marrow showed defects in homing and migration and displayed decreased surface CXCR4 expression and impaired CXCL12–CXCR4 signaling. Through small interfering RNA–mediated knockdown, chemical inhibition, expression of a dominant-negative mutant, and/or reexpression in knockout cells, we found PIM1 activity to be essential for proper CXCR4 surface expression and migration of cells toward a CXCL12 gradient. Purified PIM1 led to the phosphorylation of serine 339 in the CXCR4 intracellular domain in vitro, a site known to be essential for normal receptor recycling. In primary leukemic blasts, high levels of surface CXCR4 were associated with increased PIM1 expression, and this could be significantly reduced by a small molecule PIM inhibitor in some patients. Our data suggest that PIM1 activity is important for homing and migration of hematopoietic cells through modification of CXCR4. Because CXCR4 also regulates homing and maintenance of cancer stem cells, PIM1 inhibitors may exert their antitumor effects in part by interfering with interactions with the microenvironment.
Collapse
Affiliation(s)
- Rebekka Grundler
- Department of Internal Medicine III, Technical University, Munich 81739, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Tilton JC, Doms RW. Entry inhibitors in the treatment of HIV-1 infection. Antiviral Res 2009; 85:91-100. [PMID: 19683546 DOI: 10.1016/j.antiviral.2009.07.022] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/21/2009] [Accepted: 07/30/2009] [Indexed: 11/15/2022]
Abstract
Infection of target cells by HIV is a complex, multi-stage process involving attachment to host cells and CD4 binding, coreceptor binding, and membrane fusion. Drugs that block HIV entry are collectively known as entry inhibitors, but comprise a complex group of drugs with multiple mechanisms of action depending on the stage of the entry process at which they act. Two entry inhibitors, maraviroc and enfuvirtide, have been approved for the treatment of HIV-1 infection, and a number of agents are in development. This review covers the entry inhibitors and their use in the management of HIV-1 infection. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- John C Tilton
- Department of Microbiology, University of Pennsylvania, 301C Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
386
|
The EVER proteins as a natural barrier against papillomaviruses: a new insight into the pathogenesis of human papillomavirus infections. Microbiol Mol Biol Rev 2009; 73:348-70. [PMID: 19487731 DOI: 10.1128/mmbr.00033-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Infections by human papillomaviruses (HPVs) are the most frequently occurring sexually transmitted diseases. The crucial role of genital oncogenic HPV in cervical carcinoma development is now well established. In contrast, the role of cutaneous HPV in skin cancer development remains a matter of debate. Cutaneous beta-HPV strains show an amazing ubiquity. The fact that a few oncogenic genotypes cause cancers in patients suffering from epidermodysplasia verruciformis is in sharp contrast to the unapparent course of infection in the general population. Our recent investigations revealed that a natural barrier exists in humans, which protects them against infection with these papillomaviruses. A central role in the function of this HPV-specific barrier is played by a complex of the zinc-transporting proteins EVER1, EVER2, and ZnT-1, which maintain cellular zinc homeostasis. Apparently, the deregulation of the cellular zinc balance emerges as an important step in the life cycles not only of cutaneous but also of genital HPVs, although the latter viruses have developed a mechanism by which they can break the barrier and impose a zinc imbalance. Herein, we present a previously unpublished list of the cellular partners of EVER proteins, which points to future directions concerning investigations of the mechanisms of action of the EVER/ZnT-1 complex. We also present a general overview of the pathogenesis of HPV infections, taking into account the latest discoveries regarding the role of cellular zinc homeostasis in the HPV life cycle. We propose a potential model for the mechanism of function of the anti-HPV barrier.
Collapse
|
387
|
Bussone G, Mouthon L. [Late onset of primary immune deficiencies]. Presse Med 2009; 39:196-207. [PMID: 19481902 DOI: 10.1016/j.lpm.2009.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/30/2009] [Accepted: 04/07/2009] [Indexed: 01/20/2023] Open
Abstract
Primary immune deficiencies (PID) are characterized by a failure of the immune system that is not explained by any infectious, neoplastic, or iatrogenic cause. The diagnosis of PID should be considered in cases of severe or recurrent infections but also in cases with granulomatosis, autoimmune diseases, hemophagocytic syndrome, lymphoproliferative disorders, or even some solid tumors. The onset of PID may be late, most often in adulthood. Nonetheless, late onset may also mean in the first years rather than months of life or in adolescence rather than early childhood. In adults, the diagnosis of PID cannot be considered before acquired immunodeficiencies--far more frequent--are ruled out. Factors affecting the late onset of PID are not known.
Collapse
Affiliation(s)
- Guillaume Bussone
- Université Paris Descartes, Faculté de médecine, Pôle de médecine interne, Centre de référence pour les vascularites nécrosantes et la sclérodermie systémique, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, F-75679 Paris Cedex 14, France
| | | |
Collapse
|
388
|
Pessach I, Walter J, Notarangelo LD. Recent advances in primary immunodeficiencies: identification of novel genetic defects and unanticipated phenotypes. Pediatr Res 2009; 65:3R-12R. [PMID: 19190530 DOI: 10.1203/pdr.0b013e31819dbe1e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Primary immunodeficiencies (PIDs) have traditionally been defined according to their immunologic phenotype. Far from being concluded, the search for human genes that, when mutated, cause PID is actively being pursued. During the last year, four novel genetic defects that cause severe combined immunodeficiency and severe congenital neutropenia have been identified. At the same time, the immunologic definition of primary immunodeficiencies has been expanded by the recognition that genetic defects affecting innate immunity may result in selective predisposition to certain infections, such as mycobacterial disease, herpes simplex encephalitis, and invasive pneumococcal infections. Studies of genetically determined susceptibility to infections have recently shown that immunologic defects may also account for novel infectious phenotypes, such as malaria or leprosy. Finally, a growing body of evidence indicates that primary immunodeficiencies may present with a noninfectious clinical phenotype that may be restricted to single organs, as in the case of atypical hemolytic uremic syndrome or pulmonary alveolar proteinosis. Overall, these achievements highlight the importance of human models, which often differ from the corresponding animal models.
Collapse
Affiliation(s)
- Itai Pessach
- Division of Immunology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
389
|
Chong SW, Korzh V, Jiang YJ. Myogenesis and molecules - insights from zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2009; 74:1693-1755. [PMID: 20735668 DOI: 10.1111/j.1095-8649.2009.02174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Myogenesis is a fundamental process governing the formation of muscle in multicellular organisms. Recent studies in zebrafish Danio rerio have described the molecular events occurring during embryonic morphogenesis and have thus greatly clarified this process, helping to distinguish between the events that give rise to fast v. slow muscle. Coupled with the well-known Hedgehog signalling cascade and a wide variety of cellular processes during early development, the continual research on D. rerio slow muscle precursors has provided novel insights into their cellular behaviours in this organism. Similarly, analyses on fast muscle precursors have provided knowledge of the behaviour of a sub-set of epitheloid cells residing in the anterior domain of somites. Additionally, the findings by various groups on the roles of several molecules in somitic myogenesis have been clarified in the past year. In this study, the authors briefly review the current trends in the field of research of D. rerio trunk myogenesis.
Collapse
Affiliation(s)
- S-W Chong
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, A STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|
390
|
Tassone L, Notarangelo LD, Bonomi V, Savoldi G, Sensi A, Soresina A, Smith CIE, Porta F, Plebani A, Notarangelo LD, Badolato R. Clinical and genetic diagnosis of warts, hypogammaglobulinemia, infections, and myelokathexis syndrome in 10 patients. J Allergy Clin Immunol 2009; 123:1170-3, 1173.e1-3. [PMID: 19321197 DOI: 10.1016/j.jaci.2008.12.1133] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/24/2008] [Accepted: 12/29/2008] [Indexed: 11/17/2022]
|
391
|
Abstract
Chemokines are small, secreted proteins that bind to the chemokine receptor subfamily of class A G protein-coupled receptors. Collectively, these receptor-ligand pairs are responsible for diverse physiological responses including immune cell trafficking, development and mitogenic signaling, both in the context of homeostasis and disease. However, chemokines and their receptors are not isolated entities, but instead function in complex networks involving homo- and heterodimer formation as well as crosstalk with other signaling complexes. Here the functional consequences of chemokine receptor activity, from the perspective of both direct physical associations with other receptors and indirect crosstalk with orthogonal signaling pathways, are reviewed. Modulation of chemokine receptor activity through these mechanisms has significant implications in physiological and pathological processes, as well as drug discovery and drug efficacy. The integration of signals downstream of chemokine and other receptors will be key to understanding how cells fine-tune their response to a variety of stimuli, including therapeutics.
Collapse
Affiliation(s)
- C. L. Salanga
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA 92093-0684 USA
| | - M. O’Hayre
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA 92093-0684 USA
| | - T. Handel
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA 92093-0684 USA
| |
Collapse
|
392
|
Wang A, Fairhurst AM, Tus K, Subramanian S, Liu Y, Lin F, Igarashi P, Zhou XJ, Batteux F, Wong D, Wakeland EK, Mohan C. CXCR4/CXCL12 hyperexpression plays a pivotal role in the pathogenesis of lupus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:4448-58. [PMID: 19299746 PMCID: PMC2946082 DOI: 10.4049/jimmunol.0801920] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Among various surface molecules screened, CXCR4 was significantly up-regulated on monocytes, neutrophils, B cell subsets, and plasma cells in multiple murine models of lupus with active nephritis, including B6.Sle1Yaa, BXSB, and MRL.lpr. TLR-mediated signaling and inflammatory cytokines accounted in part for this increase. Increased CXCR4 expression was associated with functional consequences, including increased migration and enhanced B cell survival. Simultaneously, the ligand for CXCR4, CXCL12, was significantly up-regulated in the nephritic kidneys. Treatment with a peptide antagonist of CXCR4 prolonged survival and reduced serum autoantibodies, splenomegaly, intrarenal leukocyte trafficking, and end organ disease in a murine model of lupus. These findings underscore the pathogenic role of CXCR4/CXCL12 in lymphoproliferative lupus and lupus nephritis and highlight this axis as a promising therapeutic target in this disease.
Collapse
Affiliation(s)
- Andrew Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Anna-Marie Fairhurst
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Katalin Tus
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Srividya Subramanian
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yang Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Fangming Lin
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Peter Igarashi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xin J. Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Frederic Batteux
- Laboratoire d'Immunologie, EA1833, Faculté de Médecine, Université Paris-Descartes, Paris, France
| | | | - Edward K. Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chandra Mohan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
393
|
Burger JA, Stewart DJ. CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opin Investig Drugs 2009; 18:481-90. [PMID: 19335276 DOI: 10.1517/13543780902804249] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Small-cell lung cancer (SCLC) is a particularly aggressive form of lung cancer characterized by early and widespread metastases and the ability to rapidly develop resistance against chemotherapeutic agents. Tumor cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokine receptors and adhesion molecules. SCLC cells express high levels of CXCR4 (CD184), a seven-transmembrane G-protein-coupled chemokine receptor. Stromal cells within the bone marrow microenvironment and at extramedullary sites constitutively secrete stromal cell-derived factor-1 (CXCL12), the ligand for CXCR4. Activation of CXCR4 induces SCLC cell migration and adhesion to stromal cells that secrete CXCL12, which in turn provides growth- and drug resistance-signals to the tumor cells. CXCR4 antagonists, such as Plerixafor (AMD3100) and T140 analogues (TN14003/ BKT140), disrupt CXCR4-mediated SCLC cell-adhesion to stromal cells. In stromal cell co-cultures, CXCR4 antagonists also sensitize SCLC cells to cytotoxic drugs, such as etoposide, and thereby antagonize cell adhesion-mediated drug resistance. Therefore, targeting the CXCR4-CXCL12 axis is a novel, attractive therapeutic approach in SCLC. Here, we summarize preclinical data about CXCR4 in SCLC, and the current status of the preclinical and clinical development of CXCR4 antagonists.
Collapse
Affiliation(s)
- Jan A Burger
- University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX 77230-1402, USA.
| | | |
Collapse
|
394
|
CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 2009; 113:4711-9. [PMID: 19264920 DOI: 10.1182/blood-2008-09-177287] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The number of neutrophils in the blood is tightly regulated to ensure adequate protection against microbial pathogens while minimizing damage to host tissue. Neutrophil homeostasis in the blood is achieved through a balance of neutrophil production, release from the bone marrow, and clearance from the circulation. Accumulating evidence suggests that signaling by CXCL12, through its major receptor CXCR4, plays a key role in maintaining neutrophil homeostasis. Herein, we generated mice with a myeloid lineage-restricted deletion of CXCR4 to define the mechanisms by which CXCR4 signals regulate this process. We show that CXCR4 negatively regulates neutrophil release from the bone marrow in a cell-autonomous fashion. However, CXCR4 is dispensable for neutrophil clearance from the circulation. Neutrophil mobilization responses to granulocyte colony-stimulating factor (G-CSF), CXCL2, or Listeria monocytogenes infection are absent or impaired, suggesting that disruption of CXCR4 signaling may be a common step mediating neutrophil release. Collectively, these data suggest that CXCR4 signaling maintains neutrophil homeostasis in the blood under both basal and stress granulopoiesis conditions primarily by regulating neutrophil release from the bone marrow.
Collapse
|
395
|
Human papilloma virus (HPV) infection in children and adolescents. Eur J Pediatr 2009; 168:267-73. [PMID: 19050916 DOI: 10.1007/s00431-008-0882-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/23/2008] [Accepted: 11/13/2008] [Indexed: 01/18/2023]
Abstract
Human papilloma viruses (HPV) are common pathogens associated with a wide range of cutaneous and mucosal infections in childhood. Different HPV types can cause common warts, genital warts, low-grade as well as high-grade squamous intraepithelial lesions. Anogenital warts represent an issue with legal and clinical implications and evaluation of children for the possibility of sexual abuse should be considered in all cases. Recurrent respiratory papillomatosis has also been associated with HPV infection in a variety of studies. The recently introduced HPV vaccination is expected to prevent HPV-related cervical cancer in adulthood; however, HPV infection will continue to affect children.
Collapse
|
396
|
Abstract
Leukocyte recirculation through central and peripheral lymphoid organs and peripheral tissues is essential to maintain immune homeostasis. Some of the genetically determined, primary immunodeficiencies compromise leukocyte trafficking. Here, we review the mechanisms and consequences of impaired leukocyte trafficking in leukocyte adhesion-deficiency syndromes, Warts-Hypo-gamma-globulinemia-Infections-Myelokathexis syndrome and Wiskott-Aldrich syndrome.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Division of Immunology, Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Boston, MA 02115, USA.
| | | |
Collapse
|
397
|
Lin JH, Wang KY, Kraft S, Roberts RL. Resolution of warts in association with subcutaneous immunoglobulin in immune deficiency. Pediatr Dermatol 2009; 26:155-8. [PMID: 19419461 DOI: 10.1111/j.1525-1470.2009.00874.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Common variable immunodeficiency is the most common severe primary immunodeficiency. Most common variable immunodeficiency patients have progressive hypogammaglobulinemia involving all immunoglobulin classes, poor or absent antibody responses, and recurrent bacterial infections, usually of the sino-respiratory tract. Some may present with complicated cutaneous infections like furunculosis (J Allergy Clin Immunol; 109: 581) or recurrent cutaneous warts. Here, we report the case of an 18-year-old male diagnosed with common variable immunodeficiency who had extensive cutaneous warts that resolved within 2 months of starting weekly infusions of subcutaneous immunoglobulin.
Collapse
Affiliation(s)
- Joann H Lin
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
398
|
Abstract
The bone marrow is the site of neutrophil production, a process that is regulated by the cytokine granulocyte colony-stimulating factor (G-CSF). Mature neutrophils are continually released into the circulation, with an estimated 10(11) neutrophils exiting the bone marrow daily under basal conditions. These leucocytes have a short half-life in the blood of approximately 6.5 hr, and are subsequently destroyed in the spleen, liver and indeed the bone marrow itself. Additionally, mature neutrophils are retained in the bone marrow by the stromal cell-derived factor (SDF-1alpha)/chemokine (C-X-C motif) receptor 4 (CXCR4) chemokine axis and form the bone marrow reserve. Following infection or inflammatory insult, neutrophil release from the bone marrow reserve is substantially elevated and this process is mediated by the co-ordinated actions of cytokines and chemokines. In this review we discuss the factors and molecular mechanisms regulating the neutrophil mobilization and consider the mechanisms and functional significance of neutrophil clearance via the bone marrow.
Collapse
Affiliation(s)
- Rebecca C Furze
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
399
|
Ming JE, Stiehm ER. Genetic syndromic immunodeficiencies with antibody defects. Immunol Allergy Clin North Am 2009; 28:715-36, vii. [PMID: 18940571 DOI: 10.1016/j.iac.2008.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This article reviews the major syndromic immunodeficiencies with significant antibody defects, many of which may require intravenous immunogammaglobulin therapy. The authors define syndromic immunodeficiency as an illness associated with a characteristic group of phenotypic abnormalities or laboratory features that comprise a recognizable syndrome. Many are familial with a defined inheritance pattern. Immunodeficiency may not be a major part of the illness and may not be present in all patients; thus, these conditions differ from primary immunodeficiency syndromes, in which immune abnormalities are a consistent and prominent feature of their disease.
Collapse
Affiliation(s)
- Jeffrey E Ming
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, The University of Pennsylvania School of Medicine, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
400
|
Roten LT, Johnson MP, Forsmo S, Fitzpatrick E, Dyer TD, Brennecke SP, Blangero J, Moses EK, Austgulen R. Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and pre-eclampsia in a large Norwegian population-based study (the HUNT study). Eur J Hum Genet 2009; 17:250-7. [PMID: 18781190 PMCID: PMC2696227 DOI: 10.1038/ejhg.2008.158] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/12/2008] [Accepted: 07/29/2008] [Indexed: 11/09/2022] Open
Abstract
Genome-wide scans in Icelandic, Australian/New Zealand and Finnish pedigrees have provided evidence for maternal susceptibility loci for pre-eclampsia on chromosome 2, although at different positions (Iceland: 2p13 and 2q23, Australia/New Zealand: 2p11-12 and 2q22, Finland: 2p25). In this project, a large population-based (n=65 000) nested case-control study was performed in Norway to further explore the association between positional candidate genes on chromosome 2q and pre-eclampsia, using single-nucleotide polymorphisms (SNPs). DNA samples from 1139 cases (women with one or more pre-eclamptic pregnancies) and 2269 controls (women with normal pregnancies) were genotyped using the Applied Biosystems SNPlex high-throughput genotyping assay. In total, 71 SNPs within positional candidate genes at 2q22-23 locus on chromosome 2 were genotyped in each individual. Genotype data were statistically analysed with the sequential oligogenic linkage analysis routines (SOLAR) computer package. Nominal evidence of association was found for six SNPs (rs1014064, rs17742134, rs1424941, rs2161983, rs3768687 and rs3764955) within the activin receptor type 2 gene (ACVR2A) (all P-values <0.05). The non-independence of statistical tests due to linkage disequilibrium between SNPs at a false discovery rate of 5% identifies our four best SNPs (rs1424941, rs1014064, rs2161983 and rs3768687) to remain statistically significant. The fact that populations with different ancestors (Iceland/Norway-Australia/New Zealand) demonstrate a common maternal pre-eclampsia susceptibility locus on chromosome 2q22-23, may suggest a general role of this locus, and possibly the ACVR2A gene, in pre-eclampsia pathogenesis.
Collapse
Affiliation(s)
- Linda T Roten
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|