351
|
Lin X, Huang J, Shi Y, Liu W. Tissue Engineering and Regenerative Medicine in Applied Research: A Year in Review of 2014. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:177-86. [PMID: 25588683 DOI: 10.1089/ten.teb.2015.0004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xunxun Lin
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Jia Huang
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Yuan Shi
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Wei Liu
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, P.R. China
| |
Collapse
|
352
|
Diversity of epithelial stem cell types in adult lung. Stem Cells Int 2015; 2015:728307. [PMID: 25810726 PMCID: PMC4354973 DOI: 10.1155/2015/728307] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 01/10/2023] Open
Abstract
Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer.
Collapse
|
353
|
Abstract
RATIONALE Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. OBJECTIVE The goal was to comprehensively review the current state of bioreactor development for the lung. METHODS A search using PubMed was done for published, peer-reviewed papers using the keywords "lung" AND "bioreactor" or "bioengineering" or "tissue engineering" or "ex vivo perfusion". MAIN RESULTS Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. CONCLUSIONS Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest challenges that lie ahead for lung bioengineering can only be overcome by future advances in technology that solve the problems of cell production and tissue incorporation.
Collapse
Affiliation(s)
- Angela Panoskaltsis-Mortari
- Departments of Pediatrics and Medicine; Blood and Marrow Transplant Program; Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, 55455, U.S.A
| |
Collapse
|
354
|
Abstract
Ageing is the main risk factor for major non-communicable chronic lung diseases, including chronic obstructive pulmonary disease, most forms of lung cancer and idiopathic pulmonary fibrosis. While the prevalence of these diseases continually increases with age, their respective incidence peaks at different times during the lifespan, suggesting specific effects of ageing on the onset and/or pathogenesis of chronic obstructive pulmonary disease, lung cancer and idiopathic pulmonary fibrosis. Recently, the nine hallmarks of ageing have been defined as cell-autonomous and non-autonomous pathways involved in ageing. Here, we review the available evidence for the involvement of each of these hallmarks in the pathogenesis of chronic obstructive pulmonary disease, lung cancer, or idiopathic pulmonary fibrosis. Importantly, we propose an additional hallmark, “dysregulation of the extracellular matrix”, which we argue acts as a crucial modifier of cell-autonomous changes and functions, and as a key feature of the above-mentioned lung diseases.
Collapse
|
355
|
Emura M, Aufderheide M, Mohr U. Target cell types with stem/progenitor function to isolate for in vitro reconstruction of human bronchiolar epithelia. ACTA ACUST UNITED AC 2015; 67:81-8. [DOI: 10.1016/j.etp.2014.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/19/2022]
|
356
|
Rafii S, Cao Z, Lis R, Siempos II, Chavez D, Shido K, Rabbany SY, Ding BS. Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nat Cell Biol 2015; 17:123-136. [PMID: 25621952 DOI: 10.1038/ncb3096] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
The lung alveoli regenerate after surgical removal of the left lobe by pneumonectomy (PNX). How this alveolar regrowth/regeneration is initiated remains unknown. We found that platelets trigger lung regeneration by supplying stromal-cell-derived factor-1 (SDF-1, also known as CXCL12). After PNX, activated platelets stimulate SDF-1 receptors CXCR4 and CXCR7 on pulmonary capillary endothelial cells (PCECs) to deploy the angiocrine membrane-type metalloproteinase MMP14, stimulating alveolar epithelial cell (AEC) expansion and neo-alveolarization. In mice lacking platelets or platelet Sdf1, PNX-induced alveologenesis was diminished. Reciprocally, infusion of Sdf1(+/+) but not Sdf1-deficient platelets rescued lung regeneration in platelet-depleted mice. Endothelial-specific ablation of Cxcr4 and Cxcr7 in adult mice similarly impeded lung regeneration. Notably, mice with endothelial-specific Mmp14 deletion exhibited impaired expansion of AECs but not PCECs after PNX, which was not rescued by platelet infusion. Therefore, platelets prime PCECs to initiate lung regeneration, extending beyond their haemostatic contribution. Therapeutic targeting of this haemo-vascular niche could enable regenerative therapy for lung diseases.
Collapse
Affiliation(s)
- Shahin Rafii
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065.,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Zhongwei Cao
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Raphael Lis
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065.,Department of Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Ilias I Siempos
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065.,First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, University of Athens Medical School, Athens 10675, Greece
| | - Deebly Chavez
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065.,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Koji Shido
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Sina Y Rabbany
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065.,Bioengineering Program, Hofstra University, Hempstead, NY 11549
| | - Bi-Sen Ding
- Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10065.,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
357
|
Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 2015; 16:27-35. [PMID: 25521682 PMCID: PMC4318521 DOI: 10.1038/ni.3045] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Division of Neonatology, Division of Perinatal Biology and Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
358
|
Colvin KL, Yeager ME. Applying Biotechnology and Bioengineering to Pediatric Lung Disease: Emerging Paradigms and Platforms. Front Pediatr 2015; 3:45. [PMID: 26106589 PMCID: PMC4460801 DOI: 10.3389/fped.2015.00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/08/2015] [Indexed: 11/15/2022] Open
Abstract
Pediatric lung diseases remain a costly worldwide health burden. For many children with end-stage lung disease, lung transplantation remains the only therapeutic option. Due to the limited number of lungs available for transplantation, alternatives to lung transplant are desperately needed. Recently, major improvements in tissue engineering have resulted in newer technology and methodology to develop viable bioengineered lungs. These include critical advances in lung cell biology, stem cell biology, lung extracellular matrix, microfabrication techniques, and orthotopic transplantation of bioartificial lungs. The goal of this short review is to engage the reader's interest with regard to these emerging concepts and to stimulate their interest to learn more. We review the existing state of the art of lung tissue engineering, and point to emerging paradigms and platforms in the field. Finally, we summarize the challenges and unmet needs that remain to be overcome.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Pediatrics-Critical Care, University of Colorado Denver , Denver, CO , USA ; Cardiovascular Pulmonary Research, University of Colorado Denver , Denver, CO , USA ; Department of Bioengineering, University of Colorado Denver , Denver, CO , USA ; Linda Crnic Institute for Down Syndrome, University of Colorado Denver , Denver, CO , USA
| | - Michael E Yeager
- Department of Pediatrics-Critical Care, University of Colorado Denver , Denver, CO , USA ; Cardiovascular Pulmonary Research, University of Colorado Denver , Denver, CO , USA ; Department of Bioengineering, University of Colorado Denver , Denver, CO , USA ; Linda Crnic Institute for Down Syndrome, University of Colorado Denver , Denver, CO , USA
| |
Collapse
|
359
|
Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 2014; 244:342-66. [PMID: 25470458 DOI: 10.1002/dvdy.24234] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. RESULTS This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation. CONCLUSIONS The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | | |
Collapse
|
360
|
Kim SY, Wong AHM, Abou Neel EA, Chrzanowski W, Chan HK. The future perspectives of natural materials for pulmonary drug delivery and lung tissue engineering. Expert Opin Drug Deliv 2014; 12:869-87. [DOI: 10.1517/17425247.2015.993314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
361
|
Lipsi R, Rogliani P, Calzetta L, Segreti A, Cazzola M. The clinical use of regenerative therapy in COPD. Int J Chron Obstruct Pulmon Dis 2014; 9:1389-96. [PMID: 25548520 PMCID: PMC4271722 DOI: 10.2147/copd.s49519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation.
Collapse
Affiliation(s)
- Roberto Lipsi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Department of Pulmonary Rehabilitation, San Raffaele Pisana Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Segreti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Cazzola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
362
|
Lange AW, Sridharan A, Xu Y, Stripp BR, Perl AK, Whitsett JA. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung. J Mol Cell Biol 2014; 7:35-47. [PMID: 25480985 DOI: 10.1093/jmcb/mju046] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells.
Collapse
Affiliation(s)
- Alexander W Lange
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | - Anusha Sridharan
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | - Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | - Anne-Karina Perl
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| |
Collapse
|
363
|
Weiss DJ, Elliott M, Jang Q, Poole B, Birchall M. Tracheal bioengineering: the next steps. Proceeds of an International Society of Cell Therapy Pulmonary Cellular Therapy Signature Series Workshop, Paris, France, April 22, 2014. Cytotherapy 2014; 16:1601-13. [PMID: 25457172 DOI: 10.1016/j.jcyt.2014.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/15/2022]
Abstract
There has been significant and exciting recent progress in the development of bioengineering approaches for generating tracheal tissue that can be used for congenital and acquired tracheal diseases. This includes a growing clinical experience in both pediatric and adult patients with life-threatening tracheal diseases. However, not all of these attempts have been successful, and there is ongoing discussion and debate about the optimal approaches to be used. These include considerations of optimal materials, particularly use of synthetic versus biologic scaffolds, appropriate cellularization of the scaffolds, optimal surgical approaches and optimal measure of both clinical and biologic outcomes. To address these issues, the International Society of Cell Therapy convened a first-ever meeting of the leading clinicians and tracheal biologists, along with experts in regulatory and ethical affairs, to discuss and debate the issues. A series of recommendations are presented for how to best move the field ahead.
Collapse
Affiliation(s)
- Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Martin Elliott
- Department of Cardiothoracic Surgery, Great Ormond Street Hospital, London, United Kingdom
| | - Queenie Jang
- International Society for Cell Therapy, Vancouver, British Columbia, Canada
| | - Brian Poole
- International Society for Cell Therapy, Vancouver, British Columbia, Canada
| | - Martin Birchall
- Royal National Throat Nose, and Ear Hospital and University College London, London, United Kingdom.
| |
Collapse
|