351
|
Richter F, Bauer R, Lehmenkühler A, Schaible HG. Spreading depression in the brainstem of the adult rat: electrophysiological parameters and influences on regional brainstem blood flow. J Cereb Blood Flow Metab 2008; 28:984-94. [PMID: 18059430 DOI: 10.1038/sj.jcbfm.9600594] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cortical spreading depression is a pathophysiological excitation wave that occurs during pathophysiological brain conditions such as ischemic brain infarction, migraine aura, and others. Judged from experiments in rodents, the brainstem is thought to be comparatively resistant to the generation of spreading depression. However, because spreading depression can be elicited in the brainstem of rat pups after superfusing the brainstem with solutions enhancing excitability, we reinvestigated spreading depression in the brainstem of the adult rat. Based on theoretical predictions indicating a major role of extracellular potassium in susceptibility to spreading depression, we used conditioning solutions in which chloride ions were replaced by acetate and tetraethylammonium chloride and a small amount of KCl were added. Under these conditions, spreading depression was reproducibly elicited in the brainstem either by topical application of KCl crystals to the brainstem surface or by local microinjection of KCl into the brainstem. The direct current shifts so elicited were accompanied by typical elevation of extracellular potassium ions, propagated in the brainstem, and were prevented by MK-801, an N-methyl D-aspartate blocker. During spreading depression, the regional blood flow in the brainstem was transiently increased. In addition, systemic arterial blood pressure, but not the heart rate, was transiently enhanced. In the nonconditioned brainstem, KCl stimulation neither elicited spreading depression nor induced changes in regional blood flow and blood pressure. These data show that proper conditioning renders the brainstem susceptible to spreading depression, and that spreading depression at this site elicits changes in local circulation and systemic blood pressure.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I/Neurophysiology, Friedrich Schiller University Jena, Jena, Germany.
| | | | | | | |
Collapse
|
352
|
Barré M, Hamelin S, Minotti L, Kahane P, Vercueil L. Aura visuelle migraineuse et crise épileptique : la migralepsie revisitée. Rev Neurol (Paris) 2008; 164:246-52. [DOI: 10.1016/j.neurol.2007.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/10/2007] [Accepted: 10/27/2007] [Indexed: 11/26/2022]
|
353
|
Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines. J Neurosci 2008; 28:1756-72. [PMID: 18272696 DOI: 10.1523/jneurosci.5128-07.2008] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We adapt a mouse global ischemia model to permit rapid induction of ischemia and reperfusion in conjunction with two-photon imaging to monitor the initial ionic, structural, and functional implications of brief interruptions of blood flow (6-8 min) in vivo. After only 2-3 min of global ischemia, a wide spread loss of mouse somatosensory cortex apical dendritic structure is initiated during the passage of a propagating wave (3.3 mm/min) of ischemic depolarization. Increases in intracellular calcium levels occurred during the wave of ischemic depolarization and were coincident with the loss of dendritic structure, but were not triggered by reperfusion. To assess the role of NMDA receptors, we locally applied the antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] at concentrations sufficient to fully block local NMDA agonist-evoked changes in intracellular calcium levels in vivo. Changes in dendritic structure and intracellular calcium levels were independent of NMDA receptor activation. Local application of the non-NMDA glutamate receptor antagonist CNQX also failed to block ischemic depolarization or rapid changes in dendrite structure. Within 3-5 min of reperfusion, damage ceased and restoration of synaptic structure occurred over 10-60 min. In contrast to a reperfusion promoting damage, over this time scale, the majority of spines and dendrites regained their original structure during reperfusion. Intrinsic optical signal imaging of sensory evoked maps indicated that reversible alteration in dendritic structure during reperfusion was accompanied by restored functional maps. Our results identify glutamate receptor-independent ischemic depolarization as the major ionic event associated with disruption of synaptic structure during the first few minutes of ischemia in vivo.
Collapse
|
354
|
Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state. J Neurosci 2008; 28:1153-62. [PMID: 18234893 DOI: 10.1523/jneurosci.4105-07.2008] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gamma oscillations have been implicated in higher cognitive processes and might critically depend on proper mitochondrial function. Using electrophysiology, oxygen sensor microelectrode, and imaging techniques, we investigated the interactions of neuronal activity, interstitial pO2, and mitochondrial redox state [NAD(P)H and FAD (flavin adenine dinucleotide) fluorescence] in the CA3 subfield of organotypic hippocampal slice cultures. We find that gamma oscillations and spontaneous network activity decrease significantly at pO2 levels that do not affect neuronal population responses as elicited by moderate electrical stimuli. Moreover, pO2 and mitochondrial redox states are tightly coupled, and electrical stimuli reveal transient alterations of redox responses when pO2 decreases within the normoxic range. Finally, evoked redox responses are distinct in somatic and synaptic neuronal compartments and show different sensitivity to changes in pO2. We conclude that the threshold of interstitial pO2 for robust CA3 network activities and required mitochondrial function is clearly above the "critical" value, which causes spreading depression as a result of generalized energy failure. Our study highlights the importance of a functional understanding of mitochondria and their implications on activities of individual neurons and neuronal networks.
Collapse
|
355
|
Farkas E, Pratt R, Sengpiel F, Obrenovitch TP. Direct, live imaging of cortical spreading depression and anoxic depolarisation using a fluorescent, voltage-sensitive dye. J Cereb Blood Flow Metab 2008; 28:251-62. [PMID: 17971792 PMCID: PMC2653938 DOI: 10.1038/sj.jcbfm.9600569] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perilesion depolarisations, whether transient anoxic depolarisation (AD) or spreading depression (SD), occur in stroke models and in patients with acute brain ischaemia, but their contribution to lesion progression remains unclear. As these phenomena correspond to waves of cellular depolarisation, we have developed a technique for their live imaging with a fluorescent voltage-sensitive (VS) dye (RH-1838). Method development and validation were performed in two different preparations: chicken retina, to avoid any vascular interference; and cranial window exposing the cortical surface of anaesthetised rats. Spreading depression was produced by high-K medium, and AD by complete terminal ischaemia in rats. After dye loading, the preparation was illuminated at its excitation wavelength and fluorescence changes were recorded sequentially with a charge-coupled device camera. No light was recorded when the VS dye was omitted, ruling out the contribution of any endogenous fluorophore. With both preparations, the changes in VS dye fluorescence with SD were analogous to those of the DC (direct current) potential recorded with glass electrodes. Although some blood quenching of the emitted light was identified, the VS dye signatures of SD had a good signal-to-noise ratio and were reproducible. The changes in VS dye fluorescence associated with AD were more complex because of additional interferents, especially transient brain swelling with subsequent shrinkage. However, the kinetics of the AD-associated changes in VS dye fluorescence was also analogous to that of the DC potential. In conclusion, this method provides the imaging equivalent of electrical extracellular DC potential recording, with the SD and AD negative shifts translating directly to fluorescence increase.
Collapse
Affiliation(s)
- Eszter Farkas
- Division of Pharmacology, School of Life Sciences, University of Bradford, Bradford, UK
| | | | | | | |
Collapse
|
356
|
Rodgers CI, Armstrong GAB, Shoemaker KL, LaBrie JD, Moyes CD, Robertson RM. Stress preconditioning of spreading depression in the locust CNS. PLoS One 2007; 2:e1366. [PMID: 18159249 PMCID: PMC2137934 DOI: 10.1371/journal.pone.0001366] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 12/05/2007] [Indexed: 11/23/2022] Open
Abstract
Cortical spreading depression (CSD) is closely associated with important pathologies including stroke, seizures and migraine. The mechanisms underlying SD in its various forms are still incompletely understood. Here we describe SD-like events in an invertebrate model, the ventilatory central pattern generator (CPG) of locusts. Using K(+) -sensitive microelectrodes, we measured extracellular K(+) concentration ([K(+)](o)) in the metathoracic neuropile of the CPG while monitoring CPG output electromyographically from muscle 161 in the second abdominal segment to investigate the role K(+) in failure of neural circuit operation induced by various stressors. Failure of ventilation in response to different stressors (hyperthermia, anoxia, ATP depletion, Na(+)/K(+) ATPase impairment, K(+) injection) was associated with a disturbance of CNS ion homeostasis that shares the characteristics of CSD and SD-like events in vertebrates. Hyperthermic failure was preconditioned by prior heat shock (3 h, 45 degrees C) and induced-thermotolerance was associated with an increase in the rate of clearance of extracellular K(+) that was not linked to changes in ATP levels or total Na(+)/K(+) ATPase activity. Our findings suggest that SD-like events in locusts are adaptive to terminate neural network operation and conserve energy during stress and that they can be preconditioned by experience. We propose that they share mechanisms with CSD in mammals suggesting a common evolutionary origin.
Collapse
Affiliation(s)
- Corinne I Rodgers
- Department of Biology, Queen's University, Biosciences Complex, Kingston, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
357
|
The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 2007; 27:12255-66. [PMID: 17989291 DOI: 10.1523/jneurosci.3404-07.2007] [Citation(s) in RCA: 385] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protoplasmic astrocytes are critically important to energy metabolism in the CNS. Our current understanding of the metabolic interactions between neurons and glia is based on studies using cultured cells, from which mainly inferential conclusions have been drawn as to the relative roles of neurons and glia in brain metabolism. In this study, we used functional genomics to establish the relative compartmentalization of neuronal and astrocytic metabolic pathways in the adult brain. To this end, fluorescence-activated cell sorting was used to directly isolate neurons and protoplasmic astrocytes from the cortex of adult mice. Microarray analysis showed that astrocytes and neurons each express transcripts predicting individual self-sufficiency in both glycolysis and oxidative metabolism. Surprisingly, most enzymes in the tricarboxylic acid (TCA) cycle were expressed at higher relative levels in astrocytes than in neurons. Mass spectrometric analysis of the TCA cycle intermediates confirmed that freshly isolated adult astrocytes maintained an active TCA cycle, whereas immuno-electron microscopy revealed that fine astrocytic processes encompassing synapses contained a higher density of mitochondria than surrounding cells. These observations indicate that astrocytes exhibit robust oxidative metabolism in the intact adult brain and suggest a prominent contribution of astrocytic metabolism to functional brain imaging, including BOLD (blood-oxygen level-dependent) functional magnetic resonance imaging signals.
Collapse
|
358
|
Schridde U, Khubchandani M, Motelow JE, Sanganahalli BG, Hyder F, Blumenfeld H. Negative BOLD with large increases in neuronal activity. ACTA ACUST UNITED AC 2007; 18:1814-27. [PMID: 18063563 DOI: 10.1093/cercor/bhm208] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is widely used in neuroscience to study brain activity. However, BOLD fMRI does not measure neuronal activity directly but depends on cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of oxygen (CMRO(2)) consumption. Using fMRI, CBV, CBF, neuronal recordings, and CMRO(2) modeling, we investigated how the signals are related during seizures in rats. We found that increases in hemodynamic, neuronal, and metabolic activity were associated with positive BOLD signals in the cortex, but with negative BOLD signals in hippocampus. Our data show that negative BOLD signals do not necessarily imply decreased neuronal activity or CBF, but can result from increased neuronal activity, depending on the interplay between hemodynamics and metabolism. Caution should be used in interpreting fMRI signals because the relationship between neuronal activity and BOLD signals may depend on brain region and state and can be different during normal and pathological conditions.
Collapse
Affiliation(s)
- Ulrich Schridde
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
359
|
Davies ML, Kirov SA, Andrew RD. Whole isolated neocortical and hippocampal preparations and their use in imaging studies. J Neurosci Methods 2007; 166:203-16. [PMID: 17765319 PMCID: PMC2100436 DOI: 10.1016/j.jneumeth.2007.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 11/19/2022]
Abstract
This study shows that two whole isolated preparations from the young mouse, the neocortical 'slab' and the hippocampal formation, are useful for imaging studies requiring both global monitoring using light transmittance (LT) imaging and high resolution cellular monitoring using 2-photon laser scanning microscopy (2PLSM). These preparations share advantages with brain slices such as maintaining intrinsic neuronal properties and avoiding cardiac or respiratory movement. Important additional advantages include the maintenance of all local input and output pathways, the absence of surfaces injured by slicing and the preservation of three-dimensional tissue structure. Using evoked extracellular field recording, we demonstrate long-term (hours) viability of both whole preparations. We then show that propagating cortical events such as anoxic depolarization (AD) and spreading depression (SD) can be imaged in both preparations, yielding results comparable to those in brain slices but retaining the tissue's three-dimensional structure. Using transgenic mice expressing green fluorescent protein (GFP) in pyramidal and granule cell neurons, 2PLSM confirms that these preparations are free of the surface damage observed in sliced brain tissue. Moreover the neurons undergo swelling with accompanying dendritic beading following AD induced by simulated ischemia, similar to cortical damage described in vivo.
Collapse
Affiliation(s)
- Melissa L. Davies
- Department of Anatomy & Cell Biology and The Centre for Neuroscience Studies Queen’s University, Kingston, ON
| | - Sergei A. Kirov
- Department of Neurosurgery Medical College of Georgia, Augusta, GA
| | - R. David Andrew
- Department of Anatomy & Cell Biology and The Centre for Neuroscience Studies Queen’s University, Kingston, ON
| |
Collapse
|
360
|
|
361
|
Allen EA, Pasley BN, Duong T, Freeman RD. Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 2007; 317:1918-21. [PMID: 17901333 DOI: 10.1126/science.1146426] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcranial magnetic stimulation (TMS) is an increasingly common technique used to selectively modify neural processing. However, application of TMS is limited by uncertainty concerning its physiological effects. We applied TMS to the cat visual cortex and evaluated the neural and hemodynamic consequences. Short TMS pulse trains elicited initial activation (approximately 1 minute) and prolonged suppression (5 to 10 minutes) of neural responses. Furthermore, TMS disrupted the temporal structure of activity by altering phase relationships between neural signals. Despite the complexity of this response, neural changes were faithfully reflected in hemodynamic signals; quantitative coupling was present over a range of stimulation parameters. These results demonstrate long-lasting neural responses to TMS and support the use of hemodynamic-based neuroimaging to effectively monitor these changes over time.
Collapse
Affiliation(s)
- Elena A Allen
- Helen Wills Neuroscience Institute, Group in Vision Science, School of Optometry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
362
|
Turner DA, Foster KA, Galeffi F, Somjen GG. Differences in O2 availability resolve the apparent discrepancies in metabolic intrinsic optical signals in vivo and in vitro. Trends Neurosci 2007; 30:390-8. [PMID: 17590447 PMCID: PMC3340602 DOI: 10.1016/j.tins.2007.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/24/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
Abstract
Monitoring changes in the fluorescence of metabolic chromophores, reduced nicotinamide adenine dinucleotide and flavin adenine dinucleotide, and the absorption of cytochromes, is useful to study neuronal activation and mitochondrial metabolism in the brain. However, these optical signals evoked by stimulation, seizures and spreading depression in intact brain differ from those observed in vitro. The responses in vivo consist of a persistent oxidized state during neuronal activity followed by mild reduction during recovery. In vitro, however, brief oxidation is followed by prolonged and heightened reduction, even during persistent neuronal activation. In normally perfused, oxygenated and activated brain tissue in vivo, partial pressure of oxygen (P(O2)) levels often undergo a brief 'dip' that is always followed by an overshoot above baseline, due to increased blood flow (neuronal-vascular coupling). By contrast, in the absence of blood circulation, tissue P(O2)in vitro decreases more markedly and recovers slowly to baseline without overshooting. Although oxygen is abundant in vivo, it is diffusion-limited in vitro. The disparities in mitochondrial and tissue oxygen availability account for the different redox responses.
Collapse
Affiliation(s)
- Dennis A Turner
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|