351
|
Kimelman A, Levy A, Sberro H, Kidron S, Leavitt A, Amitai G, Yoder-Himes DR, Wurtzel O, Zhu Y, Rubin EM, Sorek R. A vast collection of microbial genes that are toxic to bacteria. Genome Res 2012; 22:802-9. [PMID: 22300632 PMCID: PMC3317161 DOI: 10.1101/gr.133850.111] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/25/2012] [Indexed: 11/25/2022]
Abstract
In the process of clone-based genome sequencing, initial assemblies frequently contain cloning gaps that can be resolved using cloning-independent methods, but the reason for their occurrence is largely unknown. By analyzing 9,328,693 sequencing clones from 393 microbial genomes, we systematically mapped more than 15,000 genes residing in cloning gaps and experimentally showed that their expression products are toxic to the Escherichia coli host. A subset of these toxic sequences was further evaluated through a series of functional assays exploring the mechanisms of their toxicity. Among these genes, our assays revealed novel toxins and restriction enzymes, and new classes of small, non-coding toxic RNAs that reproducibly inhibit E. coli growth. Further analyses also revealed abundant, short, toxic DNA fragments that were predicted to suppress E. coli growth by interacting with the replication initiator DnaA. Our results show that cloning gaps, once considered the result of technical problems, actually serve as a rich source for the discovery of biotechnologically valuable functions, and suggest new modes of antimicrobial interventions.
Collapse
MESH Headings
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites/genetics
- Cloning, Molecular
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Bacterial/pharmacology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Genome, Bacterial/genetics
- Microbial Viability/drug effects
- Microbial Viability/genetics
- Molecular Sequence Data
- Protein Binding
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Bacterial/pharmacology
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/pharmacology
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- Aya Kimelman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaf Levy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hila Sberro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shahar Kidron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Deborah R. Yoder-Himes
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Omri Wurtzel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yiwen Zhu
- DOE Joint Genome Institute, Walnut Creek, California 94598, USA
- Genome Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Edward M. Rubin
- DOE Joint Genome Institute, Walnut Creek, California 94598, USA
- Genome Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
352
|
Williams JJ, Hergenrother PJ. Artificial activation of toxin-antitoxin systems as an antibacterial strategy. Trends Microbiol 2012; 20:291-8. [PMID: 22445361 DOI: 10.1016/j.tim.2012.02.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/31/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022]
Abstract
Toxin-antitoxin (TA) systems are unique modules that effect plasmid stabilization via post-segregational killing of the bacterial host. The genes encoding TA systems also exist on bacterial chromosomes, and it has been speculated that these are involved in a variety of cellular processes. Interest in TA systems has increased dramatically over the past 5 years as the ubiquitous nature of TA genes on bacterial genomes has been revealed. The exploitation of TA systems as an antibacterial strategy via artificial activation of the toxin has been proposed and has considerable potential; however, efforts in this area remain in the early stages and several major questions remain. This review investigates the tractability of targeting TA systems to kill bacteria, including fundamental requirements for success, recent advances, and challenges associated with artificial toxin activation.
Collapse
Affiliation(s)
- Julia J Williams
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
353
|
Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY, Fineran PC, Luisi BF, Salmond GPC. Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res 2012; 40:6158-73. [PMID: 22434880 PMCID: PMC3401426 DOI: 10.1093/nar/gks231] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Toxin–antitoxin systems are widespread in bacteria and archaea. They perform diverse functional roles, including the generation of persistence, maintenance of genetic loci and resistance to bacteriophages through abortive infection. Toxin–antitoxin systems have been divided into three types, depending on the nature of the interacting macromolecules. The recently discovered Type III toxin–antitoxin systems encode protein toxins that are inhibited by pseudoknots of antitoxic RNA, encoded by short tandem repeats upstream of the toxin gene. Recent studies have identified the range of Type I and Type II systems within current sequence databases. Here, structure-based homology searches were combined with iterative protein sequence comparisons to obtain a current picture of the prevalence of Type III systems. Three independent Type III families were identified, according to toxin sequence similarity. The three families were found to be far more abundant and widespread than previously known, with examples throughout the Firmicutes, Fusobacteria and Proteobacteria. Functional assays confirmed that representatives from all three families act as toxin–antitoxin loci within Escherichia coli and at least two of the families confer resistance to bacteriophages. This study shows that active Type III toxin–antitoxin systems are far more diverse than previously known, and suggests that more remain to be identified.
Collapse
Affiliation(s)
- Tim R Blower
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | | | | | | | | | |
Collapse
|
354
|
When ribonucleases come into play in pathogens: a survey of gram-positive bacteria. Int J Microbiol 2012; 2012:592196. [PMID: 22550495 PMCID: PMC3328962 DOI: 10.1155/2012/592196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/27/2011] [Indexed: 11/20/2022] Open
Abstract
It is widely acknowledged that RNA stability plays critical roles in bacterial adaptation and survival in different environments like those encountered when bacteria infect a host. Bacterial ribonucleases acting alone or in concert with regulatory RNAs or RNA binding proteins are the mediators of the regulatory outcome on RNA stability. We will give a current update of what is known about ribonucleases in the model Gram-positive organism Bacillus subtilis and will describe their established roles in virulence in several Gram-positive pathogenic bacteria that are imposing major health concerns worldwide. Implications on bacterial evolution through stabilization/transfer of genetic material (phage or plasmid DNA) as a result of ribonucleases' functions will be covered. The role of ribonucleases in emergence of antibiotic resistance and new concepts in drug design will additionally be discussed.
Collapse
|
355
|
Abstract
Almost all bacteria and many archaea contain genes whose expression inhibits cell growth and may lead to cell death when overproduced, reminiscent of apoptotic genes in higher systems. The cellular targets of these toxins are quite diverse and include DNA replication, mRNA stability, protein synthesis, cell-wall biosynthesis, and ATP synthesis. These toxins are co-expressed and neutralized with their cognate antitoxins from a TA (toxin-antitoxin) operon in normally growing cells. Antitoxins are more labile than toxins and are readily degraded under stress conditions, allowing the toxins to exert their toxic effect. Presence of at least 33 TA systems in Escherichia coli and more than 60 TA systems in Mycobacterium tuberculosis suggests that the TA systems are involved not only in normal bacterial physiology but also in pathogenicity of bacteria. The elucidation of their cellular function and regulation is thus crucial for our understanding of bacterial physiology under various stress conditions.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
356
|
A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol 2012; 194:2265-74. [PMID: 22366415 DOI: 10.1128/jb.06707-11] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within a given microbial population, a small subpopulation known as dormant persister cells exists. This persistence property ensures the survival of the population as a whole in the presence of lethal factors. Although persisters are highly important in antibiotic therapy, the mechanism for persistence is still not thoroughly understood. We show here that the cariogenic organism Streptococcus mutans forms persister cells showing noninherited multidrug tolerance. We demonstrated that the ectopic expression of the type II toxin-antitoxin systems, MazEF and RelBE, caused an increase in the number of persisters. In a search for additional persistence genes, an expression library was constructed, and several clones exhibiting a significant difference in persister formation after prolonged antibiotic treatment were selected. The candidate persister genes include genes involved in transcription/replication, sugar metabolism, cell wall synthesis, and energy metabolism, clearly pointing to redundant pathways for persister formation. We have previously reported that the S. mutans quorum-sensing peptide, CSP pheromone, was a stress-inducible alarmone capable of conveying sophisticated messages in the bacterial population. In this study, we demonstrate the involvement of the intraspecies quorum-sensing system during the formation of stress-induced multidrug-tolerant persisters. To the best of our knowledge, this is the first study reporting the induction of bacterial persistence using a quorum-sensing regulatory system.
Collapse
|
357
|
Mycobacteriophage Marvin: a new singleton phage with an unusual genome organization. J Virol 2012; 86:4762-75. [PMID: 22357284 DOI: 10.1128/jvi.00075-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mycobacteriophages represent a genetically diverse group of viruses that infect mycobacterial hosts. Although more than 80 genomes have been sequenced, these still poorly represent the likely diversity of the broader population of phages that can infect the host, Mycobacterium smegmatis mc(2)155. We describe here a newly discovered phage, Marvin, which is a singleton phage, having no previously identified close relatives. The 65,100-bp genome contains 107 predicted protein-coding genes arranged in a noncanonical genomic architecture in which a subset of the minor tail protein genes are displaced about 20 kbp from their typical location, situated among nonstructural genes anticipated to be expressed early in lytic growth. Marvin is not temperate, and stable lysogens cannot be recovered from infections, although the presence of a putative xis gene suggests that Marvin could be a relatively recent derivative of a temperate parent. The Marvin genome is replete with novel genes not present in other mycobacteriophage genomes, and although most are of unknown function, the presence of amidoligase and glutamine amidotransferase genes suggests intriguing possibilities for the interactions of Marvin with its mycobacterial hosts.
Collapse
|
358
|
Short FL, Blower TR, Salmond GPC. A promiscuous antitoxin of bacteriophage T4 ensures successful viral replication. Mol Microbiol 2012; 83:665-8. [PMID: 22283468 DOI: 10.1111/j.1365-2958.2012.07974.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bacteria are constantly threatened by predation from bacteriophage parasites and, in response, have evolved an array of resistance mechanisms. These resistance mechanisms then place greater selection pressure on the infecting bacteriophages, which develop counter-strategies in a perpetual 'arms race' between virus and host. Toxin-antitoxin (TA) loci are widespread in bacteria and can confer multiple benefits, including resistance to bacteriophages. The study by Otsuka and Yonesaki, published in this issue of Molecular Microbiology, describes a new plasmid-encoded TA system, lsoAB, which confers resistance to a dmd(-) mutant of bacteriophage T4 through the activity of the LsoA toxin. Infections with wild-type T4, however, are unaffected as the Dmd protein acts as an alternative antitoxin to LsoA, thus preventing its anti-bacteriophage activity. Dmd has also been shown to negate the activity of a related toxin, RnlA. This is a striking result indicating that Dmd can act as a promiscuous antitoxin, binding and inhibiting multiple toxin partners, when antitoxin activity is generally considered to be limited to a single cognate toxin. This study is an exciting addition to both the bacteriophage resistance and TA fields, and suggests a greater role for TA system-based resistance and counter-resistance in the world's oldest predator-prey relationship.
Collapse
|
359
|
Winther KS, Gerdes K. Regulation of enteric vapBC transcription: induction by VapC toxin dimer-breaking. Nucleic Acids Res 2012; 40:4347-57. [PMID: 22287572 PMCID: PMC3378870 DOI: 10.1093/nar/gks029] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Toxin-antitoxin (TA) loci encode inhibitors of translation, replication or cell wall synthesis and are common elements of prokaryotic plasmids and chromosomes. Ten TA loci of Escherichia coli K-12 encode mRNases that cumulatively contribute to persistence (multidrug tolerance) of the bacterial cells. The mechanisms underlying induction and reversion of the persistent state are not yet understood. The vapBC operon of Salmonalla enterica serovar Typhimurium LT2 encodes VapC, a tRNase that reversibly inhibits translation by site-specific cleavage of tRNAfMet. VapB is an antitoxin that interacts with and neutralizes VapC via its C-terminal tail and regulate TA operon transcription via its N-terminal DNA binding domain that recognize operators in the vapBC promoter region. We show here that transcription of the vapBC operon of S. enterica is controlled by a recently discovered regulatory theme referred to as ‘conditional cooperativity’: at low T/A ratios, the TA complex binds cooperatively to the promoter region and represses TA operon transcription whereas at high T/A ratios, the excess toxin leads to destabilization of the TA-operator complex and therefore, induction of transcription. We present evidence that an excess of VapC toxin leads to operator complex destabilization by breaking of toxin dimers.
Collapse
Affiliation(s)
- Kristoffer S Winther
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4AX Newcastle, UK
| | | |
Collapse
|
360
|
Jahn N, Preis H, Wiedemann C, Brantl S. BsrG/SR4 from Bacillus subtilis--the first temperature-dependent type I toxin-antitoxin system. Mol Microbiol 2012; 83:579-98. [PMID: 22229825 DOI: 10.1111/j.1365-2958.2011.07952.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here, we describe bsrG/SR4, a novel type I toxin-antitoxin system from the SPβ prophage region of the Bacillus subtilis chromosome. The 294-nucleotide bsrG RNA encodes a 38-amino-acid toxin, whereas SR4 is a 180-nucleotide antisense RNA that acts as the antitoxin. Both genes overlap by 123 nucleotides. BsrG expression increases at the onset of stationary phase. The sr4 promoter is 6- to 10-fold stronger than the bsrG promoter. Deletion of sr4 stabilizes bsrG mRNA and causes cell lysis on agar plates, which is due to the BsrG peptide and not the bsrG mRNA. SR4 overexpression could compensate cell lysis caused by overexpression of bsrG. SR4 interacts with the 3' UTR of bsrG RNA, thereby promoting its degradation. RNase III cleaves the bsrG RNA/SR4 duplex at position 185 of bsrG RNA, but is not essential for the function of the toxin-antitoxin system. Endoribonuclease Y and 3'-5' exoribonuclease R participate in the degradation of both bsrG RNA and SR4, whereas PnpA processes three SR4 precursors to the mature RNA. A heat shock at 48°C results in faster degradation and, therefore, significantly decreased amounts of bsrG RNA.
Collapse
Affiliation(s)
- Natalie Jahn
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena, Germany
| | | | | | | |
Collapse
|
361
|
Lee MW, Rogers EE, Stenger DC. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease. PHYTOPATHOLOGY 2012; 102:32-40. [PMID: 21864087 DOI: 10.1094/phyto-05-11-0150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK toxin-antitoxin (TA) system. PemK toxin inhibits bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK by direct binding. PemK and PemI were overexpressed in Escherichia coli and activities of each were assessed. Purified PemK toxin specifically degraded single-stranded RNA but not double-stranded RNA, double-stranded DNA, or single-stranded DNA. Addition of PemI antitoxin inhibited nuclease activity of PemK toxin. Purified complexes of PemI bound to PemK exhibited minimal nuclease activity; removal of PemI antitoxin from the complex restored nuclease activity of PemK toxin. Sequencing of 5' rapid amplification of cDNA ends products of RNA targets digested with PemK revealed a preference for cleavage between U and A residues of the sequence UACU and UACG. Nine single amino-acid substitution mutants of PemK toxin were constructed and evaluated for growth inhibition, ribonuclease activity, and PemI binding. Three PemK point-substitution mutants (R3A, G16E, and D79V) that lacked nuclease activity did not inhibit growth. All nine PemK mutants retained the ability to bind PemI. Collectively, the results indicate that the mechanism of stable inheritance conferred by pXF-RIV11 pemI/pemK is similar to that of the R100 pemI/pemK TA system of E. coli.
Collapse
Affiliation(s)
- Min Woo Lee
- San Joaquin Agricultural Sciences Center, United States Department of Agriculture, Parlier, CA, USA
| | | | | |
Collapse
|
362
|
Viruses and Host Evolution: Virus-Mediated Self Identity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:185-217. [DOI: 10.1007/978-1-4614-1680-7_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
363
|
Frampton R, Aggio RBM, Villas-Bôas SG, Arcus VL, Cook GM. Toxin-antitoxin systems of Mycobacterium smegmatis are essential for cell survival. J Biol Chem 2011; 287:5340-56. [PMID: 22199354 DOI: 10.1074/jbc.m111.286856] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of chromosomal toxin-antitoxin (TA) modules in bacterial physiology remains enigmatic despite their abundance in the genomes of many bacteria. Mycobacterium smegmatis contains three putative TA systems, VapBC, MazEF, and Phd/Doc, and previous work from our group has shown VapBC to be a bona fide TA system. In this study, we show that MazEF and Phd/Doc are also TA systems that are constitutively expressed, transcribed as leaderless transcripts, and subject to autoregulation, and expression of the toxin component leads to growth inhibition that can be rescued by the cognate antitoxin. No phenotype was identified for deletions of the individual TA systems, but a triple deletion strain (ΔvapBC, mazEF, phd/doc), designated ΔTA(triple), exhibited a survival defect in complex growth medium demonstrating an essential role for these TA modules in mycobacterial survival. Transcriptomic analysis revealed no significant differences in gene expression between wild type and the ΔTA(triple) mutant under these conditions suggesting that the growth defect was not at a transcriptional level. Metabolomic analysis demonstrated that in response to starvation in complex medium, both the wild type and ΔTA(triple) mutant consumed a wide range of amino acids from the external milieu. Analysis of intracellular metabolites revealed a significant difference in the levels of branched-chain amino acids between the wild type and ΔTA(triple) mutant, which are proposed to play essential roles in monitoring the nutritional supply and physiological state of the cell and linking catabolic with anabolic reactions. Disruption of this balance in the ΔTA(triple) mutant may explain the survival defect in complex growth medium.
Collapse
Affiliation(s)
- Rebekah Frampton
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
364
|
Hossain MJ, Rahman KS, Terhune JS, Liles MR. An outer membrane porin protein modulates phage susceptibility in Edwardsiella ictaluri. MICROBIOLOGY-SGM 2011; 158:474-487. [PMID: 22135098 DOI: 10.1099/mic.0.054866-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bacteriophages ΦeiAU and ΦeiDWF are lytic to the catfish pathogen Edwardsiella (Edw.) ictaluri. The Edw. ictaluri host factors that modulate phage-host interactions have not been described previously. This study identified eleven unique Edw. ictaluri host factors essential for phage infection by screening a transposon mutagenized library of two Edw. ictaluri strains for phage-resistant mutants. Two mutants were isolated with independent insertions in the ompLC gene that encodes a putative outer membrane porin. Phage binding and efficiency of plaquing assays with Edw. ictaluri EILO, its ompLC mutant and a complemented mutant demonstrated that OmpLC serves as a receptor for phage ΦeiAU and ΦeiDWF adsorption. Comparison of translated OmpLCs from 15 Edw. ictaluri strains with varying degrees of phage susceptibility revealed that amino acid variations were clustered on the predicted extracellular loop 8 of OmpLC. Deletion of loop 8 of OmpLC completely abolished phage infectivity in Edw. ictaluri. Site-directed mutagenesis and transfer of modified ompLC genes to complement the ompLC mutants demonstrated that changes in ompLC sequences affect the degree of phage susceptibility. Furthermore, Edw. ictaluri strain Alg-08-183 was observed to be resistant to ΦeiAU, but phage progeny could be produced if phage DNA was electroporated into this strain. A host-range mutant of ΦeiAU, ΦeiAU-183, was isolated that was capable of infecting strain Alg-08-183 by using OmpLC as a receptor for adsorption. The results of this study identified Edw. ictaluri host factors required for phage infection and indicated that OmpLC is a principal molecular determinant of phage susceptibility in this pathogen.
Collapse
Affiliation(s)
| | - Kh S Rahman
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Jeffery S Terhune
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, AL, USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
365
|
Specific inhibition of bacterial RNase T2 by helix 41 of 16S ribosomal RNA. Nat Commun 2011; 2:549. [PMID: 22109523 DOI: 10.1038/ncomms1553] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/19/2011] [Indexed: 11/08/2022] Open
Abstract
Ribonuclease (RNase) T2 is involved in scavenging exogenous RNAs in the periplasmic space of bacteria. In Escherichia coli, although the 30S ribosomal subunit has long been known as a specific inhibitor of RNase T2 (designated as RNase I in E. coli), both the biochemical mechanisms and physiological roles of this interaction remain to be elucidated. Here we show, by creating hybrid ribosomes and mutational studies, that helix 41 (h41) of the E. coli 16S ribosomal RNA has a crucial role in the specific inhibition of RNase I. Notably, h41-mutant strains exhibit a lower survival rate at stationary phase and severe cell lysis when the post-segregation killing protein SrnB is expressed. These phenotypic defects accompany significant RNA degradation caused by RNase I. Thus, h41 in 16S rRNA provides a physiological benefit for the host cells in coping with the potential cytotoxicity of RNase T2.
Collapse
|
366
|
Santos TMA, Ledbetter EC, Caixeta LS, Bicalho MLS, Bicalho RC. Isolation and characterization of two bacteriophages with strong in vitro antimicrobial activity against Pseudomonas aeruginosa isolated from dogs with ocular infections. Am J Vet Res 2011; 72:1079-86. [PMID: 21801066 DOI: 10.2460/ajvr.72.8.1079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To isolate and characterize bacteriophages with strong in vitro lytic activity against various pathogenic Pseudomonas aeruginosa strains isolated from dogs with ocular infections. SAMPLE 26 genetically distinct P aeruginosa isolates. PROCEDURES P aeruginosa strains were derived from dogs with naturally acquired ulcerative keratitis. From a large-scale screening for bacteriophages with potential therapeutic benefit against canine ocular infections, 2 bacteriophages (P2S2 and P5U5) were selected; host ranges were determined, and phage nucleic acid type and genetic profile were identified via enzymatic digestion. Electron microscopy was used to characterize bacteriophage ultrastructure. Bacteriophage temperature and pH stabilities were assessed by use of double-layer agar overlay titration. A cocultivation assay was used to evaluate the effect of the bacteriophages on bacterial host growth. RESULTS P5U5 was active against all P aeruginosa isolates, whereas P2S2 formed lytic plaques on plates of 21 (80.8%) isolates. For each bacteriophage, the genomic nucleic acid was DNA; each was genetically distinct. Ultrastructurally, P2S2 and P5U5 appeared likely to belong to the Podoviridae and Siphoviridae families, respectively. The bacteriophages were stable within a pH range of 4 to 12; however, titers of both bacteriophages decreased following heating for 10 to 50 minutes at 45° or 60°C. Growth of each P aeruginosa isolate was significantly inhibited in coculture with P2S2 or P5U5; the dose response was related to the plaque-forming unit-to-CFU ratios. CONCLUSIONS AND CLINICAL RELEVANCE Bacteriophages P2S2 and P5U5 appear to be good candidates for phage treatment of infection caused by pathogenic P aeruginosa in dogs.
Collapse
Affiliation(s)
- Thiago M A Santos
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
367
|
Kirkpatrick CL, Viollier PH. Decoding Caulobacter development. FEMS Microbiol Rev 2011; 36:193-205. [PMID: 22091823 DOI: 10.1111/j.1574-6976.2011.00309.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 11/27/2022] Open
Abstract
Caulobacter crescentus uses a multi-layered system of oscillating regulators to program different developmental fates into each daughter cell at division. This is achieved by superimposing gene expression, subcellular localization, phosphorylation, and regulated proteolysis to form a complex regulatory network that integrates chromosome replication, segregation, polar differentiation, and cytokinesis. In this review, we outline the current state of research in the field of Caulobacter development, emphasizing new findings that elaborate how the developmental program is modulated by factors such as the environment or the metabolic state of the cell.
Collapse
Affiliation(s)
- Clare L Kirkpatrick
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
368
|
Abstract
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Collapse
|
369
|
Friedman DI, Mozola CC, Beeri K, Ko CC, Reynolds JL. Activation of a prophage-encoded tyrosine kinase by a heterologous infecting phage results in a self-inflicted abortive infection. Mol Microbiol 2011; 82:567-77. [PMID: 21985444 DOI: 10.1111/j.1365-2958.2011.07847.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteria in their struggle for survival have evolved or acquired defences against attacking phage. However, phage often contribute to this defence through mechanisms in which a prophage protects the bacterial population from attack by another, often unrelated, phage. The 933W prophage, which carries Shiga toxin genes that enhance pathogenicity of enterohaemorrhagic Escherichia coli strain O157:H7, also carries the stk gene encoding a eukaryotic-like tyrosine kinase that excludes (aborts) infection by phage HK97. This exclusion requires the kinase activity of Stk. Little, if any, protein tyrosine phosphorylation can be detected in a 933W lysogen prior to infection with HK97, while extensive Stk-mediated tyrosine phosphorylation is evident following infection. This includes autophosphorylation that stabilizes Stk protein from degradation. Although increased levels of Stk are found following HK97 infection, these higher levels are not necessary or sufficient for exclusion or protein phosphorylation. An HK97 open reading frame, orf41, is necessary for exclusion and Stk kinase activity. We hypothesize that interaction with gp41 stimulates Stk kinase activity. Exclusion of HK97 appears to be specific since other phages tested, λ, φ80, H-19B, λ-P22dis and T4rII, were not excluded. Infection of the 933W lysogen with a non-excluded phage fails to induce Stk-determined phosphorylation.
Collapse
Affiliation(s)
- David I Friedman
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
370
|
Villarreal LP. Viral ancestors of antiviral systems. Viruses 2011; 3:1933-58. [PMID: 22069523 PMCID: PMC3205389 DOI: 10.3390/v3101933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 02/06/2023] Open
Abstract
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
371
|
Yamaguchi Y, Inouye M. Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nat Rev Microbiol 2011; 9:779-90. [DOI: 10.1038/nrmicro2651] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
372
|
Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 2011; 193:6039-56. [PMID: 21908672 DOI: 10.1128/jb.05535-11] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.
Collapse
|
373
|
Garneau JE, Moineau S. Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 2011; 10 Suppl 1:S20. [PMID: 21995802 PMCID: PMC3231927 DOI: 10.1186/1475-2859-10-s1-s20] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures will be discussed.
Collapse
Affiliation(s)
- Josiane E Garneau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec city, Québec, G1V 0A6, Canada
| | | |
Collapse
|
374
|
Wang X, Wood TK. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 2011; 77:5577-83. [PMID: 21685157 PMCID: PMC3165247 DOI: 10.1128/aem.05068-11] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In many genomes, toxin-antitoxin (TA) systems have been identified; however, their role in cell physiology has been unclear. Here we examine the evidence that TA systems are involved in biofilm formation and persister cell formation and that these systems may be important regulators of the switch from the planktonic to the biofilm lifestyle as a stress response by their control of secondary messenger 3',5'-cyclic diguanylic acid. Specifically, upon stress, the sequence-specific mRNA interferases MqsR and MazF mediate cell survival. In addition, we propose that TA systems are not redundant, as they may have developed to respond to specific stresses.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122
- Key Laboratory of Marine Bio-Resource Sustainable Utilization, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Thomas K. Wood
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122
| |
Collapse
|
375
|
Mutschler H, Meinhart A. ε/ζ systems: their role in resistance, virulence, and their potential for antibiotic development. J Mol Med (Berl) 2011; 89:1183-94. [PMID: 21822621 PMCID: PMC3218275 DOI: 10.1007/s00109-011-0797-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/19/2011] [Accepted: 07/22/2011] [Indexed: 12/17/2022]
Abstract
Cell death in bacteria can be triggered by activation of self-inflicted molecular mechanisms. Pathogenic bacteria often make use of suicide mechanisms in which the death of individual cells benefits survival of the population. Important elements for programmed cell death in bacteria are proteinaceous toxin-antitoxin systems. While the toxin generally resides dormant in the bacterial cytosol in complex with its antitoxin, conditions such as impaired de novo synthesis of the antitoxin or nutritional stress lead to antitoxin degradation and toxin activation. A widespread toxin-antitoxin family consists of the ε/ζ systems, which are distributed over plasmids and chromosomes of various pathogenic bacteria. In its inactive state, the bacteriotoxic ζ toxin protein is inhibited by its cognate antitoxin ε. Upon degradation of ε, the ζ toxin is released allowing this enzyme to poison bacterial cell wall synthesis, which eventually triggers autolysis. ε/ζ systems ensure stable plasmid inheritance by inducing death in plasmid-deprived offspring cells. In contrast, chromosomally encoded ε/ζ systems were reported to contribute to virulence of pathogenic bacteria, possibly by inducing autolysis in individual cells under stressful conditions. The capability of toxin-antitoxin systems to kill bacteria has made them potential targets for new therapeutic compounds. Toxin activation could be hijacked to induce suicide of bacteria. Likewise, the unique mechanism of ζ toxins could serve as template for new drugs. Contrarily, inhibition of virulence-associated ζ toxins might attenuate infections. Here we provide an overview of ε/ζ toxin-antitoxin family and its potential role in the development of new therapeutic approaches in microbial defense.
Collapse
Affiliation(s)
- Hannes Mutschler
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | |
Collapse
|
376
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
377
|
Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol 2011; 2:158. [PMID: 21845185 PMCID: PMC3145257 DOI: 10.3389/fmicb.2011.00158] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT.
Collapse
Affiliation(s)
- Rustam I Aminov
- Rowett Institute of Nutrition and Health, University of Aberdeen Aberdeen, UK
| |
Collapse
|
378
|
Abstract
Bacteria form persisters, individual cells that are highly tolerant to different types of antibiotics. Persister cells are genetically identical to nontolerant kin but have entered a dormant state in which they are recalcitrant to the killing activity of the antibiotics. The molecular mechanisms underlying bacterial persistence are unknown. Here, we show that the ubiquitous Lon (Long Form Filament) protease and mRNA endonucleases (mRNases) encoded by toxin-antitoxin (TA) loci are required for persistence in Escherichia coli. Successive deletion of the 10 mRNase-encoding TA loci of E. coli progressively reduced the level of persisters, showing that persistence is a phenotype common to TA loci. In all cases tested, the antitoxins, which control the activities of the mRNases, are Lon substrates. Consistently, cells lacking lon generated a highly reduced level of persisters. Moreover, Lon overproduction dramatically increased the levels of persisters in wild-type cells but not in cells lacking the 10 mRNases. These results support a simple model according to which mRNases encoded by TA loci are activated in a small fraction of growing cells by Lon-mediated degradation of the antitoxins. Activation of the mRNases, in turn, inhibits global cellular translation, and thereby induces dormancy and persistence. Many pathogenic bacteria known to enter dormant states have a plethora of TA genes. Therefore, in the future, the discoveries described here may lead to a mechanistic understanding of the persistence phenomenon in pathogenic bacteria.
Collapse
|
379
|
Abstract
Bacteria, the most abundant organisms on the planet, are outnumbered by a factor of 10 to 1 by phages that infect them. Faced with the rapid evolution and turnover of phage particles, bacteria have evolved various mechanisms to evade phage infection and killing, leading to an evolutionary arms race. The extensive co-evolution of both phage and host has resulted in considerable diversity on the part of both bacterial and phage defensive and offensive strategies. Here, we discuss the unique and common features of phage resistance mechanisms and their role in global biodiversity. The commonalities between defense mechanisms suggest avenues for the discovery of novel forms of these mechanisms based on their evolutionary traits.
Collapse
Affiliation(s)
- Adi Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
380
|
Molina L, Duque E, Gómez MJ, Krell T, Lacal J, García-Puente A, García V, Matilla MA, Ramos JL, Segura A. The pGRT1 plasmid of Pseudomonas putida DOT-T1E encodes functions relevant for survival under harsh conditions in the environment. Environ Microbiol 2011; 13:2315-27. [PMID: 21605303 DOI: 10.1111/j.1462-2920.2011.02492.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pseudomonas putida DOT-T1E has the capacity to grow in the presence of high concentrations of toluene. This ability is mainly conferred by an efflux pump encoded in a self-transmissible 133 kb plasmid named pGRT1. Sequence analysis of the pGRT1 plasmid revealed several key features. Most of the genes related to the plasmid maintenance functions show similarity with those encoded on pBVIE04 from Burkholderia vietnamensis G4, and knock-out mutants in several of these genes confirmed their roles. Two additional plasmid DNA fragments were incorporated into the plasmid backbone by recombination and/or transposition; in these DNA regions, apart from multiple recombinases and transposases, several stress-related and environmentally relevant functions are encoded. We report that plasmid pGRT1 not only confers the cells with tolerance to toluene but also resistance to ultraviolet light. We show here the implication of a new protein in solvent tolerance which controls the level of expression of the TtgGHI efflux pump, as well as the implication of a protein with homology to the universal stress protein in solvent tolerance and ultraviolet light resistance. Furthermore, this plasmid encodes functions that allow the cells to chemotactically respond to toluene and participate in iron scavenging.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1,18008-Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc Natl Acad Sci U S A 2011; 108:7403-7. [PMID: 21502523 DOI: 10.1073/pnas.1019587108] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic PIN (PilT N-terminal) domain proteins are ribonucleases involved in quality control, metabolism and maturation of mRNA and rRNA. The majority of prokaryotic PIN-domain proteins are encoded by the abundant vapBC toxin--antitoxin loci and inhibit translation by an unknown mechanism. Here we show that enteric VapCs are site-specific endonucleases that cleave tRNA(fMet) in the anticodon stem-loop between nucleotides +38 and +39 in vivo and in vitro. Consistently, VapC inhibited translation in vivo and in vitro. Translation-reactions could be reactivated by the addition of VapB and extra charged tRNA(fMet). Similarly, ectopic production of tRNA(fMet) counteracted VapC in vivo. Thus, tRNA(fMet) is the only cellular target of VapC. Depletion of tRNA(fMet) by vapC induction was bacteriostatic and stimulated ectopic translation initiation at elongator codons. Moreover, addition of chloramphenicol to cells carrying vapBC induced VapC activity. Thus, by cleavage of tRNA(fMet), VapC simultaneously may regulate global cellular translation and reprogram translation initiation.
Collapse
|
382
|
Gardner PP, Barquist L, Bateman A, Nawrocki EP, Weinberg Z. RNIE: genome-wide prediction of bacterial intrinsic terminators. Nucleic Acids Res 2011; 39:5845-52. [PMID: 21478170 PMCID: PMC3152330 DOI: 10.1093/nar/gkr168] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial Rho-independent terminators (RITs) are important genomic landmarks involved in gene regulation and terminating gene expression. In this investigation we present RNIE, a probabilistic approach for predicting RITs. The method is based upon covariance models which have been known for many years to be the most accurate computational tools for predicting homology in structural non-coding RNAs. We show that RNIE has superior performance in model species from a spectrum of bacterial phyla. Further analysis of species where a low number of RITs were predicted revealed a highly conserved structural sequence motif enriched near the genic termini of the pathogenic Actinobacteria, Mycobacterium tuberculosis. This motif, together with classical RITs, account for up to 90% of all the significantly structured regions from the termini of M. tuberculosis genic elements. The software, predictions and alignments described below are available from http://github.com/ppgardne/RNIE.
Collapse
Affiliation(s)
- Paul P Gardner
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA0, UK.
| | | | | | | | | |
Collapse
|
383
|
Xu SY, Corvaglia AR, Chan SH, Zheng Y, Linder P. A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res 2011; 39:5597-610. [PMID: 21421560 PMCID: PMC3141236 DOI: 10.1093/nar/gkr098] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A gene encoding a putative DNA helicase from Staphylococcus aureus USA300 was cloned and expressed in Escherichia coli. The protein was purified to over 90% purity by chromatography. The purified enzyme, SauUSI, predominantly cleaves modified DNA containing 5mC and 5-hydroxymethylcytosine. Cleavage of 5mC-modified plasmids indicated that the sites S5mCNGS (S = C or G) are preferentially digested. The endonuclease activity requires the presence of adenosine triphosphate (ATP) or dATP whereas the non-hydrolyzable γ-S-ATP does not support activity. SauUSI activity was inhibited by ethylenediaminetetraacetic acid. It is most active in Mg++ buffers. No companion methylase gene was found near the SauUSI restriction gene. The absence of a cognate methylase and cleavage of modified DNA indicate that SauUSI belongs to type IV restriction endonucleases, a group that includes EcoK McrBC and Mrr. SauUSI belongs to a family of highly similar homologs found in other sequenced S. aureus, S. epidermidis and S. carnosus genomes. More distant SauUSI orthologs can be found in over 150 sequenced bacterial/archaea genomes. Finally, we demonstrated the biological function of the type IV REase in restricting 5mC-modified plasmid DNA by transformation into clinical S. aureus strain SA564, and in restricting phage λ infection when the endonuclease is expressed in E. coli.
Collapse
Affiliation(s)
- Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA.
| | | | | | | | | |
Collapse
|
384
|
Blower TR, Salmond GPC, Luisi BF. Balancing at survival's edge: the structure and adaptive benefits of prokaryotic toxin–antitoxin partners. Curr Opin Struct Biol 2011; 21:109-18. [DOI: 10.1016/j.sbi.2010.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/31/2010] [Indexed: 01/21/2023]
|
385
|
Blower TR, Pei XY, Short FL, Fineran PC, Humphreys DP, Luisi BF, Salmond GPC. A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat Struct Mol Biol 2011; 18:185-90. [PMID: 21240270 DOI: 10.1038/nsmb.1981] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/08/2010] [Indexed: 01/21/2023]
Abstract
The ≥ 10³⁰ bacteriophages on Earth relentlessly drive adaptive coevolution, forcing the generation of protective mechanisms in their bacterial hosts. One such bacterial phage-resistance system, ToxIN, consists of a protein toxin (ToxN) that is inhibited in vivo by a specific RNA antitoxin (ToxI); however, the mechanisms for this toxicity and inhibition have not been defined. Here we present the crystal structure of the ToxN-ToxI complex from Pectobacterium atrosepticum, determined to 2.75-Å resolution. ToxI is a 36-nucleotide noncoding RNA pseudoknot, and three ToxI monomers bind to three ToxN monomers to generate a trimeric ToxN-ToxI complex. Assembly of this complex is mediated entirely through extensive RNA-protein interactions. Furthermore, a 2'-3' cyclic phosphate at the 3' end of ToxI, and catalytic residues, identify ToxN as an endoRNase that processes ToxI from a repetitive precursor but is regulated by its own catalytic product.
Collapse
Affiliation(s)
- Tim R Blower
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
386
|
Recent advancements in toxin and antitoxin systems involved in bacterial programmed cell death. Int J Microbiol 2010; 2010:781430. [PMID: 21253538 PMCID: PMC3021852 DOI: 10.1155/2010/781430] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/14/2010] [Accepted: 11/21/2010] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) systems have been extensively studied for their significant role in a variety of biological processes in eukaryotic organisms. Recently, more and more researches have revealed the existence of similar systems employed by bacteria in response to various environmental stresses. This paper summarized the recent researching advancements in toxin/antitoxin systems located on plasmids or chromosomes and their regulatory roles in bacterial PCD. The most studied yet disputed mazEF system was discussed in depth, and possible roles and status of such a special bacterial death and TA systems were also reviewed from the ecological and evolutionary perspectives.
Collapse
|
387
|
Monson R, Foulds I, Foweraker J, Welch M, Salmond GPC. The Pseudomonas aeruginosa generalized transducing phage phiPA3 is a new member of the phiKZ-like group of 'jumbo' phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients. MICROBIOLOGY-SGM 2010; 157:859-867. [PMID: 21163841 DOI: 10.1099/mic.0.044701-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pseudomonas aeruginosa is an important pathogen in cystic fibrosis patients, and a model organism for the study of nosocomially acquired infections, biofilms and intrinsic multidrug resistance. In this study we characterize ϕPA3, a new generalized transducing bacteriophage for P. aeruginosa. ϕPA3 transduced chromosomal mutations between PAO1 strains, and infected multiple P. aeruginosa clinical isolates as well as the P. aeruginosa model laboratory strains PAK and PA14. Electron microscopy imaging was used to classify ϕPA3 in the order Caudovirales and the family Myoviridae. The genome of ϕPA3 was sequenced and found to contain 309,208 bp, the second-largest bacteriophage currently deposited in GenBank. The genome contains 378 ORFs and five tRNAs. Many ORF products in the ϕPA3 genome are similar to proteins encoded by P. aeruginosa phage ϕKZ and Pseudomonas chlororaphis phage 201ϕ2-1, and so ϕPA3 was classified genetically as a member of the ϕKZ-like group of phages. This is the first report of a member of this group of phages acting as a generalized transducer. Given its wide host range, high transduction efficiency and large genome size, the 'jumbo' phage ϕPA3 could be a powerful tool in functional genomic analysis of diverse P. aeruginosa strains of fundamental and clinical importance.
Collapse
Affiliation(s)
- Rita Monson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ian Foulds
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Juliet Foweraker
- Papworth Hospital Foundation NHS Trust, Papworth Everard, Cambridge CB23 3RE, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
388
|
Van Melderen L. Toxin-antitoxin systems: why so many, what for? Curr Opin Microbiol 2010; 13:781-5. [PMID: 21041110 DOI: 10.1016/j.mib.2010.10.006] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/29/2010] [Accepted: 10/07/2010] [Indexed: 01/04/2023]
Abstract
Toxin-antitoxin (TA) systems are small genetic modules that are abundant in bacterial genomes. Three types have been described so far, depending on the nature and mode of action of the antitoxin component. While type II systems are surprisingly highly represented because of their capacity to move by horizontal gene transfer, type I systems appear to have evolved by gene duplication and are more constrained. Type III is represented by a unique example located on a plasmid. Type II systems promote stability of mobile genetic elements and might act at the selfish level. Conflicting hypotheses about chromosomally encoded systems, from programmed cell death and starvation-induced stasis to protection against invading DNA and stabilization of large genomic fragments have been proposed.
Collapse
Affiliation(s)
- Laurence Van Melderen
- Laboratoire de Génétique et Physiologie Bactérienne, Faculté des Sciences, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
389
|
Abstract
Programmed cell death (PCD) occurs widely in species from every kingdom of life. It has been shown to be an integral aspect of development in multicellular organisms, and it is an essential component of the immune response to infectious agents. An analysis of the phylogenetic origin of PCD now shows that it evolved independently several times, and it is fundamental to basic cellular physiology. Undoubtedly, PCD pervades all life at every scale of analysis. These considerations provide a backdrop for understanding the complexity of intertwined, but independent, cell death programs that operate within the immune system. In particular, the contributions of apoptosis, autophagy, and necrosis in the resolution of an immune response are considered.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0377, USA.
| | | | | |
Collapse
|
390
|
Letarov A, Golomidova A, Tarasyan K. Ecological basis for rational phage therapy. Acta Naturae 2010; 2:60-72. [PMID: 22649629 PMCID: PMC3347537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Understanding the mutual interactions of bacterial and phage populations in the environment of a human or animal body is essential in any attempt to influence these complex processes, particularly for rational phage therapy. Current knowledge on the impact of naturally occurring bacteriophages on the populations of their host bacteria, and their role in the homeostasis maintenance of a macro host, is still sketchy. The existing data suggest that different mechanisms stabilize phage-bacteria coexistence in different animal species or different body sites. The defining set of parameters governing phage infection includes specific physical, chemical, and biological conditions, such as pH, nutrient densities, host prevalence, relation to mucosa and other surfaces, the presence of phage inhibiting substances, etc. Phage therapy is also an ecological process that always implies three components that form a complex pattern of interactions: populations of the pathogen, the bacteriophages used as antibacterial agents, and the macroorganism. We present a review of contemporary data on natural bacteriophages occuring in human- and animal-body associated microbial communities, and analyze ecological and physiological considerations that determine the success of phage therapy in mammals.
Collapse
Affiliation(s)
- A.V. Letarov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences
| | - A.K. Golomidova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences
| | - K.K. Tarasyan
- Winogradsky Institute of Microbiology, Russian Academy of Sciences
| |
Collapse
|
391
|
Abstract
Phages are now acknowledged as the most abundant microorganisms on the planet and are also possibly the most diversified. This diversity is mostly driven by their dynamic adaptation when facing selective pressure such as phage resistance mechanisms, which are widespread in bacterial hosts. When infecting bacterial cells, phages face a range of antiviral mechanisms, and they have evolved multiple tactics to avoid, circumvent or subvert these mechanisms in order to thrive in most environments. In this Review, we highlight the most important antiviral mechanisms of bacteria as well as the counter-attacks used by phages to evade these systems.
Collapse
Affiliation(s)
- Simon J Labrie
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
392
|
Rozhon W, Petutschnig E, Khan M, Summers DK, Poppenberger B. Frequency and diversity of small cryptic plasmids in the genus Rahnella. BMC Microbiol 2010; 10:56. [PMID: 20170524 PMCID: PMC2831885 DOI: 10.1186/1471-2180-10-56] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 02/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rahnella is a widely distributed genus belonging to the Enterobacteriaceae and frequently present on vegetables. Although Rahnella has interesting agro-economical and industrial properties and several strains possess antibiotic resistances and toxin genes which might spread within microbial communities, little is known about plasmids of this genus. Thus, we isolated a number of Rahnella strains and investigated their complements of small plasmids. RESULTS In total 53 strains were investigated and 11 plasmids observed. Seven belonged to the ColE1 family; one was ColE2-like and three shared homology to rolling circle plasmids. One of them belonged to the pC194/pUB110 family and two showed similarity to poorly characterised plasmid groups. The G+C content of two rolling circle plasmids deviated considerably from that of Rahnella, indicating that their usual hosts might belong to other genera. Most ColE1-like plasmids formed a subgroup within the ColE1 family that seems to be fairly specific for Rahnella. Intriguingly, the multimer resolution sites of all ColE1-like plasmids had the same orientation with respect to the origin of replication. This arrangement might be necessary to prevent inappropriate synthesis of a small regulatory RNA that regulates cell division. Although the ColE1-like plasmids did not possess any mobilisation system, they shared large parts with high sequence identity in coding and non-coding regions. In addition, highly homologous regions of plasmids isolated from Rahnella and the chromosomes of Erwinia tasmaniensis and Photorhabdus luminescens could be identified. CONCLUSIONS For the genus Rahnella we observed plasmid-containing isolates at a frequency of 19%, which is in the average range for Enterobacteriaceae. These plasmids belonged to different groups with members of the ColE1-family most frequently found. Regions of striking sequence homology of plasmids and bacterial chromosomes highlight the importance of plasmids for lateral gene transfer (including chromosomal sequences) to distinct genera.
Collapse
Affiliation(s)
- Wilfried Rozhon
- Max F Perutz Laboratories, University of Vienna, Dr Bohrgasse 9, Vienna, Austria.
| | | | | | | | | |
Collapse
|
393
|
Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 2010; 38:3743-59. [PMID: 20156992 PMCID: PMC2887945 DOI: 10.1093/nar/gkq054] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small, hydrophobic proteins whose synthesis is repressed by small RNAs (sRNAs), denoted type I toxin-antitoxin modules, were first discovered on plasmids where they regulate plasmid stability, but were subsequently found on a few bacterial chromosomes. We used exhaustive PSI-BLAST and TBLASTN searches across 774 bacterial genomes to identify homologs of known type I toxins. These searches substantially expanded the collection of predicted type I toxins, revealed homology of the Ldr and Fst toxins, and suggested that type I toxin-antitoxin loci are not spread by horizontal gene transfer. To discover novel type I toxin-antitoxin systems, we developed a set of search parameters based on characteristics of known loci including the presence of tandem repeats and clusters of charged and bulky amino acids at the C-termini of short proteins containing predicted transmembrane regions. We detected sRNAs for three predicted toxins from enterohemorrhagic Escherichia coli and Bacillus subtilis, and showed that two of the respective proteins indeed are toxic when overexpressed. We also demonstrated that the local free-energy minima of RNA folding can be used to detect the positions of the sRNA genes. Our results suggest that type I toxin-antitoxin modules are much more widely distributed among bacteria than previously appreciated.
Collapse
Affiliation(s)
- Elizabeth M Fozo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development and National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | | | | | |
Collapse
|
394
|
Rooks DJ, Yan Y, McDonald JE, Woodward MJ, McCarthy AJ, Allison HE. Development and validation of a qPCR-based method for quantifying Shiga toxin-encoding and other lambdoid bacteriophages. Environ Microbiol 2010; 12:1194-204. [PMID: 20148931 DOI: 10.1111/j.1462-2920.2010.02162.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To address whether seasonal variability exists among Shiga toxin-encoding bacteriophage (Stx phage) numbers on a cattle farm, conventional plaque assay was performed on water samples collected over a 17 month period. Distinct seasonal variation in bacteriophage numbers was evident, peaking between June and August. Removal of cattle from the pasture precipitated a reduction in bacteriophage numbers, and during the winter months, no bacteriophage infecting Escherichia coli were detected, a surprising occurrence considering that 10(31) tailed-bacteriophages are estimated to populate the globe. To address this discrepancy a culture-independent method based on quantitative PCR was developed. Primers targeting the Q gene and stx genes were designed that accurately and discriminately quantified artificial mixed lambdoid bacteriophage populations. Application of these primer sets to water samples possessing no detectable phages by plaque assay, demonstrated that the number of lambdoid bacteriophage ranged from 4.7 x 10(4) to 6.5 x 10(6) ml(-1), with one in 10(3) free lambdoid bacteriophages carrying a Shiga toxin operon (stx). Specific molecular biological tools and discriminatory gene targets have enabled virus populations in the natural environment to be enumerated and similar strategies could replace existing propagation-dependent techniques, which grossly underestimate the abundance of viral entities.
Collapse
Affiliation(s)
- David J Rooks
- School of Biological Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
395
|
Mitchell HL, Dashper SG, Catmull DV, Paolini RA, Cleal SM, Slakeski N, Tan KH, Reynolds EC. Treponema denticola biofilm-induced expression of a bacteriophage, toxin-antitoxin systems and transposases. MICROBIOLOGY-SGM 2009; 156:774-788. [PMID: 20007650 DOI: 10.1099/mic.0.033654-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Treponema denticola is an oral spirochaete that has been strongly associated with chronic periodontitis. The bacterium exists as part of a dense biofilm (subgingival dental plaque) accreted to the tooth. To determine T. denticola gene products important for persistence as a biofilm we developed a continuous-culture biofilm model and conducted a genome-wide transcriptomic analysis of biofilm and planktonic cells. A total of 126 genes were differentially expressed with a fold change of 1.5 or greater. This analysis identified the upregulation of putative prophage genes in the T. denticola 35405 genome. Intact bacteriophage particles were isolated from T. denticola and circular phage DNA was detected by PCR analysis. This represents the first, to our knowledge, functional bacteriophage isolated from T. denticola, which we have designated varphitd1. In biofilm cells there was also an upregulation of genes encoding several virulence factors, toxin-antitoxin systems and a family of putative transposases. Together, these data indicate that there is a higher potential for genetic mobility in T. denticola when growing as a biofilm and that these systems are important for the biofilm persistence and therefore virulence of this bacterium.
Collapse
Affiliation(s)
- Helen L Mitchell
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Australia
| | - Stuart G Dashper
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Australia
| | - Deanne V Catmull
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Australia
| | - Rita A Paolini
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Australia
| | - Steven M Cleal
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Australia
| | - Nada Slakeski
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Australia
| | - Kheng H Tan
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Australia
| | - Eric C Reynolds
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Australia
| |
Collapse
|
396
|
Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia. J Bacteriol 2009; 191:6029-39. [PMID: 19633081 DOI: 10.1128/jb.00720-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria are constantly challenged by bacteriophage (phage) infection and have developed multiple adaptive resistance mechanisms. These mechanisms include the abortive infection systems, which promote "altruistic suicide" of an infected cell, protecting the clonal population. A cryptic plasmid of Erwinia carotovora subsp. atroseptica, pECA1039, has been shown to encode an abortive infection system. This highly effective system is active across multiple genera of gram-negative bacteria and against a spectrum of phages. Designated ToxIN, this two-component abortive infection system acts as a toxin-antitoxin module. ToxIN is the first member of a new type III class of protein-RNA toxin-antitoxin modules, of which there are multiple homologues cross-genera. We characterized in more detail the abortive infection phenotype of ToxIN using a suite of Erwinia phages and performed mutagenesis of the ToxI and ToxN components. We determined the minimal ToxI RNA sequence in the native operon that is both necessary and sufficient for abortive infection and to counteract the toxicity of ToxN. Furthermore, site-directed mutagenesis of ToxN revealed key conserved amino acids in this defining member of the new group of toxic proteins. The mechanism of phage activation of the ToxIN system was investigated and was shown to have no effect on the levels of the ToxN protein. Finally, evidence of negative autoregulation of the toxIN operon, a common feature of toxin-antitoxin systems, is presented. This work on the components of the ToxIN system suggests that there is very tight toxin regulation prior to suicide activation by incoming phage.
Collapse
|
397
|
Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 2009; 4:19. [PMID: 19493340 PMCID: PMC2701414 DOI: 10.1186/1745-6150-4-19] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/03/2009] [Indexed: 11/13/2022] Open
Abstract
Background The prokaryotic toxin-antitoxin systems (TAS, also referred to as TA loci) are widespread, mobile two-gene modules that can be viewed as selfish genetic elements because they evolved mechanisms to become addictive for replicons and cells in which they reside, but also possess "normal" cellular functions in various forms of stress response and management of prokaryotic population. Several distinct TAS of type 1, where the toxin is a protein and the antitoxin is an antisense RNA, and numerous, unrelated TAS of type 2, in which both the toxin and the antitoxin are proteins, have been experimentally characterized, and it is suspected that many more remain to be identified. Results We report a comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems in prokaryotes. Using sensitive methods for distant sequence similarity search, genome context analysis and a new approach for the identification of mobile two-component systems, we identified numerous, previously unnoticed protein families that are homologous to toxins and antitoxins of known type 2 TAS. In addition, we predict 12 new families of toxins and 13 families of antitoxins, and also, predict a TAS or TAS-like activity for several gene modules that were not previously suspected to function in that capacity. In particular, we present indications that the two-gene module that encodes a minimal nucleotidyl transferase and the accompanying HEPN protein, and is extremely abundant in many archaea and bacteria, especially, thermophiles might comprise a novel TAS. We present a survey of previously known and newly predicted TAS in 750 complete genomes of archaea and bacteria, quantitatively demonstrate the exceptional mobility of the TAS, and explore the network of toxin-antitoxin pairings that combines plasticity with selectivity. Conclusion The defining properties of the TAS, namely, the typically small size of the toxin and antitoxin genes, fast evolution, and extensive horizontal mobility, make the task of comprehensive identification of these systems particularly challenging. However, these same properties can be exploited to develop context-based computational approaches which, combined with exhaustive analysis of subtle sequence similarities were employed in this work to substantially expand the current collection of TAS by predicting both previously unnoticed, derived versions of known toxins and antitoxins, and putative novel TAS-like systems. In a broader context, the TAS belong to the resistome domain of the prokaryotic mobilome which includes partially selfish, addictive gene cassettes involved in various aspects of stress response and organized under the same general principles as the TAS. The "selfish altruism", or "responsible selfishness", of TAS-like systems appears to be a defining feature of the resistome and an important characteristic of the entire prokaryotic pan-genome given that in the prokaryotic world the mobilome and the "stable" chromosomes form a dynamic continuum. Reviewers This paper was reviewed by Kenn Gerdes (nominated by Arcady Mushegian), Daniel Haft, Arcady Mushegian, and Andrei Osterman. For full reviews, go to the Reviewers' Reports section.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
398
|
Novel toxin-antitoxin system composed of serine protease and AAA-ATPase homologues determines the high level of stability and incompatibility of the tumor-inducing plasmid pTiC58. J Bacteriol 2009; 191:4656-66. [PMID: 19447904 DOI: 10.1128/jb.00124-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stability of plant tumor-inducing (Ti) plasmids differs among strains. A high level of stability prevents basic and applied studies including the development of useful strains. The nopaline type Ti plasmid pTiC58 significantly reduces the transconjugant efficiency for incoming incompatible plasmids relative to the other type, such as octopine-type plasmids. In this study we identified a region that increases the incompatibility and stability of the plasmid. This region was located on a 4.3-kbp segment about 38 kbp downstream of the replication locus, repABC. We named two open reading frames in the segment, ietA and ietS, both of which were essential for the high level of incompatibility and stability. Plasmid stabilization by ietAS was accomplished by a toxin-antitoxin (TA) mechanism, where IetS is the toxin and IetA is the antitoxin. A database search revealed that putative IetA and IetS proteins are highly similar to AAA-ATPases and subtilisin-like serine proteases, respectively. Amino acid substitution experiments in each of the highly conserved characteristic residues, in both putative enzymes, suggested that the protease activity is essential and that ATP binding activity is important for the operation of the TA system. The ietAS-containing repABC plasmids expelled Ti plasmids even in strains which were tolerant to conventional Ti-curing treatments.
Collapse
|