351
|
Homeostatic regulation of glutamatergic transmission by dopamine D4 receptors. Proc Natl Acad Sci U S A 2010; 107:22308-13. [PMID: 21135234 DOI: 10.1073/pnas.1010025108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Alterations of synaptic transmission have been considered a core feature of mental disorders; thus, we examined the role of dopamine D(4) receptors, which is highly implicated in attention-deficit hyperactivity disorder and schizophrenia, in regulating synaptic functions of prefrontal cortex, a brain region critical for cognitive and emotional processes. We found that D(4) stimulation caused a profound depression or potentiation of AMPA receptor-mediated excitatory synaptic transmission in prefrontal cortex pyramidal neurons when their activity was elevated or dampened, respectively, which was accompanied by a D(4)-induced decrease or increase of AMPARs at synapses. The dual effects of D(4) on AMPAR trafficking and function was dependent on the D(4)-mediated bidirectional regulation of CaMKII activity via coupling to distinct signaling pathways, which provides a unique mechanism for D(4) receptors to serve as a homeostatic synaptic factor to stabilize cortical excitability.
Collapse
|
352
|
Barsegyan A, Mackenzie SM, Kurose BD, McGaugh JL, Roozendaal B. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proc Natl Acad Sci U S A 2010; 107:16655-60. [PMID: 20810923 PMCID: PMC2944727 DOI: 10.1073/pnas.1011975107] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC.
Collapse
Affiliation(s)
- Areg Barsegyan
- Department of Neuroscience, Section Anatomy, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands; and
| | - Scott M. Mackenzie
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800
| | - Brian D. Kurose
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800
| | - James L. McGaugh
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800
| | - Benno Roozendaal
- Department of Neuroscience, Section Anatomy, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands; and
| |
Collapse
|
353
|
Loomis WF, Behrens MM, Williams ME, Anjard C. Pregnenolone sulfate and cortisol induce secretion of acyl-CoA-binding protein and its conversion into endozepines from astrocytes. J Biol Chem 2010; 285:21359-65. [PMID: 20452969 PMCID: PMC2898429 DOI: 10.1074/jbc.m110.105858] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/05/2010] [Indexed: 01/01/2023] Open
Abstract
Acyl-CoA-binding protein (ACBP) functions both intracellularly as part of fatty acid metabolism and extracellularly as diazepam binding inhibitor, the precursor of endozepine peptides. Two of these peptides, ODN and TTN, bind to the GABA(A) receptor and modulate its sensitivity to gamma-aminobutyric acid (GABA). We have found that depolarization of mouse primary astrocytes induces the rapid release and processing of ACBP to the active peptides. We previously showed that ODN can trigger the rapid sporulation of the social amoeba Dictyostelium. Using this bioassay, we now show that astrocytes release the endozepine peptides within 10 min of exposure to the steroids cortisol, pregnenolone, pregnenolone sulfate, or progesterone. ACBP lacks a signal sequence for secretion through the endoplasmic reticulum/Golgi pathway and its secretion is not affected by addition of brefeldin A, a well known inhibitor of the classical secretion pathway, suggesting that it follows an unconventional pathway for secretion. Moreover, induction of autophagy by addition of rapamycin also resulted in rapid release of ACBP indicating that this protein uses components of the autophagy pathway for secretion. Following secretion, ACBP is proteolytically cleaved to the active neuropeptides by protease activity on the surface of astrocytes. Neurosteroids, such as pregnenolone sulfate, were previously shown to modulate the excitatory/inhibitory balance in brain through increased release of glutamate and decreased release of GABA. These effects of steroids in neurons will be reinforced by the release of endozepines from astrocytes shown here, and suggest an orchestrated astrocyte-neuron cross-talk that can affect a broad spectrum of behavioral functions.
Collapse
Affiliation(s)
- William F. Loomis
- From the Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0368 and
| | | | - Megan E. Williams
- From the Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0368 and
| | - Christophe Anjard
- From the Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0368 and
| |
Collapse
|
354
|
Chen CC, Yang CH, Huang CC, Hsu KS. Acute stress impairs hippocampal mossy fiber-CA3 long-term potentiation by enhancing cAMP-specific phosphodiesterase 4 activity. Neuropsychopharmacology 2010; 35:1605-17. [PMID: 20237461 PMCID: PMC3055459 DOI: 10.1038/npp.2010.33] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mossy fiber synapses onto hippocampal CA3 neurons show unique molecular features and a wide dynamic range of plasticity. Although acute stress has been well recognized to alter bidirectional long-term synaptic plasticity in the hippocampal CA1 region and dentate gyrus, it remains unclear whether the same effect may also occur at the mossy fiber-CA3 synapses. Here, we report that hippocampal slices prepared from adult mice that had experienced an acute unpredictable and inescapable restraint tail-shock stress showed a marked impairment of long-term potentiation (LTP) induced by high-frequency stimulation or adenylyl cyclase activator forskolin. This effect was prevented when animals were submitted to bilateral adrenalectomy or given the glucocorticoid receptor antagonist RU38486 before experiencing stress. In contrast, stress has no effect on synaptic potentiation induced by the non-hydrolysable and membrane-permeable cyclic adenosine 5'-monophosphate (cAMP) analog Sp-8-bromo-cAMPS. No obvious differences were observed between control and stressed mice in the basal synaptic transmission, paired-pulse facilitation, or frequency facilitation at the mossy fiber-CA3 synapses. We also found that the inhibitory effect of stress on mossy fiber LTP was obviated by the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3,-dipropylxanthine, the non-specific phosphodiesterase (PDE) inhibitor 3-isobutyl-methylxanthine, and the specific PDE4 inhibitor 4-(3-butoxy-4-methoxyphenyl)methyl-2-imidazolidone. In addition, stress induces a sustained and profound increase in cAMP-specific PDE4 activity. These results suggest that the inhibition of mossy fiber LTP by acute stress treatment seems originating from a corticosterone-induced sustained increase in the PDE4 activity to accelerate the metabolism of cAMP to adenosine, in turn triggering an adenosine A(1) receptor-mediated impairment of transmitter release machinery.
Collapse
Affiliation(s)
- Chien-Chung Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hao Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan, Taiwan,Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, Tel: +886 6235 3535 ext: 5498, Fax: +886 6274 9296, E-mail:
| |
Collapse
|
355
|
Cold Pressor “Augmentation” Does Not Differentially Improve Treatment Response for Spider Phobia. COGNITIVE THERAPY AND RESEARCH 2010. [DOI: 10.1007/s10608-010-9310-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
356
|
Bangasser DA, Shors TJ. Critical brain circuits at the intersection between stress and learning. Neurosci Biobehav Rev 2010; 34:1223-33. [PMID: 20153364 DOI: 10.1016/j.neubiorev.2010.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/14/2010] [Accepted: 02/04/2010] [Indexed: 01/03/2023]
Abstract
The effects of stressful life experience on learning are pervasive and vary greatly both within and between individuals. It is therefore unlikely that any one mechanism will underlie these complicated processes. Nonetheless, without identifying the necessary and sufficient circuitry, no complete mechanism or set of mechanisms can be identified. In this review, we provide two anatomical frameworks through which stressful life experience can influence processes related to learning and memory. In the first, stressful experience releases stress hormones, primarily from the adrenals, which directly impact brain areas engaged in learning. In the second, stressful experience indirectly alters the circuits used in learning via intermediary brain regions. Importantly, these intermediary brain regions are not integral to the stress response or learning itself, but rather link the consequences of a stressful experience with circuits used to learn associations. As reviewed, the existing literature provides support for both frameworks, with somewhat more support for the first but sufficient evidence for the latter which involves intermediary structures. Once we determine the circumstances that engage each framework and identify which one is most predominant, we can begin to focus our efforts on describing the neuronal and hormonal mechanisms that operate within these circuits to influence cognitive processes after stressful life experience.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Anesthesiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
357
|
|
358
|
Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, Bonifacino T, Mallei A, Baldelli P, Racagni G, Raiteri M, Benfenati F, Bonanno G, Popoli M. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One 2010; 5:e8566. [PMID: 20052403 PMCID: PMC2797327 DOI: 10.1371/journal.pone.0008566] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/06/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release. METHODOLOGY/FINDINGS Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine) and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated), and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486). On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats). Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability. CONCLUSIONS/SIGNIFICANCE Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress, shown here for the first time, could be related to the therapeutic action of these drugs.
Collapse
Affiliation(s)
- Laura Musazzi
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Marco Milanese
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
| | - Pasqualina Farisello
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova and National Institute of Neuroscience, Genova, Italy
| | - Simona Zappettini
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
| | - Daniela Tardito
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Valentina S. Barbiero
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Tiziana Bonifacino
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
| | - Alessandra Mallei
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Pietro Baldelli
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova and National Institute of Neuroscience, Genova, Italy
| | - Giorgio Racagni
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova and National Institute of Neuroscience, Genova, Italy
| | - Maurizio Raiteri
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova and National Institute of Neuroscience, Genova, Italy
| | - Giambattista Bonanno
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
| | - Maurizio Popoli
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| |
Collapse
|
359
|
Liu W, Yuen EY, Yan Z. The stress hormone corticosterone increases synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI-Rab4 complex. J Biol Chem 2010; 285:6101-8. [PMID: 20051515 DOI: 10.1074/jbc.m109.050229] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Corticosterone, the major stress hormone, plays an important role in regulating neuronal functions of the limbic system, although the cellular targets and molecular mechanisms of corticosteroid signaling are largely unknown. Here we show that a short treatment of corticosterone significantly increases alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission and AMPAR membrane trafficking in pyramidal neurons of prefrontal cortex, a key region involved in cognition and emotion. This enhancing effect of corticosterone is through a mechanism dependent on Rab4, the small GTPase-controlling receptor recycling between early endosome and plasma membrane. Guanosine nucleotide dissociation inhibitor (GDI), which regulates the cycle of Rab proteins between membrane and cytosol, forms an increased complex with Rab4 after corticosterone treatment. Corticosterone also triggers an increased GDI phosphorylation at Ser-213 by the serum- and glucocorticoid-inducible kinase (SGK). Moreover, AMPAR synaptic currents and surface expression and their regulation by corticosterone are altered by mutating Ser-213 on GDI. These results suggest that corticosterone, via SGK phosphorylation of GDI at Ser-213, increases the formation of GDI-Rab4 complex, facilitating the functional cycle of Rab4 and Rab4-mediated recycling of AMPARs to the synaptic membrane. It provides a potential mechanism underlying the role of corticosteroid stress hormone in up-regulating excitatory synaptic efficacy in cortical neurons.
Collapse
Affiliation(s)
- Wenhua Liu
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|