351
|
Funami J, Yoshikane Y, Kobayashi H, Yokochi N, Yuan B, Iwasaki K, Ohnishi K, Yagi T. 4-Pyridoxolactonase from a symbiotic nitrogen-fixing bacterium Mesorhizobium loti: cloning, expression, and characterization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1753:234-9. [PMID: 16226926 DOI: 10.1016/j.bbapap.2005.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 08/14/2005] [Accepted: 08/30/2005] [Indexed: 11/25/2022]
Abstract
4-Pyridoxolactonase is involved in the degradation pathway for pyridoxine, a free form of vitamin B6. The gene (mlr6805) encoding the putative 4-pyridoxolactonase of nitrogen fixing symbiotic microorganism Mesorhizobium loti MAFF303099 has been identified based on the genome database. The gene was cloned and overexpressed in a cotransformant Escherichia coli cell. The recombinant enzyme was dimeric protein and contained one mole of Zn2+ per mole of subunit. The enzyme showed about 30% identity with various N-acylhomoserine lactone lactonases and metallo-beta-lactamases. The phylogram made with ClustalW shows that 4-pyridoxolactonase makes a cluster with Agrobacterium tumefaciens acyl-homoserine lactone lactonase. The alignment of amino acid sequences suggests that 4-pyridoxolactonase has three histidine residues probably involved in binding of Zn2+.
Collapse
Affiliation(s)
- Junichi Funami
- Department of Bioresources Science, Faculty of Agriculture, Kochi University, Monobe-Otsu 200, Nankoku, Kochi 783-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Sällström B, Andersson SGE. Genome reduction in the α-Proteobacteria. Curr Opin Microbiol 2005; 8:579-85. [PMID: 16099701 DOI: 10.1016/j.mib.2005.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 08/03/2005] [Indexed: 01/26/2023]
Abstract
More than 20 alpha-proteobacterial genomes are currently available. These range in size from 1-9 Mb and represent excellent model systems for evolutionary studies of the organizational features of bacterial genomes. Computational inferences have shown that genome reductions have occurred independently in lineages such as Rickettsia and Bartonella that are associated with intracellular lifestyles. Analyses of these reduced genomes have provided insights into the evolution of vector-borne transmission pathways. Further research into the population biology of bacteria, arthropods and vertebrate hosts will help to refine the biology of host-pathogen interactions and will facilitate the design of vaccines and vector-control programs.
Collapse
Affiliation(s)
- Björn Sällström
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| | | |
Collapse
|
353
|
Nakatsukasa-Akune M, Yamashita K, Shimoda Y, Uchiumi T, Abe M, Aoki T, Kamizawa A, Ayabe SI, Higashi S, Suzuki A. Suppression of root nodule formation by artificial expression of the TrEnodDR1 (coat protein of White clover cryptic virus 1) gene in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1069-80. [PMID: 16255246 DOI: 10.1094/mpmi-18-1069] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
TrEnodDR1 (Trifolium repens early nodulin downregulation 1) encodes a coat protein of White clover cryptic virus 1. Its expression in white clover was down-regulated at the time when root nodules formed. We surmised that its artificial expression would interfere with root nodulation. Therefore, we investigated the effects of its artificial expression on the growth and root nodulation of Lotus japonicus (a model legume). Transformants were prepared by Agrobacterium spp.-mediated transformation. The growth of transformants was reduced and the number of root nodules per unit root length was greatly decreased relative to control. The concentration of endogenous abscisic acid (ABA), which controls nodulation, increased in plants containing TrEnodDR1. These phenotypes clearly were canceled by treatment with abamine, a specific inhibitor of ABA biosynthesis. The increase in endogenous ABA concentration explained the reduced stomatal aperture and the deformation of root hairs in response to inoculation of transgenic L. japonicus with Mesorhizobium loti. Transcriptome comparison between TrEnodDR1 transformants and control plants showed clearly enhanced expression levels of various defense response genes in transformants. These findings suggest that TrEnodDR1 suppresses nodulation by increasing the endogenous ABA concentration, perhaps by activating the plant's innate immune response. This is the first report of the suppression of nodulation by the artificial expression of a virus coat protein gene.
Collapse
|
354
|
Das S, Pan A, Paul S, Dutta C. Comparative Analyses of Codon and Amino Acid Usage in Symbiotic Island and Core Genome in Nitrogen-Fixing Symbiotic BacteriumBradyrhizobium japonicum. J Biomol Struct Dyn 2005; 23:221-32. [PMID: 16060695 DOI: 10.1080/07391102.2005.10507061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Genes involved in the symbiotic interactions between the nitrogen-fixing endosymbiont Bradyrhizobium japonicum, and its leguminous host are mostly clustered in a symbiotic island (SI), acquired by the bacterium through a process of horizontal transfer. A comparative analysis of the codon and amino acid usage in core and SI genes/proteins of B. japonicum has been carried out in the present study. The mutational bias, translational selection, and gene length are found to be the major sources of variation in synonymous codon usage in the core genome as well as in SI, the strength of translational selection being higher in core genes than in SI. In core proteins, hydrophobicity is the main source of variation in amino acid usage, expressivity and aromaticity being the second and third important sources. But in SI proteins, aromaticity is the chief source of variation, followed by expressivity and hydrophobicity. In SI proteins, both the mean molecular weight and mean aromaticity of individual proteins exhibit significant positive correlation with gene expressivity, which violate the cost-minimization hypothesis. Investigation of nucleotide substitution patterns in B. japonicum and Mesorhizobium loti orthologous genes reveals that both synonymous and non-synonymous sites of highly expressed genes are more conserved than their lowly expressed counterparts and this conservation is more pronounced in the genes present in core genome than in SI.
Collapse
Affiliation(s)
- Sabyasachi Das
- Bioinformatics Centre, Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700 032, India
| | | | | | | |
Collapse
|
355
|
Glick BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 2005; 251:1-7. [PMID: 16099604 DOI: 10.1016/j.femsle.2005.07.030] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/30/2022] Open
Abstract
Soil microorganisms that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase promote plant growth by sequestering and cleaving plant-produced ACC, and thereby lowering the level of ethylene in the plant. Decreased ethylene levels allows the plant to be more resistant to a wide variety of environmental stresses. Here, the biochemistry of ACC deaminase; the environmental distribution, regulation, evolution and expression of ACC deaminase genes; and information regarding the effect of this enzyme on different plants is documented and discussed.
Collapse
Affiliation(s)
- Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ont., Canada N2L 3G1.
| |
Collapse
|
356
|
Badger JH, Eisen JA, Ward NL. Genomic analysis of Hyphomonas neptunium contradicts 16S rRNA gene-based phylogenetic analysis: implications for the taxonomy of the orders 'Rhodobacterales' and Caulobacterales. Int J Syst Evol Microbiol 2005; 55:1021-1026. [PMID: 15879228 DOI: 10.1099/ijs.0.63510-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyphomonas neptunium is a marine prosthecate alpha-proteobacterium currently classified as a member of the order 'Rhodobacterales'. Although this classification is supported by 16S rRNA gene sequence phylogeny, 23S rRNA gene sequence analysis, concatenated ribosomal proteins, HSP70 and EF-Tu phylogenies all support classifying Hyphomonas neptunium as a member of the Caulobacterales instead. The possible reasons why the 16S rRNA gene sequence gives conflicting results in this case are also discussed.
Collapse
MESH Headings
- Alphaproteobacteria/classification
- Alphaproteobacteria/genetics
- Bacterial Proteins/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- HSP70 Heat-Shock Proteins/genetics
- Peptide Elongation Factor Tu/genetics
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Jonathan H Badger
- The Institute for Genomic Research, 9712 Medical Center Dr., Rockville, MD 20850, USA
| | - Jonathan A Eisen
- The Institute for Genomic Research, 9712 Medical Center Dr., Rockville, MD 20850, USA
| | - Naomi L Ward
- The Institute for Genomic Research, 9712 Medical Center Dr., Rockville, MD 20850, USA
| |
Collapse
|
357
|
Gupta RS. Protein signatures distinctive of alpha proteobacteria and its subgroups and a model for alpha-proteobacterial evolution. Crit Rev Microbiol 2005; 31:101-35. [PMID: 15986834 DOI: 10.1080/10408410590922393] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Alpha (alpha) proteobacteria comprise a large and metabolically diverse group. No biochemical or molecular feature is presently known that can distinguish these bacteria from other groups. The evolutionary relationships among this group, which includes numerous pathogens and agriculturally important microbes, are also not understood. Shared conserved inserts and deletions (i.e., indels or signatures) in molecular sequences provide a powerful means for identification of different groups in clear terms, and for evolutionary studies (see www.bacterialphylogeny.com). This review describes, for the first time, a large number of conserved indels in broadly distributed proteins that are distinctive and unifying characteristics of either all alpha-proteobacteria, or many of its constituent subgroups (i.e., orders, families, etc.). These signatures were identified by systematic analyses of proteins found in the Rickettsia prowazekii (RP) genome. Conserved indels that are unique to alpha-proteobacteria are present in the following proteins: Cytochrome c oxidase assembly protein Ctag, PurC, DnaB, ATP synthase alpha-subunit, exonuclease VII, prolipoprotein phosphatidylglycerol transferase, RP-400, FtsK, puruvate phosphate dikinase, cytochrome b, MutY, and homoserine dehydrogenase. The signatures in succinyl-CoA synthetase, cytochrome oxidase I, alanyl-tRNA synthetase, and MutS proteins are found in all alpha-proteobacteria, except the Rickettsiales, indicating that this group has diverged prior to the introduction of these signatures. A number of proteins contain conserved indels that are specific for Rickettsiales (XerD integrase and leucine aminopeptidase), Rickettsiaceae (Mfd, ribosomal protein L19, FtsZ, Sigma 70 and exonuclease VII), or Anaplasmataceae (Tgt and RP-314), and they distinguish these groups from all others. Signatures in DnaA, RP-057, and DNA ligase A are commonly shared by various Rhizobiales, Rhodobacterales, and Caulobacter, suggesting that these groups shared a common ancestor exclusive of other alpha-proteobacteria. A specific relationship between Rhodobacterales and Caulobacter is indicated by a large insert in the Asn-Gln amidotransferase. The Rhizobiales group of species are distinguished from others by a large insert in the Trp-tRNA synthetase. Signature sequences in a number of other proteins (viz. oxoglutarate dehydogenase, succinyl-CoA synthase, LytB, DNA gyrase A, LepA, and Ser-tRNA synthetase) serve to distinguish the Rhizobiaceae, Brucellaceae, and Phyllobacteriaceae families from Bradyrhizobiaceae and Methylobacteriaceae. Based on the distribution patterns of these signatures, it is now possible to logically deduce a model for the branching order among alpha-proteobacteria, which is as follows: Rickettsiales --> Rhodospirillales-Sphingomonadales --> Rhodobacterales-Caulobacterales --> Rhizobiales (Rhizobiaceaea-Brucellaceae-Phyllobacteriaceae, and Bradyrhizobiaceae). The deduced branching order is also consistent with the topologies in the 16 rRNA and other phylogenetic trees. Signature sequences in a number of other proteins provide evidence that alpha-proteobacteria is a late branching taxa within Bacteria, which branched after the delta,epsilon-subdivisions but prior to the beta,gamma-proteobacteria. The shared presence of many of these signatures in the mitochondrial (eukaryotic) homologs also provides evidence of the alpha-proteobacterial ancestry of mitochondria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
358
|
Guillén-Navarro K, Araíza G, García-de los Santos A, Mora Y, Dunn MF. TheRhizobium etli bioMNYoperon is involved in biotin transport. FEMS Microbiol Lett 2005; 250:209-19. [PMID: 16099603 DOI: 10.1016/j.femsle.2005.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 07/05/2005] [Accepted: 07/11/2005] [Indexed: 11/18/2022] Open
Abstract
Because Rhizobium etli CE3 is normally dependent on an external source of biotin and lacks orthodox biotin biosynthesis genes, we undertook an analysis of biotin uptake in this organism. By complementation of a Sinorhizobium meliloti bioM mutant we isolated an R. etli chromosomal region encoding homologs of the S. meliloti bioMNB genes, whose products have been implicated in intracellular biotin retention in that organism. Disruption of the R. etli bioM resulted in a mutant which took up biotin at a lower rate and accumulated significantly less biotin than the wild type. As in S. meliloti, the R. etli bioMN gene-products resemble the ATPase and permease components, respectively, of an ABC-type transporter. The bioB gene product is in fact similar to members of the BioY family, which has been postulated to function in biotin transport, and we refer to this gene as bioY. An R. etli bioY mutant exhibited lower biotin uptake than the wild-type, providing the first experimental evidence for a role of BioY in biotin transport. We show that the bioMNY operon is transcriptionally repressed by biotin. An analysis of the competitiveness of the wild-type strain versus the bioM mutant showed that the mutant had a diminished capacity to form nodules on bean plants.
Collapse
Affiliation(s)
- Karina Guillén-Navarro
- Programa de Ingeniería Metabólica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A. P. 565-A, Cuernavaca, Morelos, Mexico
| | | | | | | | | |
Collapse
|
359
|
Testa CA, Lherbet C, Pojer F, Noel JP, Poulter CD. Cloning and expression of IspDF from Mesorhizobium loti. Characterization of a bifunctional protein that catalyzes non-consecutive steps in the methylerythritol phosphate pathway. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:85-96. [PMID: 16203191 DOI: 10.1016/j.bbapap.2005.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 08/08/2005] [Accepted: 08/09/2005] [Indexed: 11/16/2022]
Abstract
Gram-negative bacteria, plant chloroplasts, green algae and some Gram-positive bacteria utilize the 2-C-methyl-d-erythritol phosphate (MEP) pathway for the biosynthesis of isoprenoids. IspD, ispE, and ispF encode the enzymes required to convert MEP to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) during the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate in the MEP pathway. Upon analysis of the Mesorhizobium loti genome, ORF mll0395 showed homology to both ispD and ispF and appeared to encode a fusion protein. M. loti ispE was located elsewhere on the chromosome. Purified recombinant IspDF protein was mostly a homodimer, MW approximately 46 kDa/subunit. Incubation of IspDF with MEP, CTP, and ATP gave 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDP-ME) as the only product. When Escherichia coli IspE protein was added to the incubation mixture, cMEDP was formed. In addition, M. loti ORF mll0395 complements lethal disruptions in both ispD and ispF in Salmonella typhimurium. These results indicate that IspDF is a bifunctional protein, which catalyzes the first and third steps in the conversion of MEP to cMEDP.
Collapse
Affiliation(s)
- Charles A Testa
- Department of Chemistry, University of Utah, Salt Lake City, 84112, USA
| | | | | | | | | |
Collapse
|
360
|
Kumar S, Bourdès A, Poole P. De novo alanine synthesis by bacteroids of Mesorhizobium loti is not required for nitrogen transfer in the determinate nodules of Lotus corniculatus. J Bacteriol 2005; 187:5493-5. [PMID: 16030244 PMCID: PMC1196047 DOI: 10.1128/jb.187.15.5493-5495.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of both alanine dehydrogenase genes (aldA) in Mesorhizobium loti resulted in the loss of AldA enzyme activity from cultured bacteria and bacteroids but had no effect on the symbiotic performance of Lotus corniculatus plants. Thus, neither indeterminate pea nodules nor determinate L. corniculatus nodules export alanine as the sole nitrogen secretion product.
Collapse
Affiliation(s)
- Shalini Kumar
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, P.O. Box 228, Reading RG6 6AJ, United Kingdom
| | | | | |
Collapse
|
361
|
Encarnación S, Hernández M, Martínez-Batallar G, Contreras S, Vargas MDC, Mora J. Comparative proteomics using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or partially sequenced genomes. Biol Proced Online 2005; 7:117-35. [PMID: 16145578 PMCID: PMC1190382 DOI: 10.1251/bpo110] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 07/14/2005] [Accepted: 07/18/2005] [Indexed: 11/23/2022] Open
Abstract
We propose two-dimensional gel electrophoresis (2-DE) and mass spectrometry to define the protein components of regulons and stimulons in bacteria, including those organisms where genome sequencing is still in progress. The basic 2-DE protocol allows high resolution and reproducibility and enables the direct comparison of hundreds or even thousands of proteins simultaneously. To identify proteins that comprise stimulons and regulons, peptide mass fingerprint (PMF) with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF-MS) analysis is the first option and, if results from this tool are insufficient, complementary data obtained with electrospray ionization tandem-MS (ESI-MS/MS) may permit successful protein identification. ESI-MS/MS and MALDI-TOF-MS provide complementary data sets, and so a more comprehensive coverage of a proteome can be obtained using both techniques with the same sample, especially when few sequenced proteins of a particular organism exist or genome sequencing is still in progress.
Collapse
Affiliation(s)
- Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | |
Collapse
|
362
|
Guillén-Navarro K, Encarnación S, Dunn MF. Biotin biosynthesis, transport and utilization in rhizobia. FEMS Microbiol Lett 2005; 246:159-65. [PMID: 15899401 DOI: 10.1016/j.femsle.2005.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 10/25/2022] Open
Abstract
Biotin, a B-group vitamin, performs an essential metabolic function in all organisms. Rhizobia are alpha-proteobacteria with the remarkable ability to form a nitrogen-fixing symbiosis in combination with a compatible legume host, a process in which the importance of biotin biosynthesis and/or transport has been demonstrated for some rhizobia-legume combinations. Rhizobia have also been used to delimit the biosynthesis, metabolic effects and, more recently, transport of biotin. Molecular genetic analysis shows that an orthodox biotin biosynthesis pathway occurs in some rhizobia while others appear to synthesize the vitamin using alternative pathways. In addition to its well established function as a prosthetic group for biotin-dependent carboxylases, we are beginning to delineate a role for biotin as a metabolic regulator in rhizobia.
Collapse
Affiliation(s)
- Karina Guillén-Navarro
- Programa de Ingeniería Metabólica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|
363
|
Yoon SH, Hur CG, Kang HY, Kim YH, Oh TK, Kim JF. A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinformatics 2005; 6:184. [PMID: 16033657 PMCID: PMC1188055 DOI: 10.1186/1471-2105-6-184] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 07/21/2005] [Indexed: 11/12/2022] Open
Abstract
Background Pathogenicity islands (PAIs), distinct genomic segments of pathogens encoding virulence factors, represent a subgroup of genomic islands (GIs) that have been acquired by horizontal gene transfer event. Up to now, computational approaches for identifying PAIs have been focused on the detection of genomic regions which only differ from the rest of the genome in their base composition and codon usage. These approaches often lead to the identification of genomic islands, rather than PAIs. Results We present a computational method for detecting potential PAIs in complete prokaryotic genomes by combining sequence similarities and abnormalities in genomic composition. We first collected 207 GenBank accessions containing either part or all of the reported PAI loci. In sequenced genomes, strips of PAI-homologs were defined based on the proximity of the homologs of genes in the same PAI accession. An algorithm reminiscent of sequence-assembly procedure was then devised to merge overlapping or adjacent genomic strips into a large genomic region. Among the defined genomic regions, PAI-like regions were identified by the presence of homolog(s) of virulence genes. Also, GIs were postulated by calculating G+C content anomalies and codon usage bias. Of 148 prokaryotic genomes examined, 23 pathogenic and 6 non-pathogenic bacteria contained 77 candidate PAIs that partly or entirely overlap GIs. Conclusion Supporting the validity of our method, included in the list of candidate PAIs were thirty four PAIs previously identified from genome sequencing papers. Furthermore, in some instances, our method was able to detect entire PAIs for those only partial sequences are available. Our method was proven to be an efficient method for demarcating the potential PAIs in our study. Also, the function(s) and origin(s) of a candidate PAI can be inferred by investigating the PAI queries comprising it. Identification and analysis of potential PAIs in prokaryotic genomes will broaden our knowledge on the structure and properties of PAIs and the evolution of bacterial pathogenesis.
Collapse
Affiliation(s)
- Sung Ho Yoon
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 52 Oun-dong, Yuseong, Daejeon 305-333, Korea
| | - Cheol-Goo Hur
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 52 Oun-dong, Yuseong, Daejeon 305-333, Korea
| | - Ho-Young Kang
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 52 Oun-dong, Yuseong, Daejeon 305-333, Korea
| | - Yeoun Hee Kim
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 52 Oun-dong, Yuseong, Daejeon 305-333, Korea
| | - Tae Kwang Oh
- 21C Frontier Microbial Genomics and Applications Center, KRIBB, 52 Oun-dong, Yuseong, Daejeon 305-333, Korea
| | - Jihyun F Kim
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 52 Oun-dong, Yuseong, Daejeon 305-333, Korea
| |
Collapse
|
364
|
Chu CL, Chin KH, Lin FY, Chou CC, Lee CC, Shr HL, Lyu PC, Wang AHJ, Chou SH. A putative polyketide-synthesis protein XC5357 from Xanthomonas campestris: heterologous expression, crystallization and preliminary X-ray analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:697-9. [PMID: 16511132 PMCID: PMC1952467 DOI: 10.1107/s1744309105018968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 06/14/2005] [Indexed: 11/10/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a Gram-negative yellow-pigmented bacterium and is the causative agent of black rot, one of the major worldwide diseases of cruciferous crops. It also synthesizes a variety of polyketide metabolites that lead to important antibiotics. XC5357 is a putative 12.2 kDa protein of unknown structure from Xcc that is likely to be essential for polyketide synthesis. It was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belong to the triclinic space group P1, with unit-cell parameters a = 43.7, b = 43.7, c = 46.5 A, alpha = 65.0, beta = 64.9, gamma = 73.4 degrees, and diffracted to a resolution of 1.85 A.
Collapse
Affiliation(s)
- Chiao-Li Chu
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Fu-Yang Lin
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Chia-Cheng Chou
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Hui-Lin Shr
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ping-Chiang Lyu
- Department of Life Science, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
365
|
Jensen JB, Ampomah OY, Darrah R, Peters NK, Bhuvaneswari TV. Role of trehalose transport and utilization in Sinorhizobium meliloti--alfalfa interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:694-702. [PMID: 16042015 DOI: 10.1094/mpmi-18-0694] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genes thuA and thuB in Sinorhizobium meliloti Rm1021 code for a major pathway for trehalose catabolism and are induced by trehalose but not by related structurally similar disaccharides like sucrose or maltose. S. meliloti strains mutated in either of these two genes were severely impaired in their ability to grow on trehalose as the sole source of carbon. ThuA and ThuB show no homology to any known enzymes in trehalose utilization. ThuA has similarity to proteins of unknown function in Mesorhizobium loti, Agrobacterium tumefaciens, and Brucella melitensis, and ThuB possesses homology to dehydrogenases containing the consensus motif AGKHVXCEKP. thuAB genes are expressed in bacteria growing on the root surface and in the infection threads but not in the symbiotic zone of the nodules. Even though thuA and thuB mutants were impaired in competitive colonization of Medicago sativa roots, these strains were more competitive than the wild-type Rml021 in infecting alfalfa roots and forming nitrogen-fixing nodules. Possible reasons for their increased competitiveness are discussed.
Collapse
Affiliation(s)
- John Beck Jensen
- Department of Biology, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
366
|
Kainth P, Gupta RS. Signature proteins that are distinctive of alpha proteobacteria. BMC Genomics 2005; 6:94. [PMID: 15960851 PMCID: PMC1182365 DOI: 10.1186/1471-2164-6-94] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 06/16/2005] [Indexed: 11/24/2022] Open
Abstract
Background The alpha (α) proteobacteria, a very large and diverse group, are presently characterized solely on the basis of 16S rRNA trees, with no known molecular characteristic that is unique to this group. The genomes of three α-proteobacteria, Rickettsia prowazekii (RP), Caulobacter crescentus (CC) and Bartonella quintana (BQ), were analyzed in order to search for proteins that are unique to this group. Results Blast analyses of protein sequences from the above genomes have led to the identification of 61 proteins which are distinctive characteristics of α-proteobacteria and are generally not found in any other bacteria. These α-proteobacterial signature proteins are generally of hypothetical functions and they can be classified as follows: (i) Six proteins (CC2102, CC3292, CC3319, CC1887, CC1725 and CC1365) which are uniquely present in most sequenced α-proteobacterial genomes; (ii) Ten proteins (CC1211, CC1886, CC2245, CC3470, CC0520, CC0365, CC0366, CC1977, CC3010 and CC0100) which are present in all α-proteobacteria except the Rickettsiales; (iii) Five proteins (CC2345, CC3115, CC3401, CC3467 and CC1021) not found in the intracellular bacteria belonging to the order Rickettsiales and the Bartonellaceae family; (iv) Four proteins (CC1652, CC2247, CC3295 and CC1035) that are absent from various Rickettsiales as well as Rhodobacterales; (v) Three proteins (RP104, RP105 and RP106) that are unique to the order Rickettsiales and four proteins (RP766, RP192, RP030 and RP187) which are specific for the Rickettsiaceae family; (vi) Six proteins (BQ00140, BQ00720, BQ03880, BQ12030, BQ07670 and BQ11900) which are specific to the order Rhizobiales; (vii) Four proteins (BQ01660, BQ02450, BQ03770 and BQ13470) which are specific for the order Rhizobiales excluding the family Bradyrhizobiaceae; (viii) Nine proteins (BQ12190, BQ11460, BQ11450, BQ11430, BQ11380, BQ11160, BQ11120, BQ11100 and BQ11030 which are distinctive of the Bartonellaceae family;(ix) Six proteins (CC0189, CC0569, CC0331, CC0349, CC2323 and CC2637) which show sporadic distribution in α-proteobacteria, (x) Four proteins (CC2585, CC0226, CC2790 and RP382) in which lateral gene transfers are indicated to have occurred between α-proteobacteria and a limited number of other bacteria. Conclusion The identified proteins provide novel means for defining and identifying the α-proteobacteria and many of its subgroups in clear molecular terms and in understanding the evolution of this group of species. These signature proteins, together with the large number of α-proteobacteria specific indels that have recently been identified , provide evidence that all species from this diverse group share many unifying and distinctive characteristics. Functional studies on these proteins should prove very helpful in the identification of such characteristics.
Collapse
Affiliation(s)
- Pinay Kainth
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, L8N 3Z5, Canada
| |
Collapse
|
367
|
Shibata S, Mitsui H, Kouchi H. Acetylation of a fucosyl residue at the reducing end of Mesorhizobium loti nod factors is not essential for nodulation of Lotus japonicus. PLANT & CELL PHYSIOLOGY 2005; 46:1016-1020. [PMID: 15805124 DOI: 10.1093/pcp/pci099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
NodMl-V(C(18:1), Me, Cb, AcFuc) is a major component of lipo-chitin oligosaccharides (LCOs), or Nod factors, produced by Mesorhizobium loti. The presence of a 4-O-acetylated fucosyl residue (AcFuc) at the reducing end has been thought to be essential for symbiotic interactions with the compatible host plant, Lotus japonicus. We generated an M. loti mutant in which the nolL gene is disrupted; nolL has been shown to encode acetyltransferase that is responsible for acetylation of the fucosyl residue. The nolL disruptant Ml107 produced LCOs that lacked acetylation of fucosyl residues as expected, but exhibited nodulation performance on L. japonicus as efficiently as the wild-type M. loti strain MAFF303099. We show that LCOs without acetylation of a fucosyl residue purified from Ml107 are also able to induce abundant root hair deformation and nodule primordium formation. These results indicate that NolL-dependent acetylation of a fucosyl residue at the reducing end of M. loti LCOs is not essential for nodulation of L. japonicus.
Collapse
Affiliation(s)
- Satoshi Shibata
- Department of Plant Physiology, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | |
Collapse
|
368
|
Arai R, Nishimoto M, Toyama M, Terada T, Kuramitsu S, Shirouzu M, Yokoyama S. Conserved protein TTHA1554 from Thermus thermophilus HB8 binds to glutamine synthetase and cystathionine β-lyase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1750:40-7. [PMID: 15893507 DOI: 10.1016/j.bbapap.2005.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 03/18/2005] [Accepted: 04/05/2005] [Indexed: 11/24/2022]
Abstract
TTHA1554 was found as a hypothetical protein composed of 95 amino acids in the genome of the extremely thermophilic bacterium, Thermus thermophilus HB8. Proteins homologous to TTHA1554 are conserved in several bacteria and archaea, although their functions are unknown. To investigate the function of TTHA1554, we identified interacting proteins by using a pull-down assay and mass spectrometry. TTHA1329, which is glutamine synthetase, and TTHA1620, a putative aminotransferase, were identified as TTHA1554 binding proteins. The interactions with TTHA1329 and TTHA1620 were validated using in vitro pull-down assays and surface plasmon resonance biosensor assays with recombinant proteins. Since sequence homology analyses suggested that TTHA1620 was a pyridoxal 5'-phosphate-dependent enzyme, such as an aminotransferase, a cystathionine beta-lyase or a cystalysin, putative substrates were investigated. When cystathionine, cystine and S-methylcysteine were used as substrates, pyruvate was produced by TTHA1620. The data revealed that TTHA1620 has cystathionine beta-lyase enzymatic activity. When TTHA1554 was added to the reaction mixtures, the glutamine synthetase and cystathionine beta-lyase enzymatic activities both increased by approximately two-fold. These results indicated that TTHA1554 is a novel protein (we named it GCBP: glutamine synthetase and cystathionine beta-lyase binding protein) that binds to glutamine synthetase and cystathionine beta-lyase.
Collapse
Affiliation(s)
- Ryoichi Arai
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
369
|
Dombrecht B, Heusdens C, Beullens S, Verreth C, Mulkers E, Proost P, Vanderleyden J, Michiels J. Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2-Cys peroxiredoxin. Mol Microbiol 2005; 55:1207-21. [PMID: 15686565 DOI: 10.1111/j.1365-2958.2005.04457.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In general, oxidative stress, the consequence of an aerobic lifestyle, induces bacterial antioxidant defence enzymes. Here we report on a peroxiredoxin of Rhizobium etli, prxS, strongly expressed under microaerobic conditions and during the symbiotic interaction with Phaseolus vulgaris. The microaerobic induction of the prxS-rpoN2 operon is mediated by the alternative sigma factor RpoN and the enhancer-binding protein NifA. The RpoN-dependent promoter is also active under low-nitrogen conditions through the enhancer-binding protein NtrC. An additional symbiosis-specific weak promoter is located between prxS and rpoN2. Constitutive expression of prxS confers enhanced survival and growth to R. etli in the presence of H2O2. Single prxS mutants are not affected in their symbiotic abilities or defence response against oxidative stress under free-living conditions. In contrast, a prxS katG double mutant has a significantly reduced (>40%) nitrogen fixation capacity, suggesting a functional redundancy between PrxS and KatG, a bifunctional catalase-peroxidase. In vitro assays demonstrate the reduction of PrxS protein by DTT and thioredoxin. PrxS displays substrate specificity towards H2O2 (Km = 62 microM) over alkyl hydroperoxides (Km > 1 mM). Peroxidase activity is abolished in both the peroxidatic (C56) and resolving (C156) cysteine PrxS mutants, while the conserved C81 residue is required for proper folding of the protein. Resolving of the R. etli PrxS peroxidatic cysteine is probably an intramolecular process and intra- and intersubunit associations were observed. Taken together, our data support, for the first time, a role for an atypical 2-Cys peroxiredoxin against oxidative stress in R. etli bacteroids.
Collapse
Affiliation(s)
- Bruno Dombrecht
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
370
|
Brencic A, Winans SC. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 2005; 69:155-94. [PMID: 15755957 PMCID: PMC1082791 DOI: 10.1128/mmbr.69.1.155-194.2005] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse interactions between hosts and microbes are initiated by the detection of host-released chemical signals. Detection of these signals leads to altered patterns of gene expression that culminate in specific and adaptive changes in bacterial physiology that are required for these associations. This concept was first demonstrated for the members of the family Rhizobiaceae and was later found to apply to many other plant-associated bacteria as well as to microbes that colonize human and animal hosts. The family Rhizobiaceae includes various genera of rhizobia as well as species of Agrobacterium. Rhizobia are symbionts of legumes, which fix nitrogen within root nodules, while Agrobacterium tumefaciens is a pathogen that causes crown gall tumors on a wide variety of plants. The plant-released signals that are recognized by these bacteria are low-molecular-weight, diffusible molecules and are detected by the bacteria through specific receptor proteins. Similar phenomena are observed with other plant pathogens, including Pseudomonas syringae, Ralstonia solanacearum, and Erwinia spp., although here the signals and signal receptors are not as well defined. In some cases, nutritional conditions such as iron limitation or the lack of nitrogen sources seem to provide a significant cue. While much has been learned about the process of host detection over the past 20 years, our knowledge is far from being complete. The complex nature of the plant-microbe interactions makes it extremely challenging to gain a comprehensive picture of host detection in natural environments, and thus many signals and signal recognition systems remain to be described.
Collapse
Affiliation(s)
- Anja Brencic
- Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
371
|
D'Antuono AL, Casabuono A, Couto A, Ugalde RA, Lepek VC. Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:446-57. [PMID: 15915643 DOI: 10.1094/mpmi-18-0446] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The role of Mesorhizobium loti surface polysaccharides on the nodulation process is not yet fully understood. In this article, we describe the nodulation phenotype of mutants affected in the synthesis of lipopolysaccharide (LPS) and beta(1,2) cyclic glucan. M. loti lpsbeta2 mutant produces LPS with reduced amount of O-antigen, whereas M. loti lpsbeta1 mutant produces LPS totally devoid of O-antigen. Both genes are clustered in the chromosome. Based on amino acid sequence homology, LPS sugar composition, and enzymatic activity, we concluded that lpsbeta2 codes for an enzyme involved in the transformation of dTDP-glucose into dTDP-rhamnose, the sugar donor of rhamnose for the synthesis of O-antigen. On the other hand, lpsbeta1 codes for a glucosyltransferase involved in the biosynthesis of the O-antigen. Although LPS mutants elicited normal nodules, both show reduced competitiveness compared with the wild type. M. loti beta(1-2) cyclic glucan synthase (cgs) mutant induces white, empty, ineffective pseudonodules in Lotus tenuis. Cgs mutant induces normal root hair curling but is unable to induce the formation of infection threads. M. loti cgs mutant was more sensitive to deoxycholate and displayed motility impairment compared with the wild-type strain. This pleiotropic effect depends on calcium concentration and temperature.
Collapse
Affiliation(s)
- Alejandra L D'Antuono
- Instituto de Investigaciones Biotecnológicas, INTECH, Universidad Nacional de General San Martin, CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
372
|
Horiike T, Hamada K, Miyata D, Shinozawa T. The origin of eukaryotes is suggested as the symbiosis of pyrococcus into gamma-proteobacteria by phylogenetic tree based on gene content. J Mol Evol 2005; 59:606-19. [PMID: 15693617 DOI: 10.1007/s00239-004-2652-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Attempts were made to define the relationship among the three domains (eukaryotes, archaea, and eubacteria) using phylogenetic tree analyses of 16S rRNA sequences as well as of other protein sequences. Since the results are inconsistent, it is implied that the eukaryotic genome has a chimeric structure. In our previous studies, the origin of eukaryotes to be the symbiosis of archaea into eubacteria using the whole open reading frames (ORF) of many genomes was suggested. In these studies, the species participating in the symbiosis were not clarified, and the effect of gene duplication after speciation (in-paralog) was not addressed. To avoid the influence of the in-paralog, we developed a new method to calculate orthologous ORFs. Furthermore, we separated eukaryotic in-paralogs into three groups by sequence similarity to archaea, eubacteria (other than alpha-proteobacteria), and alpha-proteobacteria and treated them as individual organisms. The relationship between the three ORF groups and the functional classification was clarified by this analysis. The introduction of this new method into the phylogenetic tree analysis of 66 organisms (4 eukaryotes, 13 archaea, and 49 eubacteria) based on gene content suggests the symbiosis of pyrococcus into gamma-proteobacteria as the origin of eukaryotes.
Collapse
Affiliation(s)
- Tokumasa Horiike
- Center of Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan
| | | | | | | |
Collapse
|
373
|
Rodríguez-Quiñones F, Maguire M, Wallington EJ, Gould PS, Yerko V, Downie JA, Lund PA. Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Arch Microbiol 2005; 183:253-65. [PMID: 15830189 DOI: 10.1007/s00203-005-0768-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 02/10/2005] [Accepted: 02/24/2005] [Indexed: 01/16/2023]
Abstract
Although many bacteria contain only a single groE operon encoding the essential chaperones GroES and GroEL, examples of bacteria containing more than one groE operon are common. The root-nodulating bacterium Rhizobium leguminosarum contains at least three operons encoding homologues to Escherichia coli GroEL, referred to as Cpn60.1, Cpn60.2 and Cpn60.3, respectively. We report here a detailed analysis of the requirement for and relative levels of these three proteins. Cpn60.1 is present at higher levels than Cpn60.2, and Cpn60.3 protein could not be detected under any conditions although the cpn60.3 gene is transcribed under anaerobic conditions. Insertion mutations could not be constructed in cpn60.1 unless a complementing copy was present, showing that this gene is essential for growth under the conditions used here. Both cpn60.2 and cpn60.3 could be inactivated with no loss of viability, and a double cpn60.2 cpn60.3 mutant was also constructed which was fully viable. Thus only Cpn60.1 is required for growth of this organism.
Collapse
|
374
|
Venkova-Canova T, Soberón NE, Ramírez-Romero MA, Cevallos MA. Two discrete elements are required for the replication of a repABC plasmid: an antisense RNA and a stem-loop structure. Mol Microbiol 2005; 54:1431-44. [PMID: 15554980 DOI: 10.1111/j.1365-2958.2004.04366.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The repABC replicons contain an operon encoding the initiator protein (RepC) and partitioning proteins (RepA and RepB). The latter two proteins negatively regulate the transcription of the operon. In this article we have identified two novel regulatory elements, located within the conserved repB-repC intergenic sequence, which negatively modulate the expression of repC, in plasmid p42d of Rhizobium etli. One of them is a small antisense RNA and the other is a stem-loop structure in the repABC mRNA that occludes the Shine-Dalgarno sequence of repC. According to in vivo and in vitro analyses, the small antisense RNA (57-59 nt) resembles canonical negative regulators of replication because: (i) it is transcribed from a strong constitutive promoter (P2), (ii) the transcript overlaps untranslated region upstream of the RepC coding sequences, (iii) the RNA forms one secondary structure acting as a rho-independent terminator, (iv) the antisense RNA is a strong trans-incompatibility factor and (v) its presence reduces the level of repC expression. Surprisingly, both of these seemingly negative regulators are required for efficient plasmid replication.
Collapse
MESH Headings
- Base Sequence
- DNA Replication
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Intergenic/genetics
- DNA, Intergenic/physiology
- Gene Expression Regulation, Bacterial
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Operon
- Plasmids/genetics
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Antisense/genetics
- RNA, Antisense/physiology
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Messenger/genetics
- RNA, Messenger/physiology
- Rhizobium etli/genetics
- Sequence Alignment
- Untranslated Regions
Collapse
Affiliation(s)
- Tatiana Venkova-Canova
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, C.P 62210, Cuernavaca, Morelos, Mexico
| | | | | | | |
Collapse
|
375
|
Fretin D, Fauconnier A, Köhler S, Halling S, Léonard S, Nijskens C, Ferooz J, Lestrate P, Delrue RM, Danese I, Vandenhaute J, Tibor A, DeBolle X, Letesson JJ. The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol 2005; 7:687-98. [PMID: 15839898 DOI: 10.1111/j.1462-5822.2005.00502.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Persistence infection is the keystone of the ruminant and human diseases called brucellosis and Malta fever, respectively, and is linked to the intracellular tropism of Brucella spp. While described as non-motile, Brucella spp. have all the genes except the chemotactic system, necessary to assemble a functional flagellum. We undertook to determine whether these genes are expressed and are playing a role in some step of the disease process. We demonstrated that in the early log phase of a growth curve in 2YT nutrient broth, Brucella melitensis expresses genes corresponding to the basal (MS ring) and the distal (hook and filament) parts of the flagellar apparatus. Under these conditions, a polar and sheathed flagellar structure is visible by transmission electron microscopy (TEM). We evaluated the effect of mutations in flagellar genes of B. melitensis encoding various parts of the structure, MS ring, P ring, motor protein, secretion apparatus, hook and filament. None of these mutants gave a discernible phenotype as compared with the wild-type strain in cellular models of infection. In contrast, all these mutants were unable to establish a chronic infection in mice infected via the intraperitoneal route, raising the question of the biological role(s) of this flagellar appendage.
Collapse
Affiliation(s)
- D Fretin
- Unité de Recherche en Biologie Moléculaire, University of Namur, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
376
|
Oonanant W, Sucharitakul J, Yuvaniyama J, Chaiyen P. Crystallization and preliminary X-ray crystallographic analysis of 2-methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase from Pseudomonas sp. MA-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:312-4. [PMID: 16511028 PMCID: PMC1952287 DOI: 10.1107/s1744309105004367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 02/08/2005] [Indexed: 11/10/2022]
Abstract
2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (MHPCO) catalyzes the conversion of an aromatic substrate, MHPC, to an aliphatic compound, alpha-(N-acetylaminomethylene)-succinic acid, and is involved in the degradation of vitamin B6 by the soil bacterium Pseudomonas sp. MA-1. Using only FAD as a cofactor, MHPCO is unique in catalyzing hydroxylation and subsequent aromatic ring cleavage without requiring a metal-ion cofactor. Here, the crystallization of MHPCO is reported together with preliminary X-ray crystallographic data. An MHPCO crystal obtained by hanging-drop vapour diffusion diffracted X-rays to 2.25 A resolution and belonged to the triclinic space group P1, with four molecules per asymmetric unit.
Collapse
Affiliation(s)
- Worrapoj Oonanant
- Department of Biochemistry, Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Phayathai, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
377
|
Ohta T, Tani A, Kimbara K, Kawai F. A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation. Appl Microbiol Biotechnol 2005; 68:639-46. [PMID: 15726348 DOI: 10.1007/s00253-005-1936-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 01/30/2005] [Accepted: 02/03/2005] [Indexed: 12/01/2022]
Abstract
A gene (pegC) encoding aldehyde dehydrogenase (ALDH) was located 3.4 kb upstream of a gene encoding polyethylene glycol (PEG) dehydrogenase (pegA) in Sphingomonas macrogoltabidus strain 103. ALDH was expressed in Escherichia coli and purified on a Ni-nitrilotriacetic acid agarose column. The recombinant enzyme was a homotetramer consisting of four 46.1-kDa subunits. The alignment of the putative amino acid sequence of the cloned enzyme showed high similarity with a group of NAD(P)-dependent ALDHs (identity 36-52%); NAD-binding domains (Rossmann fold and four glycine residues) and catalytic residues (Glu225 and Cys259) were well conserved. The cofactor, which was extracted from the purified enzyme, was tightly bound to the enzyme and identified as NADP. The enzyme contained 0.94 mol NADP per subunit. The enzyme was activated by Ca(2+), but by no other metals; no metal (Zn, Fe, Mg, or Mn) was detected in the purified recombinant enzyme. Activity was inhibited by p-chloromercuric benzoate, and heavy metals such as Hg, Cu, Pb and Cd, indicating that a cysteine residue is involved in the activity. Enzyme activity was independent of N,N-dimethyl-p-nitrosoaniline as an electron acceptor. Trans-4-(N,N-dimethylamino)-cinnamaldehyde was not oxidized as a substrate, but the compound worked as an inhibitor for the enzyme, as did pyrazole. The enzyme acted on n-aldehydes C(2)-C(14)) and PEG-aldehydes. Thus the enzyme was concluded to be a novel Ca(2+)-activating nicotinoprotein (NADP-containing) PEG-aldehyde dehydrogenase involved in the degradation of PEG in S. macrogoltabidus strain 103.
Collapse
Affiliation(s)
- T Ohta
- Research Institute for Bioresources, Okayama University, Kurashiki, Japan
| | | | | | | |
Collapse
|
378
|
Studholme DJ, Downie JA, Preston GM. Protein domains and architectural innovation in plant-associated Proteobacteria. BMC Genomics 2005; 6:17. [PMID: 15715905 PMCID: PMC554113 DOI: 10.1186/1471-2164-6-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 02/16/2005] [Indexed: 11/25/2022] Open
Abstract
Background Evolution of new complex biological behaviour tends to arise by novel combinations of existing building blocks. The functional and evolutionary building blocks of the proteome are protein domains, the function of a protein being dependent on its constituent domains. We clustered completely-sequenced proteomes of prokaryotes on the basis of their protein domain content, as defined by Pfam (release 16.0). This revealed that, although there was a correlation between phylogeny and domain content, other factors also have an influence. This observation motivated an investigation of the relationship between an organism's lifestyle and the complement of domains and domain architectures found within its proteome. Results We took a census of all protein domains and domain combinations (architectures) encoded in the completely-sequenced proteobacterial genomes. Nine protein domain families were identified that are found in phylogenetically disparate plant-associated bacteria but are absent from non-plant-associated bacteria. Most of these are known to play a role in the plant-associated lifestyle, but they also included domain of unknown function DUF1427, which is found in plant symbionts and pathogens of the alpha-, beta- and gamma-Proteobacteria, but not known in any other organism. Further, several domains were identified as being restricted to phytobacteria and Eukaryotes. One example is the RolB/RolC glucosidase family, which is found only in Agrobacterium species and in plants. We identified the 0.5% of Pfam protein domain families that were most significantly over-represented in the plant-associated Proteobacteria with respect to the background frequencies in the whole set of available proteobacterial proteomes. These included guanylate cyclase, domains implicated in aromatic catabolism, cellulase and several domains of unknown function. We identified 459 unique domain architectures found in phylogenetically diverse plant pathogens and symbionts that were absent from non-pathogenic and non-symbiotic relatives. The vast majority of these were restricted to a single species or several closely related species and so their distributions could be better explained by phylogeny than by lifestyle. However, several architectures were found in two or more very distantly related phytobacteria but absent from non-plant-associated bacteria. Many of the proteins with these unique architectures are predicted to be secreted. In Pseudomonas syringae pathovar tomato, those genes encoding genes with novel domain architectures tended to have atypical GC contents and were adjacent to insertion sequence elements and phage-like sequences, suggesting acquisition by horizontal transfer. Conclusions By identifying domains and architectures unique to plant pathogens and symbionts, we highlighted candidate proteins for involvement in plant-associated bacterial lifestyles. Given that characterisation of novel gene products in vivo and in vitro is time-consuming and expensive, this computational approach may be useful for reducing experimental search space. Furthermore we discuss the biological significance of novel proteins highlighted by this study in the context of plant-associated lifestyles.
Collapse
Affiliation(s)
| | - J Allan Downie
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|
379
|
Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 2005; 28:519-42. [PMID: 15539072 DOI: 10.1016/j.femsre.2004.04.001] [Citation(s) in RCA: 458] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/05/2004] [Accepted: 04/17/2004] [Indexed: 11/21/2022] Open
Abstract
Chloramphenicol (Cm) and its fluorinated derivative florfenicol (Ff) represent highly potent inhibitors of bacterial protein biosynthesis. As a consequence of the use of Cm in human and veterinary medicine, bacterial pathogens of various species and genera have developed and/or acquired Cm resistance. Ff is solely used in veterinary medicine and has been introduced into clinical use in the mid-1990s. Of the Cm resistance genes known to date, only a small number also mediates resistance to Ff. In this review, we present an overview of the different mechanisms responsible for resistance to Cm and Ff with particular focus on the two different types of chloramphenicol acetyltransferases (CATs), specific exporters and multidrug transporters. Phylogenetic trees of the different CAT proteins and exporter proteins were constructed on the basis of a multisequence alignment. Moreover, information is provided on the mobile genetic elements carrying Cm or Cm/Ff resistance genes to provide a basis for the understanding of the distribution and the spread of Cm resistance--even in the absence of a selective pressure imposed by the use of Cm or Ff.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institut für Tierzucht, Bundesforschungsanstalt für Landwirtschaft (FAL), Höltystrasse 10, 31535 Neustadt-Mariensee, Germany.
| | | | | | | |
Collapse
|
380
|
Holton SJ, Dairou J, Sandy J, Rodrigues-Lima F, Dupret JM, Noble MEM, Sim E. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:14-6. [PMID: 16508079 PMCID: PMC1952398 DOI: 10.1107/s1744309104030659] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Accepted: 11/23/2004] [Indexed: 01/13/2023]
Abstract
The arylamine N-acetyltransferase (NAT) enzymes have been found in a broad range of both eukaryotic and prokaryotic organisms. The NAT enzymes catalyse the transfer of an acetyl group from acetyl Co-enzyme A onto the terminal nitrogen of a range of arylamine, hydrazine and arylhydrazine compounds. Recently, several NAT structures have been reported from different prokaryotic sources including Salmonella typhimurium, Mycobacterium smegmatis and Pseudomonas aeruginosa. Bioinformatics analysis of the Mesorhizobium loti genome revealed two NAT paralogues, the first example of multiple NAT isoenzymes in a eubacterial organism. The M. loti NAT 1 enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme was crystallized in 0.5 M Ca(OAc)2, 16% PEG 3350, 0.1 M Tris-HCl pH 8.5 using the sitting-drop vapour-diffusion method. A data set diffracting to 2.0 A was collected from a single crystal at 100 K. The crystal belongs to the orthorhombic spacegroup P2(1)2(1)2(1), with unit-cell parameters a = 53.2, b = 97.3, c = 114.3 A. The structure was refined to a final free-R factor of 24.8%. The structure reveals that despite low sequence homology, M. loti NAT1 shares the common fold as reported in previous NAT structures and exhibits the same catalytic triad of residues (Cys-His-Asp) in the active site.
Collapse
Affiliation(s)
- Simon J. Holton
- Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, England
| | - Julien Dairou
- CNRS-UMR 7000, Faculté de Médecine Pitié-Salpêtrière, 105 Boulevard de l’Hôpital, 75013 Paris, France
| | - James Sandy
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, England
| | - Fernando Rodrigues-Lima
- CNRS-UMR 7000, Faculté de Médecine Pitié-Salpêtrière, 105 Boulevard de l’Hôpital, 75013 Paris, France
- UFR de Biochimie, Université Denis Diderot-Paris 7, 75005 Paris, France
| | - Jean-Marie Dupret
- CNRS-UMR 7000, Faculté de Médecine Pitié-Salpêtrière, 105 Boulevard de l’Hôpital, 75013 Paris, France
- UFR de Biochimie, Université Denis Diderot-Paris 7, 75005 Paris, France
| | - Martin E. M. Noble
- Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, England
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, England
| |
Collapse
|
381
|
Root-based N2-fixing symbioses: Legumes, actinorhizal plants, Parasponia sp. and cycads. PLANT ECOPHYSIOLOGY 2005. [DOI: 10.1007/1-4020-4099-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
382
|
Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T. Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2005; 46:99-107. [PMID: 15668209 DOI: 10.1093/pci/pci001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We characterized the expression profiles of LjHb1 and LjHb2, non-symbiotic hemoglobin (non-sym-Hb) genes of Lotus japonicus. Although LjHb1 and LjHb2 showed 77% homology in their cDNA sequences, LjHb2 is located in a unique position in the phylogenetic tree of plant Hbs. The 5'-upstream regions of both genes contain the motif AAAGGG at a position similar to that in promoters of other non-sym-Hb genes. Expression profiles obtained by using quantitative RT-PCR showed that LjHb1 and LjHb2 were expressed in all tissues of mature plants, and expression was enhanced in mature root nodules. LjHb1 was strongly induced under both hypoxic and cold conditions, and by the application of nitric oxide (NO) donor, whereas LjHb2 was induced only by the application of sucrose. LjHb1 was also induced transiently by the inoculation with the symbiotic rhizobium Mesorhizobium loti MAFF303099. Observations using fluorescence microscopy revealed the induction of LjHb1 expression corresponded to the generation of NO. These results suggest that non-sym-Hb and NO have important roles in stress adaptation and in the early stage of legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Yoshikazu Shimoda
- Graduate School of Science and Technology, Kagoshima University, Kagoshima, 890-0065 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
383
|
Wdowiak-Wróbel S, Małek W. Genomic diversity of Astragalus cicer microsymbionts revealed by AFLP fingerprinting. J GEN APPL MICROBIOL 2005; 51:369-78. [PMID: 16474197 DOI: 10.2323/jgam.51.369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DNA polymorphism among 36 Astragalus cicer nodule isolates and 9 reference mesorhizobia was evaluated by a simplified PstI based AFLP procedure with three selective primers: Pst-A, Pst-G, and Pst-GC. The DNA profiles were found to be highly specific for nearly each strain, although DNA bands characteristic for most A. cicer microsymbionts were also noted. The overall topologies of dendrograms, generated by AFLP patterns in PCR reaction with three primers, were very similar to one another and to that constructed by phenotyping. Also the strain compositions in the particular clusters on pheno- and genomograms were in good agreement. The obtained results indicate that AFLP technique can be a useful tool for typing of A. cicer rhizobia as well as for studying their diversity.
Collapse
|
384
|
Lodwig EM, Leonard M, Marroqui S, Wheeler TR, Findlay K, Downie JA, Poole PS. Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:67-74. [PMID: 15672820 DOI: 10.1094/mpmi-18-0067] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. leguminosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutant, or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.
Collapse
Affiliation(s)
- E M Lodwig
- School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, UK
| | | | | | | | | | | | | |
Collapse
|
385
|
Batut J, Andersson SGE, O'Callaghan D. The evolution of chronic infection strategies in the alpha-proteobacteria. Nat Rev Microbiol 2004; 2:933-45. [PMID: 15550939 DOI: 10.1038/nrmicro1044] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many of the alpha-proteobacteria establish long-term, often chronic, interactions with higher eukaryotes. These interactions range from pericellular colonization through facultative intracellular multiplication to obligate intracellular lifestyles. A common feature in this wide range of interactions is modulation of host-cell proliferation, which sometimes leads to the formation of tumour-like structures in which the bacteria can grow. Comparative genome analyses reveal genome reduction by gene loss in the intracellular alpha-proteobacterial lineages, and genome expansion by gene duplication and horizontal gene transfer in the free-living species. In this review, we discuss alpha-proteobacterial genome evolution and highlight strategies and mechanisms used by these bacteria to infect and multiply in eukaryotic cells.
Collapse
Affiliation(s)
- Jacques Batut
- Laboratory of Plant Microbe Interactions, CNRS-INRA, BP27, 31326 Castanet-Tolosan Cedex, France
| | | | | |
Collapse
|
386
|
Girlich D, Naas T, Nordmann P. OXA-60, a chromosomal, inducible, and imipenem-hydrolyzing class D beta-lactamase from Ralstonia pickettii. Antimicrob Agents Chemother 2004; 48:4217-25. [PMID: 15504844 PMCID: PMC525441 DOI: 10.1128/aac.48.11.4217-4225.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chromosomally encoded oxacillinase, OXA-22, had been characterized from Ralstonia pickettii PIC-1 that did not explain by itself the resistance profile of this strain to beta-lactams. Thus, further analysis of the genetic background of this species led to the identification of another oxacillinase, OXA-60, that was expressed only after beta-lactam induction. This chromosomally encoded oxacillinase shared 19% amino acid identity with OXA-22. It has a narrow-spectrum hydrolysis profile that includes imipenem. OXA-60-like enzymes were identified in several R. pickettii strains. Gene inactivation and induction studies of the bla(OXA-60) and bla(OXA-22) genes in R. pickettii identified the relative contribution of each oxacillinase to the resistance profile of R. pickettii to beta-lactams.
Collapse
MESH Headings
- Blotting, Southern
- Chromosome Mapping
- Chromosomes, Bacterial/enzymology
- Chromosomes, Bacterial/genetics
- Cloning, Molecular
- Conjugation, Genetic/genetics
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/genetics
- Electrophoresis, Gel, Pulsed-Field
- Enzyme Induction/drug effects
- Hydrolysis
- Imipenem/metabolism
- Isoelectric Focusing
- Kinetics
- Microbial Sensitivity Tests
- Molecular Sequence Data
- Plasmids/genetics
- Ralstonia/enzymology
- Ralstonia/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Thienamycins/metabolism
- Transcription, Genetic
- beta-Lactamases/biosynthesis
- beta-Lactamases/genetics
- beta-Lactamases/metabolism
Collapse
Affiliation(s)
- Delphine Girlich
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre Cédex, France
| | | | | |
Collapse
|
387
|
Ma W, Charles TC, Glick BR. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 2004; 70:5891-7. [PMID: 15466529 PMCID: PMC522075 DOI: 10.1128/aem.70.10.5891-5897.2004] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1-Aminocyclopropane-1-carboxylate (ACC) deaminase has been found in various plant growth-promoting rhizobacteria, including rhizobia. This enzyme degrades ACC, the immediate precursor of ethylene, and thus decreases the biosynthesis of ethylene in higher plants. The ACC deaminase of Rhizobium leguminosarum bv. viciae 128C53K was previously reported to be able to enhance nodulation of peas. The ACC deaminase structural gene (acdS) and its upstream regulatory gene, a leucine-responsive regulatory protein (LRP)-like gene (lrpL), from R. leguminosarum bv. viciae 128C53K were introduced into Sinorhizobium meliloti, which does not produce this enzyme, in two different ways: through a plasmid vector and by in situ transposon replacement. The resulting ACC deaminase-producing S. meliloti strains showed 35 to 40% greater efficiency in nodulating Medicago sativa (alfalfa), likely by reducing ethylene production in the host plants. Furthermore, the ACC deaminase-producing S. meliloti strain was more competitive in nodulation than the wild-type strain. We postulate that the increased competitiveness might be related to utilization of ACC as a nutrient within the infection threads.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | |
Collapse
|
388
|
Brom S, Girard L, Tun-Garrido C, García-de los Santos A, Bustos P, González V, Romero D. Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination. J Bacteriol 2004; 186:7538-48. [PMID: 15516565 PMCID: PMC524903 DOI: 10.1128/jb.186.22.7538-7548.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid p42a from Rhizobium etli CFN42 is self-transmissible and indispensable for conjugative transfer of the symbiotic plasmid (pSym). Most pSym transconjugants also inherit p42a. pSym transconjugants that lack p42a always contain recombinant pSyms, which we designated RpSyms*. RpSyms* do not contain some pSym segments and instead have p42a sequences, including the replication and transfer regions. These novel recombinant plasmids are compatible with wild-type pSym, incompatible with p42a, and self-transmissible. The symbiotic features of derivatives simultaneously containing a wild-type pSym and an RpSym* were analyzed. Structural analysis of 10 RpSyms* showed that 7 shared one of the two pSym-p42a junctions. Sequencing of this common junction revealed a 53-bp region that was 90% identical in pSym and p42a, including a 5-bp central region flanked by 9- to 11-bp inverted repeats reminiscent of bacterial and phage attachment sites. A gene encoding an integrase-like protein (intA) was localized downstream of the attachment site on p42a. Mutation or the absence of intA abolished pSym transfer from a recA mutant donor. Complementation with the wild-type intA gene restored transfer of pSym. We propose that pSym-p42a cointegration is required for pSym transfer; cointegration may be achieved either through homologous recombination among large reiterated sequences or through IntA-mediated site-specific recombination between the attachment sites. Cointegrates formed through the site-specific system but resolved through RecA-dependent recombination or vice versa generate RpSyms*. A site-specific recombination system for plasmid cointegration is a novel feature of these large plasmids and implies that there is unique regulation which affects the distribution of pSym in nature due to the role of the cointegrate in conjugative transfer.
Collapse
Affiliation(s)
- Susana Brom
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | | | |
Collapse
|
389
|
Hernández-Lucas I, Rogel-Hernández MA, Segovia L, Rojas-Jiménez K, Martínez-Romero E. Phylogenetic Relationships of Rhizobia Based on Citrate Synthase Gene Sequences. Syst Appl Microbiol 2004; 27:703-6. [PMID: 15612628 DOI: 10.1078/0723202042369893] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Partial nucleotide sequences of the citrate synthase (gltA) gene from different rhizobia genera were determined. Tree topologies based on this housekeeping gene were similar to that obtained using 16S rRNA sequences. However gltA appeared to be more reliable at determining phylogenetic relationships of closely related taxa. We propose gltA sequences as an additional tool to be used in molecular phylogenetic studies.
Collapse
MESH Headings
- Alphaproteobacteria/classification
- Alphaproteobacteria/enzymology
- Alphaproteobacteria/genetics
- Citrate (si)-Synthase/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Genes, Bacterial
- Genes, rRNA
- Molecular Sequence Data
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Rhizobiaceae/classification
- Rhizobiaceae/enzymology
- Rhizobiaceae/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Ismael Hernández-Lucas
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | | | | | |
Collapse
|
390
|
Dymov SI, Meek DJJ, Steven B, Driscoll BT. Insertion of transposon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1318-1327. [PMID: 15597737 DOI: 10.1094/mpmi.2004.17.12.1318] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To isolate Sinorhizobium meliloti mutants deficient in malate dehydrogenase (MDH) activity, random transposon Tn5tac1 insertion mutants were screened for conditional lethal phenotypes on complex medium. Tn5tac1 has an outward-oriented isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter (Ptac). The insertion in strain Rm30049 was mapped to the mdh gene, which was found to lie directly upstream of the genes encoding succinyl-CoA synthetase (sucCD) and 2-oxoglutarate dehydrogenase (sucAB and lpdA). Rm30049 required IPTG for wild-type growth in complex media, and had a complex growth phenotype in minimal media with different carbon sources. The mdh:: Tn5tacl insertion eliminated MDH activity under all growth conditions, and activities of succinyl-CoA synthetase, 2-oxoglutarate dehydrogenase, and succinate dehydrogenase were affected by the addition of IPTG. Reverse-transcriptase polymerase chain reaction (RT-PCR) studies confirmed that expression from Ptac was induced by IPTG and leaky in its absence. Alfalfa plants inoculated with Rm30049 were chlorotic and stunted, with small white root nodules, and had shoot dry weight and percent-N content values similar to those of uninoculated plants. Cosmid clone pDS15 restored MDH activity to Rm30049, complemented both the mutant growth and symbiotic phenotypes, and was found to carry six complete (sdhB, mdh, sucCDAB) and two partial (IpdA, sdhA) tricarboxylic acid cycle genes.
Collapse
Affiliation(s)
- Sergiy I Dymov
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | | | | | | |
Collapse
|
391
|
Ostrowski M, Fegatella F, Wasinger V, Guilhaus M, Corthals GL, Cavicchioli R. Cross-species identification of proteins from proteome profiles of the marine oligotrophic ultramicrobacterium, Sphingopyxis alaskensis. Proteomics 2004; 4:1779-88. [PMID: 15174144 DOI: 10.1002/pmic.200300695] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sphingopyxis (formerly Sphingomonas) alaskensis is a model bacterium for studying adaptation to oligotrophy (nutrient-limitation). It has a unique physiology which is fundamentally different to that of the well studied bacteria such as Escherichia coli. To begin to identify the genes involved in its physiological responses to nutrient-limited growth and starvation, we developed high resolution two-dimensional electrophoresis (2-DE) methods and determined the identity of 12 proteins from a total of 21 spots using mass spectrometric approaches and cross-species matching. The best matches were to Novosphingobium aromaticivorans; a terrestrial, hydrocarbon degrading bacterium which was previously classified in the genus Sphingomonas. The proteins identified are involved in fundamental cellular processes including protein synthesis, protein folding, energy generation and electron transport. We also compared radiolabelled and silver-stained 2-DE gels generated with the same protein samples and found significant differences in the protein profiles. The use of both methods increased the total number of proteins with differential spot intensities which could be identified from a single protein sample. The ability to effectively utilise cross-species matching from radiolabelled and silver-stained gels provides new approaches for determining the genetic basis of microbial oligotrophy.
Collapse
Affiliation(s)
- Martin Ostrowski
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
392
|
Teyssier C, Marchandin H, Jumas-Bilak E. [The genome of alpha-proteobacteria : complexity, reduction, diversity and fluidity]. Can J Microbiol 2004; 50:383-96. [PMID: 15284884 DOI: 10.1139/w04-033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The alpha-proteobacteria displayed diverse and often unconventional life-styles. In particular, they keep close relationships with the eucaryotic cell. Their genomic organization is often atypical. Indeed, complex genomes, with two or more chromosomes that could be linear and sometimes associated with plasmids larger than one megabase, have been described. Moreover, polymorphism in genome size and topology as well as in replicon number was observed among very related bacteria, even in a same species. Alpha-proteobacteria provide a good model to study the reductive evolution, the role and origin of multiple chromosomes, and the genomic fluidity. The amount of new data harvested in the last decade should lead us to better understand emergence of bacterial life-styles and to build the conceptual basis to improve the definition of the bacterial species.
Collapse
Affiliation(s)
- Corinne Teyssier
- Laboratoire de bactériologie, Faculté de pharmacie, Montpellier CEDEX 5, France
| | | | | |
Collapse
|
393
|
Yamashita M, Tani A, Kawai F. A new ether bond-splitting enzyme found in Gram-positive polyethylene glycol 6000-utilizing bacterium, Pseudonocardia sp. strain K1. Appl Microbiol Biotechnol 2004; 66:174-9. [PMID: 15480637 DOI: 10.1007/s00253-004-1709-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 06/16/2004] [Accepted: 07/02/2004] [Indexed: 10/26/2022]
Abstract
Pseudonocardia sp. strain K1 is the only Gram-positive bacterium among the bacteria aerobically metabolizing polyethylene glycol (PEG). Generally, PEG is metabolized by an oxidative pathway in which a terminal alcohol group of PEG is oxidized to aldehyde and to carboxylic acid and then an ether bond is oxidatively cleaved. As the cell-free extract of Pseudonocardia sp. strain K1 has PEG dehydrogenase, PEG aldehyde dehydrogenase and diglycolic acid (DGA) dehydrogenase (DGADH) activities, all of which are constitutively formed, the strain has a metabolic pathway similar to that so far known. We purified an ether bond-splitting enzyme as DGADH. The molecular mass of the enzyme was estimated to be 55 kDa; and it consisted of two identical subunits. The enzyme oxidatively cleaved both an ether bond of PEG 3000 dicarboxylic acid and DGA. The N-terminal amino acid sequence of the purified enzyme had high homology with various superoxide dismutases and the enzyme had also superoxide dismutase activity. The atomic absorption spectrum showed that approximately one atom of Fe was included in each subunit of the enzyme. DGADH activity increased in the cells grown in a PEG medium supplemented with FeCl(3). Thus, we concluded that the enzyme purified from Pseudonocardia sp. strain K1 is a new ether bond-splitting enzyme.
Collapse
Affiliation(s)
- Manabu Yamashita
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | | | | |
Collapse
|
394
|
Hallez R, Bellefontaine AF, Letesson JJ, De Bolle X. Morphological and functional asymmetry in alpha-proteobacteria. Trends Microbiol 2004; 12:361-5. [PMID: 15276611 DOI: 10.1016/j.tim.2004.06.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The release of an increasing number of complete bacterial genomic sequences allows the evolutionary analysis of processes such as regulatory networks. CtrA is a response regulator of the OmpR subfamily, belonging to a complex regulatory network in the dimorphic bacterium Caulobacter crescentus. It coordinates the cell cycle with an asymmetric division, which is part of the adaptation of Caulobacter to poor-nutrient environments. CtrA is only found in alpha-proteobacteria, a group of bacteria encompassing genera with very distinct lifestyles, including host-associated bacteria. Analyses of CtrA regulatory networks and morphological examinations of some alpha-proteobacteria are presented. Our observations suggest that the core of the CtrA regulation network is conserved and that alpha-proteobacteria divide asymmetrically. We propose that the two daughter cells might be differentiated bacteria, each one displaying specific functions.
Collapse
Affiliation(s)
- Régis Hallez
- Unité de Recherche en Biologie Moléculaire (URBM), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | |
Collapse
|
395
|
Theunis M, Kobayashi H, Broughton WJ, Prinsen E. Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1153-61. [PMID: 15497408 DOI: 10.1094/mpmi.2004.17.10.1153] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flavonoids secreted by host plants activate, in conjunction with the transcriptional activator NodD, nod gene expression of rhizobia resulting in the synthesis of Nod factors, which trigger nodule organogenesis. Interestingly, addition of inducing flavonoids also stimulates the production of the phytohormone indole-3-acetic acid (IAA) in several rhizobia. Here, the molecular basis of IAA synthesis in Rhizobium sp. NGR234 was investigated. Mass spectrometric analysis of culture supernatants indicated that NGR234 is capable of synthesizing IAA via three different pathways. The production of IAA is increased strongly by exposure of NGR234 to daidzein in a NodD1-, NodD2-, and SyrM2-dependent manner. This suggests that the y4wEFG locus that is downstream of nod-box NB15 encodes proteins involved in IAA synthesis. Knockout mutations in y4wE and y4wF abolished flavonoid-inducible IAA synthesis and a functional y4wF was required for constitutive IAA production. The promoter activity of NB15 and IAA production both were enhanced by introduction of a multicopy plasmid carrying nodD2 into NGR234. Surprisingly, the y4wE mutant still nodulated Vigna unguiculata and Tephrosia vogelii, although the nodules contained less IAA and IAA conjugates than those formed by the wild-type bacterium.
Collapse
Affiliation(s)
- Mart Theunis
- Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | |
Collapse
|
396
|
Moulin L, Béna G, Boivin-Masson C, Stepkowski T. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 2004; 30:720-32. [PMID: 15012950 DOI: 10.1016/s1055-7903(03)00255-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 06/27/2003] [Indexed: 10/27/2022]
Abstract
Symbiotic nitrogen fixing bacteria-known as rhizobia-harbour a set of nodulation (nod) genes that control the synthesis of modified lipo-chitooligosaccharides, called Nod factors that are required for legume nodulation. The nodA gene, which is essential for symbiosis, is responsible for the attachment of the fatty acid group to the oligosaccharide backbone. The nodZ, nolL, and noeI genes are involved in specific modifications of Nod factors common to bradyrhizobia, i.e., the transfer of a fucosyl group on the Nod factor core, fucose acetylation and fucose methylation, respectively. PCR amplification, sequencing and phylogenetic analysis of nodA gene sequences from a collection of diverse Bradyrhizobium strains revealed the monophyletic character with the possible exception of photosynthetic Bradyrhizobium, despite high sequence diversity. The distribution of the nodZ, nolL, and noeI genes in the studied strains, as assessed by gene amplification, hybridization or sequencing, was found to correlate with the nodA tree topology. Moreover, the nodA, nodZ, and noeI phylogenies were largely congruent, but did not closely follow the taxonomy of the strains shown by the housekeeping 16S rRNA and dnaK genes. Additionally, the distribution of nodZ, noeI, and nolL genes suggested that their presence may be related to the requirements of their legume hosts. These data indicated that the spread and maintenance of nodulation genes within the Bradyrhizobium genus occurred through vertical transmission, although lateral gene transfer also played a significant role.
Collapse
Affiliation(s)
- Lionel Moulin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD-INRA-CIRAD-ENSAM, 34398 Montpellier, France
| | | | | | | |
Collapse
|
397
|
Suzuki N, Nakano Y, Yoshida A, Yamashita Y, Kiyoura Y. Real-time TaqMan PCR for quantifying oral bacteria during biofilm formation. J Clin Microbiol 2004; 42:3827-30. [PMID: 15297540 PMCID: PMC497611 DOI: 10.1128/jcm.42.8.3827-3830.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A TaqMan PCR was developed for quantifying early colonizer microorganisms in dental biofilms. To design species-specific primers and TaqMan probes, genomic subtractive hybridization was used. This quantitative assay in combination with subtractive hybridization may be of value in the study of microbial ecosystems consisting of related species that are involved in the formation and etiology of biofilms.
Collapse
Affiliation(s)
- Nao Suzuki
- Department of Oral Bacteriology, Ohu University School of Dentistry, Tomitamachi, Koriyama, Japan
| | | | | | | | | |
Collapse
|
398
|
Bernaola-Galván P, Oliver JL, Carpena P, Clay O, Bernardi G. Quantifying intrachromosomal GC heterogeneity in prokaryotic genomes. Gene 2004; 333:121-33. [PMID: 15177687 DOI: 10.1016/j.gene.2004.02.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 11/14/2003] [Accepted: 02/10/2004] [Indexed: 11/15/2022]
Abstract
The sequencing of prokaryotic genomes covering a wide taxonomic range has sparked renewed interest in intrachromosomal compositional (GC) heterogeneity, largely in view of lateral transfers. We present here a brief overview of some methods for visualizing and quantifying GC variation in prokaryotes. We used these methods to examine heterogeneity levels in sequenced prokaryotes, for a range of scales or stringencies. Some species are consistently homogeneous, whereas others are markedly heterogeneous in comparison, in particular Aeropyrum pernix, Xylella fastidiosa, Mycoplasma genitalium, Enterococcus faecalis, Bacillus subtilis, Pyrobaculum aerophilum, Vibrio vulnificus chromosome I, Deinococcus radiodurans chromosome II and Halobacterium. As we discuss here, the wide range of heterogeneities calls for reexamination of an accepted belief, namely that the endogenous DNA of bacteria and archaea should typically exhibit low intrachromosomal GC contrasts. Supplementary results for all species analyzed are available at our website: http://bioinfo2.ugr.es/prok.
Collapse
|
399
|
Pérez-Mendoza D, Domínguez-Ferreras A, Muñoz S, Soto MJ, Olivares J, Brom S, Girard L, Herrera-Cervera JA, Sanjuán J. Identification of functional mob regions in Rhizobium etli: evidence for self-transmissibility of the symbiotic plasmid pRetCFN42d. J Bacteriol 2004; 186:5753-61. [PMID: 15317780 PMCID: PMC516833 DOI: 10.1128/jb.186.17.5753-5761.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An approach originally designed to identify functional origins of conjugative transfer (oriT or mob) in a bacterial genome (J. A. Herrera-Cervera, J. M. Sanjuán-Pinilla, J. Olivares, and J. Sanjuán, J. Bacteriol. 180:4583-4590, 1998) was modified to improve its reliability and prevent selection of undesired false mob clones. By following this modified approach, we were able to identify two functional mob regions in the genome of Rhizobium etli CFN42. One corresponds to the recently characterized transfer region of the nonsymbiotic, self-transmissible plasmid pRetCFN42a (C. Tun-Garrido, P. Bustos, V. González, and S. Brom, J. Bacteriol. 185:1681-1692, 2003), whereas the second mob region belongs to the symbiotic plasmid pRetCFN42d. The new transfer region identified contains a putative oriT and a typical conjugative (tra) gene cluster organization. Although pRetCFN42d had not previously been shown to be self-transmissible, mobilization of cosmids containing this tra region required the presence of a wild-type pRetCFN42d in the donor cell; the presence of multiple copies of this mob region in CFN42 also promoted conjugal transfer of the Sym plasmid pRetCFN42d. The overexpression of a small open reading frame, named yp028, located downstream of the putative relaxase gene traA, appeared to be responsible for promoting the conjugal transfer of the R. etli pSym under laboratory conditions. This yp028-dependent conjugal transfer required a wild-type pRetCFN42d traA gene. Our results suggest for the first time that the R. etli symbiotic plasmid is self-transmissible and that its transfer is subject to regulation. In wild-type CFN42, pRetCFN42d tra gene expression appears to be insufficient to promote plasmid transfer under standard laboratory conditions; gene yp028 may play some role in the activation of conjugal transfer in response to as-yet-unknown environmental conditions.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín. Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Dennis JJ, Zylstra GJ. Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J Mol Biol 2004; 341:753-68. [PMID: 15288784 DOI: 10.1016/j.jmb.2004.06.034] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 06/15/2004] [Accepted: 06/16/2004] [Indexed: 11/29/2022]
Abstract
The complete 83,042 bp sequence of the circular naphthalene degradation plasmid pDTG1 from Pseudomonas putida strain NCIB 9816-4 was determined in order to examine the process by which the nah and sal operons may have been compiled and distributed in nature. Eighty-nine open reading frames were predicted using computer analyses, comprising 80.0% of the pDTG1 DNA sequence. The most distinctive feature of the plasmid is the upper and lower naphthalene degradation operons, which occupy 9.5 kb and 13.4 kb regions, respectively, bordered by numerous defective mobile genetic element fragments. Identified on this plasmid were homologues of genes required for large plasmid replication, maintenance, and conjugation, as well as transposases, resolvases, and integrases, suggesting an evolution that involved the lateral transfer of DNA between bacterial species. Also found were genes that contain a high degree of sequence similarity to other known degradation genes, as well as genes involved in chemotaxis. Although the incompatibility group designation of pDTG1 remains unresolved, striking sequence organization and homology exists between the plasmid backbones of pDTG1 and the IncP-9 toluene-degradation plasmid pWW0, which suggests a divergent evolution from a progenitor plasmid prior to degradative gene incorporation.
Collapse
Affiliation(s)
- Jonathan J Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | | |
Collapse
|