351
|
Newman JC, He W, Verdin E. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J Biol Chem 2012; 287:42436-43. [PMID: 23086951 DOI: 10.1074/jbc.r112.404863] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sirtuins are a family of NAD(+)-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. Three sirtuins, SIRT3-5, localize to mitochondria. Expression of SIRT3 is selectively activated during fasting and calorie restriction. SIRT3 regulates the acetylation level and enzymatic activity of key metabolic enzymes, such as acetyl-CoA synthetase, long-chain acyl-CoA dehydrogenase, and 3-hydroxy-3-methylglutaryl-CoA synthase 2, and enhances fat metabolism during fasting. SIRT5 exhibits demalonylase/desuccinylase activity, and lysine succinylation and malonylation are abundant mitochondrial protein modifications. No convincing enzymatic activity has been reported for SIRT4. Here, we review the emerging role of mitochondrial sirtuins as metabolic sensors that respond to changes in the energy status of the cell and modulate the activities of key metabolic enzymes via protein deacylation.
Collapse
Affiliation(s)
- John C Newman
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA
| | | | | |
Collapse
|
352
|
Krzysztoń-Russjan J, Zielonka D, Jackiewicz J, Kuśmirek S, Bubko I, Klimberg A, Marcinkowski JT, Anuszewska EL. A study of molecular changes relating to energy metabolism and cellular stress in people with Huntington's disease: looking for biomarkers. J Bioenerg Biomembr 2012; 45:71-85. [PMID: 23070563 DOI: 10.1007/s10863-012-9479-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/04/2012] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by a progressive motor and cognitive decline and the development of psychiatric symptoms. The origin of molecular and biochemical disturbances in HD is a mutation in the HTT gene, which is autosomally dominantly inherited. The altered huntingtin protein is ubiquitously expressed in the CNS, as well as in peripheral tissues. In this study we measured the metabolism changes in gene transcription in blood of HD gene carriers (premanifest and manifest combined) versus 28 healthy controls. The comparison revealed statistically significant Global Pattern Recognition Fold Change (FC) for 6 mRNA transcripts, reflecting an increase of: MAOB (FC = 3.07; p = 0.0005) which encodes an outer mitochondrial membrane-bound enzyme called monoamine oxidase type B; TGM2 (FC = 1.8; p = 0.02) encoding a transglutaminase 2 that mediates cellular stress; SLC2A4 (FC = 1.64; p = 0.02) solute carrier family 2 (facilitated glucose transporter) member 4; branched chain ketoacid dehydrogenase kinase (BCKDK) (FC = 1.34; p = 0.02); decrease of LDHA (FC = -1.16; p = 0.03) lactate dehydrogenase A; and brain-derived neurotrophic factor (BDNF) (FC = -2,11; p = 0.03). These distinguished changes coincided with HD progress. The analyses of gene transcription levels in sub-cohorts confirmed these changes and also revealed 28 statistically significant FCs of gene transcripts involved in ATP production and BCAA metabolism.
Collapse
Affiliation(s)
- Jolanta Krzysztoń-Russjan
- Department of Biochemistry and Biopharmaceuticals, National Medicines Institute, Chelmska 30/34 Str., 00-725 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
353
|
Lei T, Yang J, Zheng L, Markowski T, Witthuhn BA, Ji Y. The essentiality of staphylococcal Gcp is independent of its repression of branched-chain amino acids biosynthesis. PLoS One 2012; 7:e46836. [PMID: 23056478 PMCID: PMC3464209 DOI: 10.1371/journal.pone.0046836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/06/2012] [Indexed: 11/25/2022] Open
Abstract
Our previous studies revealed that the staphylococcal protein Gcp is essential for bacterial growth; however, the essential function of Gcp remains undefined. In this study, we demonstrated that Gcp plays an important role in the modulation of the branched-chain amino acids biosynthesis pathway. Specifically, we identified that the depletion of Gcp dramatically elevated the production of key enzymes that are encoded in the ilv-leu operon and responsible for the biosynthesis of the branched-chain amino acids isoleucine, leucine, and valine (ILV) using proteomic approaches. Using qPCR and promoter-lux reporter fusions, we established that Gcp negatively modulates the transcription of the ilv-leu operon. Gel-shift assays revealed that Gcp lacks the capacity to bind the promoter region of ilv. Moreover, we found that the depletion of Gcp did not influence the transcription level of CodY, a known repressor of the ilv-leu operon, while induced the transcription of CcpA, a known positive regulator of the ilv-leu operon. In addition, the depletion of Gcp decreased the biosynthesis of N6-threonylcarbamoyladenosine (t6A). To elucidate whether the essentiality of Gcp is attributable to its negative modulation of ILV biosynthesis, we determined the impact of the ilv-leu operon on the requirement of Gcp for growth, and revealed that the deletion of the ilv-leu operon did not affect the essentiality of Gcp. Taken together, our results indicate that the essentiality of Gcp isn’t attributable to its negative regulation of ILV biosynthesis in S. aureus. These findings provide new insights into the biological function of the staphylococcal Gcp.
Collapse
Affiliation(s)
- Ting Lei
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Junshu Yang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Li Zheng
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Todd Markowski
- College of Biological Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Bruce A. Witthuhn
- College of Biological Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
354
|
Ghislat G, Patron M, Rizzuto R, Knecht E. Withdrawal of essential amino acids increases autophagy by a pathway involving Ca2+/calmodulin-dependent kinase kinase-β (CaMKK-β). J Biol Chem 2012; 287:38625-36. [PMID: 23027865 DOI: 10.1074/jbc.m112.365767] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autophagy is the main lysosomal catabolic process that becomes activated under stress conditions, such as amino acid starvation and cytosolic Ca(2+) upload. However, the molecular details on how both conditions control autophagy are still not fully understood. Here we link essential amino acid starvation and Ca(2+) in a signaling pathway to activate autophagy. We show that withdrawal of essential amino acids leads to an increase in cytosolic Ca(2+), arising from both extracellular medium and intracellular stores, which induces the activation of adenosine monophosphate-activated protein kinase (AMPK) via Ca(2+)/calmodulin-dependent kinase kinase-β (CaMKK-β). Furthermore, we show that autophagy induced by amino acid starvation requires AMPK, as this induction is attenuated in its absence. Subsequently, AMPK activates UNC-51-like kinase (ULK1), a mammalian autophagy-initiating kinase, through phosphorylation at Ser-555 in a process that requires CaMKK-β. Finally, the mammalian target of rapamycin complex C1 (mTORC1), a negative regulator of autophagy downstream of AMPK, is inhibited by amino acid starvation in a Ca(2+)-sensitive manner, and CaMKK-β appears to be important for mTORC1 inactivation, especially in the absence of extracellular Ca(2+). All these results highlight that amino acid starvation regulates autophagy in part through an increase in cellular Ca(2+) that activates a CaMKK-β-AMPK pathway and inhibits mTORC1, which results in ULK1 stimulation.
Collapse
Affiliation(s)
- Ghita Ghislat
- Laboratorio de Biología Celular, Centro de Investigación Príncipe Felipe and CIBERER, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | | | | | | |
Collapse
|
355
|
He W, Newman JC, Wang MZ, Ho L, Verdin E. Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends Endocrinol Metab 2012; 23:467-76. [PMID: 22902903 DOI: 10.1016/j.tem.2012.07.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 11/30/2022]
Abstract
Sirtuins are NAD(+)-dependent protein deacetylases and have been implicated in the regulation of metabolism, stress responses, and aging. Three sirtuins are located in mitochondria: SIRT3, 4, and 5. SIRT3 deacetylates and regulates the enzymatic activity of many metabolic enzymes in mitochondria, whereas SIRT5 removes two novel post-translational modifications, lysine malonylation and succinylation. Here, we review the current knowledge of how mitochondrial sirtuins function in metabolism and metabolic diseases, and offer a conceptual model how they may regulate mitochondrial function through distinct deacylation activities (deacetylation, demalonylation, or desuccinylation).
Collapse
Affiliation(s)
- Wenjuan He
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
356
|
Liu Y, Lange R, Langanky J, Hamma T, Yang B, Steinacker JM. Improved training tolerance by supplementation with α-Keto acids in untrained young adults: a randomized, double blind, placebo-controlled trial. J Int Soc Sports Nutr 2012; 9:37. [PMID: 22857787 PMCID: PMC3467174 DOI: 10.1186/1550-2783-9-37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background Exercise causes a variety of physiological and metabolic changes that can in turn reduce exercise tolerance. One of the potential mechanisms responsible for fatigue is “exercise-induced hyperammonemia”. Previous studies have shown that supplementation with amino acids can increase training tolerance. The α-keto acids are biochemical analogs of amino acids and can be converted to amino acids through transamination, thus reducing the cellular ammonia level. This double blind, placebo-controlled study was designed to investigate the effects of α-keto acid supplementation (KAS) on training tolerance, training effect, and stress-recovery state. Methods Thirty-three untrained young male adults underwent four weeks of training (5 sessions/week; 30 minutes running at the individual anaerobic threshold followed by 3 x 3 minute sprints/each session). Throughout the 4 weeks of training and one week of recovery, subjects took α-ketoglutarate (AKG group, 0.2 g/kg/d, n = 9), branched-chain keto acids (BCKA group, 0.2 g/kg/d, n = 12) or isocaloric placebo (control group, n = 12) daily. Results The 4th week training volume, maximum power output and muscle torque were higher in the AKG group (175 ± 42 min, 412 ± 49 Watts and 293 ± 58 Newton meters, respectively, P<0.05) and the BCKA group (158 ± 35, 390 ± 29 and 273 ± 47, P<0.05) than in the control group (92 ± 70, 381 ± 67 and 233 ± 43). The general stress and emotional exhaustion as assessed by the rest-stress-questionnaire-sport after the 3rd week of training increased significantly in the control group (P<0.05), but not in the KAS groups. Conclusions Under KAS, subjects could bear a higher training volume and reach a higher power output and peak muscle torque, accompanied by a better stress-recovery-state. Thus, KAS improves exercise tolerance and training effects along with a better stress-recovery state. Whether the improved training tolerance by KAS is associated with effects on ammonia homeostasis requires further observation.
Collapse
Affiliation(s)
- Yuefei Liu
- Section of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, Ulm, D-89070, Germany.
| | | | | | | | | | | |
Collapse
|
357
|
Wilson JM, Wilson SM, Loenneke JP, Wray M, Norton LE, Campbell BI, Lowery RP, Stout JR. Effects of Amino Acids and their Metabolites on Aerobic and Anaerobic Sports. Strength Cond J 2012. [DOI: 10.1519/ssc.0b013e31825663bd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
358
|
Peters HL, Pitt JJ, Wood LR, Hamilton NJ, Sarsero JP, Buck NE. Mouse models for methylmalonic aciduria. PLoS One 2012; 7:e40609. [PMID: 22792386 PMCID: PMC3392231 DOI: 10.1371/journal.pone.0040609] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/11/2012] [Indexed: 11/23/2022] Open
Abstract
Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM). MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene). Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation.
Collapse
Affiliation(s)
- Heidi L Peters
- Metabolic Research, Murdoch Childrens Research Institute, Department of Paediatrics University of Melbourne, Royal Children's Hospital, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|
359
|
Kochevenko A, Klee HJ, Fernie AR, Araújo WL. Molecular identification of a further branched-chain aminotransferase 7 (BCAT7) in tomato plants. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:437-43. [PMID: 22226341 DOI: 10.1016/j.jplph.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 05/18/2023]
Abstract
Although the branched-chain amino acids (BCAAs) are essential components of the mammalian diet, our current understanding of their metabolism in plants is still limited. It is however well known that the branched-chain amino acid transaminases (BCATs) play a crucial role in both the synthesis and degradation of the BCAAs leucine, isoleucine and valine. We previously characterized the BCAT gene family in tomato, revealing it to be highly diverse in subcellular localization, substrate preference, and expression. Here we performed further characterization of this family and provide evidence for the presence of another member, BCAT7. On mapping the chromosomal location of this enzyme, it was possible to define the exact chromosome map position of the gene. Although in Arabidopsis thaliana the AtBCAT7 has been considered a pseudo-gene, quantitative evaluation of the expression levels of this gene revealed that the expression profile of the BCAT7 in different tissues of tomato (Solanum lycopersicum cv. M82) plants is highly variable with the highest expression found in developed flowers. By using a C-terminal E-GFP gene fusion we demonstrate that the BCAT7 is extraplastidial and in combination with the kinetic characterization of BCAT7 our results suggest that it most likely operates in BCAA degradation in vivo and support our hypothesis of another functional member of BCAT family. The combined data presented are discussed within the context of BCAA metabolism and its functions in higher plants.
Collapse
Affiliation(s)
- Andrej Kochevenko
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
360
|
Amin A, Murphy KG. Nutritional sensing and its utility in treating obesity. Expert Rev Endocrinol Metab 2012; 7:209-221. [PMID: 30764012 DOI: 10.1586/eem.12.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity remains a major worldwide health problem, with current medical treatments being poorly effective. Nutrient sensing allows organs such as the GI tract and the brain to recognize and respond to fuel substrates such as carbohydrates, protein and fats. Specialized neural and hormonal pathways exist to facilitate and regulate these chemosensory mechanisms. Manipulation of factors involved in either central or peripheral chemosensory pathways may provide possible targets for the manipulation of appetite. However, further research is required to assess the utility of this approach to developing novel anti-obesity agents.
Collapse
Affiliation(s)
- Anjali Amin
- a Section of Investigative Medicine, Faculty of Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Kevin G Murphy
- b Section of Investigative Medicine, Faculty of Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
361
|
Kochevenko A, Araújo WL, Maloney GS, Tieman DM, Do PT, Taylor MG, Klee HJ, Fernie AR. Catabolism of branched chain amino acids supports respiration but not volatile synthesis in tomato fruits. MOLECULAR PLANT 2012; 5:366-75. [PMID: 22199237 DOI: 10.1093/mp/ssr108] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine, isoleucine, and valine. These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids. Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized, their catabolism in plants is not yet completely understood. We previously characterized the branched chain amino acid transaminase gene family in tomato, revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes. Here, we examined possible functions of the enzymes during fruit development. We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3, evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3. We quantitatively tested, via precursor and isotope feeding experiments, the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles. Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration, but also reveal that keto acids, rather than amino acids, are the likely precursors for the branched chain flavor volatiles.
Collapse
Affiliation(s)
- Andrej Kochevenko
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
362
|
Badawy AAB, Dougherty DM, Richard DM. Specificity of the Acute Tryptophan and Tyrosine Plus Phenylalanine Depletion and Loading Tests Part II: Normalisation of the Tryptophan and the Tyrosine Plus Phenylalanine to Competing Amino Acid Ratios in a New Control Formulation. Int J Tryptophan Res 2011; 3:35-47. [PMID: 20725610 PMCID: PMC2923411 DOI: 10.4137/ijtr.s5169] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Current formulations for acute tryptophan (Trp) or tyrosine (Tyr) plus phenylalanine (Phe) depletion and loading cause undesirable decreases in ratios of Trp or Tyr + Phe to competing amino acids (CAA), thus undermining the specificities of these tests. Branched-chain amino acids (BCAA) cause these unintended decreases, and lowering their content in a new balanced control formulation in the present study led to normalization of all ratios. Four groups (n = 12 each) of adults each received one of four 50 g control formulations, with 0% (traditional), 20%, 30%, or 40% less of the BCAA. The free and total [Trp]/[CAA] and [Phe + Tyr]/[BCAA + Trp] ratios all decreased significantly during the first 5 h following the traditional formulation, but were fully normalized by the formulation containing 40% less of the BCAA. We recommend the latter as a balanced control formulation and propose adjustments in the depletion and loading formulations to enhance their specificities for 5-HT and the catecholamines.
Collapse
|
363
|
Tylicki A, Siemieniuk M, Dobrzyn P, Ziolkowska G, Nowik M, Czyzewska U, Pyrkowska A. Fatty acid profile and influence of oxythiamine on fatty acid content in Malassezia pachydermatis, Candida albicans and Saccharomyces cerevisiae. Mycoses 2011; 55:e106-13. [PMID: 22066764 DOI: 10.1111/j.1439-0507.2011.02152.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Malassezia pachydermatis and Candida albicans are fungi involved in the skin diseases and systemic infections. The therapy of such infections is difficult due to relapses and problems with pathogen identification. In our study, we compare the fatty acids profile of M. pachydermatis, C. albicans and S. cerevisiae to identify diagnostic markers and to investigate the effect of oxythiamine (OT) on the lipid composition of these species. Total fatty acid content is threefold higher in C. albicans and M. pachydermatis compared with S. cerevisiae. These two species have also increased level of polyunsaturated fatty acids (PUFA) and decreased content of monounsaturated fatty acids (MUFA). We noted differences in the content of longer chain (>18) fatty acids between studied species (for example a lack of 20 : 1 in S. cerevisiae and 22 : 0 in M. pachydermatis and C. albicans). OT reduces total fatty acids content in M. pachydermatis by 50%. In S. cerevisiae, OT increased PUFA whereas it decreased MUFA content. In C. albicans, OT decreased PUFA and increased MUFA and SFA content. The results show that the MUFA to PUFA ratio and the fatty acid profile could be useful diagnostic tests to distinguish C. albicans, M. pachydermatis and S. cerevisiae, and OT affected the lipid metabolism of the investigated species, especially M. pachydermatis.
Collapse
Affiliation(s)
- Adam Tylicki
- Departament of Cytobiochemistry, Institute of Biology, University of Bialystok, Bialystok, Poland.
| | | | | | | | | | | | | |
Collapse
|
364
|
Adams SH. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr 2011; 2:445-56. [PMID: 22332087 PMCID: PMC3226382 DOI: 10.3945/an.111.000737] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+).
Collapse
|
365
|
Nakajima H, Nakajima-Takagi Y, Tsujita T, Akiyama SI, Wakasa T, Mukaigasa K, Kaneko H, Tamaru Y, Yamamoto M, Kobayashi M. Tissue-restricted expression of Nrf2 and its target genes in zebrafish with gene-specific variations in the induction profiles. PLoS One 2011; 6:e26884. [PMID: 22046393 PMCID: PMC3201981 DOI: 10.1371/journal.pone.0026884] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/05/2011] [Indexed: 12/14/2022] Open
Abstract
The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH). Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a) suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM) and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2.
Collapse
Affiliation(s)
- Hitomi Nakajima
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yaeko Nakajima-Takagi
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tadayuki Tsujita
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, Tsukuba, Japan
| | | | - Takeshi Wakasa
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Katsuki Mukaigasa
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Kaneko
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yutaka Tamaru
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Masayuki Yamamoto
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, Tsukuba, Japan
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kobayashi
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
366
|
Valerio A, D'Antona G, Nisoli E. Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. Aging (Albany NY) 2011; 3:464-78. [PMID: 21566257 PMCID: PMC3156598 DOI: 10.18632/aging.100322] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Malnutrition is common among older persons, with important consequences increasing frailty and morbidity and reducing health expectancy. On the contrary, calorie restriction (CR, a low-calorie dietary regimen with adequate nutrition) slows the progression of age-related diseases and extends the lifespan of many species. Identification of strategies mimicking key CR mechanisms – increased mitochondrial respiration and reduced production of oxygen radicals – is a hot topic in gerontology. Dietary supplementation with essential and/or branched chain amino acids (BCAAs) exerts a variety of beneficial effects in experimental animals and humans and has been recently demonstrated to support cardiac and skeletal muscle mitochondrial biogenesis, prevent oxidative damage, and enhance physical endurance in middle-aged mice, resulting in prolonged survival. Here we review recent studies addressing the possible role of BCAAs in energy metabolism and in the longevity of species ranging from unicellular organisms to mammals. We also summarize observations from human studies supporting the exciting hypothesis that dietary BCAA enriched mixture supplementation might be a health-promoting strategy in aged patients at risk.
Collapse
Affiliation(s)
- Alessandra Valerio
- Pharmacology Unit, Department of Biomedical Sciences and Biotechnologies, Brescia University, Italy
| | | | | |
Collapse
|
367
|
Roldán A, Comini MA, Crispo M, Krauth-Siegel RL. Lipoamide dehydrogenase is essential for both bloodstream and procyclic Trypanosoma brucei. Mol Microbiol 2011; 81:623-39. [DOI: 10.1111/j.1365-2958.2011.07721.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
368
|
Lu Y, Savage LJ, Larson MD, Wilkerson CG, Last RL. Chloroplast 2010: a database for large-scale phenotypic screening of Arabidopsis mutants. PLANT PHYSIOLOGY 2011; 155:1589-600. [PMID: 21224340 PMCID: PMC3091111 DOI: 10.1104/pp.110.170118] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Large-scale phenotypic screening presents challenges and opportunities not encountered in typical forward or reverse genetics projects. We describe a modular database and laboratory information management system that was implemented in support of the Chloroplast 2010 Project, an Arabidopsis (Arabidopsis thaliana) reverse genetics phenotypic screen of more than 5,000 mutants (http://bioinfo.bch.msu.edu/2010_LIMS; www.plastid.msu.edu). The software and laboratory work environment were designed to minimize operator error and detect systematic process errors. The database uses Ruby on Rails and Flash technologies to present complex quantitative and qualitative data and pedigree information in a flexible user interface. Examples are presented where the database was used to find opportunities for process changes that improved data quality. We also describe the use of the data-analysis tools to discover mutants defective in enzymes of leucine catabolism (heteromeric mitochondrial 3-methylcrotonyl-coenzyme A carboxylase [At1g03090 and At4g34030] and putative hydroxymethylglutaryl-coenzyme A lyase [At2g26800]) based upon a syndrome of pleiotropic seed amino acid phenotypes that resembles previously described isovaleryl coenzyme A dehydrogenase (At3g45300) mutants. In vitro assay results support the computational annotation of At2g26800 as hydroxymethylglutaryl-coenzyme A lyase.
Collapse
|
369
|
Engstrand RC, Cibrián Tovar J, Cibrián-Jaramillo A, Kolokotronis SO. Genetic variation in avocado stem weevils Copturus aguacatae (Coleoptera: Curculionidae) in Mexico. ACTA ACUST UNITED AC 2011; 21 Suppl 1:38-43. [PMID: 21271857 DOI: 10.3109/19401736.2010.536226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND AIM The avocado stem weevil Copturus aguacatae is an important pest in avocado plantations. Its presence hinders the production and marketing of avocado in Mexico, the largest avocado producer worldwide. Biological control through pheromone synthesis, a strategy favored over chemical control in crops, is currently limited by difficult field identification of this species. MATERIALS AND METHODS Using DNA barcoding, we examine the patterns of genetic variation of C. aguacatae in avocado trees in Mexico to help facilitate its identification and biological control. RESULTS We show that there is one single species of avocado stem weevil throughout the sampled sites in Mexico. Overall, haplotype diversity is high, with Oaxaca forming one distinct group and all other sampled populations are admixed irrespective of geographic origin. CONCLUSION The results suggest that high gene flow is maintained in this species and that a global strategy for biocontrol can be designed and implemented throughout the sampled range.
Collapse
Affiliation(s)
- Rachel C Engstrand
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | | | | | | |
Collapse
|
370
|
Plauth M, Schütz T. Branched-chain amino acids in liver disease: new aspects of long known phenomena. Curr Opin Clin Nutr Metab Care 2011; 14:61-6. [PMID: 21088568 DOI: 10.1097/mco.0b013e3283413726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW To provide an overview of findings on the role of branched-chain amino acids (BCAAs) in the pathophysiology, pathobiochemistry, and treatment of liver cirrhosis and its complications that have been published since or were not included in the last review on this topic in 2007 in this journal. RECENT FINDINGS There has been continued interest in the potential of oral BCAA supplements in improving energy metabolism, nitrogen metabolism, carbohydrate metabolism, insulin resistance, severity of liver disease, serum albumin levels, quality of serum albumin, or postoperative complication rates. Unfortunately, many trials suffer from lacking or inadequate controls or small sample size. In a fine example of scientific perseverance, Dutch researchers uncovered the long-known phenomenon of ingested blood being highly comagenic in patients with cirrhosis to be due to the low biologic value of blood protein. The absence of isoleucine and the abundance of leucine in the hemoglobin molecule by way of BCAA antagonism leads to impaired protein synthesis and azotemia paving the way for hepatic encephalopathy. SUMMARY Recognizing hypoisoleucinemia and BCAA antagonism following gastrointestinal bleeding, and its successful treatment by isoleucine infusion has advanced our understanding of the role of BCAA in liver cirrhosis.
Collapse
Affiliation(s)
- Mathias Plauth
- Klinik für Innere Medizin, Städtisches Klinikum Dessau, Dessau, Germany.
| | | |
Collapse
|
371
|
Hauser NS, Manoli I, Graf JC, Sloan J, Venditti CP. Variable dietary management of methylmalonic acidemia: metabolic and energetic correlations. Am J Clin Nutr 2011; 93:47-56. [PMID: 21048060 PMCID: PMC3001598 DOI: 10.3945/ajcn.110.004341] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/04/2010] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Isolated methylmalonic acidemia (MMA) is managed by dietary protein restriction and medical food supplementation. Resting energy expenditure (REE) can be depressed in affected individuals for undefined reasons. OBJECTIVE The objective was to document the spectrum of nutritional approaches used to treat patients with MMA, measure REE, and analyze the dependence of REE on body composition, biochemical, and nutritional variables. DESIGN Twenty-nine patients with isolated MMA (22 mut, 5 cblA, 2 cblB; 15 males, 14 females; age range: 2-35 y) underwent evaluation. REE was measured with open-circuit calorimetry and compared with predicted values by using age-appropriate equations. RESULTS Nutritional regimens were as follows: protein restriction with medical food (n = 17 of 29), protein restriction with medical food and supplemental isoleucine or valine (n = 5 of 29), or the use of natural protein alone for dietary needs (n = 7 of 29). Most mut patients had short stature and higher percentage fat mass compared with reference controls. Measured REE decreased to 74 ± 13.6% of predicted (P < 0.001) in the ≤ 18-y group (n = 22) and to 83 ± 11.1% (P = 0.004) in patients aged >18 y (n = 7). Linear regression modeling suggested that age (P = 0.001), creatinine clearance (P = 0.01), and height z score (P = 0.04) accounted for part of the variance of measured REE per kilogram of fat-free mass (model R² = 0.66, P < 0.0001). CONCLUSIONS There is wide variation in the dietary treatment of MMA. Standard predictive equations overestimate REE in this population primarily due to their altered body composition and decreased renal function. Defining actual energy needs will help optimize nutrition and protect individuals from overfeeding. This trial is registered at clinicaltrials.gov as NCT00078078.
Collapse
Affiliation(s)
- Natalie S Hauser
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, USA
| | | | | | | | | |
Collapse
|
372
|
Wang W, Osenbroch P, Skinnes R, Esbensen Y, Bjørås M, Eide L. Mitochondrial DNA Integrity Is Essential For Mitochondrial Maturation During Differentiation of Neural Stem Cells. Stem Cells 2010; 28:2195-204. [DOI: 10.1002/stem.542] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
373
|
Holecek M, Kandar R, Sispera L, Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle. Amino Acids 2010; 40:575-84. [PMID: 20614225 DOI: 10.1007/s00726-010-0679-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 06/25/2010] [Indexed: 12/18/2022]
Abstract
Hyperammonemia is considered to be the main cause of decreased levels of the branched-chain amino acids (BCAA), valine, leucine, and isoleucine, in liver cirrhosis. In this study we investigated whether the decrease in BCAA is caused by the direct effect of ammonia on BCAA metabolism and the effect of ammonia on BCAA and protein metabolism in different types of skeletal muscle. M. soleus (SOL, slow-twitch, red muscle) and m. extensor digitorum longus (EDL, fast-twitch, white muscle) of white rat were isolated and incubated in a medium with or without 500 μM ammonia. We measured the exchange of amino acids between the muscle and the medium, amino acid concentrations in the muscle, release of branched-chain keto acids (BCKA), leucine oxidation, total and myofibrillar proteolysis, and protein synthesis. Hyperammonemia inhibited the BCAA release (81% in SOL and 60% in EDL vs. controls), increased the release of BCKA (133% in SOL and 161% in EDL vs. controls) and glutamine (138% in SOL and 145% in EDL vs. controls), and increased the leucine oxidation in EDL (174% of controls). Ammonia also induced a significant increase in glutamine concentration in skeletal muscle. The effect of ammonia on intracellular BCAA concentration, protein synthesis and on total and myofibrillar proteolysis was insignificant. The data indicates that hyperammonemia directly affects the BCAA metabolism in skeletal muscle which results in decreased levels of BCAA in the extracellular fluid. The effect is associated with activated synthesis of glutamine, increased BCAA oxidation, decreased release of BCAA, and enhanced release of BCKA. These metabolic changes are not directly associated with marked changes in protein turnover. The effect of ammonia is more pronounced in muscles with high content of white fibres.
Collapse
Affiliation(s)
- Milan Holecek
- Department of Physiology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
374
|
Chen Y, Hoehenwarter W, Weckwerth W. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:573-83. [PMID: 20374526 DOI: 10.1111/j.1365-313x.2010.04261.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein phosphorylation/dephosphorylation is a central post-translational modification in plant hormone signaling, but little is known about its extent and function. Although pertinent protein kinases and phosphatases have been predicted and identified for a variety of hormone responses, classical biochemical approaches have so far revealed only a few candidate proteins and even fewer phosphorylation sites. Here we performed a global quantitative analysis of the Arabidopsis phosphoproteome in response to a time course of treatments with various plant hormones using phosphopeptide enrichment and subsequent mass accuracy precursor alignment (MAPA). The use of three time points, 1, 3 and 6 h, in combination with five phytohormone treatments, abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellic acid (GA), jasmonic acid (JA) and kinetin, resulted in 324,000 precursor ions from 54 LC-Orbitrap-MS analyses quantified and aligned in a data matrix with the dimension of 6000 x 54 using the ProtMax algorithm. To dissect the phytohormone responses, multivariate principal/independent components analysis was performed. In total, 152 phosphopeptides were identified as differentially regulated; these phosphopeptides are involved in a wide variety of signaling pathways. New phosphorylation sites were identified for ABA response element binding factors that showed a specific increase in response to ABA. New phosphorylation sites were also found for RLKs and auxin transporters. We found that different hormones regulate distinct amino acid residues of members of the same protein families. In contrast, tyrosine phosphorylation of the G alpha subunit appeared to be a common response for multiple hormones, demonstrating global cross-talk among hormone signaling pathways.
Collapse
Affiliation(s)
- Yanmei Chen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | | | | |
Collapse
|
375
|
A metabolic signature of long life in Caenorhabditis elegans. BMC Biol 2010; 8:14. [PMID: 20146810 PMCID: PMC2829508 DOI: 10.1186/1741-7007-8-14] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/10/2010] [Indexed: 12/29/2022] Open
Abstract
Background Many Caenorhabditis elegans mutations increase longevity and much evidence suggests that they do so at least partly via changes in metabolism. However, up until now there has been no systematic investigation of how the metabolic networks of long-lived mutants differ from those of normal worms. Metabolomic technologies, that permit the analysis of many untargeted metabolites in parallel, now make this possible. Here we use one of these, 1H nuclear magnetic resonance spectroscopy, to investigate what makes long-lived worms metabolically distinctive. Results We examined three classes of long-lived worms: dauer larvae, adult Insulin/IGF-1 signalling (IIS)-defective mutants, and a translation-defective mutant. Surprisingly, these ostensibly different long-lived worms share a common metabolic signature, dominated by shifts in carbohydrate and amino acid metabolism. In addition the dauer larvae, uniquely, had elevated levels of modified amino acids (hydroxyproline and phosphoserine). We interrogated existing gene expression data in order to integrate functional (metabolite-level) changes with transcriptional changes at a pathway level. Conclusions The observed metabolic responses could be explained to a large degree by upregulation of gluconeogenesis and the glyoxylate shunt as well as changes in amino acid catabolism. These responses point to new possible mechanisms of longevity assurance in worms. The metabolic changes observed in dauer larvae can be explained by the existence of high levels of autophagy leading to recycling of cellular components. See associated minireview: http://jbiol.com/content/9/1/7
Collapse
|
376
|
Wilkinson DJ, Smeeton NJ, Watt PW. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol 2010; 91:200-19. [PMID: 20138956 DOI: 10.1016/j.pneurobio.2010.01.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 12/15/2022]
Abstract
This review addresses the ammonia fatigue theory in light of new evidence from exercise and disease studies and aims to provide a view of the role of ammonia during exercise. Hyperammonemia is a condition common to pathological liver disorders and intense or exhausting exercise. In pathology, hyperammonemia is linked to impairment of normal brain function and the onset of the neurological condition, hepatic encephalopathy. Elevated blood ammonia concentrations arise due to a diminished capacity for removal via the liver and lead to increased exposure of organs, such as the brain, to the toxic effects of ammonia. High levels of brain ammonia can lead to deleterious alterations in astrocyte morphology, cerebral energy metabolism and neurotransmission, which may in turn impact on the functioning of important signalling pathways within the neuron. Such changes are believed to contribute to the disturbances in neuropsychological function, in particular the learning, memory, and motor control deficits observed in animal models of liver disease and also patients with cirrhosis. Hyperammonemia in exercise occurs as a result of an increased production by contracting muscle, through adenosine monophosphate (AMP) deamination (the purine nucleotide cycle) and branched chain amino acid (BCAA) deamination prior to oxidation. Plasma concentrations of ammonia during exercise often achieve or exceed those measured in liver disease patients, resulting in increased cerebral uptake. In this article we propose that exercise-induced hyperammonemia may lead to concomitant disturbances in brain function, potentially through similar mechanisms underpinning pathology, which may impact on performance as fatigue or reduced function, especially during extreme exercise.
Collapse
Affiliation(s)
- Daniel J Wilkinson
- Department of Sport and Exercise Science, Chelsea School, University of Brighton, 30 Carlisle Road, Eastbourne, UK.
| | | | | |
Collapse
|
377
|
Holecek M. Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition 2010; 26:482-90. [PMID: 20071143 DOI: 10.1016/j.nut.2009.06.027] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/08/2009] [Accepted: 06/24/2009] [Indexed: 12/18/2022]
Abstract
The article explains the pathogenesis of disturbances in branched-chain amino acid (BCAA; valine, leucine, and isoleucine) and protein metabolism in various forms of hepatic injury and it is suggested that the main cause of decrease in plasma BCAA concentration in liver cirrhosis is hyperammonemia. Three possible targets of BCAA supplementation in hepatic disease are suggested: (1) hepatic encephalopathy, (2) liver regeneration, and (3) hepatic cachexia. The BCAA may ameliorate hepatic encephalopathy by promoting ammonia detoxification, correction of the plasma amino acid imbalance, and by reduced brain influx of aromatic amino acids. The influence of BCAA supplementation on hepatic encephalopathy could be more effective in chronic hepatic injury with hyperammonemia and low concentrations of BCAA in blood than in acute hepatic illness, where hyperaminoacidemia frequently develops. The favorable effect of BCAA on liver regeneration and nutritional state of the body is related to their stimulatory effect on protein synthesis, secretion of hepatocyte growth factor, glutamine production and inhibitory effect on proteolysis. Presumably the beneficial effect of BCAA on hepatic cachexia is significant in compensated liver disease with decreased plasma BCAA concentrations, whereas it is less pronounced in hepatic diseases with inflammatory complications and enhanced protein turnover. It is concluded that specific benefits associated with BCAA supplementation depend significantly on the type of liver disease and on the presence of inflammatory reaction. An important task for clinical research is to identify groups of patients for whom BCAA treatment can significantly improve the health-related quality of life and the prognosis of hepatic disease.
Collapse
Affiliation(s)
- Milan Holecek
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic.
| |
Collapse
|
378
|
Evangeliou A, Spilioti M, Doulioglou V, Kalaidopoulou P, Ilias A, Skarpalezou A, Katsanika I, Kalamitsou S, Vasilaki K, Chatziioanidis I, Garganis K, Pavlou E, Varlamis S, Nikolaidis N. Branched chain amino acids as adjunctive therapy to ketogenic diet in epilepsy: pilot study and hypothesis. J Child Neurol 2009; 24:1268-72. [PMID: 19687389 DOI: 10.1177/0883073809336295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A pilot prospective follow-up study of the role of the branched chain amino acids as additional therapy to the ketogenic diet was carried out in 17 children, aged between 2 and 7 years, with refractory epilepsy. All of these patients were on the ketogenic diet; none of them was seizure free, while only 13 had more or less benefited from the diet. The addition of branched chain amino acids induced a 100% seizure reduction in 3 patients, while a 50% to 90% reduction was noticed in 5. Moreover, in all of the patients, no reduction in ketosis was recorded despite the change in the fat-to-protein ratio from 4:1 to 2.5:1. Although our data are preliminary, we suggest that branched chain amino acids may increase the effectiveness of the ketogenic diet and the diet could be more easily tolerated by the patients because of the change in the ratio of fat to protein.
Collapse
Affiliation(s)
- Athanasios Evangeliou
- 4th Paediatric Clinic, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Brosnan ME, Brosnan JT. Hepatic glutamate metabolism: a tale of 2 hepatocytes. Am J Clin Nutr 2009; 90:857S-861S. [PMID: 19625684 DOI: 10.3945/ajcn.2009.27462z] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate plays a central role in hepatic amino acid metabolism, both because of its role in the transdeamination of most amino acids and because the catabolism of arginine, ornithine, proline, histidine, and glutamine gives rise to glutamate. It is now appreciated that different hepatic functions are restricted to hepatocyte subpopulations within different acinar zones. This is also a feature of glutamate metabolism. Glutamine catabolism and synthesis are physically separated by zonation, with glutamine synthetase restricted to a narrow band of hepatocytes in zone 3 of the hepatic acinus, whereas glutaminase occurs in zone 1. Arginine and ornithine metabolism is also restricted to particular hepatocyte subpopulations. Ornithine aminotransferase, the regulated enzyme of arginine and ornithine catabolism, is restricted to the same zone 3 cells as glutamine synthetase, whereas the urea cycle is found in the remaining hepatocytes. This separation facilitates the independent regulation of these 2 different metabolic processes. We know the acinar localization of only a small fraction of the approximately 15,000 genes expressed in the liver. Knowledge of the acinar localization of metabolic processes is essential for an appreciation of their relation to other hepatic functions and their regulation.
Collapse
Affiliation(s)
- Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| | | |
Collapse
|
380
|
Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci 2009; 29:8302-11. [PMID: 19571121 DOI: 10.1523/jneurosci.1668-09.2009] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In response to nutrient stimuli, the mediobasal hypothalamus (MBH) drives multiple neuroendocrine and behavioral mechanisms to regulate energy balance. While central leucine reduces food intake and body weight, the specific neuroanatomical sites of leucine sensing, downstream neural substrates, and neurochemical effectors involved in this regulation remain largely unknown. Here we demonstrate that MBH leucine engages a neural energy regulatory circuit by stimulating POMC (proopiomelanocortin) neurons of the MBH, oxytocin neurons of the paraventricular hypothalamus, and neurons within the brainstem nucleus of the solitary tract to acutely suppress food intake by reducing meal size. We identify central p70 S6 kinase and Erk1/2 pathways as intracellular effectors required for this response. Activation of endogenous leucine intracellular metabolism produced longer-term reductions in meal number. Our data identify a novel, specific hypothalamus-brainstem circuit that links amino acid availability and nutrient sensing to the control of food intake.
Collapse
|
381
|
Costales JA, Daily JP, Burleigh BA. Cytokine-dependent and-independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling. BMC Genomics 2009; 10:252. [PMID: 19480704 PMCID: PMC2709661 DOI: 10.1186/1471-2164-10-252] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 05/29/2009] [Indexed: 01/13/2023] Open
Abstract
Background The requirements for growth and survival of the intracellular pathogen Trypanosoma cruzi within mammalian host cells are poorly understood. Transcriptional profiling of the host cell response to infection serves as a rapid read-out for perturbation of host physiology that, in part, reflects adaptation to the infective process. Using Affymetrix oligonucleotide array analysis we identified common and disparate host cell responses triggered by T. cruzi infection of phenotypically diverse human cell types. Results We report significant changes in transcript abundance in T. cruzi-infected fibroblasts, endothelial cells and smooth muscle cells (2852, 2155 and 531 genes respectively; fold-change ≥ 2, p-value < 0.01) 24 hours post-invasion. A prominent type I interferon response was observed in each cell type, reflecting a secondary response to secreted cytokine in infected cultures. To identify a core cytokine-independent response in T. cruzi-infected fibroblasts and endothelial cells transwell plates were used to distinguish cytokine-dependent and -independent gene expression profiles. This approach revealed the induction of metabolic and signaling pathways involved in cell proliferation, amino acid catabolism and response to wounding as common themes in T. cruzi-infected cells. In addition, the downregulation of genes involved in mitotic cell cycle and cell division predicted that T. cruzi infection may impede host cell cycle progression. The observation of impaired cytokinesis in T. cruzi-infected cells, following nuclear replication, confirmed this prediction. Conclusion Metabolic pathways and cellular processes were identified as significantly altered at the transcriptional level in response to T. cruzi infection in a cytokine-independent manner. Several of these alterations are supported by previous studies of T. cruzi metabolic requirements or effects on the host. However, our methods also revealed a T. cruzi-dependent block in the host cell cycle, at the level of cytokinesis, previously unrecognized for this pathogen-host cell interaction.
Collapse
Affiliation(s)
- Jaime A Costales
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | |
Collapse
|
382
|
Regulation of branched-chain amino acid catabolism: glucose limitation enhances the component of isovalerylspiramycin for the bitespiramycin production. Bioprocess Biosyst Eng 2009; 33:257-65. [PMID: 19415340 DOI: 10.1007/s00449-009-0320-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/11/2009] [Indexed: 10/20/2022]
Abstract
4''-O-isovalerylspiramycins are the major components of bitespiramycin complex consisting of a group of 4''-O-acylated spiramycins. The availability of isovaleryl group, usually in vivo derived from leucine, one of the branched-chain amino acids, affects the content of isovaleryispiramycin significantly. In this study, the effect of glucose on the activity of branched-chain alpha-keto acid dehydrogenase (BCKDH), which catalyzed the rate-limiting as well as the first irreversible reaction oxidative decarboxylation for branched-chain amino acids degradation, and isovaleryispiramycin biosynthesis was investigated. In the initial glucose concentration experiment, when the residual glucose concentration in the medium declined to 2-4 g/L, the BCKDH activity rose rapidly, and glucose deprivation and the summit of BCKDH activity appeared nearly at the same time. After a delay of about 6 h, the maximal isovalerylspiramycin content was observed. However, the shortage of glucose at the later production phase resulted in the marked decrease in BCKDH activity and isovaleryispiramycin content. In the fermentation in a 50 L fermentor, glucose feeding at the late production phase helped to maintain the residual glucose concentration between 0 and 1 g/L, leading to the high level of BCKDH activity and thus isovalerylspiramycin content. These suggested that glucose concentration could be used as a key parameter to regulate BCKDH activity and isovaleryispiramycin biosynthesis in the bitespiramycin production.
Collapse
|
383
|
Zhang J, Yan L, Chen W, Lin L, Song X, Yan X, Hang W, Huang B. Metabonomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC-oaTOF-MS system. Anal Chim Acta 2009; 650:16-22. [PMID: 19720167 DOI: 10.1016/j.aca.2009.02.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/04/2009] [Accepted: 02/12/2009] [Indexed: 01/02/2023]
Abstract
Ultra performance liquid chromatography (UPLC) coupled with orthogonal acceleration time-of-flight (oaTOF) mass spectrometry has showed great potential in diabetes research. In this paper, a UPLC-oaTOF-MS system was employed to distinguish the global serum profiles of 8 diabetic nephropathy (DN) patients, 33 type 2 diabetes mellitus (T2DM) patients and 25 healthy volunteers, and tried to find potential biomarkers. The UPLC system produced information-rich chromatograms with typical measured peak widths of 4 s, generating peak capacities of 225 in 15 min. Furthermore, principal component analysis (PCA) was used for group differentiation and marker selection. As shown in the scores plot, the distinct clustering between the patients and controls was observed, and DN and T2DM patients were also separated into two individual groups. Several compounds were tentatively identified based on accurate mass, isotopic pattern and MS/MS information. In addition, significant changes in the serum level of leucine, dihydrosphingosine and phytosphingosine were noted, indicating the perturbations of amino acid metabolism and phospholipid metabolism in diabetic diseases, which having implications in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Zhang
- The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China.
| | | | | | | | | | | | | | | |
Collapse
|
384
|
Determining important regulatory relations of amino acids from dynamic network analysis of plasma amino acids. Amino Acids 2009; 38:179-87. [PMID: 19122975 DOI: 10.1007/s00726-008-0226-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 12/16/2008] [Indexed: 12/26/2022]
Abstract
The changes in the concentrations of plasma amino acids do not always follow the flow-based metabolic pathway network. We have previously shown that there is a control-based network structure among plasma amino acids besides the metabolic pathway map. Based on this network structure, in this study, we performed dynamic analysis using time-course data of the plasma samples of rats fed single essential amino acid deficient diet. Using S-system model (conceptual mathematical model represented by power-law formalism), we inferred the dynamic network structure which reproduces the actual time-courses within the error allowance of 13.17%. By performing sensitivity analysis, three of the most dominant relations in this network were selected; the control paths from leucine to valine, from methionine to threonine, and from leucine to isoleucine. This result is in good agreement with the biological knowledge regarding branched-chain amino acids, and suggests the biological importance of the effect from methionine to threonine.
Collapse
|
385
|
Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 2008; 26:1003-10. [PMID: 18711341 DOI: 10.1038/nbt.1487] [Citation(s) in RCA: 451] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Direct in vivo investigation of mammalian metabolism is complicated by the distinct metabolic functions of different tissues. We present a computational method that successfully describes the tissue specificity of human metabolism on a large scale. By integrating tissue-specific gene- and protein-expression data with an existing comprehensive reconstruction of the global human metabolic network, we predict tissue-specific metabolic activity in ten human tissues. This reveals a central role for post-transcriptional regulation in shaping tissue-specific metabolic activity profiles. The predicted tissue specificity of genes responsible for metabolic diseases and tissue-specific differences in metabolite exchange with biofluids extend markedly beyond tissue-specific differences manifest in enzyme-expression data, and are validated by large-scale mining of tissue-specificity data. Our results establish a computational basis for the genome-wide study of normal and abnormal human metabolism in a tissue-specific manner.
Collapse
Affiliation(s)
- Tomer Shlomi
- School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | | | | | | | |
Collapse
|
386
|
Abstract
Birth and adaptation to extrauterine life involve major shifts in the protein and energy metabolism of the human newborn. These include a shift from a state of continuous supply of nutrients including amino acids from the mother to cyclic periodic oral intake, a change in the redox state of organs, thermogenesis, and a significant change in the mobilization and use of oxidative substrates. The development of safe, stable isotopic tracer methods has allowed the study of protein and amino acid metabolism not only in the healthy newborn but also in those born prematurely and of low birth weight. These studies have identified the unique and quantitative aspects of amino acid/protein metabolism in the neonate, thus contributing to rational nutritional care of these babies. The present review summarizes the contemporary data on some of the significant developments in essential and dispensable amino acids and their relationship to overall protein metabolism. Specifically, the recent data of kinetics of leucine, phenylalanine, glutamine, sulfur amino acid, and threonine and their relation to whole-body protein turnover are presented. Finally, the physiological rationale and the impact of nutrient (amino acids) interventions on the dynamics of protein metabolism are discussed.
Collapse
Affiliation(s)
- Satish C Kalhan
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
387
|
Nuttall FQ, Schweim K, Gannon MC. Effect of orally administered isoleucine with and without glucose on insulin, glucagon and glucose concentrations in non-diabetic subjects. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.eclnm.2008.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
388
|
Feng JF, Chen TM, Wen YA, Wang J, Tu ZG. Study of serum argininosuccinate lyase determination for diagnosis of liver diseases. J Clin Lab Anal 2008; 22:220-7. [PMID: 18484660 DOI: 10.1002/jcla.20245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The objectives of this research were to establish an automatic analysis method for the determination of serum argininosuccinate lyase (ASL) and to investigate the value of serum ASL test in the diagnosis of various liver disorders. According to the chemical reaction catalyzed by ASL, an enzyme-coupled reaction system was designed, and a methodology evaluation of this method was performed. A total of 291 patients with various liver diseases, 247 patients with nonliver disease and 32 healthy controls, were recruited, their serum levels of ASL and traditional hepatopathy markers, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and total bilirubin (TBil), were all determined, and their diagnostic values in liver diseases were analyzed and compared. Liver biopsy and the score of histopathological inflammation grading were performed in 31 patients with hepatopathy to explore the correlation between serum ASL level and hepatic histopathological change. A continuous monitoring assay method of serum ASL activity was established, which could be performed with automatic biochemistry analyzer. Methodological evaluation exhibited that the precision of this method was good indicated by the 4.0% intraassay coefficient of variation (CV), and 5.9% interassay CV. The mean recovery was 100.5%, linear range was from 0 to 167.7 U/L, and the lowest detection limit was approximately 0 U/L. All of the tested hepatopathy markers listed above were significantly increased in the liver disease group. However, levels of traditional markers of hepatopathy were all significantly increased at different degrees (all P<0.001) in patients with nonliver diseases; in contrast, there were no significantly increased ASL levels in all non-hepatopathy groups (P=0.335). The receiver operating characteristic (ROC) curve showed that the sensitivity and specificity of ASL were 100% and 91.1% (cutoff value=8 U/L), respectively, in the assessment of liver diseases. In contrast, ALT levels were 97.6% and 24.7%, and AST levels were 83.8% and 28.3% (both cutoff values=40.0 U/L), respectively. A positive correlation (r=0.417, P=0.019) was observed between serum ASL levels (86.9+/-26.5) and scores of histopathological inflammation grading (SHIG) (9.83+/-3.36). The sensitivity and specificity of ALS is much higher than that of ALT and AST for the diagnosis of liver diseases. ASL may be a more valuable marker for estimating hepatopathy.
Collapse
Affiliation(s)
- Jia-fu Feng
- Key Laboratory of Laboratory Medical Diagnosis of Education Ministry, Faculty of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
389
|
Bachmann C. Interpretation of plasma amino acids in the follow-up of patients: the impact of compartmentation. J Inherit Metab Dis 2008; 31:7-20. [PMID: 18236169 DOI: 10.1007/s10545-007-0772-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/07/2007] [Accepted: 12/12/2007] [Indexed: 12/17/2022]
Abstract
Results of plasma or urinary amino acids are used for suspicion, confirmation or exclusion of diagnosis, monitoring of treatment, prevention and prognosis in inborn errors of amino acid metabolism. The concentrations in plasma or whole blood do not necessarily reflect the relevant metabolite concentrations in organs such as the brain or in cell compartments; this is especially the case in disorders that are not solely expressed in liver and/or in those which also affect nonessential amino acids. Basic biochemical knowledge has added much to the understanding of zonation and compartmentation of expressed proteins and metabolites in organs, cells and cell organelles. In this paper, selected old and new biochemical findings in PKU, urea cycle disorders and nonketotic hyperglycinaemia are reviewed; the aim is to show that integrating the knowledge gained in the last decades on enzymes and transporters related to amino acid metabolism allows a more extensive interpretation of biochemical results obtained for diagnosis and follow-up of patients and may help to pose new questions and to avoid pitfalls. The analysis and interpretation of amino acid measurements in physiological fluids should not be restricted to a few amino acids but should encompass the whole quantitative profile and include other pathophysiological markers. This is important if the patient appears not to respond as expected to treatment and is needed when investigating new therapies. We suggest that amino acid imbalance in the relevant compartments caused by over-zealous or protocol-driven treatment that is not adjusted to the individual patient's needs may prolong catabolism and must be corrected.
Collapse
Affiliation(s)
- Claude Bachmann
- Clinical Chemistry, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
390
|
Chandler RJ, Sloan J, Fu H, Tsai M, Stabler S, Allen R, Kaestner KH, Kazazian HH, Venditti CP. Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle. BMC MEDICAL GENETICS 2007; 8:64. [PMID: 17937813 PMCID: PMC2140053 DOI: 10.1186/1471-2350-8-64] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/15/2007] [Indexed: 12/12/2022]
Abstract
Background Mutations in methylmalonyl-CoA mutase cause methylmalonic acidemia, a common organic aciduria. Current treatment regimens rely on dietary management and, in severely affected patients, liver or combined liver-kidney transplantation. For undetermined reasons, transplantation does not correct the biochemical phenotype. Methods To study the metabolic disturbances seen in this disorder, we have created a murine model with a null allele at the methylmalonyl-CoA mutase locus and correlated the results observed in the knock-out mice to patient data. To gain insight into the origin and magnitude of methylmalonic acid (MMA) production in humans with methylmalonyl-CoA mutase deficiency, we evaluated two methylmalonic acidemia patients who had received different variants of combined liver-kidney transplants, one with a complete liver replacement-kidney transplant and the other with an auxiliary liver graft-kidney transplant, and compared their metabolite production to four untransplanted patients with intact renal function. Results Enzymatic, Western and Northern analyses demonstrated that the targeted allele was null and correctable by lentiviral complementation. Metabolite studies defined the magnitude and tempo of plasma MMA concentrations in the mice. Before a fatal metabolic crisis developed in the first 24–48 hours, the methylmalonic acid content per gram wet-weight was massively elevated in the skeletal muscle as well as the kidneys, liver and brain. Near the end of life, extreme elevations in tissue MMA were present primarily in the liver. The transplant patients studied when well and on dietary therapy, displayed massive elevations of MMA in the plasma and urine, comparable to the levels seen in the untransplanted patients with similar enzymatic phenotypes and dietary regimens. Conclusion The combined observations from the murine metabolite studies and patient investigations indicate that during homeostasis, a large portion of circulating MMA has an extra-heptorenal origin and likely derives from the skeletal muscle. Our studies suggest that modulating skeletal muscle metabolism may represent a strategy to increase metabolic capacity in methylmalonic acidemia as well as other organic acidurias. This mouse model will be useful for further investigations exploring disease mechanisms and therapeutic interventions in methylmalonic acidemia, a devastating disorder of intermediary metabolism.
Collapse
Affiliation(s)
- Randy J Chandler
- Genetic Diseases Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Esteban I, Aguado C, Sánchez M, Knecht E. Regulation of various proteolytic pathways by insulin and amino acids in human fibroblasts. FEBS Lett 2007; 581:3415-21. [PMID: 17610878 DOI: 10.1016/j.febslet.2007.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 02/08/2023]
Abstract
Intracellular protein degradation is a regulated process with several proteolytic pathways. Although regulation of macroautophagy has been investigated in some detail in hepatocytes and in few other cells, less is known on this regulation in other cells and proteolytic pathways. We show that in human fibroblasts insulin and amino acids reduce protein degradation by different signalling pathways and that this inhibition proceeds in part via the mammalian target of rapamycin, especially with amino acids, which probably increase lysosomal pH. Moreover, the regulatory amino acids (Phe, Arg, Met, Tyr, Trp and Cys) are partially different from other cells. Finally, and in addition to macroautophagy, insulin and amino acids modify, to different extents and sometimes in opposite directions, the activities of other proteolytic pathways.
Collapse
Affiliation(s)
- Inmaculada Esteban
- Laboratorio de Biología Celular, Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler 16, 46013-Valencia, Spain
| | | | | | | |
Collapse
|
392
|
Watford M. Lowered concentrations of branched-chain amino acids result in impaired growth and neurological problems: insights from a branched-chain alpha-keto acid dehydrogenase complex kinase-deficient mouse model. Nutr Rev 2007; 65:167-72. [PMID: 17503711 DOI: 10.1111/j.1753-4887.2007.tb00296.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Excess circulating levels of branched-chain amino acids (BCAA), as seen in maple syrup urine disease, result in severe neuropathology. A new mouse model, deficient in the kinase that controls BCAA catabolism, shows that very low circulating levels of BCAA are also associated with neuropathology, including the development of epileptic seizures. These mice clearly demonstrate the need to control essential amino acid levels within both upper and lower limits.
Collapse
Affiliation(s)
- Malcolm Watford
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers, The State University, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
393
|
Obeid R, Kostopoulos P, Knapp JP, Kasoha M, Becker G, Fassbender K, Herrmann W. Biomarkers of folate and vitamin B12 are related in blood and cerebrospinal fluid. Clin Chem 2007; 53:326-33. [PMID: 17200133 DOI: 10.1373/clinchem.2006.076448] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND B-vitamins (folate, B(12)) are important micronutrients for brain function and essential cofactors for homocysteine (HCY) metabolism. Increased HCY has been related to neurological and psychiatric disorders. We studied the role of the B-vitamins in HCY metabolism in the brain. METHODS We studied blood and cerebrospinal fluid (CSF) samples from 72 patients who underwent lumbar puncture. We measured HCY, methylmalonic acid (MMA), and cystathionine by gas chromatography-mass spectrometry; S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) by liquid chromatography-tandem mass spectrometry; and the B-vitamins by HPLC or immunoassays. RESULTS Concentrations were lower in CSF than serum or plasma for HCY (0.09 vs 9.4 micromol/L), SAH (13.2 vs 16.8 nmol/L), cystathionine (54 vs 329 nmol/L), and holotranscobalamin (16 vs 63 pmol/L), whereas concentrations in CSF were higher for MMA (359 vs 186 nmol/L) and SAM (270 vs 113 nmol/L; all P <0.05). CSF concentrations of HCY correlated significantly with CSF folate (r = -0.46), CSF SAH (r = 0.48), CSF-albumin (r = 0.31), and age (r = 0.32). Aging was also associated with lower concentrations of CSF-folate and higher CSF-SAH. The relationship between serum and CSF folate depended on serum folate: the correlation (r) of serum and CSF-folate was 0.69 at serum folate <15.7 nmol/L. CSF concentrations of MMA and holotranscobalamin were not significantly correlated. CONCLUSIONS CSF and serum/plasma concentrations of vitamin biomarkers are significantly correlated. Older age is associated with higher CSF-HCY and CSF-SAH and lower CSF-folate. These metabolic alterations may be important indicators of low folate status, hyperhomocysteinemia, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, University Hospital of Saarland, Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
394
|
Affiliation(s)
- Luc Cynober
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|