351
|
Shammas MA, Shmookler Reis RJ, Li C, Koley H, Hurley LH, Anderson KC, Munshi NC. Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin Cancer Res 2004; 10:770-6. [PMID: 14760100 DOI: 10.1158/1078-0432.ccr-0793-03] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to test the efficacy of telomestatin, an intramolecular G-quadruplex intercalating drug with specificity for telomeric sequences, as a potential therapeutic agent for multiple myeloma. EXPERIMENTAL DESIGN We treated ARD, ARP, and MM1S myeloma cells with various concentrations of telomestatin for 7 days and evaluated for telomerase activity. Myeloma cells were treated with the minimal effective telomestatin concentration for 3-5 weeks. Every 7(th) day the fraction of live cells was determined by trypan blue exclusion, aliquots of cells were removed for various molecular assays, and the remaining cells were replated at the same cell number and at the same concentration of telomestatin. Telomere length, apoptosis, and gene expression changes were monitored as described in detail in "Materials and Methods." RESULTS Telomestatin treatment led to inhibition of telomerase activity, reduction in telomere length, and apoptotic cell death in ARD, MM1S, and ARP myeloma cells. Gene expression profile after 1 and 7 days of telomestatin treatment revealed >/==" BORDER="0">2-fold change in only 6 (0.027%) and 51 (0.23%) of 33,000 genes surveyed, respectively. No changes were seen in expression of genes involved in cell cycle, apoptosis, DNA repair, or recombination. CONCLUSIONS These results demonstrate that telomestatin exerts its antiproliferative and proapoptotic effects in myeloma cells via inhibition of telomerase and subsequent reduction in telomere length. We conclude that telomerase is an important potential therapeutic target for multiple myeloma therapy, and G-quadruplex interacting agents with specificity for binding to telomeric sequences can be important agents for additional evaluation.
Collapse
|
352
|
Gomez D, Paterski R, Lemarteleur T, Shin-Ya K, Mergny JL, Riou JF. Interaction of Telomestatin with the Telomeric Single-strand Overhang. J Biol Chem 2004; 279:41487-94. [PMID: 15277522 DOI: 10.1074/jbc.m406123200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicative senescence. The repeated sequence forming a G-overhang is able to adopt a peculiar four-stranded DNA structure in vitro called a G-quadruplex, which is a poor substrate for telomerase. Small molecule ligands that selectively stabilize the telomeric G-quadruplex induce telomere shortening and a delayed growth arrest. Here we show that the G-quadruplex ligand telomestatin has a dramatic effect on the conformation of intracellular G-overhangs. Competition experiments indicate that telomestatin strongly binds in vitro and in vivo to the telomeric overhang and impairs its single-stranded conformation. Long-term treatment of cells with telomestatin greatly reduces the G-overhang size, as evidenced by specific hybridization or telomeric oligonucleotide ligation assay experiments, with a concomitant delayed loss of cell viability. In vivo protection experiments using dimethyl sulfate also indicate that telomestatin treatment alters the dimethyl sulfate effect on G-overhangs, a result compatible with the formation of a local quadruplex structure at telomeric overhang. Altogether these experiments strongly support the hypothesis that the telomeric G-overhang is an intracellular target for the action of telomestatin.
Collapse
Affiliation(s)
- Dennis Gomez
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne Ardenne, 51 rue Cognacq-Jay, 51096 Reims, France
| | | | | | | | | | | |
Collapse
|
353
|
Abstract
T(m) is defined as Temperature of melting or, more accurately, as temperature of midtransition. This term is often used for nucleic acids (DNA and RNA, oligonucleotides and polynucleotides). A thermal denaturation experiment determines the stability of the secondary structure of a DNA or RNA and aids in the choice of the sequences for antisense oligomers or PCR primers. Beyond a simple numerical value (the T(m)), a thermal denaturation experiment, in which the folded fraction of a structure is plotted vs. temperature, yields important thermodynamic information. We present the classic problems encountered during these experiments and try to demonstrate that a number of useful pieces of information can be extracted from these experimental curves.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- Laboratoire de Biophysique, INSERM UR565, CNRS UMR 5153, Muséum National d'Histoire Naturelle, 75231 Paris, France.
| | | |
Collapse
|
354
|
Mathur V, Verma A, Maiti S, Chowdhury S. Thermodynamics of i-tetraplex formation in the nuclease hypersensitive element of human c-myc promoter. Biochem Biophys Res Commun 2004; 320:1220-7. [PMID: 15249220 DOI: 10.1016/j.bbrc.2004.06.074] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Indexed: 11/20/2022]
Abstract
More than 85% of c-myc transcription is controlled by the nuclease hypersensitive element III(1) upstream of the P1 promoter of this oncogene. The purine-rich sequence in the anti-sense strand forms a G-quadruplex, which has been recently implicated in colorectal cancer, and is proposed as a silencer element [Proc. Natl. Acad. Sci. USA 101 (2004) 6140]. This prompted us to characterize the thermodynamics and proton/counterion effect of the complementary pyrimidine-rich sequence, which forms a C-tetraplex. We report the thermodynamic parameters for folding of the pyrimidine-rich DNA fragment from this region into a C-tetraplex. At 20 degrees C, we observed a DeltaG of -10.36+/-0.13kcalmol(-1) with favorable enthalpy (DeltaH=75.99+/-0.99kcalmol(-1)) and unfavorable entropy (TDeltaS=65.63+/-0.88 kcalmol(-1)) at pH 5.3 in 20mM NaCl for tetraplex folding. Similar characteristic stabilizing enthalpy and destabilizing entropy were observed at other pH and ionic strengths. Folding was induced by uptake of about two to three protons per mole of tetraplex while a marginal (0.5-1mol/mol) counterion uptake was observed. In the context of current understanding of c-myc transcription we envisage a role of the i-motif in remodeling the G-quadruplex silencer.
Collapse
Affiliation(s)
- Vidhi Mathur
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110007, India
| | | | | | | |
Collapse
|
355
|
Kumar N, Maiti S. Quadruplex to Watson-Crick duplex transition of the thrombin binding aptamer: a fluorescence resonance energy transfer study. Biochem Biophys Res Commun 2004; 319:759-67. [PMID: 15184048 DOI: 10.1016/j.bbrc.2004.05.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 11/17/2022]
Abstract
Thermodynamic parameters of closing up of guanine-rich thrombin binding element, upon binding to K(+) and Na(+) ions to form quadruplexes and opening up of these quadruplexes upon binding to its complementary strand, were investigated. For this purpose, 15mer deoxynucleotide, d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), labeled with 5'-fluorescein and 3'-tetramethylrhodamine was taken and fluorescence resonance energy transfer was monitored as a function of either metal ions or complementary strand concentrations. Equilibrium association constant obtained from FRET studies demonstrates that K(+) ions bind with higher affinity than the Na(+) ions. The enthalpy changes, DeltaH, obtained from temperature dependence of equilibrium association constant studies revealed that formation of quadruplex upon binding of metal ions is primarily enthalpy driven. Binding studies of complementary strand to the quadruplex suggest that opening of a quadruplex in NaCl buffer in presence of the complementary strand is enthalpic as well as entropic driven and can occur easily, whereas opening of the same quadruplex in KCl buffer suffers from enthalpic barrier. Comparison of overall thermodynamic parameters along with kinetics studies indicates that, although quadruplexes cannot efficiently compete with duplex formation at physiological pH, they delay the association of two strands.
Collapse
Affiliation(s)
- Niti Kumar
- Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | |
Collapse
|
356
|
Boán F, Blanco MG, Barros P, González AI, Gómez-Márquez J. Inhibition of DNA synthesis by K+-stabilised G-quadruplex promotes allelic preferential amplification. FEBS Lett 2004; 571:112-8. [PMID: 15280027 DOI: 10.1016/j.febslet.2004.06.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/28/2004] [Accepted: 06/28/2004] [Indexed: 11/28/2022]
Abstract
PCR preferential amplification consists of the inefficient amplification of one allele in a heterozygous sample. Here, we report the isolation of a GC-rich human minisatellite, MsH43, that undergoes allelic preferential amplification during PCR. This effect requires the existence of a (TGGGGC)(4) motif that is able to form a G-quadruplex in the presence of K(+). This structure interferes with the DNA synthesis of the alleles harbouring this motif during PCR The present results are the first demonstration that the formation of G-quadruplex can be one of the mechanisms involved in some kinds of preferential amplification.
Collapse
Affiliation(s)
- Francisco Boán
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | | | | | | | | |
Collapse
|
357
|
Phan AT, Modi YS, Patel DJ. Two-repeat Tetrahymena telomeric d(TGGGGTTGGGGT) Sequence interconverts between asymmetric dimeric G-quadruplexes in solution. J Mol Biol 2004; 338:93-102. [PMID: 15050825 PMCID: PMC4690524 DOI: 10.1016/j.jmb.2004.02.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 02/17/2004] [Accepted: 02/18/2004] [Indexed: 10/26/2022]
Abstract
Recently, the two-repeat human telomeric d(TAGGGTTAGGGT) sequence has been shown to form interconverting parallel and antiparallel G-quadruplex structures in solution. Here, we examine the structures formed by the two-repeat Tetrahymena telomeric d(TGGGGTTGGGGT) sequence, which differs from the human sequence only by one G-for-A replacement in each repeat. We show by NMR that this sequence forms two novel G-quadruplex structures in Na+-containing solution. Both structures are asymmetric, dimeric G-quadruplexes involving a core of four stacked G-tetrads and two edgewise loops. The adjacent strands of the G-tetrad core are alternately parallel and antiparallel. All G-tetrads adopt syn.syn.anti.anti alignments, which occur with 5'-syn-anti-syn-anti-3' alternations along G-tracks. In the first structure (head-to-head), two loops are at one end of the G-tetrad core; in the second structure (head-to-tail), two loops are located on opposite ends of the G-tetrad core. In contrast to the human telomere counterpart, the proportions of the two forms here are similar for a wide range of temperatures; their unfolding rates are also similar, with an activation enthalpy of 153 kJ/mol.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | |
Collapse
|
358
|
Bhavesh NS, Patel PK, Karthikeyan S, Hosur RV. Distinctive features in the structure and dynamics of the DNA repeat sequence GGCGGG. Biochem Biophys Res Commun 2004; 317:625-33. [PMID: 15063804 DOI: 10.1016/j.bbrc.2004.03.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Indexed: 10/26/2022]
Abstract
G-rich DNA has been known to form a variety of folded and multistranded structures, with even single base modifications causing important structural changes. But, very little is known about the dynamic characteristics of the structures, which may play crucial roles in facilitating the structural transitions. In this background, we report here NMR investigations on the structure and dynamics of a DNA repeat sequence GGCGGG in aqueous solution containing Na+ ions at neutral pH. The chosen sequence d-TGGCGGGT forms a parallel quadruplex with a C-tetrad in the middle, formed by symmetrical pairing of four Cs in a plane via NH2-O2 H-bonds. 13C relaxation measurements at natural abundance for C' sugar carbons provided valuable insight into the sequence specific dynamism of G and C-tetrads in the quadruplex. The C4 tetrad seems to introduce high conformational dynamism at milli- to micro-second time scale in the quadruplex. Concomitantly, there is a decrease in the pico-second time scale dynamics. Interestingly, these effects are seen more prominently at the G-tetrads on the 3' end of C-tetrad than on its 5' end. These observations would have important implications for the roles the tetrads may play in many biological functions.
Collapse
Affiliation(s)
- Neel S Bhavesh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | | | | | | |
Collapse
|
359
|
Phan AT, Patel DJ. Two-repeat human telomeric d(TAGGGTTAGGGT) sequence forms interconverting parallel and antiparallel G-quadruplexes in solution: distinct topologies, thermodynamic properties, and folding/unfolding kinetics. J Am Chem Soc 2004; 125:15021-7. [PMID: 14653736 PMCID: PMC4693644 DOI: 10.1021/ja037616j] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate by NMR that the two-repeat human telomeric sequence d(TAGGGTTAGGGT) can form both parallel and antiparallel G-quadruplex structures in K(+)-containing solution. Both structures are dimeric G-quadruplexes involving three stacked G-tetrads. The sequence d(TAGGGUTAGGGT), containing a single thymine-to-uracil substitution at position 6, formed a predominantly parallel dimeric G-quadruplex with double-chain-reversal loops; the structure was symmetric, and all guanines were anti. Another modified sequence, d(UAGGGT(Br)UAGGGT), formed a predominantly antiparallel dimeric G-quadruplex with edgewise loops; the structure was asymmetric with six syn guanines and six anti guanines. The two structures can coexist and interconvert in solution. For the latter sequence, the antiparallel form is more favorable at low temperatures (<50 degrees C), while the parallel form is more favorable at higher temperatures; at temperatures lower than 40 degrees C, the antiparallel G-quadruplex folds faster but unfolds slower than the parallel G-quadruplex.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
360
|
Gomez D, Lemarteleur T, Lacroix L, Mailliet P, Mergny JL, Riou JF. Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. Nucleic Acids Res 2004; 32:371-9. [PMID: 14729921 PMCID: PMC373291 DOI: 10.1093/nar/gkh181] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ligand 12459, a potent G-quadruplex-interacting agent that belongs to the triazine series, was previously shown to downregulate telomerase activity in the human A549 lung carcinoma cell line. We show here that the downregulation of telomerase activity is caused by an alteration of the hTERT splicing pattern induced by 12459, i.e. an almost complete disappearance of the active (+alpha,+beta) transcript and an over-expression of the inactive -beta transcript. Spliced intron 6 forming the -beta hTERT transcript contained several tracks of G-rich sequences able to form G-quadruplexes. By using a specific PCR-stop assay, we show that 12459 is able to stabilize the formation of these G-quadruplex structures. A549 cell line clones selected for resistance to 12459 have been analyzed for their hTERT splicing pattern. Resistant clones are able to maintain the active hTERT transcript under 12459 treatment, suggesting the appearance of mechanisms able to bypass the 12459-induced splicing alterations. In contrast to 12459, telomestatin and BRACO19, two other G-quadruplex-interacting agents, have no effect on the hTERT splicing pattern in A549 cells, are cytotoxic against the A549-resistant clones and display a lower efficiency to stabilize hTERT G-quadruplexes. These results lead us to propose that 12459 impairs the splicing machinery of hTERT through stabilization of quadruplexes located in the hTERT intron 6. Differences of selectivity between 12459, BRACO19 and telomestatin for these hTERT quadruplexes may be important to explain their respective activity and inactivity against hTERT splicing.
Collapse
Affiliation(s)
- Dennis Gomez
- Onco-Pharmacologie, IFR53, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | | | | | | | | | | |
Collapse
|
361
|
Myers JC, Moore SA, Shamoo Y. Structure-based incorporation of 6-methyl-8-(2-deoxy-beta-ribofuranosyl)isoxanthopteridine into the human telomeric repeat DNA as a probe for UP1 binding and destabilization of G-tetrad structures. J Biol Chem 2003; 278:42300-6. [PMID: 12904298 DOI: 10.1074/jbc.m306147200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterogeneous ribonucleoprotein A1 (hnRNP A1) is an abundant nuclear protein that participates in RNA processing, alternative splicing, and chromosome maintenance. hnRNP A1 can be proteolyzed to unwinding protein (UP1), a 22.1-kDa protein that retains a high affinity for purine-rich single-stranded nucleic acids, including the human telomeric repeat (hTR) d(TTAGGG)n. Using the structure of UP1 bound to hTR as a guide, we have incorporated the fluorescent guanine analog 6-MI at one of two positions within the DNA to facilitate binding studies. One is where 6-MI remains stacked with an adjacent purine, and another is where it becomes fully unstacked upon UP1 binding. The structures of both modified oligonucleotides complexed to UP1 were determined by x-ray crystallography to validate the efficacy of our design, and 6-MI has proven to be an excellent reporter molecule for single-stranded nucleic acid interactions in positions where there is a change in stacking environment upon complex formation. We have shown that UP1 affinity for d(TTAGGG)2 is approximately 5 nm at 100 mm NaCl, pH 6.0, and our binding studies with d(TTAGG(6-MI)TTAGGG) show that binding is only modestly sensitive to salt and pH. UP1 also has a potent G-tetrad destabilizing activity that reduces the Tm of the hTR sequence d(TAGGGT)4 from 67.0 degrees C to 36.1 degrees C at physiological conditions (150 mm KCl, pH 7.0). Consistent with the structures determined by x-ray crystallography, UP1 is able to bind the hTR sequence in solution as a dimer and supports a model for hnRNP A1 binding to nucleic acids in arrays that may make a contiguous set of anti-parallel single-stranded nucleic acid binding clefts. These data suggest that seemingly disparate roles for hnRNP A1 in alternative splice site selection, RNA processing, RNA transport, and chromosome maintenance reflect its ability to bind a purine-rich consensus sequence (nYAGGn) and destabilize potentially deleterious G-tetrad structures.
Collapse
Affiliation(s)
- Jeffrey C Myers
- Department of Biochemistry and Cell Biology, Rice University, 6100 S. Main Street, Houston, TX 77005, USA
| | | | | |
Collapse
|
362
|
Gomez D, Aouali N, Londoño-Vallejo A, Lacroix L, Mégnin-Chanet F, Lemarteleur T, Douarre C, Shin-ya K, Mailliet P, Trentesaux C, Morjani H, Mergny JL, Riou JF. Resistance to the short term antiproliferative activity of the G-quadruplex ligand 12459 is associated with telomerase overexpression and telomere capping alteration. J Biol Chem 2003; 278:50554-62. [PMID: 14525974 DOI: 10.1074/jbc.m308440200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligands that stabilize the telomeric G-rich single-stranded DNA overhang into G-quadruplex can be considered as potential antitumor agents that block telomere replication. Ligand 12459, a potent G-quadruplex ligand that belongs to the triazine series, has been previously shown to induce both telomere shortening and apoptosis in the human A549 cell line as a function of its concentration and time exposure. We show here that A549 clones obtained after mutagenesis and selected for resistance to the short term effect of ligand 12459 frequently displayed hTERT transcript overexpression (2-6-fold). Overexpression of hTERT was also characterized in two resistant clones (JFD10 and JFD18) as an increase in telomerase activity, leading to an increase in telomere length. An increased frequency of anaphase bridges was also detected in JFD10 and JFD18, suggesting an alteration of telomere capping functions. Transfection of either hTERT or DN-hTERT cDNAs into A549 cells did not confer resistance or hypersensitivity to the short term effect of ligand 12459, indicating that telomerase expression is not the main determinant of the antiproliferative effect of ligand 12459. In contrast, transfection of DN-hTERT cDNA into resistant JFD18 cells restored sensitivity to apoptotic concentrations of ligand 12459, suggesting that telomerase does participate in the resistance to this G-quadruplex ligand. This work provides evidence that telomerase activity is not the main target for the 12459 G-quadruplex ligand but that hTERT functions contribute to the resistance phenotype to this class of agents.
Collapse
Affiliation(s)
- Dennis Gomez
- Onco-Pharmacologie, IFR53, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims 51096, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Risitano A, Fox KR. Stability of intramolecular DNA quadruplexes: comparison with DNA duplexes. Biochemistry 2003; 42:6507-13. [PMID: 12767234 DOI: 10.1021/bi026997v] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have determined the stability of intramolecular quadruplexes that are formed by a variety of G-rich sequences, using oligonucleotides containing appropriately placed fluorophores and quenchers. The stability of these quadruplexes is compared with that of the DNA duplexes that are formed on addition of complementary C-rich oligonucleotides. We find that the linkers joining the G-tracts are not essential for folding and can be replaced with nonnucleosidic moieties, though their sequence composition profoundly affects quadruplex stability. Although the human telomere repeat sequence d[G(3)(TTAG(3))(3)] folds into a quadruplex structure, this forms a duplex in the presence of the complementary C-rich strand at physiological conditions. The Tetrahymena sequence d[G(4)(T(2)G(4))(3)], the sequence d[G(3)(T(2)G(3))(3)], and sequences related to regions of the c-myc promoter d(G(4)AG(4)T)(2) and d(G(4)AG(3)T)(2) preferentially adopt the quadruplex form in potassium-containing buffers, even in the presence of a 50-fold excess of their complementary C-rich strands, though the duplex predominates in the presence of sodium. The HIV integrase inhibitor d[G(3)(TG(3))(3)] forms an extremely stable quadruplex which is not affected by addition of a 50-fold excess of the complementary C-rich strand in both potassium- and sodium-containing buffers. Replacing the TTA loops of the human telomeric repeat with AAA causes a large decrease in quadruplex stability, though a sequence with AAA in the first loop and TTT in the second and third loops is slightly more stable.
Collapse
Affiliation(s)
- Antonina Risitano
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | |
Collapse
|
364
|
Abstract
The telomere is a nucleoprotein complex located at the ends of eukaryotic chromosomes. It is essential for maintaining the integrity of the genome. It is not a linear structure and, for much of the cell cycle, telomeric DNA is maintained in a loop structure, which serves to protect the vulnerable ends of chromosomes. Many of the key proteins in the telomere have been identified, although their interplay is still imperfectly understood and structural data are only available on a few. Telomeric DNA itself comprises simple guanine-rich repeats for most of its length, culminating in a short overhang of single-stranded sequence at the extreme 3' ends. This can, at least in vitro, fold into a wide variety of four-stranded quadruplex structures, many of whose arrangements are being revealed by crystallographic and NMR studies.
Collapse
Affiliation(s)
- Stephen Neidle
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, WC1N 1AX, London, UK.
| | | |
Collapse
|
365
|
Alberti P, Mergny JL. DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc Natl Acad Sci U S A 2003; 100:1569-73. [PMID: 12574521 PMCID: PMC149873 DOI: 10.1073/pnas.0335459100] [Citation(s) in RCA: 341] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Indexed: 11/18/2022] Open
Abstract
There is currently great interest in the design of nanodevices that are capable of performing linear or rotary movements. Protein molecular machines are abundant in biology but it has recently been proposed that nucleic acids could also act as nanomolecular machines in model systems. Several types of movements have been described with DNA machines: rotation and "scissors-like" opening and closing. Here we show a nanomachine that is capable of an extension-contraction movement. The simple and robust device described here is composed of a single 21-base oligonucleotide and relies on a duplex-quadruplex equilibrium that may be fueled by the sequential addition of DNA single strands, generating a DNA duplex as a by-product. The interconversion between two well defined topological states induces a 5-nm two-stroke, linear motor-type movement, which is detected by fluorescence resonance energy transfer spectroscopy.
Collapse
Affiliation(s)
- Patrizia Alberti
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, Institut National de la Santé et de la Recherche Médicale Unité 565, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8646, 43 Rue Cuvier, 75005 Paris, France
| | | |
Collapse
|