351
|
Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M, Elledge SJ. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 1999; 286:1166-71. [PMID: 10550056 DOI: 10.1126/science.286.5442.1166] [Citation(s) in RCA: 432] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In response to DNA damage, cells activate checkpoint pathways that prevent cell cycle progression. In fission yeast and mammals, mitotic arrest in response to DNA damage requires inhibitory Cdk phosphorylation regulated by Chk1. This study indicates that Chk1 is required for function of the DNA damage checkpoint in Saccharomyces cerevisiae but acts through a distinct mechanism maintaining the abundance of Pds1, an anaphase inhibitor. Unlike other checkpoint mutants, chk1 mutants were only mildly sensitive to DNA damage, indicating that checkpoint functions besides cell cycle arrest influence damage sensitivity. Another kinase, Rad53, was required to both maintain active cyclin-dependent kinase 1, Cdk1(Cdc28), and prevent anaphase entry after checkpoint activation. Evidence suggests that Rad53 exerts its role in checkpoint control through regulation of the Polo kinase Cdc5. These results support a model in which Chk1 and Rad53 function in parallel through Pds1 and Cdc5, respectively, to prevent anaphase entry and mitotic exit after DNA damage. This model provides a possible explanation for the role of Cdc5 in DNA damage checkpoint adaptation.
Collapse
Affiliation(s)
- Y Sanchez
- Howard Hughes Medical Institute, Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
352
|
Edwards RJ, Bentley NJ, Carr AM. A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nat Cell Biol 1999; 1:393-8. [PMID: 10559981 DOI: 10.1038/15623] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conserved PIK-related kinase Rad3 is required for all DNA-integrity-checkpoint responses in fission yeast. Here we report a stable association between Rad3 and Rad26 in soluble protein extracts. Rad26 shows Rad3-dependent phosphorylation after DNA damage. Unlike phosphorylation of Hus1, Crb2/Rhp9, Cds1 and Chk1, phosphorylation of Rad26 does not require other known checkpoint proteins. Rad26 phosphorylation is the first biochemical marker of Rad3 function, indicating that Rad3-related checkpoint kinases may have a direct role in DNA-damage recognition.
Collapse
Affiliation(s)
- R J Edwards
- MRC Cell Mutation Unit, Sussex University, Falmer BN1 9RR, UK
| | | | | |
Collapse
|
353
|
Basrai MA, Velculescu VE, Kinzler KW, Hieter P. NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:7041-9. [PMID: 10490641 PMCID: PMC84699 DOI: 10.1128/mcb.19.10.7041] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of global gene expression in Saccharomyces cerevisiae by the serial analysis of gene expression technique has permitted the identification of at least 302 previously unidentified transcripts from nonannotated open reading frames (NORFs). Transcription of one of these, NORF5/HUG1 (hydroxyurea and UV and gamma radiation induced), is induced by DNA damage, and this induction requires MEC1, a homolog of the ataxia telangiectasia mutated (ATM) gene. DNA damage-specific induction of HUG1, which is independent of the cell cycle stage, is due to the alleviation of repression by the Crt1p-Ssn6p-Tup1p complex. Overexpression of HUG1 is lethal in combination with a mec1 mutation in the presence of DNA damage or replication arrest, whereas a deletion of HUG1 rescues the lethality due to a mec1 null allele. HUG1 is the first example of a NORF with important biological functional properties and defines a novel component of the MEC1 checkpoint pathway.
Collapse
Affiliation(s)
- M A Basrai
- Department of Molecular Biology & Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
354
|
Dua R, Levy DL, Campbell JL. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 1999; 274:22283-8. [PMID: 10428796 DOI: 10.1074/jbc.274.32.22283] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As first observed by Wittenberg (Kesti, T., Flick, K., Keranen, S., Syvaoja, J. E., and Wittenburg, C. (1999) Mol. Cell 3, 679-685), we find that deletion mutants lacking the entire N-terminal DNA polymerase domain of yeast pol epsilon are viable. However, we now show that point mutations in DNA polymerase catalytic residues of pol epsilon are lethal. Taken together, the phenotypes of the deletion and the point mutants suggest that the polymerase of pol epsilon may normally participate in DNA replication but that another polymerase can substitute in its complete absence. Substitution is inefficient because the deletion mutants have serious defects in DNA replication. This observation raises the question of what is the essential function of the C-terminal half of pol epsilon. We show that the ability of the C-terminal half of the polymerase to support growth is disrupted by mutations in the cysteine-rich region, which disrupts both dimerization of the POL2 gene product and interaction with the essential DPB2 subunit, suggesting that this region plays an important architectural role at the replication fork even in the absence of the polymerase function. Finally, the S phase checkpoint, with respect to both induction of RNR3 transcription and cell cycle arrest, is intact in cells where replication is supported only by the C-terminal half of pol epsilon, but it is disrupted in mutants affecting the cysteine-rich region, suggesting that this domain directly affects the checkpoint rather than acting through the N-terminal polymerase active site.
Collapse
Affiliation(s)
- R Dua
- Braun Laboratories 147-75, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
355
|
Zúñiga S, Boskovic J, García-Cantalejo JM, Jim nez A, Ballesta JP, Remacha M. Deletion of 24 open reading frames from chromosome XI from Saccharomyces cerevisiae and phenotypic analysis of the deletants. Gene 1999; 233:141-50. [PMID: 10375630 DOI: 10.1016/s0378-1119(99)00145-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a part of the EUROFAN program, 24 open reading frames from Saccharomyces cerevisiae (YKR010c to YKR013w, YKR015c to YKR025w, YKR081c to YKR083c, YKR087c to YKR091w and YKR096w) were disrupted in two genetic backgrounds, FY1679 and W303. Systematic deletions and phenotypic analysis were performed following a hierarchical strategy, the so-called 'mass murder'. Of the 24 genes thus deleted, four are essential, whereas the deletion of 17 did not reveal any significant difference between the parental and mutant strains. Deletions of the remaining three show some growth phenotype; ykr024c mutants grow slowly under any conditions, ykr019c mutants grow slower in a rich medium and ykr082w mutants are temperature sensitive, being unable to germinate at 30 degrees C and above.
Collapse
Affiliation(s)
- S Zúñiga
- Centro de Biología Molecular 'Severo Ochoa', CSIC and UAM, 28049-Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
356
|
Gardner R, Putnam CW, Weinert T. RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast. EMBO J 1999; 18:3173-85. [PMID: 10357828 PMCID: PMC1171398 DOI: 10.1093/emboj/18.11.3173] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic checkpoint genes regulate multiple cellular responses to DNA damage. In this report, we examine the roles of budding yeast genes involved in G2/M arrest and tolerance to UV exposure. A current model posits three gene classes: those encoding proteins acting on damaged DNA (e.g. RAD9 and RAD24), those transducing a signal (MEC1, RAD53 and DUN1) or those participating more directly in arrest (PDS1). Here, we define important features of the pathways subserved by those genes. MEC1, which we find is required for both establishment and maintenance of G2/M arrest, mediates this arrest through two parallel pathways. One pathway requires RAD53 and DUN1 (the 'RAD53 pathway'); the other pathway requires PDS1. Each pathway independently contributes approximately 50% to G2/M arrest, effects demonstrable after cdc13-induced damage or a double-stranded break inflicted by the HO endonuclease. Similarly, both pathways contribute independently to tolerance of UV irradiation. How the parallel pathways might interact ultimately to achieve arrest is not yet understood, but we do provide evidence that neither the RAD53 nor the PDS1 pathway appears to maintain arrest by inhibiting adaptation. Instead, we think it likely that both pathways contribute to establishing and maintaining arrest.
Collapse
Affiliation(s)
- R Gardner
- Department of Molecular and Cellular Biology, The University of Arizona, PO Box 21016, Tucson, AZ 85721-0106, USA
| | | | | |
Collapse
|
357
|
Grossmann KF, Brown JC, Moses RE. Cisplatin DNA cross-links do not inhibit S-phase and cause only a G2/M arrest in Saccharomyces cerevisiae. Mutat Res 1999; 434:29-39. [PMID: 10377946 DOI: 10.1016/s0921-8777(99)00011-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cisplatin (CDDP) has been used as a DNA cross-linking agent to evaluate whether there is a specific cell cycle checkpoint response to such damage in Saccharomyces cerevisiae (S. cerevisiae). Fluorescent-activated cell sorting (FACS) analysis showed only a G2/M checkpoint, normal exit from G1 and progression through S-phase following alpha-factor arrest and CDDP treatment. Of the checkpoint mutants tested, rad9, rad17 and rad24, did not show increased sensitivity to CDDP compared to isogenic wild-type cells. However, other checkpoint mutants tested (mec1, mec3 and rad53) showed increased sensitivity to CDDP, as did controls with a defect in excision repair (rad1 and rad14) or a defect in recombination (rad51 and rad52). Thus, by survival and cell cycle kinetics, it appears that DNA cross-links do not inhibit entry into S-phase or slow DNA replication and that replication continues after cisplatin treatment in yeast.
Collapse
Affiliation(s)
- K F Grossmann
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
358
|
Wang H, Elledge SJ. DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1999; 96:3824-9. [PMID: 10097122 PMCID: PMC22379 DOI: 10.1073/pnas.96.7.3824] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to DNA polymerase complexes, DNA replication requires the coordinate action of a series of proteins, including regulators Cdc28/Clb and Dbf4/Cdc7 kinases, Orcs, Mcms, Cdc6, Cdc45, and Dpb11. Of these, Dpb11, an essential BRCT repeat protein, has remained particularly enigmatic. The Schizosaccharomyces pombe homolog of DPB11, cut5, has been implicated in the DNA replication checkpoint as has the POL2 gene with which DPB11 genetically interacts. Here we describe a gene, DRC1, isolated as a dosage suppressor of dpb11-1. DRC1 is an essential cell cycle-regulated gene required for DNA replication. We show that both Dpb11 and Drc1 are required for the S-phase checkpoint, including the proper activation of the Rad53 kinase in response to DNA damage and replication blocks. Dpb11 is the second BRCT-repeat protein shown to control Rad53 function, possibly indicating a general function for this class of proteins. DRC1 and DPB11 show synthetic lethality and reciprocal dosage suppression. The Drc1 and Dpb11 proteins physically associate and function together to coordinate DNA replication and the cell cycle.
Collapse
Affiliation(s)
- H Wang
- Howard Hughes Medical Institute, Verna and Marrs McLean Department of Biochemistry, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
359
|
Dohrmann PR, Oshiro G, Tecklenburg M, Sclafani RA. RAD53 regulates DBF4 independently of checkpoint function in Saccharomyces cerevisiae. Genetics 1999; 151:965-77. [PMID: 10049915 PMCID: PMC1460535 DOI: 10.1093/genetics/151.3.965] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Cdc7p and Dbf4p proteins form an active kinase complex in Saccharomyces cerevisiae that is essential for the initiation of DNA replication. A genetic screen for mutations that are lethal in combination with cdc7-1 led to the isolation of seven lsd (lethal with seven defect) complementation groups. The lsd7 complementation group contained two temperature-sensitive dbf4 alleles. The lsd1 complementation group contained a new allele of RAD53, which was designated rad53-31. RAD53 encodes an essential protein kinase that is required for the activation of DNA damage and DNA replication checkpoint pathways, and that is implicated as a positive regulator of S phase. Unlike other RAD53 alleles, we demonstrate that the rad53-31 allele retains an intact checkpoint function. Thus, the checkpoint function and the DNA replication function of RAD53 can be functionally separated. The activation of DNA replication through RAD53 most likely occurs through DBF4. Two-hybrid analysis indicates that the Rad53p protein binds to Dbf4p. Furthermore, the steady-state level of DBF4 message and Dbf4p protein is reduced in several rad53 mutant strains, indicating that RAD53 positively regulates DBF4. These results suggest that two different functions of the cell cycle, initiation of DNA replication and the checkpoint function, can be coordinately regulated through the common intermediate RAD53.
Collapse
Affiliation(s)
- P R Dohrmann
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
360
|
Abstract
At the start of the cell-division programme, proteins must be assembled onto replication origins to establish competence for initiation of DNA synthesis. At the correct moment, other effectors must then coordinate appropriate firing of the various origins to control entry into and progress through S phase. These processes are key targets of cell-cycle control, and understanding their regulation will provide a deeper knowledge of the mechanisms controlling cell proliferation.
Collapse
Affiliation(s)
- A D Donaldson
- CRC Chromosome Replication Group, Wellcome Trust Building, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
361
|
Liu VF, Bhaumik D, Wang TS. Mutator phenotype induced by aberrant replication. Mol Cell Biol 1999; 19:1126-35. [PMID: 9891047 PMCID: PMC116042 DOI: 10.1128/mcb.19.2.1126] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1998] [Accepted: 11/05/1998] [Indexed: 11/20/2022] Open
Abstract
We have identified thermosensitive mutants of five Schizosaccharomyces pombe replication proteins that have a mutator phenotype at their semipermissive temperatures. Allele-specific mutants of DNA polymerase delta (poldelta) and mutants of Polalpha, two Poldelta subunits, and ligase exhibited increased rates of deletion of sequences flanked by short direct repeats. Deletion of rad2(+), which encodes a nuclease involved in processing Okazaki fragments, caused an increased rate of duplication of sequences flanked by short direct repeats. The deletion mutation rates of all the thermosensitive replication mutators decreased in a rad2Delta background, suggesting that deletion formation requires Rad2 function. The duplication mutation rate of rad2Delta was also reduced in a thermosensitive polymerase background, but not in a ligase mutator background, which suggests that formation of duplication mutations requires normal DNA polymerization. Thus, although the deletion and duplication mutator phenotypes are distinct, their mutational mechanisms are interdependent. The deletion and duplication replication mutators all exhibited decreased viability in combination with deletion of a checkpoint Rad protein, Rad26. Interestingly, deletion of Cds1, a protein kinase functioning in a checkpoint Rad-mediated reversible S-phase arrest pathway, decreased the viability and exacerbated the mutation rate only in the thermosensitive deletion replication mutators but had no effect on rad2Delta. These findings suggest that aberrant replication caused by allele-specific mutations of these replication proteins can accumulate potentially mutagenic DNA structures. The checkpoint Rad-mediated pathways monitor and signal the aberrant replication in both the deletion and duplication mutators, while Cds1 mediates recovery from aberrant replication and prevents formation of deletion mutations specifically in the thermosensitive deletion replication mutators.
Collapse
Affiliation(s)
- V F Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | | | |
Collapse
|
362
|
Abstract
Studies of the genetics of G2/M checkpoints in budding and fission yeasts have produced many of the defining concepts of checkpoint biology. Recent progress in the biochemistry of the checkpoint gene products is adding a mechanistic understanding to our models and identifying the components of the normal cell cycle machinery that are targeted by checkpoints.
Collapse
|