351
|
Park M, Kim SJ, Vitale A, Hwang I. Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species. PLANT PHYSIOLOGY 2004; 134:625-39. [PMID: 14730078 PMCID: PMC344539 DOI: 10.1104/pp.103.030635] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 10/08/2003] [Accepted: 11/04/2003] [Indexed: 05/17/2023]
Abstract
Protein storage vacuoles (PSVs) are specialized vacuoles devoted to the accumulation of large amounts of protein in the storage tissues of plants. In this study, we investigated the presence of the storage vacuole and protein trafficking to the compartment in cells of tobacco (Nicotiana tabacum), common bean (Phaseolus vulgaris), and Arabidopsis leaf tissue. When we expressed phaseolin, the major storage protein of common bean, or an epitope-tagged version of alpha-tonoplast intrinsic protein (alpha-TIP, a tonoplast aquaporin of PSV), in protoplasts derived from leaf tissues, these proteins were targeted to a compartment ranging in size from 2 to 5 microm in all three plant species. Most Arabidopsis leaf cells have one of these organelles. In contrast, from one to five these organelles occurred in bean and tobacco leaf cells. Also, endogenous alpha-TIP is localized in a similar compartment in untransformed leaf cells of common bean and is colocalized with transiently expressed epitope-tagged alpha-TIP. In Arabidopsis, phaseolin contained N-glycans modified by Golgi enzymes and its traffic was sensitive to brefeldin A. However, trafficking of alpha-TIP was insensitive to brefeldin A treatment and was not affected by the dominant-negative mutant of AtRab1. In addition, a modified alpha-TIP with an insertion of an N-glycosylation site has the endoplasmic reticulum-type glycans. Finally, the early step of phaseolin traffic, from the endoplasmic reticulum to the Golgi complex, required the activity of the small GTPase Sar1p, a key component of coat protein complex II-coated vesicles, independent of the presence of the vacuolar sorting signal in phaseolin. Based on these results, we propose that the proteins we analyzed are targeted to the PSV or equivalent organelle in leaf cells and that proteins can be transported to the PSV by two different pathways, the Golgi-dependent and Golgi-independent pathways, depending on the individual cargo proteins.
Collapse
Affiliation(s)
- Misoon Park
- Center for Plant Intracellular Trafficking, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | | | |
Collapse
|
352
|
Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH. Systematic Analysis of SNARE Molecules in Arabidopsis: Dissection of the post-Golgi Network in Plant Cells. Cell Struct Funct 2004; 29:49-65. [PMID: 15342965 DOI: 10.1247/csf.29.49] [Citation(s) in RCA: 407] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In all eucaryotic cells, specific vesicle fusion during vesicular transport is mediated by membrane-associated proteins called SNAREs (soluble N-ethyl-maleimide sensitive factor attachment protein receptors). Sequence analysis identified a total of 54 SNARE genes (18 Qa-SNAREs/Syntaxins, 11 Qb-SNAREs, 8 Qc-SNAREs, 14 R-SNAREs/VAMPs and 3 SNAP-25) in the Arabidopsis genome. Almost all of them were ubiquitously expressed through out all tissues examined. A series of transient expression assays using green fluorescent protein (GFP) fused proteins revealed that most of the SNARE proteins were located on specific intracellular compartments: 6 in the endoplasmic reticulum, 9 in the Golgi apparatus, 4 in the trans-Golgi network (TGN), 2 in endosomes, 17 on the plasma membrane, 7 in both the prevacuolar compartment (PVC) and vacuoles, 2 in TGN/PVC/vacuoles, and 1 in TGN/PVC/plasma membrane. Some SNARE proteins showed multiple localization patterns in two or more different organelles, suggesting that these SNAREs shuttle between the organelles. Furthermore, the SYP41/SYP61-residing compartment, which was defined as the TGN, was not always located along with the Golgi apparatus, suggesting that this compartment is an independent organelle distinct from the Golgi apparatus. We propose possible combinations of SNARE proteins on all subcellular compartments, and suggest the complexity of the post-Golgi membrane traffic in higher plant cells.
Collapse
Affiliation(s)
- Tomohiro Uemura
- Graduate School of Biostudies, Kyoto University, Yoshida-nihonmatsu, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
353
|
Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH. ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. THE PLANT CELL 2003; 15:2612-25. [PMID: 14507996 PMCID: PMC280565 DOI: 10.1105/tpc.015560] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 08/20/2003] [Indexed: 05/05/2023]
Abstract
ARG1 (ALTERED RESPONSE TO GRAVITY) is required for normal root and hypocotyl gravitropism. Here, we show that targeting ARG1 to the gravity-perceiving cells of roots or hypocotyls is sufficient to rescue the gravitropic defects in the corresponding organs of arg1-2 null mutants. The cytosolic alkalinization of root cap columella cells that normally occurs very rapidly upon gravistimulation is lacking in arg1-2 mutants. Additionally, vertically grown arg1-2 roots appear to accumulate a greater amount of auxin in an expanded domain of the root cap compared with the wild type, and no detectable lateral auxin gradient develops across mutant root caps in response to gravistimulation. We also demonstrate that ARG1 is a peripheral membrane protein that may share some subcellular compartments in the vesicular trafficking pathway with PIN auxin efflux carriers. These data support our hypothesis that ARG1 is involved early in gravitropic signal transduction within the gravity-perceiving cells, where it influences pH changes and auxin distribution. We propose that ARG1 affects the localization and/or activity of PIN or other proteins involved in lateral auxin transport.
Collapse
|
354
|
Gifford ML, Dean S, Ingram GC. The Arabidopsis ACR4 gene plays a role in cell layer organisation during ovule integument and sepal margin development. Development 2003; 130:4249-58. [PMID: 12900442 DOI: 10.1242/dev.00634] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms regulating cell layer organisation in developing plant organs are fundamental to plant growth, but remain largely uninvestigated. We have studied the receptor kinase-encoding ARABIDOPSIS CRINKLY4 gene and shown that its expression is restricted to the L1 cell layer of most meristems and organ primordia, including those of the ovule integuments. Insertion mutations show that ARABIDOPSIS CRINKLY4 is required for regulation of cellular organisation during the development of sepal margins and ovule integument outgrowth. We show that ARABIDOPSIS CRINKLY4 encodes a functional kinase that, in ovules and possibly other tissues, is abundant in anticlinal and the inner periclinal plasma membrane of 'outside' cells. We propose that ARABIDOPSIS CRINKLY4 may be involved in maintaining L1 cell layer integrity by receiving and transmitting signals from neighbouring L1 cells and/or from underlying cell layers.
Collapse
Affiliation(s)
- Miriam L Gifford
- Institute of Cell and Molecular Biology, Kings Buildings, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
355
|
Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S, Stussi-Garaud C, Ritzenthaler C. Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. THE PLANT CELL 2003; 15:2058-75. [PMID: 12953111 PMCID: PMC181331 DOI: 10.1105/tpc.013896] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Accepted: 07/15/2003] [Indexed: 05/15/2023]
Abstract
Grapevine fanleaf virus (GFLV) is one of a large class of plant viruses whose cell-to-cell transport involves the passage of virions through tubules composed of virus-encoded movement protein (MP). The tubules are embedded within modified plasmodesmata, but the mechanism of targeting of MP to these sites is unknown. To study intracellular GFLV MP trafficking, a green fluorescent protein-MP fusion (GFP:MP) was expressed in transgenic tobacco BY-2 suspension cells under the control of an inducible promoter. We show that GFP:MP is targeted preferentially to calreticulin-labeled foci within the youngest cross walls, where it assembles into tubules. During cell division, GFP:MP colocalizes in the cell plate with KNOLLE, a cytokinesis-specific syntaxin, and both proteins are linked physically, as shown by coimmunoprecipitation of the two proteins from the same microsomal fraction. In addition, treatment with various drugs has revealed that a functional secretory pathway, but not the cytoskeleton, is required for tubule formation. However, correct GFP:MP targeting to calreticulin-labeled foci seems to be cytoskeleton dependent. Finally, biochemical analyses have revealed that at least a fraction of the MP behaves as an intrinsic membrane protein. These findings support a model in which GFP:MP would be transported to specific sites via Golgi-derived vesicles along two different pathways: a microtubule-dependent pathway in normal cells and a microfilament-dependent default pathway when microtubules are depolymerized.
Collapse
Affiliation(s)
- Céline Laporte
- Institut de Biologie Moléculaire des Plantes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
356
|
Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B. Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 2003; 13:1378-87. [PMID: 12932321 DOI: 10.1016/s0960-9822(03)00538-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND In contrast to the intense attention devoted to research on intracellular sterol trafficking in animal cells, knowledge about sterol transport in plant cells remains limited, and virtually nothing is known about plant endocytic sterol trafficking. Similar to animals, biosynthetic sterol transport occurs from the endoplasmic reticulum (ER) via the Golgi apparatus to the plasma membrane. The vesicle trafficking inhibitor brefeldin A (BFA) has been suggested to disrupt biosynthetic sterol transport at the Golgi level. RESULTS Here, we report on early endocytic sterol trafficking in Arabidopsis root epidermal cells by introducing filipin as a tool for fluorescent sterol detection. Sterols can be internalized from the plasma membrane and localize to endosomes positive for the early endosomal Rab5 GTPase homolog ARA6 fused to green fluorescent protein (GFP) (ARA6-GFP). Early endocytic sterol transport is actin dependent and highly BFA sensitive. BFA causes coaccumulation of sterols, endocytic markers like ARA6-GFP, and PIN2, a polarly localized presumptive auxin transport protein, in early endosome agglomerations that can be distinguished from ER and Golgi. Sterol accumulation in such aggregates is enhanced in actin2 mutants, and the actin-depolymerizing drug cytochalasin D inhibits sterol redistribution from endosome aggregations. CONCLUSIONS Early endocytic sterol trafficking involves transport via ARA6-positive early endosomes that, in contrast to animal cells, is actin dependent. Our results reveal sterol-enriched early endosomes as targets for BFA interference in plants. Early endocytic sterol trafficking and recycling of polar PIN2 protein share a common pathway, suggesting a connection between plant endocytic sterol transport and polar sorting events.
Collapse
Affiliation(s)
- Markus Grebe
- Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
357
|
NEUMANN ULLA, BRANDIZZI FEDERICA, HAWES CHRIS. Protein transport in plant cells: in and out of the Golgi. ANNALS OF BOTANY 2003; 92:167-80. [PMID: 12876187 PMCID: PMC4243656 DOI: 10.1093/aob/mcg134] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In plant cells, the Golgi apparatus is the key organelle for polysaccharide and glycolipid synthesis, protein glycosylation and protein sorting towards various cellular compartments. Protein import from the endoplasmic reticulum (ER) is a highly dynamic process, and new data suggest that transport, at least of soluble proteins, occurs via bulk flow. In this Botanical Briefing, we review the latest data on ER/Golgi inter-relations and the models for transport between the two organelles. Whether vesicles are involved in this transport event or if direct ER-Golgi connections exist are questions that are open to discussion. Whereas the majority of proteins pass through the Golgi on their way to other cell destinations, either by vesicular shuttles or through maturation of cisternae from the cis- to the trans-face, a number of membrane proteins reside in the different Golgi cisternae. Experimental evidence suggests that the length of the transmembrane domain is of crucial importance for the retention of proteins within the Golgi. In non-dividing cells, protein transport out of the Golgi is either directed towards the plasma membrane/cell wall (secretion) or to the vacuolar system. The latter comprises the lytic vacuole and protein storage vacuoles. In general, transport to either of these from the Golgi depends on different sorting signals and receptors and is mediated by clathrin-coated and dense vesicles, respectively. Being at the heart of the secretory pathway, the Golgi (transiently) accommodates regulatory proteins of secretion (e.g. SNAREs and small GTPases), of which many have been cloned in plants over the last decade. In this context, we present a list of regulatory proteins, along with structural and processing proteins, that have been located to the Golgi and the 'trans-Golgi network' by microscopy.
Collapse
Affiliation(s)
- ULLA NEUMANN
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane Campus,Oxford OX3 0BP, UK
| | - FEDERICA BRANDIZZI
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane Campus,Oxford OX3 0BP, UK
| | - CHRIS HAWES
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane Campus,Oxford OX3 0BP, UK
- * For correspondence. Fax +44 1865 483955, e‐mail
| |
Collapse
|
358
|
Muday GK, Peer WA, Murphy AS. Vesicular cycling mechanisms that control auxin transport polarity. TRENDS IN PLANT SCIENCE 2003; 8:301-304. [PMID: 12878008 DOI: 10.1016/s1360-1385(03)00132-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The polar transport of auxin controls many important plant growth and developmental processes. The polarity of auxin movement has long been suggested to be mediated by asymmetric distribution of auxin transport proteins, yet, until recently, little was known about the mechanisms that establish protein asymmetry in auxin-transporting cells. Now, a recent paper provides significant insight into the mechanism by which the GNOM protein controls the cycling of an auxin efflux carrier protein, PIN1, between the endosome and the plasma membrane. The dynamic movement of auxin transport proteins between internal compartments and the plasma membrane suggests mechanisms for alterations in auxin transport polarity in response to changing developmental or environmental regulation.
Collapse
Affiliation(s)
- Gloria K Muday
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA.
| | | | | |
Collapse
|
359
|
Lisenbee CS, Karnik SK, Trelease RN. Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic 2003; 4:491-501. [PMID: 12795694 DOI: 10.1034/j.1600-0854.2003.00107.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peroxisomal ascorbate peroxidase (APX) sorts indirectly via a subdomain of the ER (peroxisomal ER) to the boundary membrane of peroxisomes in tobacco Bright Yellow 2 cells. This novel subdomain characteristically appears as fluorescent reticular/circular compartments distributed variously in the cytoplasm. Further characterizations are presented herein. A peptide possessing the membrane targeting information for peroxisomal APX was fused to GFP (GFP-APX). Transiently expressed GFP-APX sorted to peroxisomes and to reticular/circular compartments; in both cases, the GFP moiety faced the cytosol. Of particular interest, both homotypic and heterotypic aggregates of peroxisomes, mitochondria, and/or plastids were formed. The latter two organelles comprised the circular portion of the reticular/circular compartments, apparently as a consequence of oligomerization (zippering) of the GFP moieties after insertion into the outer membranes of the affected organelles. These results, coupled with the accumulation of endogenous peroxisomal APX in cytoplasmic, noncircular compartment(s) following treatment with brefeldin A, indicate that authentic peroxisomal ER is composed only of a reticular compartment(s). Equally important, the data show that overexpressed, membrane-targeted GFP fusion proteins have a propensity to form organelle aggregates that may lead to misinterpretations of sorting pathways of trafficked proteins.
Collapse
Affiliation(s)
- Cayle S Lisenbee
- Department of Plant Biology and Graduate Program in Molecular and Cellular Biology, Arizona State University, Tempe, AZ 85287-1601, USA
| | | | | |
Collapse
|
360
|
Baluska F, Wojtaszek P, Volkmann D, Barlow P. The architecture of polarized cell growth: the unique status of elongating plant cells. Bioessays 2003; 25:569-76. [PMID: 12766946 DOI: 10.1002/bies.10282] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polarity is an inherent feature of almost all prokaryotic and eukaryotic cells. In most eukaryotic cells, growth polarity is due to the assembly of actin-based growing domains at particular locations on the cell periphery. A contrasting scenario is that growth polarity results from the establishment of non-growing domains, which are actively maintained at opposite end-poles of the cell. This latter mode of growth is common in rod-shaped bacteria and, surprisingly, also in the majority of plant cells, which elongate along the apical-basal axes of plant organs. The available data indicate that the non-growing end-pole domains of plant cells are sites of intense endocytosis and recycling. These actin-enriched end-poles serve also as signaling platforms, allowing bidirectional exchange of diverse signals along the supracellular domains of longitudinal cell files. It is proposed that these actively remodeled end-poles of elongating plant cells remotely resemble neuronal synapses.
Collapse
Affiliation(s)
- Frantisek Baluska
- Institute of Botany, Department of Plant Cell Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| | | | | | | |
Collapse
|
361
|
Lisenbee CS, Heinze M, Trelease RN. Peroxisomal ascorbate peroxidase resides within a subdomain of rough endoplasmic reticulum in wild-type Arabidopsis cells. PLANT PHYSIOLOGY 2003; 132:870-82. [PMID: 12805617 PMCID: PMC167027 DOI: 10.1104/pp.103.019976] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Revised: 02/18/2003] [Accepted: 03/26/2003] [Indexed: 05/20/2023]
Abstract
Previously we reported (R.T. Mullen, C.S. Lisenbee, J.A. Miernyk, R.N. Trelease [1999] Plant Cell 11: 2167-2185) that overexpressed ascorbate peroxidase (APX), a peroxisomal membrane protein, sorted indirectly to Bright Yellow-2 cell peroxisomes via a subdomain of the endoplasmic reticulum (ER; peroxisomal endoplasmic reticulum [pER]). More recently, a pER-like compartment also was identified in pumpkin (Cucurbita pepo) and transformed Arabidopsis cells (K. Nito, K. Yamaguchi, M. Kondo, M. Hayashi, M. Nishimura [2001] Plant Cell Physiol 42: 20-27). Here, we characterize more extensively the localization of endogenous Arabidopsis peroxisomal APX (AtAPX) in cultured wild-type Arabidopsis cells (Arabidopsis var. Landsberg erecta). AtAPX was detected in peroxisomes, but not in an ER subcompartment, using immunofluorescence microscopy. However, AtAPX was detected readily with immunoblots in both peroxisomal and ER fractions recovered from sucrose (Suc) density gradients. Most AtAPX in microsomes (200,000g, 1 h pellet) applied to gradients exhibited a Mg2+-induced shift from a distribution throughout gradients (approximately 18%-40% [w/w] Suc) to > or =42% (w/w) Suc regions of gradients, including pellets, indicative of localization in rough ER vesicles. Immunogold electron microscopy of the latter fractions verified these findings. Further analyses of peroxisomal and rough ER vesicle fractions revealed that AtAPX in both fractions was similarly associated with and located mostly on the cytosolic face of the membranes. Thus, at the steady state, endogenous peroxisomal AtAPX resides at different levels in rough ER and peroxisomes. Collectively, these findings show that rather than being a transiently induced sorting compartment formed in response to overexpressed peroxisomal APX, portions of rough ER (pER) in wild-type cells serve as a constitutive sorting compartment likely involved in posttranslational routing of constitutively synthesized peroxisomal APX.
Collapse
Affiliation(s)
- Cayle S Lisenbee
- Department of Plant Biology and Graduate Program in Molecular and Cellular Biology, Arizona State University, Tempe 85287-1601, USA
| | | | | |
Collapse
|
362
|
Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 2003; 112:219-30. [PMID: 12553910 DOI: 10.1016/s0092-8674(03)00003-5] [Citation(s) in RCA: 767] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exchange factors for ARF GTPases (ARF-GEFs) regulate vesicle trafficking in a variety of organisms. The Arabidopsis protein GNOM is a brefeldin A (BFA) sensitive ARF-GEF that is required for the proper polar localization of PIN1, a candidate transporter of the plant hormone auxin. Mutations in GNOM lead to developmental defects that resemble those caused by interfering with auxin transport. Both PIN1 localization and auxin transport are also sensitive to BFA. In this paper, we show that GNOM localizes to endosomes and is required for their structural integrity. We engineered a BFA-resistant version of GNOM. In plants harboring this fully functional GNOM variant, PIN1 localization and auxin transport are no longer sensitive to BFA, while trafficking of other proteins is still affected by the drug. Our results demonstrate that GNOM is required for the recycling of auxin transport components and suggest that ARF-GEFs regulate specific endosomal trafficking pathways.
Collapse
Affiliation(s)
- Niko Geldner
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, D-72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
363
|
Plattner H, Kissmehl R. Molecular Aspects of Membrane Trafficking in Paramecium. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:185-216. [PMID: 14711119 DOI: 10.1016/s0074-7696(03)32005-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Results achieved in the molecular biology of Paramecium have shed new light on its elaborate membrane trafficking system. Paramecium disposes not only of the standard routes (endoplasmic reticulum --> Golgi --> lysosomes or secretory vesicles; endo- and phagosomes --> lysosomes/digesting vacuoles), but also of some unique features, e.g. and elaborate phagocytic route with the cytoproct and membrane recycling to the cytopharynx, as well as the osmoregulatory system with multiple membrane fusion sites. Exocytosis sites for trichocysts (dense-core secretory vesicles), parasomal sacs (coated pits), and terminal cisternae (early endosomes) display additional regularly arranged predetermined fusion/fission sites, which now can be discussed on a molecular basis. Considering the regular, repetitive arrangements of membrane components, availability of mutants for complementation studies, sensitivity to gene silencing, and so on, Paramecium continues to be a valuable model system for analyzing membrane interactions. This review intends to set a new baseline for ongoing work along these lines.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
364
|
Nebenführ A. Vesicle traffic in the endomembrane system: a tale of COPs, Rabs and SNAREs. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:507-12. [PMID: 12393013 DOI: 10.1016/s1369-5266(02)00303-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent years have seen remarkable progress in our understanding of the endomembrane system of plants. A large number of genes and proteins that are involved in membrane exchange between the different compartments of this system have been identified on the basis of their similarity to animal and yeast homologs. These proteins indicate that the endomembrane system in plants functions in essentially the same way as those in other eukaryotes. However, a growing number of examples demonstrate that the dynamic interplay between membrane-exchange proteins can be regulated differently in plant cells. Novel tools and a better understanding of the molecular effects of the inhibitor brefeldin A are helping to unravel these plant-specific adaptations.
Collapse
Affiliation(s)
- Andreas Nebenführ
- University of Tennessee, Department of Botany and School of Genome Science and Technology, 437 Hesler Biology, Knoxville, Tennessee 37996-1100, USA.
| |
Collapse
|