351
|
Lee AJX, Swanton C. Tumour heterogeneity and drug resistance: personalising cancer medicine through functional genomics. Biochem Pharmacol 2011; 83:1013-20. [PMID: 22192819 DOI: 10.1016/j.bcp.2011.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/04/2011] [Accepted: 12/06/2011] [Indexed: 02/08/2023]
Abstract
Intrinsic and acquired drug resistance leads to the eventual failure of cancer treatment regimens in the majority of advanced solid tumours. Understanding drug resistance mechanisms will prove vital in the future development of personalised therapeutic approaches. Functional genomics technologies may permit the discovery of predictive biomarkers by unravelling pathways involved in drug resistance and allow the systematic identification of novel therapeutic targets. Such technologies offer the opportunity to develop personalised treatments and diagnostic tools that may improve the survival and quality of life of patients with cancer. However, despite progress in biomarker and drug target discovery, inter-tumour and intra-tumour molecular heterogeneity will limit the effective treatment of this disease. Combining an improved understanding of cancer cell survival mechanisms associated with intra-tumour heterogeneity and drug resistance may allow the selection of patients for specific treatment regimens that will maximise benefit, limit the acquisition of drug resistance and lessen the impact of deleterious side effects.
Collapse
Affiliation(s)
- Alvin J X Lee
- Translational Cancer Therapeutics, Cancer Research UK London Research Institute, UK.
| | | |
Collapse
|
352
|
Singh KK, Shukla PC, Quan A, Desjardins JF, Lovren F, Pan Y, Garg V, Gosal S, Garg A, Szmitko PE, Schneider MD, Parker TG, Stanford WL, Leong-Poi H, Teoh H, Al-Omran M, Verma S. BRCA2 protein deficiency exaggerates doxorubicin-induced cardiomyocyte apoptosis and cardiac failure. J Biol Chem 2011; 287:6604-14. [PMID: 22157755 DOI: 10.1074/jbc.m111.292664] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor breast cancer susceptibility gene 2 (BRCA2) plays an important role in the repair of DNA damage, and loss of BRCA2 predisposes carriers to breast and ovarian cancers. Doxorubicin (DOX) remains the cornerstone of chemotherapy in such individuals. However, it is often associated with cardiac failure, which once manifests carries a poor prognosis. Because BRCA2 regulates genome-wide stability and facilitates DNA damage repair, we hypothesized that loss of BRCA2 may increase susceptibility to DOX-induced cardiac failure. To this aim, we generated cardiomyocyte-specific BRCA2 knock-out (CM-BRCA2(-/-)) mice using the Cre-loxP technology and evaluated their basal and post-DOX treatment phenotypes. Although CM-BRCA2(-/-) mice exhibited no basal cardiac phenotype, DOX treatment resulted in markedly greater cardiac dysfunction and mortality in CM-BRCA2(-/-) mice compared with control mice. Apoptosis in left ventricular (LV) sections from CM-BRCA2(-/-) mice compared with that in corresponding sections from wild-type (WT) littermate controls was also significantly enhanced after DOX treatment. Microscopic examination of LV sections from DOX-treated CM-BRCA2(-/-) mice revealed a greater number of DNA double-stranded breaks and the absence of RAD51 focus formation, an essential marker of double-stranded break repair. The levels of p53 and the p53-related proapoptotic proteins p53-up-regulated modulator of apoptosis (PUMA) and Bax were significantly increased in samples from CM-BRCA2(-/-) mice. This corresponded with increased Bax to Bcl-2 ratios and elevated cytochrome c release in the LV sections of DOX-treated CM-BRCA2(-/-) mice. Taken together, these data suggest a critical and previously unrecognized role of BRCA2 as a gatekeeper of DOX-induced cardiomyocyte apoptosis and susceptibility to overt cardiac failure. Pharmacogenomic studies evaluating cardiac function in BRCA2 mutation carriers treated with doxorubicin are encouraged.
Collapse
Affiliation(s)
- Krishna K Singh
- Division of Cardiac Surgery, The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St.Michael’s Hospital,Toronto, Ontario M5B 1W8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Darbre P, Pugazhendhi D, Mannello F. Aluminium and human breast diseases. J Inorg Biochem 2011; 105:1484-8. [DOI: 10.1016/j.jinorgbio.2011.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/09/2011] [Accepted: 07/25/2011] [Indexed: 11/25/2022]
|
354
|
Song M, Hakala K, Weintraub ST, Shiio Y. Quantitative proteomic identification of the BRCA1 ubiquitination substrates. J Proteome Res 2011; 10:5191-8. [PMID: 21950761 DOI: 10.1021/pr200662b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mutation of the BRCA1 tumor suppressor gene predisposes women to hereditary breast and ovarian cancers. BRCA1 forms a heterodimer with BARD1. The BRCA1/BARD1 heterodimer has ubiquitin ligase activity, considered to play crucial roles in tumor suppression and DNA damage response. Nevertheless, relevant BRCA1 substrates are poorly defined. We have developed a new approach to systematically identify the substrates of ubiquitin ligases by identifying proteins that display an enhanced incorporation of His-tagged ubiquitin upon ligase coexpression; using this method, we identified several candidate substrates for BRCA1. These include scaffold attachment factor B2 (SAFB2) and Tel2 as well as BARD1. BRCA1 was found to enhance SAFB protein expression and induce Tel2 nuclear translocation. Identification of the ubiquitination substrates has been a major obstacle to understanding the functions of ubiquitin ligases. The quantitative proteomics approach we devised for the identification of BRCA1 substrates will facilitate the identification of ubiquitin ligase-substrate pairs.
Collapse
Affiliation(s)
- Meihua Song
- Department of Biochemistry, The University of Texas Health Science Center , San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
355
|
Muller D, Rouleau E, Schultz I, Caputo S, Lefol C, Bièche I, Caron O, Noguès C, Limacher JM, Demange L, Lidereau R, Fricker JP, Abecassis J. An entire exon 3 germ-line rearrangement in the BRCA2 gene: pathogenic relevance of exon 3 deletion in breast cancer predisposition. BMC MEDICAL GENETICS 2011; 12:121. [PMID: 21939546 PMCID: PMC3198910 DOI: 10.1186/1471-2350-12-121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022]
Abstract
Background Germ-line mutations in the BRCA1 and BRCA2 genes are major contributors to hereditary breast/ovarian cancer. Large rearrangements are less frequent in the BRCA2 gene than in BRCA1. We report, here, the first total deletion of exon 3 in the BRCA2 gene that was detected during screening of 2058 index cases from breast/ovarian cancer families for BRCA2 large rearrangements. Deletion of exon 3, which is in phase, does not alter the reading frame. Low levels of alternative transcripts lacking exon 3 (Δ3 delta3 transcript) have been reported in normal tissues, which raises the question whether deletion of exon 3 is pathogenic. Methods Large BRCA2 rearrangements were analysed by QMPSF (Quantitative Multiplex PCR of Short Fluorescent Fragments) or MLPA (Multiplex Ligation-Dependent Probe Amplification). The exon 3 deletion was characterized with a "zoom-in" dedicated CGH array to the BRCA2 gene and sequencing. To determine the effect of exon 3 deletion and assess its pathogenic effect, three methods of transcript quantification were used: fragment analysis of FAM-labelled PCR products, specific allelic expression using an intron 2 polymorphism and competitive quantitative RT-PCR. Results Large rearrangements of BRCA2 were detected in six index cases out of 2058 tested (3% of all deleterious BRCA2 mutations). This study reports the first large rearrangement of the BRCA2 gene that includes all of exon 3 and leads to an in frame deletion of exon 3 at the transcriptional level. Thirty five variants in exon 3 and junction regions of BRCA2 are also reported, that contribute to the interpretation of the pathogenicity of the deletion. The quantitative approaches showed that there are three classes of delta3 BRCA2 transcripts (low, moderate and exclusive). Exclusive expression of the delta3 transcript by the mutant allele and segregation data provide evidence for a causal effect of the exon 3 deletion. Conclusion This paper highlights that large rearrangements and total deletion of exon 3 in the BRCA2 gene could contribute to hereditary breast and/or ovarian cancer. In addition, our findings suggest that, to interpret the pathogenic effect of any variants of exon 3, both accurate transcript quantification and co-segregation analysis are required.
Collapse
Affiliation(s)
- Danièle Muller
- Division of oncogenetic, Department of Biology and Pathology, Regional Cancer Centre Paul Strauss, BP30042, 67065 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Arbini AA, Greco M, Yao JL, Bourne P, Marra E, Hsieh JT, di Sant'agnese PA, Moro L. Skp2 overexpression is associated with loss of BRCA2 protein in human prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2367-76. [PMID: 21514447 DOI: 10.1016/j.ajpath.2011.01.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/29/2010] [Accepted: 01/07/2011] [Indexed: 11/28/2022]
Abstract
BRCA2 (breast cancer 2, early onset) is a tumor suppressor gene that confers increased susceptibility for prostate cancer (PCa). Previous in vitro experiments demonstrated that Skp2, an E3 ubiquitin ligase aberrantly overexpressed in PCa, is involved in the proteolytic degradation of BRCA2 in PCa cells, suggesting that the BRCA2-Skp2 interaction may play a role in prostate tumorigenesis. Herein, we investigated BRCA2 and Skp2 expression during PCa development using a prostate TMA. Although luminal and basal benign prostate epithelium exhibited moderate to strong nuclear BRCA2 immunostaining, the intensity and number of positive nuclei decreased significantly in high-grade prostatic intraepithelial neoplasia and PCa. Decreased frequency and intensity of nuclear BRCA2 labeling were inversely correlated with Skp2 expression in high-grade prostatic intraepithelial neoplasia and PCa. To functionally assess the effects of BRCA2 and Skp2 expression on prostate malignant transformation, we overexpressed Skp2 in normal immortalized prostate cells. Skp2 overexpression reduced BRCA2 protein and promoted cell growth and migration. A similar phenotype was observed after reduction of BRCA2 protein levels using specific BRCA2 small-interfering RNA. Forced BRCA2 expression in Skp2-overexpressing stable transfectants inhibited the migratory and growth properties by >60%. These results show that loss of BRCA2 expression during prostate tumor development is strongly correlated with both migratory behavior and cancer growth and include Skp2 as a BRCA2 proteolytic partner in vivo.
Collapse
Affiliation(s)
- Arnaldo A Arbini
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
357
|
Abstract
'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.
Collapse
Affiliation(s)
- Christoph Lahtz
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
358
|
Phosphorylation: the molecular switch of double-strand break repair. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:373816. [PMID: 22084686 PMCID: PMC3200257 DOI: 10.1155/2011/373816] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/09/2011] [Accepted: 03/19/2011] [Indexed: 11/18/2022]
Abstract
Repair of double-stranded breaks (DSBs) is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ), homologous recombination (HR), or the inclusive DNA damage response (DDR). These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to regulate DNA repair. Many of these molecular switches overlap and play key roles in multiple pathways. For example, the NHEJ pathway and the DDR both utilize DNA-PK phosphorylation, whereas the HR pathway mediates repair with phosphorylation of RPA2, BRCA1, and BRCA2. Also, the DDR pathway utilizes the kinases ATM and ATR, as well as the phosphorylation of H2AX and MDC1. Together, these molecular switches regulate repair of DSBs by aiding in DSB recognition, pathway initiation, recruitment of repair factors, and the maintenance of repair mechanisms.
Collapse
|
359
|
Weberpals JI, Tu D, Squire JA, Amin MS, Islam S, Pelletier LB, O'Brien AM, Hoskins PJ, Eisenhauer EA. Breast cancer 1 (BRCA1) protein expression as a prognostic marker in sporadic epithelial ovarian carcinoma: an NCIC CTG OV.16 correlative study. Ann Oncol 2011; 22:2403-2410. [PMID: 21368065 DOI: 10.1093/annonc/mdq770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Breast cancer 1 (BRCA1) protein inactivation in sporadic ovarian carcinoma (OC) is common and low BRCA1 expression is linked with platinum sensitivity. The clinical validation of BRCA1 as a prognostic marker in OC remains unresolved. PATIENTS AND METHODS In 251 patient samples from the NCIC CTG clinical trial, OV.16, BRCA1 protein expression was determined by immunohistochemistry. RESULTS For all patients, when BRCA1 score was analyzed as a continuous variable, there was no significant correlation between BRCA1 protein expression and progression-free survival (PFS) [adjusted hazard ratio (HR) = 1.15 (0.96-1.37), P = 0.12] or response rate [HR = 0.89 (0.70-1.12), P = 0.32]. In the 116 patients with minimal residual disease (RD), higher BRCA1 expression correlated significantly with worse PFS [HR = 1.40 (1.04-1.89), P = 0.03]. Subgroup analysis divided patients with minimal RD into low (BRCA1 ≤2.5) and high (BRCA1 >2.5) expression groups. Patients with low BRCA1 expression had a more favorable outcome [median PFS was 24.7 and 16.6 months in patients with low and high BRCA1, respectively; HR = 0.56 (0.35-0.89), P = 0.01]. CONCLUSIONS This study suggests that BRCA1 protein is a prognostic marker in sporadic OC patients with minimal RD. Further research is needed to evaluate BRCA1 as a predictive biomarker and to target BRCA1 expression to enhance chemotherapeutic sensitivity.
Collapse
Affiliation(s)
- J I Weberpals
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute; The Division of Gynaecologic Oncology, The Ottawa Hospital, Ottawa.
| | - D Tu
- The NCIC Clinical Trials Group, Kingston
| | - J A Squire
- The NCIC Clinical Trials Group, Kingston
| | - M S Amin
- The Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa
| | - S Islam
- The Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa
| | - L B Pelletier
- The Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa
| | - A M O'Brien
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
| | | | | |
Collapse
|
360
|
Ziogas DE, Katsios CS, Roukos DH. Preventing Familial Breast and Ovarian Cancer: Major Research Advances with Little Implication. WOMENS HEALTH 2011; 7:135-8. [DOI: 10.2217/whe.11.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Christos S Katsios
- Department of Surgery, Ioannina University School of Medicine, Ioannina, Greece
| | - Dimitrios H Roukos
- Department of Surgery, Ioannina University School of Medicine, Ioannina, TK 451 10, Greece and Personalized Cancer Networks Medicine, Biobank, Ioannina University, Ioannina, TK 451 10, Greece, Tel.: +30 265 100 7423, Fax: +30 265 100 7094,
| |
Collapse
|
361
|
Luo Y, Li J, Liu Y, Lin L, Du Y, Li S, Yang H, Vajta G, Callesen H, Bolund L, Sørensen CB. High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res 2010; 20:975-88. [PMID: 21181439 DOI: 10.1007/s11248-010-9472-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/01/2010] [Indexed: 11/25/2022]
Abstract
Germline inactivating mutations of the breast cancer associated gene 1 (BRCA1) predispose to breast cancer and account for most cases of familiar breast and/or ovarian cancer. The pig is an excellent model for medical research as well as testing of new methods and drugs for disease prevention and treatment. We have generated cloned BRCA1 knockout (KO) Yucatan miniature piglets by targeting exon 11 using recombinant adeno-associated virus (rAAV)-mediated gene targeting and somatic cell nuclear transfer by Handmade Cloning (HMC). We found a very high targeting rate of rAAV-mediated BRCA1 KO. Approximately 35% of the selected cells were BRCA1 targeted. One BRCA1 KO cell clone (5D1), identified by PCR and Southern blot, was used as nuclear donor for HMC. Reconstructed embryos were transferred to three recipient sows which gave birth to 8 piglets in total. Genotyping identified seven piglets as BRCA1 heterozygotes (BRCA1(+/∆11)), and one as wild type. The BRCA1 expression was decreased at the mRNA level in BRCA1(+/∆11) fibroblasts. However, all BRCA1(+/∆11) piglets died within 18 days after birth. The causes of perinatal mortality remain unclear. Possible explanations may include a combination of the BRCA1 haploinsufficiency, problems of epigenetic reprogramming, presence of the marker gene, single cell clone effects, and/or the special genetic background of the minipigs.
Collapse
Affiliation(s)
- Yonglun Luo
- Department of Human Genetics, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Saad AF, Hu W, Sood AK. Microenvironment and pathogenesis of epithelial ovarian cancer. HORMONES & CANCER 2010; 1:277-90. [PMID: 21761359 PMCID: PMC3199131 DOI: 10.1007/s12672-010-0054-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple genetic alterations play a role in the pathogenesis of ovarian cancer. Although many key proteins and pathways involved in ovarian carcinogenesis and metastasis have been discovered, knowledge of the early steps leading to malignancy remains poorly understood. This poor understanding stems from lack of data from early-stage cancers and absence of a well-established premalignant state universal to all ovarian cancer subtypes. Existing evidence suggests that ovarian cancers develop either through a stepwise mutation process (low-grade pathway), through genetic instability resulting in hastened metastasis (high-grade pathway), or more recently through what has been described as the "'fimbrial-ovarian' serous neoplasia theory." In this latter model, ovarian serous cancers evolve from premalignant lesions in the distal fallopian tube called tubal intraepithelial carcinoma. In this manuscript, we review key genetic and molecular changes that occur in cancer cell progression and suggest a model of ovarian cancer pathogenesis involving both tumor cell mutations and microenvironmental factors.
Collapse
Affiliation(s)
- Antonio F. Saad
- Department of Obstetrics and Gynecology, U.T.M.B. Galveston Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Wei Hu
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology, U.T.M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA. Department of Cancer Biology, U.T.M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX 77030, USA. Center for RNA Interference and Non-Coding RNA, 1515 Holcombe Boulevard, Houston, TX 77030, USA. Departments of Gynecologic Oncology and Cancer Biology, The University of Texas M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030, USA
| |
Collapse
|
363
|
Sioftanos G, Ismail A, Föhse L, Shanley S, Worku M, Short SC. BRCA1 and BRCA2 heterozygosity in embryonic stem cells reduces radiation-induced Rad51 focus formation but is not associated with radiosensitivity. Int J Radiat Biol 2010; 86:1095-105. [PMID: 20979543 DOI: 10.3109/09553002.2010.501836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The breast cancer susceptibility genes BRCA1 (breast cancer 1) and BRCA2 (breast cancer 2) encode proteins involved in double-strand break (DSB) repair, whose functions include facilitating homologous recombination through interactions with Rad51, the human homologue of bacterial RecA. Homozygous deficiency inhibits Rad51 focus formation and enhances radiosensitivity, but the effects of heterozygosity have not been investigated in detail. The purpose of this work was to examine the effect of heterozygosity on Rad51 activation and clonogenicity following X-irradiation (XR). MATERIALS AND METHODS We used quantitative assessment of immunofluorescent foci to assess Rad51 activation in wild type mouse embryonic fibroblasts (MEF) and in paired mutant and wild type BRCA1 and BRCA2 embryonic stem cells (ES cells). We measured radiosensitivity in the same cell lines using clonogenic survival assays. RESULTS ES cells exhibit higher numbers of cells with Rad51 foci post radiation than MEF, likely due to differences in cell cycle distribution. Compared to wild type cells, BRCA1 and BRCA2 heterozygous ES cells demonstrate lower numbers of Rad51 foci per nucleus 4 and 24 hours post radiation. This was not associated with significantly enhanced radiosensitivity. CONCLUSIONS BRCA1/2 heterozygosity in ES cells is associated with a subtle reduction in Rad51 foci formation that is not associated with increased XR induced cytotoxicity.
Collapse
|
364
|
Iwamoto T, Yamamoto N, Taguchi T, Tamaki Y, Noguchi S. BRCA1 promoter methylation in peripheral blood cells is associated with increased risk of breast cancer with BRCA1 promoter methylation. Breast Cancer Res Treat 2010; 129:69-77. [PMID: 20882403 DOI: 10.1007/s10549-010-1188-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/18/2010] [Indexed: 11/27/2022]
Abstract
BRCA1 promoter methylation reportedly plays an important part in the pathogenesis of human breast cancer. In the present study, we investigated whether or not BRCA1 promoter methylation in peripheral blood cells (PBCs) can serve as a risk factor for developing breast cancer. The association of BRCA1 promoter methylation in PBCs with breast cancer risk was examined in a case-control study (200 breast cancer patients and 200 controls). BRCA1 promoter methylation in PBCs and breast tumors was determined with a methylation-specific quantitative PCR assay. BRCA1 promoter methylation in PBCs was seen in 43 (21.5%) of the breast cancer patients and in 27 (13.5%) of the controls. The odds ratio for breast cancer adjusted for other epidemiological risk factors was 1.73 (1.01-2.96) and was statistically significant (P = 0.045). When breast tumors were classified into those with and without BRCA1 promoter methylation, the odds ratio was 0.84 (0.43-1.64) (P = 0.61) for BRCA1 promoter methylation-negative and 17.78 (6.71-47.13) (P < 0.001) for BRCA1 promoter methylation-positive breast tumors. BRCA1 promoter methylation in PBCs is significantly associated with risk of breast cancer with BRCA1 promoter methylation. This seems to indicate that BRCA1 promoter methylation in PBCs may constitute a novel risk factor for breast cancer with BRCA1 promoter methylation.
Collapse
Affiliation(s)
- Takashi Iwamoto
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | |
Collapse
|
365
|
Developing functional assays for BRCA1 unclassified variants. Methods Mol Biol 2010. [PMID: 20721750 DOI: 10.1007/978-1-60761-759-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Women with a family history of breast cancer have mutations in one of the breast cancer susceptibility genes, BRCA1 or BRCA2. Since the discovery of these two genes, around 100,000 women worldwide have undergone genetic testing. The decisions they make based on the results are usually life changing and may involve radical preventive surgeries such as prophylactic mastectomy and oophorectamy. However, not all mutations will lead to breast cancer, and to prevent unnecessary surgery, we are developing assays to determine which mutations adversely affect the functions of the protein encoded by the BRCA1 gene. The functions of BRCA1 are mediated by numerous interactions that are required for cell-cycle and centrosome control, transcriptional regulation and the DNA damage response. Missense mutations that perturb the interactions of BRCA1 will adversely affect these functions and are, therefore, likely to lead to breast cancer. Determining the effect missense mutations have on the interaction of BRCA1 with DNA will form the basis of the assay described in this chapter.
Collapse
|
366
|
Abstract
SummaryThe genome of all cells is protected at all times by mechanisms collectively known as DNA repair activity (DRA). Such activity is particularly important at the beginning of human life, i.e. at fertilization, immediately after and at the very onset of embryonic development. DRA in early development is, by definition, of maternal origin: the transcripts stored during maturation, need to control the integrity of chromatin, at least until the maternal/zygotic transition at the 4- to 8-cell stage in the human embryo. Tolerance towards DNA damage must be low during this critical stage of development. The majority of DNA damage is due to either apoptosis or reactive oxygen species (ROS). Apoptosis, abortive or not, is a common feature in human sperm, especially in oligoasthenospermic patients and FAS ligand has been reported on the surface of human spermatozoa. The susceptibility of human sperm to DNA damage is well documented, particularly the negative effect of ROS (Kodama et al., 1997; Lopes et al., 1998a, b) and DNA modifying agents (Zenzes et al., 1999; Badouard et al., 2007). DNA damage in sperm is one of the major causes of male infertility and is of much concern in relation to the paternal transmission of mutations and cancer (Zenzes, 2000; Aitken et al., 2003; Fernández-Gonzalez, 2008). It is now clear that DNA damaged spermatozoa are able to reach the fertilization site in vivo (Zenzes et al., 1999), fertilize oocytes and generate early embryos both in vivo and in vitro. The effect of ROS on human oocytes is not as easy to study or quantify. It is a common consensus that the maternal genome is relatively well protected while in the maturing follicle; however damage may occur during the long quiescent period before meiotic re-activation (Zenzes et al., 1998). In fact, during the final stages of follicular growth, the oocyte may be susceptible to damage by ROS. With regards to the embryo there is active protection against ROS in the surrounding environment i.e. in follicular and tubal fluid (El Mouatassim et al., 2000; Guerin et al., 2001). DNA repair activity in the zygote is mandatory in order to avoid mutation in the germ line (Derijck et al., 2008). In this review we focus on the expression of mRNAs that regulate DNA repair capacity in the human oocyte and the mechanisms that protect the embryo against de novo damage.
Collapse
|
367
|
Ibrahim SS, Hafez EE, Hashishe MM. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:82. [PMID: 20579331 PMCID: PMC2912271 DOI: 10.1186/1756-9966-29-82] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 06/25/2010] [Indexed: 01/23/2023]
Abstract
BACKGROUND Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, BRCA1 and BRCA2, are considered in breast, ovarian and other common cancers etiology. BRCA1 and BRCA2 genes have been identified that confer a high degree of breast cancer risk. OBJECTIVE Our study was performed to identify germline mutations in some exons of BRCA1 and BRCA2 genes for the early detection of presymptomatic breast cancer in females. METHODS This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of BRCA1 and BRCA2 genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the BRCA1 gene (exons 2,8,13 and 22) and one region (exon 9) of BRCA2 gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed. RESULTS Mutations in both BRCA1 and BRCA2 genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to BRCA1 mutations, while 26.7% of them were attributable to BRCA2 mutations. Results showed that four mutations were detected in the BRCA1 gene, while one mutation was detected in the BRCA2 gene. Asymptomatic relatives, 80 (67%) out of total 120, were mutation carriers. CONCLUSIONS BRCA1 and BRCA2 genes mutations are responsible for a significant proportion of breast cancer. BRCA mutations were found in individuals with and without family history.
Collapse
Affiliation(s)
- Safinaz S Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | | |
Collapse
|
368
|
Gilbert PM, Mouw JK, Unger MA, Lakins JN, Gbegnon MK, Clemmer VB, Benezra M, Licht JD, Boudreau NJ, Tsai KKC, Welm AL, Feldman MD, Weber BL, Weaver VM. HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype. J Clin Invest 2010; 120:1535-50. [PMID: 20389018 DOI: 10.1172/jci39534] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 02/08/2010] [Indexed: 01/07/2023] Open
Abstract
Breast cancer 1, early onset (BRCA1) expression is often reduced in sporadic breast tumors, even in the absence of BRCA1 genetic modifications, but the molecular basis for this is unknown. In this study, we identified homeobox A9 (HOXA9) as a gene frequently downregulated in human breast cancers and tumor cell lines and noted that reduced HOXA9 transcript levels associated with tumor aggression, metastasis, and patient mortality. Experiments revealed that loss of HOXA9 promoted mammary epithelial cell growth and survival and perturbed tissue morphogenesis. Restoring HOXA9 expression repressed growth and survival and inhibited the malignant phenotype of breast cancer cells in culture and in a xenograft mouse model. Molecular studies showed that HOXA9 restricted breast tumor behavior by directly modulating the expression of BRCA1. Indeed, ectopic expression of wild-type BRCA1 phenocopied the tumor suppressor function of HOXA9, and reducing BRCA1 levels or function inhibited the antitumor activity of HOXA9. Consistently, HOXA9 expression correlated with BRCA1 in clinical specimens and with tumor aggression in patients lacking estrogen receptor/progesterone receptor expression in their breast tissue. These findings indicate that HOXA9 restricts breast tumor aggression by modulating expression of the tumor suppressor gene BRCA1, which we believe provides an explanation for the loss of BRCA1 expression in sporadic breast tumors in the absence of BRCA1 genetic modifications.
Collapse
Affiliation(s)
- Penney M Gilbert
- Department of Pathology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Lee EH, Park SK, Park B, Kim SW, Lee MH, Ahn SH, Son BH, Yoo KY, Kang D. Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: a systematic review and meta-analysis. Breast Cancer Res Treat 2010; 122:11-25. [PMID: 20376556 DOI: 10.1007/s10549-010-0859-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Reports of BRCA genetic mutations and risk of death or recurrence are inconsistent. This study aimed to compare overall and disease-free breast cancer survival rates between BRCA1/2 mutation carriers and non-carriers for short-term and long-term outcomes separately. We searched the PUBMED and EMBASE databases and retrieved 452 articles using keywords that included breast cancer, BRCA mutation, and survival. Seventeen articles were selected for systematic review and among them 11 were included in our meta-analysis. We used the random-effects model to calculate the summary hazard ratio and corresponding 95% confidence interval. BRCA1 mutation carriers had significantly lower short-term and long-term overall survival rates (OSR) relative to non-carriers (HR = 1.92 [95% CI = 1.45-2.53]; 1.33 [1.12-1.58], respectively), while both short-term and long-term OSR of BRCA2 carriers did not differ from non-carriers (HR = 1.30 [95% CI = 0.95-1.76]; 1.12 [95% CI = 0.86-1.45], respectively). For short-term progression-free survival rate (PFSR), BRCA1 mutation carriers had a significantly lower rate than non-carriers (HR = 1.54 [95% CI = 1.12-2.12]), while BRCA2 mutation carriers had a similar PFSR (HR = 1.23 [95% CI = 0.96-1.58]). For long-term PFSRs, we found no significant results. Our results suggest that BRCA1 mutation decreases short-term and long-term OSRs and short-term PFSR, however, BRCA2 mutation does not affect either short-term or long-term survival rate, which is attributed to the different carcinogenic pathways for BRCA1 and BRCA2.
Collapse
Affiliation(s)
- Eun-Ha Lee
- Cancer Early Detection Branch, National Cancer Control Institute, National Cancer Center, Goyang-si, Gyeonggi-do 410-769, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Abstract
Geneticists estimate that 5% to 10% of all cancers diagnosed in the pediatric age range occur in children born with a genetic mutation that directly increases their lifetime risk for neoplasia. However, despite the fact that only a fraction of cancers in children occur as a result of an identified inherited predisposition, characterizing genetic mutations responsible for increased cancer risk in such syndromes has resulted in a profound understanding of relevant molecular pathways involved in carcinogenesis and/or resistance to neoplasia. Importantly, because most cancer predisposition syndromes result in an increased risk of a small number of defined malignancies, personalized prophylactic surveillance and preventive measures can be implemented in affected patients. Lastly, many of the same genetic targets identified from cancer-prone families are mechanistically involved in the majority of sporadic cancers in adults and children, thereby underscoring the clinical relevance of knowledge gained from these defined syndromes and introducing novel therapeutic opportunities to the broader oncologic community. This review highlights the clinical and genetic features of many of the known constitutional genetic syndromes that predispose to malignancy in children and young adults.
Collapse
|
371
|
Sandhu SK, Yap TA, de Bono JS. Poly(ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur J Cancer 2010; 46:9-20. [PMID: 19926276 DOI: 10.1016/j.ejca.2009.10.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 12/22/2022]
Abstract
Inbuilt mechanisms of DNA surveillance and repair are integral to the maintenance of genomic stability. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that plays a critical role in DNA damage response processes. PARP inhibition has been successfully employed as a novel therapeutic strategy to enhance the cytotoxic effects of DNA-damaging agents. We have shown that PARP inhibition has substantial single agent antitumour activity with a wide therapeutic index in homologous DNA repair-defective tumours such as those arising in BRCA1 and BRCA2 mutation carriers. This is the first successful clinical application of a synthetic lethal approach to targeting cancer. Exploitation of defects in DNA repair pathways through targeted inhibition of salvage repair pathways is an exciting anticancer approach, with potentially broad clinical applicability. Several PARP inhibitors are now in clinical development. This review outlines the biological function and rationale of targeting PARP, details pre-clinical and clinical data and discusses the promises and challenges involved in developing these antitumour agents.
Collapse
Affiliation(s)
- Shahneen K Sandhu
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| | | | | |
Collapse
|
372
|
Chen XR, Wang JW, Li X, Zhang H, Ye ZY. Role of BMP3 in progression of gastric carcinoma in Chinese people. World J Gastroenterol 2010; 16:1409-13. [PMID: 20238409 PMCID: PMC2842534 DOI: 10.3748/wjg.v16.i11.1409] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relation between gastric cancer and microsatellite instability (MSI), loss of heterozygosity (LOH) and promoter region methylation.
METHODS: Fifty primary gastric carcinoma specimens were collected from patients with no family history of cancer. In addition, normal tissues were also collected from patients as controls. DNA was extracted by polymerase chain reaction for single-strand conformation polymorphism, bisulfite DNA sequencing, and methylation-specific band analysis.
RESULTS: The positive rate for MSI and LOH in gastric carcinoma was 16% and 20%, respectively. According to the tumor, node and metastasis staging system, the LOH frequency was higher in gastric carcinoma at stages III and IV than in gastric carcinoma at stages I and II (P = 0.01), which was also significantly correlated with lymph node metastasis and clinico- pathological characteristics of gastric carcinoma. Methylation of bone morphogenetic protein 3 (BMP3) gene promoter was detected in 64.44% of gastric carcinoma tissue samples. However, no statistical significance was observed between promoter region methylation and carcinoma differentiation. Interestingly, the BMP3 gene methylation rate was 71.05% and 28.58%, respectively, in MSI positive and negative cases (P = 0.031), suggesting that BMP3 genetic instability and promoter methylation are initiated during gastric carcinogenesis. LOH was detected mostly in the late stages of gastric carcinoma, indicating that gastric carcinoma at late stages has a higher infiltration and a poorer prognosis.
CONCLUSION: Promotor region methylation of the BMP3 gene may cause gastric carcinoma in Chinese people.
Collapse
|
373
|
Bellacosa A, Godwin AK, Peri S, Devarajan K, Caretti E, Vanderveer L, Bove B, Slater C, Zhou Y, Daly M, Howard S, Campbell KS, Nicolas E, Yeung AT, Clapper ML, Crowell JA, Lynch HT, Ross E, Kopelovich L, Knudson AG. Altered gene expression in morphologically normal epithelial cells from heterozygous carriers of BRCA1 or BRCA2 mutations. Cancer Prev Res (Phila) 2010; 3:48-61. [PMID: 20051372 PMCID: PMC2804937 DOI: 10.1158/1940-6207.capr-09-0078] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We hypothesized that cells bearing a single inherited "hit" in a tumor suppressor gene express an altered mRNA repertoire that may identify targets for measures that could delay or even prevent progression to carcinoma. We report here on the transcriptomes of primary breast and ovarian epithelial cells cultured from BRCA1 and BRCA2 mutation carriers and controls. Our comparison analyses identified multiple changes in gene expression, in both tissues for both mutations, which were validated independently by real-time reverse transcription-PCR analysis. Several of the differentially expressed genes had been previously proposed as cancer markers, including mammaglobin in breast cancer and serum amyloid in ovarian cancer. These findings show that heterozygosity for a mutant tumor suppressor gene can alter the expression profiles of phenotypically normal epithelial cells in a gene-specific manner; these detectable effects of "one hit" represent early molecular changes in tumorigenesis that may serve as novel biomarkers of cancer risk and as targets for chemoprevention.
Collapse
|
374
|
Pereira MM, Machado MA, Costa FQ, Serapiao RV, Viana JHM, Camargo LSA. Effect of oxygen tension and serum during IVM on developmental competence of bovine oocytes. Reprod Fertil Dev 2010; 22:1074-82. [DOI: 10.1071/rd10007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 02/10/2010] [Indexed: 11/23/2022] Open
Abstract
With an aim to improve the in vitro production of bovine embryos, the present study investigated the effect of serum and oxygen tension during IVM on oocyte developmental competence. Four experimental groups were evaluated: G1, 10% oestrus cow serum (OCS) with 20% O2; G2, 0.1% polyvinyl alcohol (PVA) with 20% O2; G3, 10% OCS with 5% O2; and G4, 0.1% PVA with 5% O2. The proportion of MII oocytes, blastocyst rates and total cell number were not affected (P > 0.05) when the OCS was replaced with PVA under 5% O2, whereas a higher (P < 0.05) blastocyst rate and total cell number were found with OCS compared with PVA under 20% O2. The apoptosis index was lower in blastocysts from oocytes matured with PVA under 5% O2 (G4) compared with other groups (G1, G2 and G3), but no differences (P > 0.05) were found in maturation and blastocyst rates. Significant differences were found in the amount of specific transcripts in oocytes matured under different conditions. In conclusion maturation with PVA and 5% O2 provides an efficient in vitro culture condition for the maturation of bovine oocytes.
Collapse
|
375
|
Conditional inactivation of Brca1, p53 and Rb in mouse ovaries results in the development of leiomyosarcomas. PLoS One 2009; 4:e8534. [PMID: 20046869 PMCID: PMC2795167 DOI: 10.1371/journal.pone.0008534] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/10/2009] [Indexed: 12/29/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is thought to arise in part from the ovarian surface epithelium (OSE); however, the molecular events underlying this transformation are poorly understood. Germline mutations in the BRCA1 tumor suppressor gene result in a significantly increased risk of developing EOC and a large proportion of sporadic EOCs display some sort of BRCA1 dysfunction. To generate a model in which Brca1-mediated transformation can be studied, we previously inactivated Brca1 alone in murine OSE, which resulted in an increased accumulation of premalignant changes, but no tumor formation. In this study, we examined tumor formation in mice with conditionally expressed alleles of Brca1, p53 and Rb, alone or in combination. Intrabursal injection of adenovirus expressing Cre recombinase to inactivate p53 resulted in tumors in 100% of mice. Tumor progression was accelerated in mice with concomitant inactivation of Brca1 and p53, but not Rb and p53. Immunohistologic analyses classified the tumors as leiomyosarcomas that may be arising from the ovarian bursa. Brca1 inactivation in primary cultures of murine OSE cells led to a suppression of proliferation that could be rescued by concomitant inactivation of p53 and/or Rb. Brca1-deficient OSE cells displayed an increased sensitivity to the DNA damaging agent cisplatin, and this effect could be modulated by inactivation of p53 and/or Rb. These results indicate that Brca1 deficiency can accelerate tumor development and alter the sensitivity of OSE cells to chemotherapeutic agents. Intrabursal delivery of adenovirus intended to alter gene expression in the ovarian surface epithelium may, in some strains of mice, result in more rapid transformation of adjacent cells, resulting in leiomyosarcomas.
Collapse
|
376
|
Affiliation(s)
- Philippa D Darbre
- School of Biological Sciences, Biomedical Sciences, Hopkin's Building, University of Reading, Reading RG6 6UB, UK.
| |
Collapse
|
377
|
Kim SS, Cao L, Baek HJ, Lim SC, Li C, Wang RH, Xu X, Cho KH, Deng CX. Impaired skin and mammary gland development and increased gamma-irradiation-induced tumorigenesis in mice carrying a mutation of S1152-ATM phosphorylation site in Brca1. Cancer Res 2009; 69:9291-300. [PMID: 19996295 PMCID: PMC2795111 DOI: 10.1158/0008-5472.can-09-2418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor suppressor BRCA1 interacts with many proteins and undergoes multiple modifications on DNA damage. ATM, a key molecule of the DNA damage response, phosphorylates S1189 of BRCA1 after gamma-irradiation. S1189 of BRCA1 is known as a unique ATM phosphorylation site in BRCA1 exon 11. To study the functions of ATM-dependent phosphorylation of BRCA1-S1189, we generated a mouse model carrying a mutation of S1152A (S1152 in mouse Brca1 corresponds to S1189 in human BRCA1) by gene targeting. Brca1(S1152A/S1152A) mice were born at the expected ratio, unlike that seen in previous studies of Brca1-null mice. However, 36% of Brca1(S1152A/S1152A) mice exhibited aging-like phenotypes including growth retardation, skin abnormalities, and delay of the mammary gland morphogenesis, with an increase in apoptosis. Mutant mice were hypersensitive to high doses of gamma-irradiation, displaying shortened life span and reduction in intestinal villus size, associated with increased apoptosis. Aging-unaffected 18-month-old Brca1(S1152A/S1152A) female mice also showed mammary gland abnormalities with increased levels of cyclin D1 and phospho-ER-alpha, such as Brca1-Delta11 mutation. On low-dose gamma-irradiation, they suffered a marked increase in tumor formation with an abnormal coat pattern. Furthermore, Brca1(S1152A/S1152A) embryonic fibroblasts failed to accumulate p53 on gamma-irradiation with delayed phosphorylation of p53-S23. These observations indicate that ATM-mediated phosphorylation of S1189 is required for BRCA1 functions in the modulation of DNA damage response and in the suppression of tumor formation by regulating p53 and apoptosis.
Collapse
Affiliation(s)
- Sang Soo Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, 410-769, Korea
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 10/9N105, 10 Center Drive, Bethesda, MD 20892, USA
- Address correspondence to: Sang Soo Kim, Phone: (8231) 920-2491, Fax: (8231) 920-2494, , Chu-Xia Deng, Phone: (301) 402-7225, Fax: (301) 480-1135,
| | - Liu Cao
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 10/9N105, 10 Center Drive, Bethesda, MD 20892, USA
| | - Hye Jung Baek
- Radiation Medicine Branch, National Cancer Center, Goyang, 410-769, Korea
| | - Sung-Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju, 501-759, Korea
| | - Cuiling Li
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 10/9N105, 10 Center Drive, Bethesda, MD 20892, USA
| | - Rui-Hong Wang
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 10/9N105, 10 Center Drive, Bethesda, MD 20892, USA
| | - Xiaoling Xu
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 10/9N105, 10 Center Drive, Bethesda, MD 20892, USA
| | - Kwan Ho Cho
- Radiation Medicine Branch, National Cancer Center, Goyang, 410-769, Korea
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 10/9N105, 10 Center Drive, Bethesda, MD 20892, USA
- Address correspondence to: Sang Soo Kim, Phone: (8231) 920-2491, Fax: (8231) 920-2494, , Chu-Xia Deng, Phone: (301) 402-7225, Fax: (301) 480-1135,
| |
Collapse
|
378
|
Katiyar P, Ma Y, Riegel A, Fan S, Rosen EM. Mechanism of BRCA1-mediated inhibition of progesterone receptor transcriptional activity. Mol Endocrinol 2009; 23:1135-46. [PMID: 19389812 PMCID: PMC2718743 DOI: 10.1210/me.2008-0347] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 04/16/2009] [Indexed: 12/24/2022] Open
Abstract
Previously, we reported that BRCA1 inhibits progesterone receptor (PR) activity and blocks progesterone-stimulated gene expression and cell proliferation. In the present manuscript, we studied the mechanism of BRCA1 inhibition of PR activity, using c-Myc as a model progesterone-regulated promoter. Here, we found that BRCA1 has little or no effect on PR ligand-binding affinity. However, BRCA1 overexpression inhibited the R5020-induced recruitment of PR to the c-Myc and mouse mammary tumor virus progesterone response elements (PREs) and blocked R5020-stimulated c-Myc expression, whereas BRCA1 underexpression did the opposite. In EMSAs, BRCA1 overexpression blocked the R5020-induced complex formation between PR and several radiolabeled PRE-containing oligonucleotides, and in vitro-translated BRCA1 blocked the interaction of full-length PR-A or a fragment containing the DNA-binding domain of PR with a radiolabeled PRE oligonucleotide. In further studies, BRCA1 overexpression inhibited the recruitment of coactivators (steroid receptor coactivator 1 and amplified in breast cancer 1) and enhanced the recruitment of a corepressor (histone deacetylase 1) to the c-Myc PRE, whereas BRCA1 knockdown increased the abundance of AIB1 and decreased the abundance of HDAC1 at the c-Myc PRE. These findings suggest that BRCA1 inhibits progestin-stimulated PR activity, in part, by preventing PR from binding to the PRE and by promoting the formation of a corepressor complex rather than a coactivator complex.
Collapse
Affiliation(s)
- Pragati Katiyar
- Department of Oncology, Lombardi Comprehensive Cancer Center/Georgetown University, Washington, D.C. 20057-1469, USA
| | | | | | | | | |
Collapse
|
379
|
Daniels MS, Urbauer DL, Stanley JL, Johnson KG, Lu KH. Timing of BRCA1/BRCA2 genetic testing in women with ovarian cancer. Genet Med 2009; 11:624-8. [DOI: 10.1097/gim.0b013e3181ab2295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
380
|
Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 2: transcriptional regulation. J Cell Mol Med 2009; 13:3019-31. [PMID: 19522844 PMCID: PMC4516462 DOI: 10.1111/j.1582-4934.2009.00825.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA repair is an indispensable part of a cell’s defence system against the devastating effects of DNA-damaging conditions. The regulation of this function is a really demanding situation, particularly when the stressing factors persist for a long time. In such cases, the depletion of existing DNA repair proteins has to be compensated by the induction of the analogous gene products. In addition, the arrest of transcription, which is another result of many DNA-damaging agents, needs to be overcome through regulation of transcription-specific DNA repair pathways. The involvement of the ubiquitin-proteasome system (UPS) in cancer- and chemotherapy-related DNA-damage repair relevant to the above transcriptional modification mechanisms are illustrated in this review. Furthermore, the contribution of UPS to the regulation of localization and accessibility of DNA repair proteins to chromatin, in response to cellular stress is discussed.
Collapse
|
381
|
Santarosa M, Del Col L, Tonin E, Caragnano A, Viel A, Maestro R. Premature senescence is a major response to DNA cross-linking agents in BRCA1-defective cells: implication for tailored treatments of BRCA1 mutation carriers. Mol Cancer Ther 2009; 8:844-54. [PMID: 19372557 DOI: 10.1158/1535-7163.mct-08-0951] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BRCA1-associated tumors are characterized by an elevated genomic instability and peculiar expression profiles. Nevertheless, tailored treatments for BRCA1 mutation carriers have only been partially investigated up to now. The implementation of therapeutic strategies specific for these patients has been in part hindered by the paucity of proper preneoplastic and neoplastic BRCA1-deficient tumor cell models. In this study, we took advantage of the RNA interference technology to generate a series of partially transformed (HBL100) and tumorigenic (MCF7 and T47D) breast cancer cell lines in which BRCA1 expression was silenced at different levels. These cell models were probed by clonogenic assay for their response to several DNA-damaging agents commonly used in cancer therapy (mitomycin C, cisplatin, doxorubicin, and etoposide). Our models confirmed the peculiar sensitivity to interstrand cross-link inducers associated with BRCA1 deficiency. Intriguingly, the increased sensitivity to these compounds displayed by BRCA1-defective cells was not correlated with the extent of apoptotic cell death but rather associated to an increased fraction of growth-arrested, enlarged, multinucleated beta-galactosidase-positive senescent cells. Overall, our results support a role for BRCA1 in the regulation of interstrand cross-link-induced premature senescence and suggest a reconsideration of the therapeutic power of mitomycin/platinum-based treatments in BRCA1 carriers. Moreover, our data further prompt the setup of strategies for the imaging of the senescence response in vivo.
Collapse
Affiliation(s)
- Manuela Santarosa
- Experimental Oncology 1, Centro di Riferimento Oncologico, Istituto Di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, via F. Gallini 2, Aviano 33081 PN, Italy
| | | | | | | | | | | |
Collapse
|
382
|
Finding disease-specific coordinated functions by multi-function genes: insight into the coordination mechanisms in diseases. Genomics 2009; 94:94-100. [PMID: 19427897 DOI: 10.1016/j.ygeno.2009.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 05/04/2009] [Indexed: 12/31/2022]
Abstract
We developed an approach using multi-function disease genes to find function pairs whose co-deregulation might induce a disease. Analyzing cancer genes, we found many cancer-specific coordinated function pairs co-deregulated by dysfunction of multi-function genes and other molecular changes in cancer. Studying two subtypes of cardiomyopathy, we found they show certain consistency at the functional coordination level. Our approach can also provide important information for finding novel disease genes as well as their mechanisms in diseases.
Collapse
|
383
|
Ramus SJ, Gayther SA. The contribution of BRCA1 and BRCA2 to ovarian cancer. Mol Oncol 2009; 3:138-50. [PMID: 19383375 PMCID: PMC5527889 DOI: 10.1016/j.molonc.2009.02.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 02/01/2009] [Accepted: 02/02/2009] [Indexed: 12/24/2022] Open
Abstract
Germline mutations of the BRCA1 and BRCA2 genes confer a high life-time risk of ovarian cancer. They represent the most significant and well characterised genetic risk factors so far identified for the disease. The frequency with which BRCA1/2 mutations occur in families containing multiple cases of ovarian cancer or breast and ovarian cancer, and in population-based ovarian cancer series varies geographically and between different ethnic groups. There are differences in the frequency of common mutations and in the presence of specific founder mutations in different populations. BRCA1 and BRCA2 are responsible for half of all families containing two or more ovarian cancer cases. In population-based studies, BRCA1 and BRCA2 mutations are present in 5-15% of all ovarian cancer cases. Often, individuals in which mutations are identified in unselected cases have no family history of either ovarian or breast cancer. The ability to identify BRCA1/2 mutations has been one of the few major success stories over the last few years in the clinical management of ovarian cancer. Currently, unaffected individuals can be screened for mutations if they have a family history of the disease. If a mutation is identified in the family, and if an individual is found be a mutation carrier, they can be offered clinical intervention strategies that can dramatically reduce their ovarian cancer risks. In some populations with frequent founder mutations screening may not be dependent on whether a mutation is identified in an affected relative.
Collapse
Affiliation(s)
- Susan J Ramus
- Gynaecological Cancer Research Laboratory, UCL EGA Institute for Women's Health, Paul O'Gorman Building, University College London, 72 Huntley Street, London, United Kingdom
| | | |
Collapse
|
384
|
Lee E, Ma H, McKean-Cowdin R, Van Den Berg D, Bernstein L, Henderson BE, Ursin G. Effect of reproductive factors and oral contraceptives on breast cancer risk in BRCA1/2 mutation carriers and noncarriers: results from a population-based study. Cancer Epidemiol Biomarkers Prev 2009; 17:3170-8. [PMID: 18990759 DOI: 10.1158/1055-9965.epi-08-0396] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Multiparity and breast-feeding reduce breast cancer risk, whereas oral contraceptive use may slightly increase breast cancer risk in the general population. However, the effects of these factors in BRCA1 and BRCA2 mutation carriers are less clear. METHODS Case patients were 1,469 women from Los Angeles County ages 20 to 49 years with newly diagnosed breast cancer. Control subjects were 444 women without breast cancer, individually matched to a subset of cases on race, age, and neighborhood. BRCA1/2 genes were sequenced in the cases, and odds ratios of breast cancer associated with various reproductive and hormonal factors in BRCA1/2 mutation carriers and noncarriers were estimated using multivariable logistic regression. RESULTS Ninety-four women had a deleterious BRCA1 or BRCA2 mutation. Number of full-term pregnancies was inversely associated with breast cancer risk regardless of BRCA1/2 mutation status. Longer breast-feeding duration was protective among noncarriers but not among mutation carriers; however, this apparent effect modification was not statistically significant (P = 0.23). Neither oral contraceptive use overall nor the use of low-dose oral contraceptives was associated with an increased risk of breast cancer in any subgroup. CONCLUSIONS Our results suggest that parity protects against breast cancer in BRCA1/2 mutation carriers, whereas breast-feeding does not. Our data suggest no association between oral contraceptive use and breast cancer risk in BRCA1/2 mutation carriers. Further confirmation that currently available low-dose oral contraceptives do not increase breast cancer risk in carriers is important from a public health perspective given the high prevalence of oral contraceptive use in the United States.
Collapse
Affiliation(s)
- Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Room 4407, 1441 Eastlake Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | |
Collapse
|
385
|
Gaudray P, Weber G. Genetic Background of MEN1: From Genetic Homogeneity to Functional Diversity. SUPERMEN1 2009; 668:17-26. [DOI: 10.1007/978-1-4419-1664-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
386
|
Thomassen M, Tan Q, Kruse TA. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer. BMC Cancer 2008; 8:394. [PMID: 19116006 PMCID: PMC2642844 DOI: 10.1186/1471-2407-8-394] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 12/30/2008] [Indexed: 02/05/2023] Open
Abstract
Background Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. Methods We have analyzed 8 publicly available gene expression data sets. A global approach, "gene set enrichment analysis" as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. Results The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. Conclusion By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may constitute new targets are identified.
Collapse
Affiliation(s)
- Mads Thomassen
- Department of Biochemistry, Pharmacology, and Genetics, Odense University Hospital and Human Microarray Centre (HUMAC), University of Southern Denmark, Odense, Denmark.
| | | | | |
Collapse
|
387
|
Hofstra RMW, Spurdle AB, Eccles D, Foulkes WD, de Wind N, Hoogerbrugge N, Hogervorst FBL. Tumor characteristics as an analytic tool for classifying genetic variants of uncertain clinical significance. Hum Mutat 2008; 29:1292-303. [PMID: 18951447 DOI: 10.1002/humu.20894] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is important to identify a germline mutation in a patient with an inherited cancer syndrome to allow mutation carriers to be included in cancer surveillance programs, which have been proven to save lives. Many of the mutations identified result in premature termination of translation, and thus in loss-of-function of the encoded mutated protein. However, the significance of a large proportion of the sequence changes reported is unknown. Some of these variants will be associated with a high risk of cancer and have direct clinical consequence. Many criteria can be used to classify variants with unknown significance; most criteria are based on the characteristics of the amino acid change, on segregation data and appearance of the variant, on the presence of the variant in controls, or on functional assays. In inherited cancers, tumor characteristics can also be used to classify variants. It is worthwhile to examine the clinical, morphological and molecular features of a patient, and his or her family, when assessing whether the role of a variant is likely to be neutral or pathogenic. Here we describe the advantages and disadvantages of using the tumor characteristics of patients carrying germline variants of uncertain significance (VUS) in BRCA1, BRCA2, or in one of the mismatch repair (MMR) genes, MLH1, MSH2, or MSH6, to infer pathogenicity.
Collapse
Affiliation(s)
- Robert M W Hofstra
- Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
388
|
Penzo M, Massa PE, Olivotto E, Bianchi F, Borzi RM, Hanidu A, Li X, Li J, Marcu KB. Sustained NF-kappaB activation produces a short-term cell proliferation block in conjunction with repressing effectors of cell cycle progression controlled by E2F or FoxM1. J Cell Physiol 2008; 218:215-27. [PMID: 18803232 DOI: 10.1002/jcp.21596] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
NF-kappaB transcription factors induce a host of genes involved in pro-inflammatory/stress-like responses; but the collateral effects and consequences of sustained NF-kappaB activation on other cellular gene expression programming remain less well understood. Here enforced expression of a constitutively active IKKbeta T-loop mutant (IKKbetaca) drove murine fibroblasts into transient growth arrest that subsided within 2-3 weeks of continuous culture. Proliferation arrest was associated with a G1/S phase block in immortalized and primary early passage MEFs. Molecular analysis in immortalized MEFs revealed that inhibition of cell proliferation in the initial 1-2 weeks after their IKKbetaca retroviral infection was linked to the transient, concerted repression of essential cell cycle effectors that are known targets of either E2F or FoxM1. Co-expression of a phosphorylation resistant IkappaBalpha super repressor and IKKbetaca abrogated growth arrest and cell cycle effector repression, thereby linking IKKbetaca's effects to canonical NF-kappaB activation. Transient growth arrest of IKKbetaca cells was associated with enhanced p21 (cyclin-dependent kinase inhibitor 1A) protein expression, due in part to transcriptional activation by NF-kappaB and also likely due to strong repression of Skp2 and Csk1, both of which are FoxM1 direct targets mediating proteasomal dependent p21 turnover. Ablation of p21 in immortalized MEFs reduced their IKKbetaca mediated growth suppression. Moreover, trichostatin A inhibition of HDACs alleviated the repression of E2F and FoxM1 targets induced by IKKbetaca, suggesting chromatin mediated gene silencing in IKKbetaca's short term repressive effects on E2F and FoxM1 target gene expression.
Collapse
Affiliation(s)
- Marianna Penzo
- Centro Ricerca Biomedica Applicata (CRBA), S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
389
|
Lee HJ, Lee YJ, Kang CM, Bae S, Jeoung D, Jang JJ, Lee SS, Cho CK, Lee YS. Differential Gene Signatures in Rat Mammary Tumors Induced by DMBA and Those Induced by Fractionated γ Radiation. Radiat Res 2008; 170:579-90. [DOI: 10.1667/rr1106.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 07/03/2008] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | - Dooil Jeoung
- Division of Life Sciences, Kangwon National University College of Natural Sciences, Chuncheon 200-701, Korea; and
| | - Ja-June Jang
- Department of Pathology, College of Medicine Seoul National University, 110-108, Seoul, Korea
| | | | - Chul-Koo Cho
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | | |
Collapse
|
390
|
Tan DSP, Rothermundt C, Thomas K, Bancroft E, Eeles R, Shanley S, Ardern-Jones A, Norman A, Kaye SB, Gore ME. "BRCAness" syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol 2008; 26:5530-6. [PMID: 18955455 DOI: 10.1200/jco.2008.16.1703] [Citation(s) in RCA: 366] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE We evaluated the clinical impact of germ-line BRCA1/2 mutations in patients with epithelial ovarian cancer (EOC) on responses to first and subsequent lines of chemotherapy, treatment-free interval (TFI) between each line of therapy, and overall survival (OS). PATIENTS AND METHODS Twenty-two EOC patients with germ-line BRCA1 or BRCA2 mutations (BRCA-positive) were selected from our database and matched (1:2) with 44 nonhereditary EOC controls (defined by no associated personal history of breast cancer and no family history of breast and ovarian cancer or an uninformative BRCA mutation test) for stage, histologic subtype, age, and year of diagnosis. All patients received primary platinum-based chemotherapy. Statistical comparisons included responses after first-, second-, and third-line treatment (chi(2)/Fisher's exact test) and median OS (Kaplan-Meier method/log-rank test). RESULTS Compared with controls, BRCA-positive patients had higher overall (95.5% v 59.1%; P = .002) and complete response rates (81.8% v 43.2%; P = .004) to first line treatment, higher responses to second and third line platinum-based chemotherapy (second line, 91.7% v 40.9% [P = .004]; third line, 100% v 14.3% [P = .005]) and longer TFIs. A significant improvement in median OS in BRCA-positive patients compared with controls was observed from both time of diagnosis (8.4 v 2.9 years; P < .002) and time of first relapse (5 v 1.6 years; P < .001). BRCA status, stage, and length of first response were independent prognostic factors from time of first relapse. CONCLUSION BRCA-positive EOC patients have better outcomes than nonhereditary EOC patients. There exists a clinical syndrome of BRCAness that includes serous histology, high response rates to first and subsequent lines of platinum-based treatment, longer TFIs between relapses, and improved OS.
Collapse
Affiliation(s)
- David S P Tan
- Gynaecological Oncology and Cancer Genetics Units, Royal Marsden Hospital, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Yang YQ, Wu L, Chen JX, Sun JZ, Li M, Li DM, Lu HY, Su ZH, Lin XQ, Li JC. Relationship between nm23H1 genetic instability and clinical pathological characteristics in Chinese digestive system cancer patients. World J Gastroenterol 2008; 14:5549-56; discussion 5555. [PMID: 18810774 PMCID: PMC2746343 DOI: 10.3748/wjg.14.5549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the relationship between nm23H1 gene genetic instability and its clinical pathological characteristics in Chinese digestive system cancer patients.
METHODS: Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to analyze the microsatellite instability (MSI) and loss of heterozygosity (LOH). Immunohistochemistry was employed to detect the expression of nm23H1.
RESULTS: The MSI was higher in TNM stageI + II than in stage III + IV of gastric, colonic and gallbladder carcinomas. The LOH was higher in TNM stage III + IV than in stageI + II of gastric, colonic and hepatocellular carcinomas. Lymphatic metastasis was also observed. The expression of nm23H1 protein was lower in TNM stage III + IV than in stageI + II of these tumors and in patients with lymphatic metastasis.The nm23H1 protein expression was higher in the LOH negative group than in the LOH positive group.
CONCLUSION: MSI and LOH may independently control the biological behaviors of digestive system cancers. MSI could serve as an early biological marker of digestive system cancers. Enhanced expression of nm23H1 protein could efficiently inhibit cancer metastasis and improve its prognosis. LOH mostly appears in late digestive system cancer.
Collapse
|
392
|
Tapias A, Ciudad CJ, Roninson IB, Noé V. Regulation of Sp1 by cell cycle related proteins. Cell Cycle 2008; 7:2856-67. [PMID: 18769160 DOI: 10.4161/cc.7.18.6671] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sp1 transcription factor regulates the expression of multiple genes, including the Sp1 gene itself. We analyzed the ability of different cell cycle regulatory proteins to interact with Sp1 and to affect Sp1 promoter activity. Using an antibody array, we observed that CDK4, SKP2, Rad51, BRCA2 and p21 could interact with Sp1 and we confirmed these interactions by co-immunoprecipitation. CDK4, SKP2, Rad51, BRCA2 and p21 also activated the Sp1 promoter. Among the known Sp1-interacting proteins, E2F-DP1, Cyclin D1, Stat3 and Rb activated the Sp1 promoter, whereas p53 and NF kappaB inhibited it. The proteins that regulated Sp1 gene expression were shown by positive chromatin immunoprecipitation to be bound to the Sp1 promoter. Moreover, SKP2, BRCA2, p21, E2F-DP1, Stat3, Rb, p53 and NF kappaB had similar effects on an artificial promoter containing only Sp1 binding sites. Transient transfections of CDK4, Rad51, E2F-DP1, p21 and Stat3 increased mRNA expression from the endogenous Sp1 gene in HeLa cells whereas overexpression of NF kappaB, and p53 decreased Sp1 mRNA levels. p21 expression from a stably integrated inducible promoter in HT1080 cells activated Sp1 expression at the promoter and mRNA levels, but at the same time it decreased Sp1 protein levels due to the activation of Sp1 degradation. The observed multiple effects of cell cycle regulators on Sp1 suggest that Sp1 may be a key mediator of cell cycle associated changes in gene expression.
Collapse
Affiliation(s)
- Alicia Tapias
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IBUB, University of Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
393
|
Weberpals JI, Clark-Knowles KV, Vanderhyden BC. Sporadic epithelial ovarian cancer: clinical relevance of BRCA1 inhibition in the DNA damage and repair pathway. J Clin Oncol 2008; 26:3259-67. [PMID: 18591560 DOI: 10.1200/jco.2007.11.3902] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the most promising pathways for molecular targets in sporadic epithelial ovarian cancer (SEOC) are those involving the BRCA1 protein. Because somatic mutations in BRCA1 are rare in SEOC, it was originally postulated that BRCA1 plays a limited role in the pathogenesis of this disease. However, inactivation of BRCA1 through various mechanisms is a relatively frequent event in ovarian cancer. This is important because BRCA1 is involved in the cellular response to DNA damage and repair and has an essential role in the maintenance of genomic stability. The BRCA1 tumor suppressor protein is known to interact with genes and proteins known collectively as the BRCA1 pathway, and defects in this pathway are believed to be a driving force for cancer progression. As a result, there is compelling evidence to suggest that the dysfunction of BRCA1 may be a central mechanism in all ovarian carcinogenesis, and this has clinical and molecular significance beyond the management of patients with hereditary ovarian cancer. The aim of this review is to evaluate the evidence for BRCA1 dysfunction in SEOC and to link this dysfunction to a defective DNA repair pathway and ultimately the promotion of genomic instability and tumorigenesis. Furthermore, we advocate the continued need to study BRCA1 and its pathway by prospectively correlating clinicopathologic data with molecular aberrations. This will determine whether BRCA1 has relevance as a predictive and prognostic marker in SEOC and whether aberrations in the BRCA1 pathway warrant further study as potential therapeutic targets.
Collapse
Affiliation(s)
- Johanne I Weberpals
- Ottawa Hospital, Division of Gynaecologic Oncology, Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
394
|
Yan Y, Black CP, Cao PT, Haferbier JL, Kolb RH, Spieker RS, Ristow AM, Cowan KH. Gamma-irradiation-induced DNA damage checkpoint activation involves feedback regulation between extracellular signal-regulated kinase 1/2 and BRCA1. Cancer Res 2008; 68:5113-21. [PMID: 18593910 DOI: 10.1158/0008-5472.can-07-5818] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies from our laboratory have shown that the activation of G(2)-M checkpoint after exposure of MCF-7 breast cancer cells to gamma-irradiation (IR) is dependent on the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Studies presented in this report indicate that IR exposure of MCF-7 cells is associated with a marked increase in expression of breast cancer 1 (BRCA1) tumor suppressor, an effect that requires ERK1/2 activation and involves posttranscriptional control mechanisms. Furthermore, reciprocal coimmunoprecipitation, as well as colocalization studies, indicate an interaction between BRCA1 and ERK1/2 in both nonirradiated and irradiated cells. Studies using short hairpin RNA targeting BRCA1 show that BRCA1 expression is necessary for IR-induced G(2)-M cell cycle arrest, as well as ERK1/2 activation in MCF-7 cells. Although BRCA1 expression is not required for IR-induced phosphorylation of ataxia telangiectasia mutated (ATM)-Ser1981, it is required for ATM-mediated downstream signaling events, including IR-induced phosphorylation of Chk2-Thr68 and p53-Ser20. Moreover, BRCA1 expression is also required for IR-induced ATM and rad3 related activation and Chk1 phosphorylation in MCF-7 cells. These results implicate an important interaction between BRCA1 and ERK1/2 in the regulation of cellular response after IR-induced DNA damage in MCF-7 cells.
Collapse
Affiliation(s)
- Ying Yan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | | | | | |
Collapse
|
395
|
Tone AA, Begley H, Sharma M, Murphy J, Rosen B, Brown TJ, Shaw PA. Gene expression profiles of luteal phase fallopian tube epithelium from BRCA mutation carriers resemble high-grade serous carcinoma. Clin Cancer Res 2008; 14:4067-78. [PMID: 18593983 DOI: 10.1158/1078-0432.ccr-07-4959] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify molecular alterations potentially involved in predisposition to adnexal serous carcinoma (SerCa) in the nonmalignant fallopian tube epithelium (FTE) of BRCA1/2 mutation carriers, given recent evidence implicating the distal FTE as a common source for SerCa. EXPERIMENTAL DESIGN We obtained and compared gene expression profiles of laser capture microdissected nonmalignant distal FTE from 12 known BRCA1/2 mutation carriers (FTEb) and 12 control women (FTEn) during the luteal and follicular phase, as well as 13 high-grade tubal and ovarian SerCa. RESULTS Gene expression profiles of tubal and ovarian SerCa specimens were indistinguishable by unsupervised cluster analysis and significance analysis of microarrays. FTEb samples as a group, and four individual FTEb samples from the luteal phase in particular, clustered closely with SerCa rather than normal control FTE. Differentially expressed genes from these four samples relative to other FTEb samples, as well as differentially expressed genes in all FTEb luteal samples relative to follicular samples, were mapped to the I2D protein-protein interaction database, revealing a complex network affecting signaling pathways previously implicated in tumorigenesis. Two candidates, disabled homolog 2 mitogen-responsive phosphoprotein (DAB2) and Ski-like (SKIL), were further validated by real-time reverse transcription-PCR and tissue arrays. FTEb luteal and SerCa samples expressed higher levels of oncogenic SKIL and decreased levels of tumor suppressor DAB2, relative to FTEb follicular samples. CONCLUSIONS These findings support a common molecular pathway for adnexal SerCa and implicate factors associated with the luteal phase in predisposition to ovarian cancer in BRCA mutation carriers.
Collapse
Affiliation(s)
- Alicia A Tone
- Department of Laboratory Medicine and Pathobiology, Division of Gynecologic Oncology, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
396
|
Aaltonen K, Blomqvist C, Amini RM, Eerola H, Aittomäki K, Heikkilä P, Nevanlinna H. Familial breast cancers without mutations in BRCA1 or BRCA2 have low cyclin E and high cyclin D1 in contrast to cancers in BRCA mutation carriers. Clin Cancer Res 2008; 14:1976-83. [PMID: 18381935 DOI: 10.1158/1078-0432.ccr-07-4100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We analyzed the expression of critical cell cycle regulators cyclin E and cyclin D1 in familial breast cancer, focusing on BRCA mutation-negative tumors. Cyclin E expression in tumors of BRCA1 or BRCA2 carriers is higher, and cyclin D1 expression lower, than in sporadic tumors. In familial non-BRCA1/2 tumors, cyclin E and cyclin D1 expression has not been studied. EXPERIMENTAL DESIGN Cyclin E and cyclin D1 immunohistochemical expression was studied in tissue microarrays consisting of 53 BRCA1, 58 BRCA2, 798 familial non-BRCA1/2, and 439 sporadic breast tumors. RESULTS In univariate analysis, BRCA1 tumors had significantly more frequently high cyclin E (88%) and low cyclin D1 (84%) expression than sporadic (54% and 49%, respectively) or familial non-BRCA1/2 (38% and 45%, respectively) tumors. BRCA2 tumors had significantly more frequently low cyclin D1 expression (68%) than sporadic or familial non-BRCA1/2 tumors and significantly more frequently high cyclin E expression than familial non-BRCA1/2 tumors. In a logistic regression model, cyclin expression, early age of onset, and estrogen receptor (ER) and human epidermal growth factor receptor-2 (HER2) status were the independent factors most clearly distinguishing tumors of BRCA1 mutation carriers from other familial breast cancers. High cyclin E and low cyclin D1 expression were also independent predictors of BRCA2 mutation when compared with familial non-BRCA1/2 tumors. Most interestingly, lower frequency of high cyclin E expression independently distinguished familial non-BRCA1/2 tumors also from sporadic ones. CONCLUSIONS Cyclin E and cyclin D1 expression distinguishes non-BRCA1/2 tumors from both sporadic and BRCA1- and BRCA2-associated tumors and may reflect different predisposition and pathogenesis in these groups.
Collapse
Affiliation(s)
- Kirsimari Aaltonen
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
397
|
García MJ, Benítez J. The Fanconi anaemia/BRCA pathway and cancer susceptibility. Searching for new therapeutic targets. Clin Transl Oncol 2008; 10:78-84. [PMID: 18258506 DOI: 10.1007/s12094-008-0160-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Breast cancer is one of the most frequent cancers in the world. The majority of cases are sporadic but around 15% show some type of familial aggregation and about 5% exhibit a clear hereditary pattern. Common and rare low- moderate-penetrance genes, and high-penetrance genes are thought to explain the genetic susceptibility to the disease. Only around 20% of the inherited risk to breast cancer is explained by germline mutations in the known high-penetrance susceptibility genes BRCA1 and BRCA2. Mutations in genes such as TP53 and PTEN have also been linked with high risk for breast cancer within specific cancer syndromes and rare germline variants in genes such as CHEK2 and ATM have been found to confer modest risk to breast cancer. However, we can say that less than 30% of familial risk of breast cancer is due to known genes. Identification in 2002 of the Fanconi anaemia (FA) gene FANCD1 as BRCA2 and recent studies indicating that heterozygous mutations in FANCN/PALB2 and FANCJ/ BRIP1 predispose to breast cancer have emphasised an important connection between the FA and BRCA pathway. Here we review the emerging DNA-damage response network consisting of FA and BRCA proteins, summarise what is currently known about the direct involvement of these molecules in breast cancer susceptibility and discuss the prospect offered by this pathway in order to identify more breast cancer related genes. We finally present the current stage of therapeutic options specifically targeting the FA/BRCA pathway and summarise the challenges this field encounters.
Collapse
Affiliation(s)
- Maria José García
- Group of Human Genetics, Human Cancer Genetics Program, Spanish National Cancer Centre (CNIO) and Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
398
|
Nowacka-Zawisza M, Brys M, Romanowicz-Makowska H, Kulig A, Krajewska WM. Dinucleotide repeat polymorphisms of RAD51, BRCA1, BRCA2 gene regions in breast cancer. Pathol Int 2008; 58:275-81. [DOI: 10.1111/j.1440-1827.2008.02223.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
399
|
Shinagawa H, Miki Y, Yoshida K. BRCA1-mediated ubiquitination inhibits topoisomerase II alpha activity in response to oxidative stress. Antioxid Redox Signal 2008; 10:939-49. [PMID: 18162055 DOI: 10.1089/ars.2007.1851] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Topoisomerase IIalpha is known to be critically involved in both cell proliferation and cell death. The mechanisms responsible for stress-dependent topoisomerase IIalpha alterations, however, remain unclear. This study focused on the behavior of topoisomerase IIalpha in response to oxidative stress induced by hydrogen peroxide (H(2)O(2)). The catalytic activity of topoisomerase IIalpha in MOLT-4 cells treated with H(2)O(2) decreased in parallel with the alteration of topoisomerase IIalpha expression. The ubiquitination of topoisomerase IIalpha was dependent on oxidative stress. BRCA1, a tumor-suppressor gene, appeared to be involved in these alterations in topoisomerase IIalpha. Furthermore, the retinoblastoma protein (pRb) was required for the ubiquitination of topoisomerase IIalpha by BRCA1. We conclude that the functions of topoisomerase IIalpha are regulated by ubiquitination on exposure to oxidative stress.
Collapse
Affiliation(s)
- Hirokuni Shinagawa
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | |
Collapse
|
400
|
A putative protein structurally related to zygote arrest 1 (Zar1), Zar1-like, is encoded by a novel gene conserved in the vertebrate lineage. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:233-9. [PMID: 18442940 DOI: 10.1016/j.cbpb.2008.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/13/2008] [Accepted: 03/13/2008] [Indexed: 12/28/2022]
Abstract
Identification and characterization of a bovine cDNA and the corresponding gene coding for a novel protein structurally related to Zar1, therefore called Zar1-like, are here reported for the first time. Structure of Zar1-like is similar to Zar1 gene, nevertheless they are located on distinct chromosomes. We demonstrated that the new gene as well as its genomic context are conserved along the whole vertebrate lineage. Analysis of the deduced protein primary structure showed a high conservation, among vertebrates, of the C-terminal region, where the putative presence of both zinc finger motifs and classical nuclear localization signals is also shared with Zar1. Bovine Zar1-like and the only two other available mRNA leader sequences (human and chicken) exhibit a number of upstream AUGs, suggesting that they are likely to be regulated at translational level. Expression patterns of the cattle transcripts show that Zar1-like is absent in early stages of embryo development, whereas Zar1 is expressed in matured oocytes and in in vitro produced pre-implantation embryos. In adult tissues Zar1-like transcript expression appears to be less restricted than Zar1, nevertheless, at least in bovine, both mRNAs are co-expressed in gonads, raising the question of a possible functional link.
Collapse
|