351
|
Simpson AGB, Roger AJ. Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Mol Phylogenet Evol 2004; 30:201-12. [PMID: 15022770 DOI: 10.1016/s1055-7903(03)00177-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The deepest-level relationships amongst Euglenozoa remain poorly resolved, despite a rich history of morphological examination and numerous molecular phylogenetic studies of small subunit ribosomal RNA (SSU rRNA) data. We address this question using two nuclear-encoded proteins, the cytosolic isoforms of heat shock protein 90 (hsp90) and heat shock protein 70 (hsp70). For both proteins we examined sequences from the three primary groups within Euglenozoa (euglenids, diplonemids, and kinetoplastids), and from their close relatives, Heterolobosea. Maximum likelihood (ML) and ML distance analyses of these proteins support a close relationship between diplonemids and kinetoplastids to the exclusion of the euglenid Euglena gracilis. In hsp90 and combined protein analyses bootstrap support is very strong and alternative topologies are generally rejected by 'approximately unbiased' (AU) tests. This result is consistent with recent molecular biological and morphological data, but contradicts early structural accounts and many SSU rRNA analyses that favour a closer relationship between diplonemids and euglenids. However, a re-examination of an important SSU rRNA data set highlights the instability of the inferences from this marker. The protein analyses also suggest that bodonids are paraphyletic, with trypanosomatids grouping with 'clade 2' and 'clade 3' bodonids to the exclusion of 'clade 1' bodonids.
Collapse
Affiliation(s)
- Alastair G B Simpson
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Halifax, Canada NS B3H 4J1.
| | | |
Collapse
|
352
|
Foth BJ, McFadden GI. The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:57-110. [PMID: 12722949 DOI: 10.1016/s0074-7696(05)24003-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apicomplexan parasites cause severe diseases such as malaria, toxoplasmosis, and coccidiosis (caused by Plasmodium spp., Toxoplasma, and Eimeria, respectively). These parasites contain a relict plastid-termed "apicoplast"--that originated from the engulfment of an organism of the red algal lineage. The apicoplast is indispensable but its exact role in parasites is unknown. The apicoplast has its own genome and expresses a small number of genes, but the vast majority of the apicoplast proteome is encoded in the nuclear genome. The products of these nuclear genes are posttranslationally targeted to the organelle via the secretory pathway courtesy of a bipartite N-terminal leader sequence. Apicoplasts are nonphotosynthetic but retain other typical plastid functions such as fatty acid, isoprenoid and heme synthesis, and products of these pathways might be exported from the apicoplast for use by the parasite. Apicoplast pathways are essentially prokaryotic and therefore excellent drug targets. Some antibiotics inhibiting these molecular processes are already in chemotherapeutic use, whereas many new drugs will hopefully spring from our growing understanding of this intriguing organelle.
Collapse
Affiliation(s)
- Bernardo J Foth
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
353
|
|
354
|
Abstract
Photosynthetic eukaryotes have evolved plastid division mechanisms since acquisition of plastids through endosymbiosis. The emerging evolutionary origin of the plastid division mechanism is remarkably complex. The constituents of the division apparatus of plastids may have complex origins. The one constituent is the plastid FtsZ ring taken over from the cyanobacteria-like ancestral endosymbionts. The second is the doublet of concentric plastid dividing rings (or triplet in red algae), possibly acquired by ancestral host eukaryotes following the primary endosymbiotic event. Placement of the division apparatus at the correct division site may involve a system analogous to the bacterial Min system. Plastid nucleoid partitioning may be mediated by binding to envelope or thylakoid membranes. Multiple copies of plastid DNA and symmetrical distribution of the nucleoids in the plastids may permit faithful transmission to daughter plastids via equal binary plastid divisions. Cyanelles retain peptidoglycan wall and cyanelle division occurs through septum formation such as bacterial cell division. Cyanelle division involves the cyanelle ring analogous to the inner stromal plastid-dividing (PD) ring. According to the prevailing hypothesis that primary endosymbiosis occurred only once, cyanelle division may represent an intermediate stage between cyanobacterial division and the well-known plastid division among extant plants. With the secondary plastids, which are surrounded by three or four membranes, the PD ring also participates in division of the inner two "true" plastid envelope membranes, and the third and the outermost membranes divide by unknown mechanisms.
Collapse
Affiliation(s)
- Haruki Hashimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
355
|
Kroth PG. Protein transport into secondary plastids and the evolution of primary and secondary plastids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:191-255. [PMID: 12455749 DOI: 10.1016/s0074-7696(02)21013-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are key organelles in algae and plants due to their photosynthetic abilities. They are thought to have evolved from prokaryotic cyanobacteria taken up by a eukaryotic host cell in a process termed primary endocytobiosis. In addition, a variety of organisms have evolved by subsequent secondary endocytobioses, in which a heterotrophic host cell engulfed a eukaryotic alga. Both processes dramatically enhanced the complexity of the resulting cells. Since the first version of the endosymbiotic theory was proposed more than 100 years ago, morphological, physiological, biochemical, and molecular data have been collected substantiating the emerging picture about the origin and the relationship of individual organisms with different primary or secondary chloroplast types. Depending on their origin, plastids in different lineages may have two, three, or four envelope membranes. The evolutionary success of endocytobioses depends, among other factors, on the specific exchange of molecules between the host and endosymbiont. This raises questions concerning how targeting of nucleus-encoded proteins into the different plastid types occurs and how these processes may have developed. Most studies of protein translocation into plastids have been performed on primary plastids, but in recent years more complex protein-translocation systems of secondary plastids have been investigated. Analyses of transport systems in different algal lineages with secondary plastids reveal that during evolution existing translocation machineries were recycled or recombined rather than being developed de novo. This review deals with current knowledge about the evolution and function of primary and secondary plastids and the respective protein-targeting systems.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
356
|
Moriya S, Dacks JB, Takagi A, Noda S, Ohkuma M, Doolittle WF, Kudo T. Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas. J Eukaryot Microbiol 2003; 50:190-7. [PMID: 12836875 DOI: 10.1111/j.1550-7408.2003.tb00115.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxymonads are a morphologically well-characterized and highly diverse lineage of protists. They are, however, under sampled at a molecular level. It has recently been demonstrated that a genus of oxymonads, Pyrsonympha, is phylogenetically related to the excavate taxon Trimastix. Here, we addressed issues of internal oxymonad evolution. Pyrsonympha and Dinenympha are shown, by fluorescent in situ hybridization and phylogenetic evidence, to be separate genera and not morphotypes of the same organism. We demonstrated that three genera of oxymonads, Dinenympha, Pyrsonympha, and Oxymonas are each monophyletic and together form a clade which excludes other known eukaryotes. We have presented a taxonomic scheme of oxymonads taking into account their sisterhood with Trimastix and speculated on morphological evolution of oxymonads, particularly of their attachment apparatuses. Our biogeographical analysis with Japanese and Canadian Pyrsonympha and Dinenympha suggests that these genera diverged before the separation of termites that inhabit Eastern Asia and Western North America.
Collapse
Affiliation(s)
- Shigeharu Moriya
- Bioscience Technology Center, RIKEN institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
357
|
Cavalier-Smith T. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 2003; 358:109-33; discussion 133-4. [PMID: 12594921 PMCID: PMC1693104 DOI: 10.1098/rstb.2002.1194] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chloroplasts originated just once, from cyanobacteria enslaved by a biciliate protozoan to form the plant kingdom (green plants, red and glaucophyte algae), but subsequently, were laterally transferred to other lineages to form eukaryote-eukaryote chimaeras or meta-algae. This process of secondary symbiogenesis (permanent merger of two phylogenetically distinct eukaryote cells) has left remarkable traces of its evolutionary role in the more complex topology of the membranes surrounding all non-plant (meta-algal) chloroplasts. It took place twice, soon after green and red algae diverged over 550 Myr ago to form two independent major branches of the eukaryotic tree (chromalveolates and cabozoa), comprising both meta-algae and numerous secondarily non-photosynthetic lineages. In both cases, enslavement probably began by evolving a novel targeting of endomembrane vesicles to the perialgal vacuole to implant host porter proteins for extracting photosynthate. Chromalveolates arose by such enslavement of a unicellular red alga and evolution of chlorophyll c to form the kingdom Chromista and protozoan infrakingdom Alveolata, which diverged from the ancestral chromalveolate chimaera. Cabozoa arose when the common ancestor of euglenoids and cercozoan chlorarachnean algae enslaved a tetraphyte green alga with chlorophyll a and b. I suggest that in cabozoa the endomembrane vesicles originally budded from the Golgi, whereas in chromalveolates they budded from the endoplasmic reticulum (ER) independently of Golgi-targeted vesicles, presenting a potentially novel target for drugs against alveolate Sporozoa such as malaria parasites and Toxoplasma. These hypothetical ER-derived vesicles mediated fusion of the perialgal vacuole and rough ER (RER) in the ancestral chromist, placing the former red alga within the RER lumen. Subsequently, this chimaera diverged to form cryptomonads, which retained the red algal nucleus as a nucleomorph (NM) with approximately 464 protein-coding genes (30 encoding plastid proteins) and a red or blue phycobiliprotein antenna pigment, and the chromobiotes (heterokonts and haptophytes), which lost phycobilins and evolved the brown carotenoid fucoxanthin that colours brown seaweeds, diatoms and haptophytes. Chromobiotes transferred the 30 genes to the nucleus and lost the NM genome and nuclear-pore complexes, but retained its membrane as the periplastid reticulum (PPR), putatively the phospholipid factory of the periplastid space (former algal cytoplasm), as did the ancestral alveolate independently. The chlorarachnean NM has three minute chromosomes bearing approximately 300 genes riddled with pygmy introns. I propose that the periplastid membrane (PPM, the former algal plasma membrane) of chromalveolates, and possibly chlorarachneans, grows by fusion of vesicles emanating from the NM envelope or PPR. Dinoflagellates and euglenoids independently lost the PPM and PPR (after diverging from Sporozoa and chlorarachneans, respectively) and evolved triple chloroplast envelopes comprising the original plant double envelope and an extra outermost membrane, the EM, derived from the perialgal vacuole. In all metaalgae most chloroplast proteins are coded by nuclear genes and enter the chloroplast by using bipartite targeting sequences--an upstream signal sequence for entering the ER and a downstream chloroplast transit sequence. I present a new theory for the four-fold diversification of the chloroplast OM protein translocon following its insertion into the PPM to facilitate protein translocation across it (of both periplastid and plastid proteins). I discuss evidence from genome sequencing and other sources on the contrasting modes of protein targeting, cellular integration, and evolution of these two major lineages of eukaryote "cells within cells". They also provide powerful evidence for natural selection's effectiveness in eliminating most functionless DNA and therefore of a universally useful non-genic function for nuclear non-coding DNA, i.e. most DNA in the biosphere, and dramatic examples of genomic reduction. I briefly argue that chloroplast replacement in dinoflagellates, which happened at least twice, may have been evolutionarily easier than secondary symbiogenesis because parts of the chromalveolate protein-targeting machinery could have helped enslave the foreign plastids.
Collapse
Affiliation(s)
- T Cavalier-Smith
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
358
|
|
359
|
Abstract
Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.
Collapse
Affiliation(s)
- T Cavalier-Smith
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
360
|
Dacks JB, Simpson AGB. Meeting report: XIVth meeting of the International Society for Evolutionary Protistology, Vancouver, Canada, June 19-24, 2002. Protist 2002; 153:337-42. [PMID: 12627863 DOI: 10.1078/14344610260450064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
361
|
Kuvardina ON, Leander BS, Aleshin VV, Myl'nikov AP, Keeling PJ, Simdyanov TG. The phylogeny of colpodellids (Alveolata) using small subunit rRNA gene sequences suggests they are the free-living sister group to apicomplexans. J Eukaryot Microbiol 2002; 49:498-504. [PMID: 12503687 DOI: 10.1111/j.1550-7408.2002.tb00235.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an attempt to reconstruct early alveolate evolution, we have examined the phylogenetic position of colpodellids by analyzing small subunit rDNA sequences from Colpodella pontica Myl'nikov 2000 and Colpodella sp. (American Type Culture Collection 50594). All phylogenetic analyses grouped the colpodellid sequences together with strong support and placed them strongly within the Alveolata. Most analyses showed colpodellids as the sister group to an apicomplexan clade, albeit with weak support. Sequences from two perkinsids, Perkinsus and Parvilucifera, clustered together and consistently branched as the sister group to dinoflagellates as shown previously. These data demonstrate that colpodellids and perkinsids are plesiomorphically similar in morphology and help provide a phylogenetic framework for inferring the combination of character states present in the last common ancestor of dinoflagellates and apicomplexans. We can infer that this ancestor was probably a myzocytotic predator with two heterodynamic flagella, micropores, trichocysts, rhoptries, micronemes, a polar ring, and a coiled open-sided conoid. This ancestor also very likely contained a plastid, but it is presently not certain whether it was photosynthetic, and it is not clear whether extant perkinsids or colpodellids have retained the organelle.
Collapse
Affiliation(s)
- Olga N Kuvardina
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
362
|
Abstract
Secondary endosymbiosis is the process that drives the spread of plastids (chloroplasts) from one eukaryote to another. The number of times that this has occurred and the kinds of cells involved are now becoming clear. Reconstructions of plastid history using molecular data suggest that secondary endosymbiosis is very rare and that perhaps as few as three endosymbioses have resulted in a large proportion of algal diversity. The significance of these events extends beyond photosynthesis, however, because non-photosynthetic organisms such as ciliates appear to have evolved from photosynthetic ancestors and could still harbor plastid-derived genes or relict plastids.
Collapse
Affiliation(s)
- John M Archibald
- Canadian Institute for Advanced Research, Dept Botany, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
363
|
Abstract
Single-gene trees have failed to locate the root of the eukaryote tree because of systematic biases in sequence evolution. Structural genetic data should yield more reliable insights into deep phylogenetic relationships. We searched major protist groups for the presence or absence of a gene fusion in order to locate the root of the eukaryote tree. In striking contrast to previous molecular studies, we show that all eukaryote groups ancestrally with two cilia (bikonts) are evolutionarily derived. The root lies between bikonts and opisthokonts (animals, Fungi, Choanozoa). Amoebozoa either diverged even earlier or are sister of bikonts or (less likely) opisthokonts.
Collapse
Affiliation(s)
- Alexandra Stechmann
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | | |
Collapse
|
364
|
Fagan TF, Woodland Hastings J. Phylogenetic analysis indicates multiple origins of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes in dinoflagellates. Mol Biol Evol 2002; 19:1203-7. [PMID: 12082139 DOI: 10.1093/oxfordjournals.molbev.a004178] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
365
|
Dacks JB, Marinets A, Ford Doolittle W, Cavalier-Smith T, Logsdon JM. Analyses of RNA Polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang. Mol Biol Evol 2002; 19:830-40. [PMID: 12032239 DOI: 10.1093/oxfordjournals.molbev.a004140] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The phylogenetic relationships among major eukaryotic protist lineages are largely uncertain. Two significant obstacles in reconstructing eukaryotic phylogeny are long-branch attraction (LBA) effects and poor taxon sampling of free-living protists. We have obtained and analyzed gene sequences encoding the largest subunit of RNA Polymerase II (RPB1) from Naegleria gruberi (a heterolobosean), Cercomonas ATCC 50319 (a cercozoan), and Ochromonas danica (a heterokont); we have also analyzed the RPB1 gene from the nucleomorph (nm) genome of Guillardia theta (a cryptomonad). Using a variety of phylogenetic methods our analysis shows that RPB1s from Giardia intestinalis and Trichomonas vaginalis are probably subject to intense LBA effects. Thus, the deep branching of these taxa on RPB1 trees is questionable and should not be interpreted as evidence favoring their early divergence. Similar effects are discernable, to a lesser extent, with the Mastigamoeba invertens RPB1 sequence. Upon removal of the outgroup and these problematic sequences, analyses of the remaining RPB1s indicate some resolution among major eukaryotic groups. The most robustly supported higher-level clades are the opisthokonts (animals plus fungi) and the red algae plus the cryptomonad nm-the latter result gives added support to the red algal origin of cryptomonad chloroplasts. Clades comprising Dictyostelium discoideum plus Acanthamoeba castellanii (Amoebozoa) and Ochromonas plus Plasmodium falciparum (chromalveolates) are consistently observed and moderately supported. The clades supported by our RPB1 analyses are congruent with other data, suggesting that bona fide phylogenetic relationships are being resolved. Thus, the RPB1 gene has apparently retained some phylogenetically meaningful signal, making it worthwhile to obtain sequences from more diverse protist taxa. Additional RPB1 data, especially in combination with other genes, should provide further resolution of branching orders among protist groups within the apparently rapid early divergence of eukaryotes.
Collapse
Affiliation(s)
- Joel B Dacks
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax
| | | | | | | | | |
Collapse
|
366
|
Abstract
Traditional views on deep evolutionary events have been seriously challenged over the last few years, following the identification of major pitfalls affecting molecular phylogeny reconstruction. Here we describe the principally encountered artifacts, notably long branch attraction, and their causes (i.e., difference in evolutionary rates, mutational saturation, compositional biases). Additional difficulties due to phenomena of biological nature (i.e., lateral gene transfer, recombination, hidden paralogy) are also discussed. Moreover, contrary to common beliefs, we show that the use of rare genomic events can also be misleading and should be treated with the same caution as standard molecular phylogeny. The universal tree of life, as described in most textbooks, is partly affected by tree reconstruction artifacts, e.g. (i) the bacterial rooting of the universal tree of life; (ii) the early emergence of amitochondriate lineages in eukaryotic phylogenies; and (iii) the position of hyperthermophilic taxa in bacterial phylogenies. We present an alternative view of this tree, based on recent evidence obtained from reanalyses of ancient data sets and from novel analyses of large combination of genes.
Collapse
Affiliation(s)
- Simonetta Gribaldo
- Phylogénie, Bioinformatique et Génome, UMR 7622 CNRS, Université Pierre et Marie Curie, 9 quai St. Bernard Bât. B-75005 Paris, France
| | | |
Collapse
|
367
|
Abstract
This review offers a snapshot of our current understanding of the origin, biology, and metabolic significance of the non-photosynthetic plastid organelle found in apicomplexan parasites. These protists are of considerable medical and veterinary importance world-wide, Plasmodium spp., the causative agent of malaria being foremost in terms of human disease. It has been estimated that approximately 8% of the genes currently recognized by the malarial genome sequencing project (now nearing completion) are of bacterial/plastid origin. The bipartite presequences directing the products of these genes back to the plastid have provided fresh evidence that secondary endosymbiosis accounts for this organelle's presence in these parasites. Mounting phylogenetic evidence has strengthened the likelihood that the plastid originated from a red algal cell. Most importantly, we now have a broad understanding of several bacterial metabolic systems confined within the boundaries of the parasite plastid. The primary ones are type II fatty acid biosynthesis and isoprenoid biosynthesis. Some aspects of heme biosynthesis also might take place there. Retention of the plastid's relict genome and its still ill-defined capacity to participate in protein synthesis might be linked to an important house-keeping process, i.e. guarding the type II fatty acid biosynthetic pathway from oxidative damage. Fascinating observations have shown the parasite plastid does not divide by constriction as in typical plants, and that plastid-less parasites fail to thrive after invading a new cell. The modes of plastid DNA replication within the phylum also have provided surprises. Besides indicating the potential of the parasite plastid for therapeutic intervention, this review exposes many gaps remaining in our knowledge of this intriguing organelle. The rapid progress being made shows no sign of slackening.
Collapse
Affiliation(s)
- R J M Iain Wilson
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
368
|
Simpson AGB, Radek R, Dacks JB, O'Kelly CJ. How oxymonads lost their groove: an ultrastructural comparison of Monocercomonoides and excavate taxa. J Eukaryot Microbiol 2002; 49:239-48. [PMID: 12120989 DOI: 10.1111/j.1550-7408.2002.tb00529.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite being amongst the more familiar groups of heterotrophic flagellates, the evolutionary affinities of oxymonads remain poorly understood. A re-interpretation of the cytoskeleton of the oxymonad Monocercomonoides hausmanni suggests that this organism has a similar ultrastructural organisation to members of the informal assemblage 'excavate taxa'. The preaxostyle, 'R1' root, and 'R2' root of M. hausmanni are proposed to be homologous to the right, left, and anterior roots respectively of excavate taxa. The 'paracrystalline' portion of the preaxostyle, previously treated as unique to oxymonads, is proposed to be homologous to the I fibre of excavate taxa. Other non-microtubular fibres are identified that have both positional and substructural similarity to the distinctive B and C fibres of excavate taxa. A homologue to the 'singlet root', otherwise distinctive for excavate taxa, is also proposed. The preaxostyle and C fibre homologue in Monocercomonoides are most similar to the homologous structures in Trimastix. suggesting a particularly close relationship. This supports and extends recent molecular phylogenetic findings that Trimastix and oxymonads form a clade. We conclude that oxymonads have an excavate ancestry, and that the 'excavate taxa' sensu stricto form a paraphyletic assemblage.
Collapse
Affiliation(s)
- Alastair G B Simpson
- Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
369
|
Zhang Z, Cavalier-Smith T, Green BR. Evolution of dinoflagellate unigenic minicircles and the partially concerted divergence of their putative replicon origins. Mol Biol Evol 2002; 19:489-500. [PMID: 11919290 DOI: 10.1093/oxfordjournals.molbev.a004104] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dinoflagellate chloroplast genes are unique in that each gene is on a separate minicircular chromosome. To understand the origin and evolution of this exceptional genomic organization we completely sequenced chloroplast psbA and 23S rRNA gene minicircles from four dinoflagellates: three closely related Heterocapsa species (H. pygmaea, H. rotundata, and H. niei) and the very distantly related Amphidinium carterae. We also completely sequenced a Protoceratium reticulatum minicircle with a 23S rRNA gene of novel structure. Comparison of these minicircles with those previously sequenced from H. triquetra and A. operculatum shows that in addition to the single gene all have noncoding regions of approximately a kilobase, which are likely to include a replication origin, promoter, and perhaps segregation sequences. The noncoding regions always have a high potential for folding into hairpins and loops. In all six dinoflagellate strains for which multiple minicircles are fully sequenced, parts of the noncoding regions, designated cores, are almost identical between the psbA and 23S rRNA minicircles, but the remainder is very different. There are two, three, or four cores per circle, sometimes highly related in sequence, but no sequence identity is detectable between cores of different species, even within one genus. This contrast between very high core conservation within a species, but none among species, indicates that cores are diverging relatively rapidly in a concerted manner. This is the first well-established case of concerted evolution of noncoding regions on numerous separate chromosomes. It differs from concerted evolution among tandemly repeated spacers between rRNA genes, and that of inverted repeats in plant chloroplast genomes, in involving only the noncoding DNA cores. We present two models for the origin of chloroplast gene minicircles in dinoflagellates from a typical ancestral multigenic chloroplast genome. Both involve substantial genomic reduction and gene transfer to the nucleus. One assumes differential gene deletion within a multicopy population of the resulting oligogenic circles. The other postulates active transposition of putative replicon origins and formation of minicircles by homologous recombination between them.
Collapse
Affiliation(s)
- Zhaoduo Zhang
- Department of Botany, University of British Columbia, 3529-6270 University Blvd., Vancouver, BC, Canada V6T 1Z4
| | | | | |
Collapse
|
370
|
|
371
|
Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Duruflé L, Gaasterland T, Lopez P, Müller M, Philippe H. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci U S A 2002; 99:1414-9. [PMID: 11830664 PMCID: PMC122205 DOI: 10.1073/pnas.032662799] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Accepted: 12/11/2001] [Indexed: 11/18/2022] Open
Abstract
The phylogenetic relationships of amoebae are poorly resolved. To address this difficult question, we have sequenced 1,280 expressed sequence tags from Mastigamoeba balamuthi and assembled a large data set containing 123 genes for representatives of three phenotypically highly divergent major amoeboid lineages: Pelobionta, Entamoebidae, and Mycetozoa. Phylogenetic reconstruction was performed on approximately 25,000 aa positions for 30 species by using maximum-likelihood approaches. All well-established eukaryotic groups were recovered with high statistical support, validating our approach. Interestingly, the three amoeboid lineages strongly clustered together in agreement with the Conosa hypothesis [as defined by T. Cavalier-Smith (1998) Biol. Rev. Cambridge Philos. Soc. 73, 203-266]. Two amitochondriate amoebae, the free-living Mastigamoeba and the human parasite Entamoeba, formed a significant sister group to the exclusion of the mycetozoan Dictyostelium. This result suggested that a part of the reductive process in the evolution of Entamoeba (e.g., loss of typical mitochondria) occurred in its free-living ancestors. Applying this inexpensive expressed sequence tag approach to many other lineages will surely improve our understanding of eukaryotic evolution.
Collapse
Affiliation(s)
- Eric Bapteste
- Unité Mixte de Recherche 7622 Centre National de la Recherche Scientifique, Université Paris 6, 9 Quai Saint Bernard, Bât C, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Abstract
Chloroplasts originated from cyanobacteria only once, but have been laterally transferred to other lineages by symbiogenetic cell mergers. Such secondary symbiogenesis is rarer and chloroplast losses commoner than often assumed.
Collapse
Affiliation(s)
- T Cavalier-Smith
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK.
| |
Collapse
|
373
|
López-García P, Rodríguez-Valera F, Moreira D. Toward the monophyly of Haeckel's radiolaria: 18S rRNA environmental data support the sisterhood of polycystinea and acantharea. Mol Biol Evol 2002; 19:118-21. [PMID: 11752197 DOI: 10.1093/oxfordjournals.molbev.a003976] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
374
|
Abstract
In spite of the great success of small-subunit ribosomal RNA (SSU rRNA)-based studies for the analysis of environmental prokaryotic diversity, this molecular approach has seldom been applied to microbial eukaryotes. Recent molecular surveys of the smallest eukaryotic planktonic fractions at different oceanic surface regions and in deep-sea Antarctic samples revealed an astonishing protist diversity. Many of the phylotypes found in the photic region affiliate with photosynthetic groups that are known to contain picoeukaryotic representatives in the range 1-2 microm. Surprisingly, a vast diversity of presumably heterotrophic or mixotrophic lineages is also found. Among these, several novel lineages of heterokonts, and a large diversity of alveolates clustering in two major groups (Groups I and II), are present at all depths in the water column. Many of these new phylotypes appear biogeographically ubiquitous. These initial studies suggest that a wide diversity of small eukaryotes remains to be discovered not only in the ocean but also in other environments. For both ecology and evolutionary studies, it is predicted that environmental molecular identification of eukaryotes will have a profound impact in the immediate future.
Collapse
Affiliation(s)
- David Moreira
- Université Pierre et Marie Curie, UMR 7622, 9, quai St Bernard, 75005 Paris, France.
| | | |
Collapse
|
375
|
van Dooren GG, Schwartzbach SD, Osafune T, McFadden GI. Translocation of proteins across the multiple membranes of complex plastids. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:34-53. [PMID: 11750661 DOI: 10.1016/s0167-4889(01)00154-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secondary endosymbiosis describes the origin of plastids in several major algal groups such as dinoflagellates, euglenoids, heterokonts, haptophytes, cryptomonads, chlorarachniophytes and parasites such as apicomplexa. An integral part of secondary endosymbiosis has been the transfer of genes for plastid proteins from the endosymbiont to the host nucleus. Targeting of the encoded proteins back to the plastid from their new site of synthesis in the host involves targeting across the multiple membranes surrounding these complex plastids. Although this process shows many overall similarities in the different algal groups, it is emerging that differences exist in the mechanisms adopted.
Collapse
Affiliation(s)
- G G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Australia
| | | | | | | |
Collapse
|
376
|
Moreira D, Philippe H. Sure facts and open questions about the origin and evolution of photosynthetic plastids. Res Microbiol 2001; 152:771-80. [PMID: 11763237 DOI: 10.1016/s0923-2508(01)01260-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some eukaryotic groups carry out photosynthesis thanks to plastids, which are endosymbiotic organelles derived from cyanobacteria. Increasing evidence suggests that the plastids from green plants, red algae, and glaucophytes arose directly from a single common primary symbiotic event between a cyanobacterium and a phagotrophic eukaryotic host. They are therefore known as primary plastids. All other lineages of photosynthetic eukaryotes seem to have acquired their plastids by secondary or tertiary endosymbioses, which are established between eukaryotic algae, already containing plastids, and other eukaryotic hosts. Both primary and secondary symbioses have been followed by extensive plastid genome reduction through gene loss and gene transfer to the host nucleus. All this makes the reconstruction of the evolutionary history of plastids a very complex task, indissoluble from the resolution of the general phylogeny of eukaryotes.
Collapse
Affiliation(s)
- D Moreira
- Equipe Phylogénie, Bioinformatique et Génome, UMR CNRS 7622, Université Pierre et Marie Curie, Paris, France.
| | | |
Collapse
|
377
|
Dacks JB, Silberman JD, Simpson AG, Moriya S, Kudo T, Ohkuma M, Redfield RJ. Oxymonads are closely related to the excavate taxon Trimastix. Mol Biol Evol 2001; 18:1034-44. [PMID: 11371592 DOI: 10.1093/oxfordjournals.molbev.a003875] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite intensive study in recent years, large-scale eukaryote phylogeny remains poorly resolved. This is particularly problematic among the groups considered to be potential early branches. In many recent systematic schemes for early eukaryotic evolution, the amitochondriate protists oxymonads and Trimastix have figured prominently, having been suggested as members of many of the putative deep-branching higher taxa. However, they have never before been proposed as close relatives of each other. We amplified, cloned, and sequenced small-subunit ribosomal RNA genes from the oxymonad Pyrsonympha and from several Trimastix isolates. Rigorous phylogenetic analyses indicate that these two protist groups are sister taxa and are not clearly related to any currently established eukaryotic lineages. This surprising result has important implications for our understanding of cellular evolution and high-level eukaryotic phylogeny. Given that Trimastix contains small, electron-dense bodies strongly suspected to be derived mitochondria, this study constitutes the best evidence to date that oxymonads are not primitively amitochondriate. Instead, Trimastix and oxymonads may be useful organisms for investigations into the evolution of the secondary amitochondriate condition. All higher taxa involving either oxymonads or Trimastix may require modification or abandonment. Affected groups include four contemporary taxa given the rank of phylum (Metamonada, Loukozoa, Trichozoa, Percolozoa), and the informal excavate taxa. A new "phylum-level" taxon may be warranted for oxymonads and Trimastix.
Collapse
Affiliation(s)
- J B Dacks
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| | | | | | | | | | | | | |
Collapse
|
378
|
Simpson AG, Patterson DJ. On core jakobids and excavate taxa: the ultrastructure of Jakoba incarcerata. J Eukaryot Microbiol 2001; 48:480-92. [PMID: 11456326 DOI: 10.1111/j.1550-7408.2001.tb00183.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cellular organisation of the 'excavate' flagellate Jakoba incarcerata Bernard, Simpson and Patterson 2000 is described. Cells have one nucleus and dictyosome. The putative mitochondria lack cristae. Two flagella (anterior and posterior) insert anterior to the feeding groove. The posterior flagellum bears a dorsal vane. An 'anterior' microtubular root arises against the anterior basal body. Two main microtubular roots, left and right, and a singlet 'root' arise around the posterior basal body and support the groove. Non-microtubular fibres termed 'A', 'B', 'I', and 'composite' associate with the right root. A multilaminar 'C' fibre associates with the left root. The cytoskeleton of J. incarcerata indicates a common ancestry with other excavate taxa (i.e. diplomonads, retortamonads, heteroloboseids, 'core jakobids', Malawimonas, Carpediemonas, and Trimastix). Overall, J. incarcerata is most similar to (other) core jakobids, namely Jakoba libera, Reclinomonas, and Histiona. We regard J. incarcerata as a core jakobid and identify the group by the synapomorphy 'vanes restricted to dorsal side of the posterior flagellum'. The anterior root and position of the B fibre (and presence of dense inclusions in the cartwheels and a conscpicuous singlet root-associated fibre) in J. incarcerata are novel for core jakobids and argue for close relationships with Trimastix and/or Heterolobosea. The C fibre is similar in substructure to the costal fibre of parabasalids and it is possible that the structures are homologous.
Collapse
Affiliation(s)
- A G Simpson
- Protist Research Laboratory, School of Biological Sciences, University of Sydney, New South Wales, Australia.
| | | |
Collapse
|
379
|
Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG. The highly reduced genome of an enslaved algal nucleus. Nature 2001; 410:1091-6. [PMID: 11323671 DOI: 10.1038/35074092] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly understood. Cryptomonads are the only chromophytes that still retain the enslaved red algal nucleus as a minute nucleomorph. Here we report complete sequences for all three nucleomorph chromosomes from the cryptomonad Guillardia theta. This tiny 551-kilobase eukaryotic genome is the most gene-dense known, with only 17 diminutive spliceosomal introns and 44 overlapping genes. Marked evolutionary compaction hundreds of millions of years ago eliminated nearly all the nucleomorph genes for metabolic functions, but left 30 for chloroplast-located proteins. To allow expression of these proteins, nucleomorphs retain hundreds of genetic-housekeeping genes. Nucleomorph DNA replication and periplastid protein synthesis require the import of many nuclear gene products across endoplasmic reticulum and periplastid membranes. The chromosomes have centromeres, but possibly only one loop domain, offering a means for studying eukaryotic chromosome replication, segregation and evolution.
Collapse
Affiliation(s)
- S Douglas
- National Research Council of Canada Institute for Marine Biosciences and Program in Evolutionary Biology, Canadian Institute of Advanced Research, 1411 Oxford Street, Halifax, Nova Scotia B3H 3ZI, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
380
|
Fast NM, Kissinger JC, Roos DS, Keeling PJ. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 2001; 18:418-26. [PMID: 11230543 DOI: 10.1093/oxfordjournals.molbev.a003818] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The phylum Apicomplexa encompasses a large number of intracellular protozoan parasites, including the causative agents of malaria (Plasmodium), toxoplasmosis (Toxoplasma), and many other human and animal diseases. Apicomplexa have recently been found to contain a relic, nonphotosynthetic plastid that has attracted considerable interest as a possible target for therapeutics. This plastid is known to have been acquired by secondary endosymbiosis, but when this occurred and from which type of alga it was acquired remain uncertain. Based on the molecular phylogeny of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes, we provide evidence that the apicomplexan plastid is homologous to plastids found in dinoflagellates-close relatives of apicomplexa that contain secondary plastids of red algal origin. Surprisingly, apicomplexan and dinoflagellate plastid-targeted GAPDH sequences were also found to be closely related to the plastid-targeted GAPDH genes of heterokonts and cryptomonads, two other groups that contain secondary plastids of red algal origin. These results address several outstanding issues: (1) apicomplexan and dinoflagellate plastids appear to be the result of a single endosymbiotic event which occurred relatively early in eukaryotic evolution, also giving rise to the plastids of heterokonts and perhaps cryptomonads; (2) apicomplexan plastids are derived from a red algal ancestor; and (3) the ancestral state of apicomplexan parasites was photosynthetic.
Collapse
Affiliation(s)
- N M Fast
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
381
|
Ochoa C, Martinez AR. Antiparasitic protozoan vaccines. Expert Opin Ther Pat 2001. [DOI: 10.1517/13543776.11.2.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
382
|
|
383
|
Abstract
The DNA sequence of one of the smallest eukaryotic genomes has recently been finished - that of the reduced nucleus, or nucleomorph, of an algal endosymbiont that resides within a cryptomonad host cell. Its sequence promises insights into chloroplast acquisition, the constraints on genome size and the basic workings of eukaryotic cells.
Collapse
Affiliation(s)
- P R Gilson
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Victoria 3125, Australia.
| |
Collapse
|
384
|
Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 2000; 290:972-7. [PMID: 11062127 DOI: 10.1126/science.290.5493.972] [Citation(s) in RCA: 773] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Current understanding of the higher order systematics of eukaryotes relies largely on analyses of the small ribosomal subunit RNA (SSU rRNA). Independent testing of these results is still limited. We have combined the sequences of four of the most broadly taxonomically sampled proteins available to create a roughly parallel data set to that of SSU rRNA. The resulting phylogenetic tree shows a number of striking differences from SSU rRNA phylogeny, including strong support for most major groups and several major supergroups.
Collapse
Affiliation(s)
- S L Baldauf
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| | | | | | | |
Collapse
|
385
|
van Dooren GG, Waller RF, Joiner KA, Roos DS, McFadden GI. Traffic jams: protein transport in Plasmodium falciparum. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:421-7. [PMID: 11006473 DOI: 10.1016/s0169-4758(00)01792-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein targeting in malaria parasites is a complex process, involving several cellular compartments that distinguish these cells from more familiar systems, such as yeast or mammals. At least a dozen distinct protein destinations are known. The best studied of these is the vestigial chloroplast (the apicoplast), but new tools promise rapid progress in understanding how Plasmodium falciparum and related apicomplexan parasites traffic proteins to their invasion-related organelles, and how they modify the host by trafficking proteins into its cytoplasm and plasma membrane. Here, Giel van Dooren and colleagues discuss recent insights into protein targeting via the secretory pathway in this fascinating and important system. This topic emerged as a major theme at the Molecular Approaches to Malaria conference, Lorne, Australia, 2-5 February 2000.
Collapse
Affiliation(s)
- G G van Dooren
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
386
|
Deane JA, Fraunholz M, Su V, Martin W, Durnford DG, McFadden GI. Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Protist 2000; 151:239-52. [PMID: 11079769 DOI: 10.1078/1434-4610-00022] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cryptomonads and chlorarachniophytes acquired photosynthesis independently by engulfing and retaining eukaryotic algal cells. The nucleus of the engulfed cells (known as a nucleomorph) is much reduced and encodes only a handful of the numerous essential plastid proteins normally encoded by the nucleus of chloroplast-containing organisms. In cryptomonads and chlorarachniophytes these proteins are thought to be encoded by genes in the secondary host nucleus. Genes for these proteins were potentially transferred from the nucleomorph (symbiont nucleus) to the secondary host nucleus; nucleus to nucleus intracellular gene transfers. We isolated complementary DNA clones (cDNAs) for chlorophyll-binding proteins from a cryptomonad and a chlorarachniophyte. In each organism these genes reside in the secondary host nuclei, but phylogenetic evidence, and analysis of the targeting mechanisms, suggest the genes were initially in the respective nucleomorphs (symbiont nuclei). Implications for origins of secondary endosymbiotic algae are discussed.
Collapse
Affiliation(s)
- J A Deane
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville VIC, Australia
| | | | | | | | | | | |
Collapse
|
387
|
|
388
|
Abstract
An extrachromosomal genome of between 27 and 35 kb has been described in several apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Examination of sequence data proved the genomes to be a remnant plastid genome, from which all genes encoding photosynthetic functions had been lost. Localisation studies had shown that the genome was located within a multi-walled organelle, anterior to the nucleus. This organelle had been previously described in ultrastructural studies of several genera of apicomplexa, but no function had been attributed to it. This invited review describes the evolution of knowledge on the apicomplexan plastid, then discusses current research findings on the likely role of the plastid in the Apicomplexa. How the plastid may be used to effect better drug treatments for apicomplexan diseases, and its potential as a marker for investigating phylogenetic relationships among the Apicomplexa, are discussed.
Collapse
Affiliation(s)
- M T Gleeson
- Department of Cell and Molecular Biology, Faculty of Science, University of Technology, Westbourne Street, Gore Hill NSW 2065, Sydney, Australia.
| |
Collapse
|
389
|
Maier UG, Douglas SE, Cavalier-Smith T. The nucleo morph genomes of cryptophytes and chlorarachniophytes. Protist 2000; 151:103-9. [PMID: 10965950 DOI: 10.1078/1434-4610-00011] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- U G Maier
- Cell Biology and Applied Botany, Philipps-University Marburg, Germany.
| | | | | |
Collapse
|
390
|
Abstract
Complex plastids, found in many alga groups, are surrounded by three or four membranes. Therefore, proteins of the complex plastids, which are encoded in the cell nucleus, must cross three or four membranes during transport to the plastid. To study this process we have developed a method for isolating transport-competent two membrane-bound plastids derived from the complex plastids of the cryptophyte Guillardia theta. This in vitro protein import system provides the first non-heterologous system for studying the import of proteins into four-membrane complex plastids. We use our import system as well as canine microsomes to demonstrate in the case of cryptomonads how nuclear proteins pass the first nucleomorph-encoded proteins the third and fourth membrane and discuss the potential mechanisms for protein transport across the second membrane.
Collapse
Affiliation(s)
- J Wastl
- Department of Cell Biology and Applied Botany, Philipps-University Marburg, Karl-von-Frisch-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
391
|
Abstract
Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.
Collapse
|
392
|
Zauner S, Fraunholz M, Wastl J, Penny S, Beaton M, Cavalier-Smith T, Maier UG, Douglas S. Chloroplast protein and centrosomal genes, a tRNA intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph. Proc Natl Acad Sci U S A 2000; 97:200-5. [PMID: 10618395 PMCID: PMC26640 DOI: 10.1073/pnas.97.1.200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/1999] [Accepted: 10/29/1999] [Indexed: 11/18/2022] Open
Abstract
Cells of several major algal groups are evolutionary chimeras of two radically different eukaryotic cells. Most of these "cells within cells" lost the nucleus of the former algal endosymbiont. But after hundreds of millions of years cryptomonads still retain the nucleus of their former red algal endosymbiont as a tiny relict organelle, the nucleomorph, which has three minute linear chromosomes, but their function and the nature of their ends have been unclear. We report extensive cryptomonad nucleomorph sequences (68.5 kb), from one end of each of the three chromosomes of Guillardia theta. Telomeres of the nucleomorph chromosomes differ dramatically from those of other eukaryotes, being repeats of the 23-mer sequence (AG)(7)AAG(6)A, not a typical hexamer (commonly TTAGGG). The subterminal regions comprising the rRNA cistrons and one protein-coding gene are exactly repeated at all three chromosome ends. Gene density (one per 0.8 kb) is the highest for any cellular genome. None of the 38 protein-coding genes has spliceosomal introns, in marked contrast to the chlorarachniophyte nucleomorph. Most identified nucleomorph genes are for gene expression or protein degradation; histone, tubulin, and putatively centrosomal ranbpm genes are probably important for chromosome segregation. No genes for primary or secondary metabolism have been found. Two of the three tRNA genes have introns, one in a hitherto undescribed location. Intergenic regions are exceptionally short; three genes transcribed by two different RNA polymerases overlap their neighbors. The reported sequences encode two essential chloroplast proteins, FtsZ and rubredoxin, thus explaining why cryptomonad nucleomorphs persist.
Collapse
Affiliation(s)
- S Zauner
- Cell Biology, Philipps-University Marburg, Karl-von-Frisch-Strasse, D-35032 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|