351
|
Vitamin C controls neuronal necroptosis under oxidative stress. Redox Biol 2019; 29:101408. [PMID: 31926631 PMCID: PMC6938857 DOI: 10.1016/j.redox.2019.101408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
Under physiological conditions, vitamin C is the main antioxidant found in the central nervous system and is found in two states: reduced as ascorbic acid (AA) and oxidized as dehydroascorbic acid (DHA). However, under pathophysiological conditions, AA is oxidized to DHA. The oxidation of AA and subsequent production of DHA in neurons are associated with a decrease in GSH concentrations, alterations in glucose metabolism and neuronal death. To date, the endogenous molecules that act as intrinsic regulators of neuronal necroptosis under conditions of oxidative stress are unknown. Here, we show that treatment with AA regulates the expression of pro- and antiapoptotic genes. Vitamin C also regulates the expression of RIPK1/MLKL, whereas the oxidation of AA in neurons induces morphological alterations consistent with necroptosis and MLKL activation. The activation of necroptosis by AA oxidation in neurons results in bubble formation, loss of membrane integrity, and ultimately, cellular explosion. These data suggest that necroptosis is a target for cell death induced by vitamin C.
Collapse
|
352
|
Evans M, Guthrie N, Zhang HK, Hooper W, Wong A, Ghassemi A. Vitamin C Bioequivalence from Gummy and Caplet Sources in Healthy Adults: A Randomized-Controlled Trial. J Am Coll Nutr 2019; 39:422-431. [DOI: 10.1080/07315724.2019.1684398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Andrew Wong
- Church & Dwight Co., Inc, Ewing, New Jersey, USA
| | | |
Collapse
|
353
|
Spankovich C, Le Prell CG. The role of diet in vulnerability to noise-induced cochlear injury and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4033. [PMID: 31795697 DOI: 10.1121/1.5132707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The influence of dietary nutrient intake on the onset and trajectory of hearing loss during aging and in mediating protection from challenges such as noise is an important relationship yet to be fully appreciated. Dietary intake provides essential nutrients that support basic cellular processes related to influencing cellular stress response, immune response, cardiometabolic status, neural status, and psychological well-being. Dietary quality has been shown to alter risk for essentially all chronic health conditions including hearing loss and tinnitus. Evidence of nutrients with antioxidant, anti-inflammatory, and anti-ischemic properties, and overall healthy diet quality as otoprotective strategies are slowly accumulating, but many questions remain unanswered. In this article, the authors will discuss (1) animal models in nutritional research, (2) evidence of dietary nutrient-based otoprotection, and (3) consideration of confounds and limitations to nutrient and dietary study in hearing sciences. Given that there are some 60 physiologically essential nutrients, unraveling the intricate biochemistry and multitude of interactions among nutrients may ultimately prove infeasible; however, the wealth of available data suggesting healthy nutrient intake to be associated with improved hearing outcomes suggests the development of evidence-based guidance regarding diets that support healthy hearing may not require precise understanding of all possible interactions among variables. Clinical trials evaluating otoprotective benefits of nutrients should account for dietary quality, noise exposure history, and exercise habits as potential covariates that may influence the efficacy and effectiveness of test agents; pharmacokinetic measures are also encouraged.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
354
|
Vitamin C in Plants: From Functions to Biofortification. Antioxidants (Basel) 2019; 8:antiox8110519. [PMID: 31671820 PMCID: PMC6912510 DOI: 10.3390/antiox8110519] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin C (l-ascorbic acid) is an excellent free radical scavenger, not only for its capability to donate reducing equivalents but also for the relative stability of the derived monodehydroascorbate radical. However, vitamin C is not only an antioxidant, since it is also a cofactor for numerous enzymes involved in plant and human metabolism. In humans, vitamin C takes part in various physiological processes, such as iron absorption, collagen synthesis, immune stimulation, and epigenetic regulation. Due to the functional loss of the gene coding for l-gulonolactone oxidase, humans cannot synthesize vitamin C; thus, they principally utilize plant-based foods for their needs. For this reason, increasing the vitamin C content of crops could have helpful effects on human health. To achieve this objective, exhaustive knowledge of the metabolism and functions of vitamin C in plants is needed. In this review, the multiple roles of vitamin C in plant physiology as well as the regulation of its content, through biosynthetic or recycling pathways, are analyzed. Finally, attention is paid to the strategies that have been used to increase the content of vitamin C in crops, emphasizing not only the improvement of nutritional value of the crops but also the acquisition of plant stress resistance.
Collapse
|
355
|
Ling W, Hao Y, Wang H, Xu H, Huang X. A novel Cu-metal-organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors. NANOTECHNOLOGY 2019; 30:424002. [PMID: 31368448 DOI: 10.1088/1361-6528/ab30b6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a novel Cu-metal-organic framework (MOF) with two-dimensional layered topology and techniques to integrate it with flexible sensors for electrochemical detection. The unique Cu-MOF is formed by coordinating Cu2+ ions with carboxylic oxygen groups, resulting in layered structures interlayerly connected by hydrogen bonds. The resulting flexible sensors exhibit capability in detecting ascorbic acid (AA), hydrogen peroxide (H2O2) and L-Histidine (L-His) with detection limits of 2.94, 4.1 and 5.3 μM, respectively. The linear ranges of the sensors compare favorably with other sensors based on rigid platforms that offer similar sensitivity. According to the result of cytotoxicity study, the MOFs-modified flexible sensors exhibit good biocompatibility to cells, suggesting potential use in in vivo chemical detection. The results presented here demonstrate applications of MOFs in facilitating highly stable electrochemical detection in flexible electronics, and provide fundamental knowledge about structure-dependent electrochemical properties of MOFs and changing behaviors of flexible MOFs membranes under external strain. More MOFs-based flexible sensors may be developed to explore different properties of MOFs by varying their compositions and structures for healthcare and clinic applications.
Collapse
Affiliation(s)
- Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
356
|
Spoelstra-de Man AME, Oudemans-van Straaten HM, Elbers PWG. Vitamin C and thiamine in critical illness. BJA Educ 2019; 19:290-296. [PMID: 33456905 DOI: 10.1016/j.bjae.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 01/29/2023] Open
Affiliation(s)
- A M E Spoelstra-de Man
- Amsterdam University Medical Centers, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | | | - P W G Elbers
- Amsterdam University Medical Centers, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| |
Collapse
|
357
|
Abstract
Some vitamins have beneficial effects on cardiovascular diseases, normalizing platelet function and preventing their excess activation. Anti-platelet vitamins can act directly through inhibitory biochemical pathways in platelets or indirectly by preventing damage to the endothelium or low-density lipoprotein from oxidation. As a rule, each vitamin alone is a weak inhibitor of platelet aggregation. However, in combination, they may act synergistically or enhance the effects of endogenous anti-platelet compounds, such as prostacyclin or nitric oxide, and appear to have a sufficient anti-thrombotic effect. This review will focus on vitamins, which inhibit platelet activation and the mechanisms of their action. The relationship between the vitamins that inhibit platelet aggregation and vascular diseases is examined.
Collapse
Affiliation(s)
- Gennadi Kobzar
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
358
|
Bariexca T, Ezdebski J, Redan BW, Vinson J. Pure Polyphenols and Cranberry Juice High in Anthocyanins Increase Antioxidant Capacity in Animal Organs. Foods 2019; 8:foods8080340. [PMID: 31408979 PMCID: PMC6727083 DOI: 10.3390/foods8080340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Anthocyanins and the broader class of polyphenols are strong antioxidants in vitro. Polyphenols are one of the major antioxidants in plant foods, and the beverages derived from them. There is extensive evidence in the literature that polyphenols are beneficial to health. In order to be bioactive in vivo, they need to be bioavailable and be transported from the circulation to target organs. To date, there have been few studies testing the extent to which polyphenols and especially anthocyanins affect the antioxidant capacity of animal organs. In our first pilot study, we investigated how three pure polyphenols (the flavonoids quercetin, catechin and hesperetin) given to rats by intraperitoneal injection (49 to 63 mg/kg) affected their organ antioxidant capacity. This was followed by a subsequent study that injected one ml of 100% cranberry juice (high in anthocyanins) to hamsters. Antioxidant capacity of animal organs was determined by using the ferric reducing antioxidant power (FRAP) colorimetric assay on methanolic extracts of select rat organs (i.e., liver, kidney, heart, prostate and brain) and in the hamster organs (i.e., liver, kidney, heart, bladder and brain). Overall the results showed that antioxidant capacity was significantly increased (p < 0.05) in experimental vs. control organs. Analysis of organs by high performance liquid chromatography (HPLC) from both animal studies provided evidence of polyphenol metabolites in the organ extracts. Taken together, this study provides data that the administration of anthocyanins and other polyphenols cause an increase in organ antioxidant capacity in two animal models. This result supports the growing evidence for the hypothesis that dietary polyphenols reduce the risk and extent of various chronic disease at the disease site.
Collapse
Affiliation(s)
- Tracy Bariexca
- Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, PA 18510, USA
| | - Janice Ezdebski
- Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, PA 18510, USA
| | - Benjamin W Redan
- Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Food Processing Science and Technology, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, IL 60501, USA
| | - Joe Vinson
- Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, PA 18510, USA.
| |
Collapse
|
359
|
Vitamin C in the Presence of Sub-Inhibitory Concentration of Aminoglycosides and Fluoroquinolones Alters Proteus mirabilis Biofilm Inhibitory Rate. Antibiotics (Basel) 2019; 8:antibiotics8030116. [PMID: 31405233 PMCID: PMC6783857 DOI: 10.3390/antibiotics8030116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022] Open
Abstract
Vitamin C has antimicrobial activity and is often used as an oral supplement accompanying antibiotic treatment in urinary tract infections (UTI). Proteus mirabilis is the third common species responsible for UTIs that are mostly treated with fluoroquinolones or aminoglycosides. Treatment of the UTI caused by P. mirabilis is problematic due to the ability to form biofilm on the urinary catheters. The aim of the study was to evaluate the influence of ascorbic acid in combination with antibiotics on P. mirabilis abilities to form biofilm. The susceptibility of P. mirabilis reference strain ATCC® 29906™ and four clinical strains isolated from the urine samples of patients with urinary catheter were evaluated according to EUCAST recommendations. The influence of ascorbic acid (0.4 mg × mL−1) in combination with antibiotics on biofilm formation was evaluated spectrophotometrically. Aminoglycosides at sub-inhibitory concentrations more successfully limited biofilm formation by P. mirabilis strains without ascorbic acid addition. Inhibition rate differences at the lowest concentrations of gentamicin and amikacin were statistically significant (p ≤ 0.05). Ascorbic acid addition to the culture medium limited the inhibitory effect of fluoroquinolones, facilitating biofilm formation by P. mirabilis strains. The addition of ascorbic acid during aminoglycosides therapy may disturb treatment of urinary tract infections related to the presence of P. mirabilis biofilm.
Collapse
|
360
|
Ryszawy D, Pudełek M, Catapano J, Ciarach M, Setkowicz Z, Konduracka E, Madeja Z, Czyż J. High doses of sodium ascorbate interfere with the expansion of glioblastoma multiforme cells in vitro and in vivo. Life Sci 2019; 232:116657. [PMID: 31306660 DOI: 10.1016/j.lfs.2019.116657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Abstract
AIMS Constant development of chemotherapeutic strategies has considerably improved the efficiency of tumor treatment. However, adverse effects of chemotherapeutics enforce premature treatment cessation, which leads to the tumor recurrence and accelerated death of oncologic patients. Recently, sodium ascorbate (ASC) has been suggested as a promising drug for the adjunctive chemotherapy of glioblastoma multiforme (GBM) and prostate cancer (PC). To estimate whether ASC can interfere with tumor recurrence between the first and second-line chemotherapy, we analyzed the effect of high ASC doses on the expansion of cells in vitro and in vivo. MAIN METHODS Brightfield microscopy-assisted approaches were used to estimate the effect of ASC (1-14 mM) on the morphology and invasiveness of human GBM, rat PC and normal mouse 3T3 cells, whereas cytostatic/pro-apoptotic activity of ASC was estimated with flow cytometry. These assays were complemented by the in vitro CellROX-assisted analyses of intracellular oxidative stress and in vivo estimation of GBM tumor invasion. KEY FINDINGS ASC considerably decreased the proliferation and motility of GBM and PC cells. This effect was accompanied by intracellular ROS over-production and necrotic death of tumor cells, apparently resulting from their "autoschizis". In vivo studies demonstrated the retardation of GBM tumor growth and invasion in the rats undergone intravenous ASC administration, in the absence of detectable systemic adverse effects of ASC. SIGNIFICANCE Our data support previous notions on anti-tumor activity of high ASC doses. However, autoschizis-related cell responses to ASC indicate that its application in human adjunctive tumor therapy should be considered with caution.
Collapse
Affiliation(s)
- Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Maciej Pudełek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jessica Catapano
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Małgorzata Ciarach
- Department of Neuroanatomy, Faculty of Biology, Gronostajowa 9, 30-387 Kraków, Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy, Faculty of Biology, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Konduracka
- Coronary Disease Clinic, Faculty of Medicine, Jagiellonian University, Prądnicka 80, 31-202 Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
361
|
Łukawski M, Dałek P, Borowik T, Foryś A, Langner M, Witkiewicz W, Przybyło M. New oral liposomal vitamin C formulation: properties and bioavailability. J Liposome Res 2019; 30:227-234. [PMID: 31264495 DOI: 10.1080/08982104.2019.1630642] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vitamin C is the exogenous compound necessary for a variety of metabolic processes; therefore, the efficient delivery is critical for the maintenance of body homeostasis. Vitamin C pharmacokinetics and low quantities in processed foodstuff, necessitates its continuous supplementation. In the paper, we present the new liposomal formulation of vitamin C free of harmful organic solvents. The formulation was quantitatively characterized with respect to its chemically composition and nano-structuring. The vitamin C accessibility to cells from the formulation was evaluated using evidence derived from experiments performed on cell cultures. Finally, the enhanced bioavailability of vitamin C from the formulation was demonstrated in the medical experiment.
Collapse
Affiliation(s)
- Maciej Łukawski
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Paulina Dałek
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland.,Lipid Systems Ltd, Wrocław, Poland
| | | | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Marek Langner
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland.,Lipid Systems Ltd, Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Specialized Hospital in Wrocław, Wrocław, Poland
| | - Magdalena Przybyło
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland.,Lipid Systems Ltd, Wrocław, Poland
| |
Collapse
|
362
|
Reckelhoff JF, Romero DG, Yanes Cardozo LL. Sex, Oxidative Stress, and Hypertension: Insights From Animal Models. Physiology (Bethesda) 2019; 34:178-188. [PMID: 30968750 DOI: 10.1152/physiol.00035.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the mechanisms responsible for blood pressure (BP) regulation is thought to be oxidative stress. In this review, we highlight preclinical studies that strongly support a role for oxidative stress in development and maintenance of hypertension in male animals, based on depressor responses to antioxidants, particularly tempol and apocynin. In females, oxidative stress seems to be important in the initial development of hypertension. However, whether maintenance of hypertension in females is mediated by oxidative stress is not clear. In clinical studies, pharmacological intervention to reduce BP with antioxidants has conflicting results, mostly negative. This review will discuss the uncertainties regarding blood pressure control and oxidative stress and potential reasons for these outcomes.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| | - Damian G Romero
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| | - Licy L Yanes Cardozo
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Medicine, Endocrinology Division, University of Mississippi Medical Center , Jackson, Mississippi.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
363
|
Neela S, Fanta SW. Review on nutritional composition of orange-fleshed sweet potato and its role in management of vitamin A deficiency. Food Sci Nutr 2019; 7:1920-1945. [PMID: 31289641 PMCID: PMC6593376 DOI: 10.1002/fsn3.1063] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/13/2019] [Accepted: 04/13/2019] [Indexed: 01/09/2023] Open
Abstract
A wide variety of the roots and tubers plays a major role in human diet, animal feed, and industrial raw materials. Sweet potatoes (SPs) play an immense role in human diet and considered as second staple food in developed and underdeveloped countries. Moreover, SP production and management need low inputs compared to the other staple crops. The color of SP flesh varied from white, yellow, purple, and orange. Scientific studies reported the diversity in SP flesh color and connection with nutritional and sensory acceptability. Among all, orange-fleshed sweet potato (OFSP) has been attracting food technologists and nutritionists due to its high content of carotenoids and pleasant sensory characteristics with color. Researchers reported the encouraging health effects of OFSP intervention into the staple food currently practicing in countries such as Uganda, Mozambique, Kenya, and Nigeria. Scientific reviews on the OFSP nutritional composition and role in vitamin A management (VAM) are hardly available in the published literature. So, this review is conducted to address the detailed nutritional composition (proximate, mineral, carotenoids, vitamins, phenolic acids, and antioxidant properties), role in vitamin A deficiency (VAD) management, and different food products that can be made from OFSP.
Collapse
Affiliation(s)
- Satheesh Neela
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology Bahir Dar University Bahir Dar Ethiopia
| | - Solomon W Fanta
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology Bahir Dar University Bahir Dar Ethiopia
| |
Collapse
|
364
|
Solingapuram Sai KK, Bashetti N, Chen X, Norman S, Hines JW, Meka O, Kumar JVS, Devanathan S, Deep G, Furdui CM, Mintz A. Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer. EJNMMI Res 2019; 9:43. [PMID: 31101996 PMCID: PMC6525227 DOI: 10.1186/s13550-019-0513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS. However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in developing new therapies and stratifying patients to therapies that are affected by tumor ROS. METHODS We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we performed microPET blocking experiments using nonradioactive KS1 as a blocker. RESULTS KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels) versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (> 94%) and specific activity (~ 100 GBq/μmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios. CONCLUSION This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo. Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular diseases affected by ROS.
Collapse
Affiliation(s)
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Skylar Norman
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Justin W. Hines
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Omsai Meka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - J. V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
365
|
Marik PE, Liggett A. Adding an orange to the banana bag: vitamin C deficiency is common in alcohol use disorders. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:165. [PMID: 31077227 PMCID: PMC6511125 DOI: 10.1186/s13054-019-2435-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND At least a third of the world's population consumes alcohol regularly. Patients with alcohol use disorders (AUDs) are frequently hospitalized for both alcohol-related and unrelated medical conditions. It is well recognized that patients with an AUD are thiamine deficient with thiamine replacement therapy being considered the standard of care. However, the incidence of vitamin C deficiency in this patient population has been poorly defined. METHODS In this retrospective, observational study, we recorded the admission vitamin C level in patients with an AUD admitted to our medical intensive care unit (MICU) over a 1-year period. In addition, we recorded relevant clinical and laboratory data including the day 2 and day 3 vitamin C level following empiric treatment with vitamin C. Septic patients were excluded from this study. RESULTS Sixty-nine patients met the inclusion criteria for this study. The patients' mean age was 53 ± 14 years; 52 patients (75%) were males. Severe alcohol withdrawal syndrome was the commonest admitting diagnosis (46%). Eighteen patients (26%) had cirrhosis as the admitting diagnosis with 18 (13%) patients admitted due to alcohol/drug intoxication. Forty-six patients (67%) had evidence of acute alcoholic hepatitis. The mean admission vitamin C level was 17.0 ± 18.1 μmol/l (normal 40-60 μmol/l). Sixty-one (88%) patients had a level less than 40 μmol/l (subnormal) while 52 patients (75%) had hypovitaminosis C (level < 23 μmol/l). None of the variables recorded predicted the vitamin C level. Various vitamin C replacement dosing strategies were used. A 1.5-g loading dose, followed by 500-mg PO q 6, was effective in restoring blood levels to normal by day 2. CONCLUSION Our results suggest that hypovitaminosis C is exceedingly common in patients with an AUD admitted to an intensive care unit and that all such patients should receive supplementation with vitamin C in addition to thiamine. Additional studies are required to confirm the findings of our observational study and to determine the optimal vitamin C dosing strategy.
Collapse
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, 721 Fairfax Ave, Suite 423, Norfolk, VA, 23507, USA.
| | - Amanda Liggett
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, 721 Fairfax Ave, Suite 423, Norfolk, VA, 23507, USA. .,Department of Medicine, Eastern Virginia Medical School, 721 Fairfax ave, Norfolk, VA, 23507, USA.
| |
Collapse
|
366
|
Rozemeijer S, Spoelstra-de Man AME, Coenen S, Smit B, Elbers PWG, de Grooth HJ, Girbes ARJ, Oudemans-van Straaten HM. Estimating Vitamin C Status in Critically Ill Patients with a Novel Point-of-Care Oxidation-Reduction Potential Measurement. Nutrients 2019; 11:nu11051031. [PMID: 31071996 PMCID: PMC6566553 DOI: 10.3390/nu11051031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
Vitamin C deficiency is common in critically ill patients. Vitamin C, the most important antioxidant, is likely consumed during oxidative stress and deficiency is associated with organ dysfunction and mortality. Assessment of vitamin C status may be important to identify patients who might benefit from vitamin C administration. Up to now, vitamin C concentrations are not available in daily clinical practice. Recently, a point-of-care device has been developed that measures the static oxidation-reduction potential (sORP), reflecting oxidative stress, and antioxidant capacity (AOC). The aim of this study was to determine whether plasma vitamin C concentrations were associated with plasma sORP and AOC. Plasma vitamin C concentration, sORP and AOC were measured in three groups: healthy volunteers, critically ill patients, and critically ill patients receiving 2- or 10-g vitamin C infusion. Its association was analyzed using regression models and by assessment of concordance. We measured 211 samples obtained from 103 subjects. Vitamin C concentrations were negatively associated with sORP (R2 = 0.816) and positively associated with AOC (R2 = 0.842). A high concordance of 94–100% was found between vitamin C concentration and sORP/AOC. Thus, plasma vitamin C concentrations are strongly associated with plasma sORP and AOC, as measured with a novel point-of-care device. Therefore, measuring sORP and AOC at the bedside has the potential to identify and monitor patients with oxidative stress and vitamin C deficiency.
Collapse
Affiliation(s)
- Sander Rozemeijer
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
- Research VUmc Intensive Care (REVIVE), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Science (ACS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Medical Data Science (AMDS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity Institute (AI&II), 1081 HV Amsterdam, The Netherlands.
| | - Angélique M E Spoelstra-de Man
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
- Research VUmc Intensive Care (REVIVE), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Science (ACS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Medical Data Science (AMDS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity Institute (AI&II), 1081 HV Amsterdam, The Netherlands.
| | - Sophie Coenen
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
- Research VUmc Intensive Care (REVIVE), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Science (ACS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Medical Data Science (AMDS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity Institute (AI&II), 1081 HV Amsterdam, The Netherlands.
| | - Bob Smit
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
- Research VUmc Intensive Care (REVIVE), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Science (ACS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Medical Data Science (AMDS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity Institute (AI&II), 1081 HV Amsterdam, The Netherlands.
| | - Paul W G Elbers
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
- Research VUmc Intensive Care (REVIVE), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Science (ACS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Medical Data Science (AMDS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity Institute (AI&II), 1081 HV Amsterdam, The Netherlands.
| | - Harm-Jan de Grooth
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
- Research VUmc Intensive Care (REVIVE), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Science (ACS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Medical Data Science (AMDS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity Institute (AI&II), 1081 HV Amsterdam, The Netherlands.
| | - Armand R J Girbes
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
- Research VUmc Intensive Care (REVIVE), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Science (ACS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Medical Data Science (AMDS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity Institute (AI&II), 1081 HV Amsterdam, The Netherlands.
| | - Heleen M Oudemans-van Straaten
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
- Research VUmc Intensive Care (REVIVE), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Science (ACS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Medical Data Science (AMDS), 1081 HV Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity Institute (AI&II), 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
367
|
Abstract
Over the past century, the notion that vitamin C can be used to treat cancer has generated much controversy. However, new knowledge regarding the pharmacokinetic properties of vitamin C and recent high-profile preclinical studies have revived interest in the utilization of high-dose vitamin C for cancer treatment. Studies have shown that pharmacological vitamin C targets many of the mechanisms that cancer cells utilize for their survival and growth. In this Opinion article, we discuss how vitamin C can target three vulnerabilities many cancer cells share: redox imbalance, epigenetic reprogramming and oxygen-sensing regulation. Although the mechanisms and predictive biomarkers that we discuss need to be validated in well-controlled clinical trials, these new discoveries regarding the anticancer properties of vitamin C are promising to help identify patient populations that may benefit the most from high-dose vitamin C therapy, developing effective combination strategies and improving the overall design of future vitamin C clinical trials for various types of cancer.
Collapse
Affiliation(s)
- Bryan Ngo
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin M Van Riper
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jihye Yun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
368
|
Zhang X, Li W, Sun X, Li J, Wu W, Liu H. Vitamin C protects against defects induced by juglone during porcine oocyte maturation. J Cell Physiol 2019; 234:19574-19581. [PMID: 30980384 DOI: 10.1002/jcp.28555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Juglone, a naphthoquinone isolated from many species of the Juglandaceae family, has been used in traditional Chinese medicine for centuries because of its antiviral, antibacterial, and antitumor activities. However, the toxicity of juglone has also been demonstrated. Here, we used porcine oocytes as a model to explore the effects of juglone on oocyte maturation and studied the impact of vitamin C (VC) administration on juglone exposure-induced meiosis defects. Exposure to juglone significantly restricted cumulus cell expansion and decreased the first polar body extrusion. In addition, juglone exposure disturbed spindle organization, actin assembly, and the distribution of mitochondria during oocyte meiosis, while the acetylation level of α-tubulin was also reduced. These defects were all ameliorated by VC administration. Our findings indicate that juglone exposure induced meiotic failure in porcine oocytes, while VC protected against these defects during porcine oocyte maturation by ameliorating the organization of the cytoskeleton and mitochondrial distribution.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weijian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaofan Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
369
|
Ferrada L, Salazar K, Nualart F. Metabolic control by dehydroascorbic acid: Questions and controversies in cancer cells. J Cell Physiol 2019; 234:19331-19338. [DOI: 10.1002/jcp.28637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Luciano Ferrada
- Departamento de Biología Celular, Laboratorio de Neurobiología y células madres Neuro‐CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| | - Katterine Salazar
- Departamento de Biología Celular, Laboratorio de Neurobiología y células madres Neuro‐CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Laboratorio de Neurobiología y células madres Neuro‐CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| |
Collapse
|
370
|
Hemilä H, Chalker E. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis. Nutrients 2019; 11:E708. [PMID: 30934660 PMCID: PMC6521194 DOI: 10.3390/nu11040708] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
A number of controlled trials have previously found that in some contexts, vitamin C can have beneficial effects on blood pressure, infections, bronchoconstriction, atrial fibrillation, and acute kidney injury. However, the practical significance of these effects is not clear. The purpose of this meta-analysis was to evaluate whether vitamin C has an effect on the practical outcomes: length of stay in the intensive care unit (ICU) and duration of mechanical ventilation. We identified 18 relevant controlled trials with a total of 2004 patients, 13 of which investigated patients undergoing elective cardiac surgery. We carried out the meta-analysis using the inverse variance, fixed effect options, using the ratio of means scale. In 12 trials with 1766 patients, vitamin C reduced the length of ICU stay on average by 7.8% (95% CI: 4.2% to 11.2%; p = 0.00003). In six trials, orally administered vitamin C in doses of 1⁻3 g/day (weighted mean 2.0 g/day) reduced the length of ICU stay by 8.6% (p = 0.003). In three trials in which patients needed mechanical ventilation for over 24 hours, vitamin C shortened the duration of mechanical ventilation by 18.2% (95% CI 7.7% to 27%; p = 0.001). Given the insignificant cost of vitamin C, even an 8% reduction in ICU stay is worth exploring. The effects of vitamin C on ICU patients should be investigated in more detail.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, POB 41, FI-00014 Helsinki, Finland.
| | - Elizabeth Chalker
- School of Public Health, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
371
|
D'Costa MR, Winkler NS, Milliner DS, Norby SM, Hickson LJ, Lieske JC. Oxalosis Associated With High-Dose Vitamin C Ingestion in a Peritoneal Dialysis Patient. Am J Kidney Dis 2019; 74:417-420. [PMID: 30910370 DOI: 10.1053/j.ajkd.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023]
Abstract
We report a case of systemic oxalosis involving the eyes and joints due to long-term use of high-dose vitamin C in a patient receiving maintenance peritoneal dialysis (PD). This 76-year-old woman with autosomal dominant polycystic kidney disease underwent living unrelated kidney transplantation 10 years earlier. The transplant failed 6 months before presentation, and she initiated hemodialysis therapy before transitioning to PD therapy 4 months later. During the month before presentation, the patient noted worsening arthralgias and decreased vision. Ophthalmologic examination revealed proliferative retinopathy and calcium oxalate crystals. Plasma oxalate level was markedly elevated at 187 (reference range, <1.7) μmol/L, and urine oxalate-creatinine ratio was high (0.18mg/mg). The patient reported taking up to 4g of vitamin C per day for several years. Workup for causes of primary and secondary hyperoxaluria was otherwise negative. Vitamin C use was discontinued, and the patient transitioned to daily hemodialysis for 2 weeks. Plasma oxalate level before the dialysis session decreased but remained higher (30-53μmol/L) than typical for dialysis patients. Upon discharge, the patient remained on thrice-weekly hemodialysis therapy with stabilized vision and improved joint symptoms. This case highlights the risk of high-dose vitamin C use in patients with advanced chronic kidney disease, especially when maintained on PD therapy.
Collapse
Affiliation(s)
| | | | - Dawn S Milliner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN; The Rare Kidney Stone Consortium, Mayo Clinic, Rochester, MN
| | - Suzanne M Norby
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN; The Rare Kidney Stone Consortium, Mayo Clinic, Rochester, MN; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
372
|
Hanko M, Švorc Ľ, Planková A, Mikuš P. Overview and recent advances in electrochemical sensing of glutathione - A review. Anal Chim Acta 2019; 1062:1-27. [PMID: 30947984 DOI: 10.1016/j.aca.2019.02.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
The present paper is aimed at providing an overview of the recent advances in the electrochemical sensing of glutathione (GSH), an important electrochemically and biologically active molecule, for the period 2012-2018. Herein, the analytical performances of newly developed electrochemical methods, procedures and protocols for GSH sensing are comprehensively and critically discussed with respect to the type of method, electrodes used (new electrode modifications, advanced materials and formats), sample matrices, and basic validation parameters obtained (limit of detection, linear dynamic range, precision, selectivity/evaluation of interferences). This paper considers electrochemical methods used alone as well as the hyphenated methods with electrochemical detection (ECD), such as HPLC-ECD or CE-ECD. The practical applicability of the platforms developed for GSH detection and quantification is mostly focused on pharmaceutical and biomedical analysis. The most significant electrochemical approaches for GSH detection in multicomponent analyte samples and multicomponent matrices and for real-time in vivo GSH analysis are highlighted. The great variability in the electrochemical techniques, electrode approaches, and obtainable performance parameters, discussed in this review, brought new insights not only on current GSH and glutathione disulfide (GSSG) determinations, but, along with this, on the advances in electrochemical analysis from a more general point of view.
Collapse
Affiliation(s)
- Michal Hanko
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Alexandra Planková
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Peter Mikuš
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic; Comenius University in Bratislava, Faculty of Pharmacy, Toxicological and Antidoping Center, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
373
|
|
374
|
Blaszczak W, Barczak W, Masternak J, Kopczyński P, Zhitkovich A, Rubiś B. Vitamin C as a Modulator of the Response to Cancer Therapy. Molecules 2019; 24:E453. [PMID: 30695991 PMCID: PMC6384696 DOI: 10.3390/molecules24030453] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 01/04/2023] Open
Abstract
Ascorbic acid (vitamin C) has been gaining attention as a potential treatment for human malignancies. Various experimental studies have shown the ability of pharmacological doses of vitamin C alone or in combinations with clinically used drugs to exert beneficial effects in various models of human cancers. Cytotoxicity of high doses of vitamin C in cancer cells appears to be related to excessive reactive oxygen species generation and the resulting suppression of the energy production via glycolysis. A hallmark of cancer cells is a strongly upregulated aerobic glycolysis, which elevates its relative importance as a source of ATP (Adenosine 5'-triphosphate). Aerobic glycolysis is maintained by a highly increased uptake of glucose, which is made possible by the upregulated expression of its transporters, such as GLUT-1, GLUT-3, and GLUT-4. These proteins can also transport the oxidized form of vitamin C, dehydroascorbate, permitting its preferential uptake by cancer cells with the subsequent depletion of critical cellular reducers as a result of ascorbate formation. Ascorbate also has a potential to affect other aspects of cancer cell metabolism due to its ability to promote reduction of iron(III) to iron(II) in numerous cellular metalloenzymes. Among iron-dependent dioxygenases, important targets for stimulation by vitamin C in cancer include prolyl hydroxylases targeting the hypoxia-inducible factors HIF-1/HIF-2 and histone and DNA demethylases. Altered metabolism of cancer cells by vitamin C can be beneficial by itself and promote activity of specific drugs.
Collapse
Affiliation(s)
- Wiktoria Blaszczak
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
| | - Wojciech Barczak
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
| | - Julia Masternak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland.
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| |
Collapse
|
375
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
376
|
Argoubi W, Rabti A, Ben Aoun S, Raouafi N. Sensitive detection of ascorbic acid using screen-printed electrodes modified by electroactive melanin-like nanoparticles. RSC Adv 2019; 9:37384-37390. [PMID: 35542308 PMCID: PMC9075527 DOI: 10.1039/c9ra07948c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, we report on the design of an enzyme-less sensitive and selective electrochemical electrode for ascorbic acid (AA) detection using a modified screen-printed electrode of melanin-like nanoparticles (Mel-NPs). Cyclic voltammetry shows that the melanin-modified electrode exhibits high electrocatalytic activity for ascorbic acid. The melanin-like nanoparticles serve as a shuttle to transport electrons from ascorbic acid to the electrode surface. The modified electrode is endowed with a large dynamic window ranging from 5 to 500 ppb. The detection and quantification limits were estimated to be 0.07 and 0.23 ppb, respectively. The modified electrode was successfully used to determine AA in human blood serum, urine and saliva with satisfactory recovery levels. A melanin-like nanoparticle modified screen-printed electrode for enzyme-less detection of ascorbic acid.![]()
Collapse
Affiliation(s)
- Wicem Argoubi
- Tunis El Manar University
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Tunis
- Tunisia
| | - Amal Rabti
- Tunis El Manar University
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Tunis
- Tunisia
| | - Sami Ben Aoun
- Taibah University
- Faculty of Science
- Chemistry Department
- Al-Madinah Al-Munawarah
- Saudi Arabia
| | - Noureddine Raouafi
- Tunis El Manar University
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Tunis
- Tunisia
| |
Collapse
|
377
|
Ashor AW, Brown R, Keenan PD, Willis ND, Siervo M, Mathers JC. Limited evidence for a beneficial effect of vitamin C supplementation on biomarkers of cardiovascular diseases: an umbrella review of systematic reviews and meta-analyses. Nutr Res 2019; 61:1-12. [PMID: 30683434 DOI: 10.1016/j.nutres.2018.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Vitamin C is an essential nutrient with important antioxidant properties. Higher vitamin C intake appears to be associated with positive effects on cardiovascular risk factors in cohort studies, whereas large randomized controlled clinical trials did not confirm the benefits of supplemental vitamin C on cardiovascular disease (CVD) outcomes. In this overview of systematic reviews and meta-analyses, an "umbrella review," we investigated the effects of vitamin C supplementation on biomarkers of cardiovascular risk, that is, arterial stiffness, blood pressure, endothelial function, glycemic control, and lipid profile. In addition, we assessed the strength of the evidence and the methodological qualities of available studies. Two independent investigators searched 4 databases (Medline, Embase, Scopus, and The Cochrane Library databases) from inception until February 2018. After full text examination, 10 systematic reviews and meta-analyses were included in the umbrella review which included 6409 participants. Three systematic reviews investigated the effects of vitamin C on endothelial function with contrasting results (2 reviews reported a significant effect, and all 3 showed a high heterogeneity [I2> 50%]); 1 systematic review reported significant improvement for each of the following risk factors: blood pressure, and blood concentrations of glucose, low-density lipoprotein cholesterol, and triglycerides. There were no overall effects of vitamin C on arterial stiffness and blood concentration of insulin, total cholesterol, and high-density lipoprotein cholesterol, but subgroup analyses revealed some evidence for significant improvements in subpopulations with higher body mass index, higher plasma concentrations of glucose or cholesterol, and low plasma concentration of vitamin C. Results from this umbrella review emphasize the weakness of the current evidence base about effects of vitamin C supplementation on markers of CVD risk. There is limited evidence that some population subgroups (older people, the obese, those with lower vitamin C status at baseline, and those at higher CVD risk) may be more responsive to vitamin C supplementation and offer opportunities for tailored nutritional interventions to improve cardiometabolic health. Future studies should implement a selective recruitment strategy that is informed by evidence-based literature synthesis.
Collapse
Affiliation(s)
- Ammar W Ashor
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, NE4 5PL, UK; Department of Pharmacology, College of Medicine, Mustansiriyah University, Baghdad, Iraq; National Diabetes Center, Mustansiriyah University, Baghdad, Iraq.
| | - Rebecca Brown
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, NE4 5PL, UK
| | - Patrick D Keenan
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, NE4 5PL, UK
| | - Naomi D Willis
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, NE4 5PL, UK
| | - Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, NE4 5PL, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne, NE4 5PL, UK
| |
Collapse
|
378
|
Wu S, Wu G, Wu H. Hemolytic jaundice induced by pharmacological dose ascorbic acid in glucose-6-phosphate dehydrogenase deficiency: A case report. Medicine (Baltimore) 2018; 97:e13588. [PMID: 30572463 PMCID: PMC6319863 DOI: 10.1097/md.0000000000013588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RATIONALE Hemolysis induced by high dose ascorbic acid (AA) in patients with G6PD deficiency has been reported, but is rare. To our knowledge, this is the first reported case of a male with G6PD deficiency, coexpressed with cholecystolithiasis and cholecystitis, who developed extreme hemolysis and hyperbilirubinemia after receiving pharmacological doses ascorbic acid infusion. PATIENT CONCERNS A 27-year-old man history with glucose-6-phosphate dehydrogenase deficiency was admitted to our hospital because of cholecystolithiasis and cholecystitis. He appeared with scleral jaundice and very deep colored urine after receiving pharmacological doses ascorbic acid infusion. DIAGNOSES Clinical findings when combined with his medical history and various laboratory results confirmed the diagnosis as hemolysis and hyperbilirubinemia induced by ascorbic acid. INTERVENTIONS The patient was treated with steroids, hepatoprotective drugs, and folic acid in addition avoidance of agents with known hemolysis risk (such as vitamin C). OUTCOMES As a result, the patient's symptoms from hemolytic jaundice improved, hemoglobin remained stable, and the patient was discharged 11 days later. LESSONS Clinicians should bear in mind the possibility that vitamin C exposure may result in hemolysis in patients with G6PD deficiency, especially in those with known severe disease.
Collapse
Affiliation(s)
- Shuxie Wu
- Xiangya School of Medicine, Central South University, Changsha
| | - Gao Wu
- Department of Pharmacy, The 411st Hospital of PLA
| | - Hanbin Wu
- Clinical Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
379
|
Cantoni O, Guidarelli A, Fiorani M. Mitochondrial Uptake and Accumulation of Vitamin C: What Can We Learn from Cell Culture Studies? Antioxid Redox Signal 2018; 29:1502-1515. [PMID: 28699359 DOI: 10.1089/ars.2017.7253] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The mitochondrial fraction of l-ascorbic acid (AA) is of critical importance for the regulation of the redox status of these organelles and for cell survival. Recent Advances: Most cell types take up AA by the high-affinity sodium-dependent vitamin C transporter 2 (SVCT2) sensitive to inhibition by dehydroascorbic acid (DHA). DHA can also be taken up by glucose transporters (GLUTs) and then reduced back to AA. DHA concentrations, normally very low in biological fluids, may only become significant next to superoxide-releasing cells. Very little is known about the mechanisms mediating the mitochondrial transport of the vitamin. CRITICAL ISSUES Information on AA transport is largely derived from studies using cultured cells and is therefore conditioned by possible cell culture effects as overexpression of SVCT2 in the plasma membrane and mitochondria. Mitochondrial SVCT2 is susceptible to inhibition by DHA and transports AA with a low affinity as a consequence of the restrictive ionic conditions. In some cells, however, high-affinity mitochondrial transport of AA is observed. Mitochondrial uptake of DHA may take place through GLUTs, an event followed by its prompt reduction to AA in the matrix. Intracellular levels of DHA are, however, normally very low. FUTURE DIRECTIONS We need to establish, or rule out, the role and significance of mitochondrial SVCT2 in vivo. The key question for mitochondrial DHA transport is instead related to its very low intracellular concentrations.
Collapse
Affiliation(s)
- Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| |
Collapse
|
380
|
|
381
|
Abstract
Nutritionally, the first 1,000 days of an infant's life - from conception to two years - has been identified as a highly influential period, during which lasting health can be achieved. Significant evidence links patterns of infant feeding to both short and long-term health outcomes, many of which can be prevented through nutritional modifications. Recommended globally, breastfeeding is recognised as the gold standard of infant nutrition; providing key nutrients to achieve optimal health, growth and development, and conferring immunologic protective effects against disease. Nevertheless, infant formulas are often the sole source of nutrition for many infants during the first stage of life. Producers of infant formula strive to supply high quality, healthy, safe alternatives to breast milk with a comparable balance of nutrients to human milk imitating its composition and functional performance measures. The concept of 'nutritional programming', and the theory that exposure to specific conditions, can predispose an individual's health status in later life has become an accepted dictum, and has sparked important nutritional research prospects. This review explores the impact of early life nutrition, specifically, how different feeding methods affect health outcomes.
Collapse
Affiliation(s)
- Susan Finn
- Nutrition and Health Science from Cork Institute of Technology
| | | | | | - Roy D. Sleator
- University College Cork and National University of Ireland
| |
Collapse
|
382
|
Cimmino L, Neel BG, Aifantis I. Vitamin C in Stem Cell Reprogramming and Cancer. Trends Cell Biol 2018; 28:698-708. [PMID: 29724526 PMCID: PMC6102081 DOI: 10.1016/j.tcb.2018.04.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Vitamin C is an essential dietary requirement for humans. In addition to its known role as an antioxidant, vitamin C is a cofactor for Fe2+- and α-ketoglutarate-dependent dioxygenases (Fe2+/α-KGDDs) which comprise a large number of diverse enzymes, including collagen prolyl hydroxylases and epigenetic regulators of histone and DNA methylation. Vitamin C can modulate embryonic stem cell (ESC) function, enhance reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs), and hinder the aberrant self-renewal of hematopoietic stem cells (HSCs) through its ability to enhance the activity of either Jumonji C (JmjC) domain-containing histone demethylases or ten-eleven translocation (TET) DNA hydroxylases. Given that epigenetic dysregulation is a known driver of malignancy, vitamin C may play a novel role as an epigenetic anticancer agent.
Collapse
Affiliation(s)
- Luisa Cimmino
- Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA.,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,To Whom Correspondence Should Be Addressed: Luisa Cimmino, Ph.D. or Iannis Aifantis, Ph.D. Department of Pathology and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine 521 First Avenue, Smilow 1303 New York, NY 10016 or
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA.,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,To Whom Correspondence Should Be Addressed: Luisa Cimmino, Ph.D. or Iannis Aifantis, Ph.D. Department of Pathology and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine 521 First Avenue, Smilow 1303 New York, NY 10016 or
| |
Collapse
|
383
|
Mei H, Tu H. Vitamin C and Helicobacter pylori Infection: Current Knowledge and Future Prospects. Front Physiol 2018; 9:1103. [PMID: 30154733 PMCID: PMC6102328 DOI: 10.3389/fphys.2018.01103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
The gram-negative bacterium, Helicobacter pylori (H. pylori), infection is predominantly known for its strong association with development of gastric diseases, including gastritis, peptic ulcers, and stomach cancer. Numerous clinical reports show that ascorbic acid deficiency has been connect with gastritis. Vitamin C levels both in gastric acid and serum have constantly been affirmed to be low in subjects with H. pylori infected gastritis and peptic ulcers. Ascorbic acid supplementation likely relates to reduced incidences of bleeding from peptic ulcers and gastric cancer. H. pylori eradication is shown to increase vitamin C levels, while the benefits of ascorbic acid oral intake to increase the effectiveness of H. pylori-eradication therapy are controversial. Recent studies suggest that ascorbate intake intravenously, but not orally; pharmacologic ascorbate concentrations up to 30 mmol/L in blood, several millimolar in tissues as well as in interstitial fluid, are easily and safely achieved. Pharmacologic ascorbate can exert pro-oxidant effects locally as a drug by mediating hydrogen peroxide (H2O2) formation, which was applied to animal and clinical trials of cancer, sepsis, and severe burns etc. In this review, we summarize current understanding of the associations of vitamin C and H. pylori infection, and outline some potential strategies for H. pylori intervention from emerging advances on ascorbic acid physiology and pharmacology.
Collapse
Affiliation(s)
- Haixin Mei
- Department of Gastroenterology, Xinyang Central Hospital, Xinyang, China
| | - Hongbin Tu
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
384
|
Abstract
PURPOSE OF REVIEW Hypovitaminosis C and vitamin C deficiency are very common in critically ill patients due to increased needs and decreased intake. Because vitamin C has pleiotropic functions, deficiency can aggravate the severity of illness and hamper recovery. RECENT FINDINGS Vitamin C is a key circulating antioxidant with anti-inflammatory and immune-supporting effects, and a cofactor for important mono and dioxygenase enzymes. An increasing number of preclinical studies in trauma, ischemia/reperfusion, and sepsis models show that vitamin C administered at pharmacological doses attenuates oxidative stress and inflammation, and restores endothelial and organ function. Older studies showed less organ dysfunction when vitamin C was administered in repletion dose (2-3 g intravenous vitamin C/day). Recent small controlled studies using pharmacological doses (6-16 g/day) suggest that vitamin C reduces vasopressor support and organ dysfunction, and may even decrease mortality. SUMMARY A short course of intravenous vitamin C in pharmacological dose seems a promising, well tolerated, and cheap adjuvant therapy to modulate the overwhelming oxidative stress in severe sepsis, trauma, and reperfusion after ischemia. Large randomized controlled trials are necessary to provide more evidence before wide-scale implementation can be recommended.
Collapse
Affiliation(s)
- Angélique M E Spoelstra-de Man
- Department of Intensive Care Medicine, Research VUmc Intensive Care (REVIVE), Amsterdam Cardiovascular Sciences (ACS), Amsterdam Infection and Immunity Institute (AI&II), VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
385
|
Starczak M, Zarakowska E, Modrzejewska M, Dziaman T, Szpila A, Linowiecka K, Guz J, Szpotan J, Gawronski M, Labejszo A, Liebert A, Banaszkiewicz Z, Klopocka M, Foksinski M, Gackowski D, Olinski R. In vivo evidence of ascorbate involvement in the generation of epigenetic DNA modifications in leukocytes from patients with colorectal carcinoma, benign adenoma and inflammatory bowel disease. J Transl Med 2018; 16:204. [PMID: 30029654 PMCID: PMC6053776 DOI: 10.1186/s12967-018-1581-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A characteristic feature of malignant cells, such as colorectal cancer cells, is a profound decrease in the level of 5-hydroxymethylcytosine, a product of 5-methylcytosine oxidation by TET enzymes. Recent studies showed that ascorbate may upregulate the activity of TET enzymes in cultured cells and enhance formation of their products in genomic DNA. METHODS The study included four groups of subjects: healthy controls (n = 79), patients with inflammatory bowel disease (IBD, n = 51), adenomatous polyps (n = 67) and colorectal cancer (n = 136). The list of analyzed parameters included (i) leukocyte levels of epigenetic DNA modifications and 8-oxo-7,8-dihydro-2'-deoxyguanosine, a marker of oxidatively modified DNA, determined by means of isotope-dilution automated online two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry, (ii) expression of TET mRNA measured with RT-qPCR, and (iii) chromatographically-determined plasma concentrations of retinol, alpha-tocopherol and ascorbate. RESULTS Patients from all groups presented with significantly lower levels of 5-methylcytosine and 5-hydroxymethylcytosine in DNA than the controls. A similar tendency was also observed for 5-hydroxymethyluracil level. Patients with IBD showed the highest levels of 5-formylcytosine and 8-oxo-7,8-dihydro-2'-deoxyguanosine of all study subjects, and individuals with colorectal cancer presented with the lowest concentrations of ascorbate and retinol. A positive correlation was observed between plasma concentration of ascorbate and levels of two epigenetic modifications, 5-hydroxymethylcytosine and 5-hydroxymethyluracil in leukocyte DNA. Moreover, a significant difference was found in the levels of these modifications in patients whose plasma concentrations of ascorbate were below the lower and above the upper quartile for the control group. CONCLUSIONS These findings suggest that deficiency of ascorbate in the blood may be a marker of its shortage in other tissues, which in turn may correspond to deterioration of DNA methylation-demethylation. These observations may provide a rationale for further research on blood biomarkers of colorectal cancer development.
Collapse
Affiliation(s)
- Marta Starczak
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Tomasz Dziaman
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Anna Szpila
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Kinga Linowiecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Jolanta Guz
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Justyna Szpotan
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Maciej Gawronski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Anna Labejszo
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Ariel Liebert
- Department of Vascular Diseases and Internal Medicine, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75, 85-168, Bydgoszcz, Poland
| | - Zbigniew Banaszkiewicz
- Department of Vascular Surgery and Angiology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie Sklodowskiej 9, 85-094, Bydgoszcz, Poland.,Department of General, Gastrointestinal, Colorectal and Oncological Surgery, Jan Biziel University No. 2 in Bydgoszcz, Ujejskiego 75, 85-168, Bydgoszcz, Poland
| | - Maria Klopocka
- Department of Vascular Diseases and Internal Medicine, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75, 85-168, Bydgoszcz, Poland
| | - Marek Foksinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland.
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-092, Bydgoszcz, Poland.
| |
Collapse
|
386
|
Vissers MCM, Das AB. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front Physiol 2018; 9:809. [PMID: 30018566 PMCID: PMC6037948 DOI: 10.3389/fphys.2018.00809] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Whether vitamin C (ascorbate) has a role to play as an anti-cancer agent has been debated for decades. Ascorbate has been used by cancer patients in an unregulated environment, either as a dietary supplement or in pharmacological doses administered by infusion, with numerous reports of clinical benefit, but in the absence of rigorous clinical trial data. The design of appropriate clinical trials has been hindered by a lack of understanding of the mechanism(s) of action that would inform the choice of effective dose, timing of administration and likely responsive cancer models. More recently, expanded understanding of the biological activities of ascorbate has led to a number of plausible hypotheses for mechanisms of anti-cancer activity. Prominent among these are the generation of significant quantities of hydrogen peroxide by the autoxidation of supra-physiological concentrations of ascorbate and stimulation of the 2-oxoglutarate-dependent dioxygenase family of enzymes (2-OGDDs) that have a cofactor requirement for ascorbate. Hydrogen peroxide generation is postulated to generate oxidative stress that preferentially targets cancer cells. The 2-OGDDs include the hydroxylases that regulate the hypoxic response, a major driver of tumor survival, angiogenesis, stem cell phenotype and metastasis, and the epigenetic histone and DNA demethylases. The latter are of particular interest, with recent studies suggesting a promising role for ascorbate in the regulation of the ten-eleven translocase (TET) DNA demethylases in hematological cancers. Support for these proposed mechanisms has come from many in vitro studies, and xenograft animal models have consistently shown an anti-cancer effect of ascorbate administration. However, decisive evidence for any particular mechanism(s) of action is not yet available from an in vivo setting. With a number of early phase clinical trials currently underway, evidence for potential mechanism(s) of action is required to inform the most appropriate study design and choice of cancer model. Hopefully such information will result in sound clinical data that will avert adding any further controversy to this already contentious debate.
Collapse
Affiliation(s)
- Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
387
|
Aggarwal T, Wadhwa R, Rohil V, Maurya PK. Biomarkers of oxidative stress and protein-protein interaction in chronic obstructive pulmonary disease. Arch Physiol Biochem 2018; 124:226-231. [PMID: 29020824 DOI: 10.1080/13813455.2017.1387796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTENT The increased oxidative stress in chronic obstructive pulmonary disease (COPD) patients is the result of increased inhaled oxidants, generated by various cells of the airways. OBJECTIVE The investigation included measurements of malondiadehyde (MDA), uric acid, ascorbic acid, and matrix metalloproteinase-12 (MMP-12) in COPD patient. We also performed genetic analysis for protein-protein interaction (PPI) network. MATERIALS AND METHODS The study was conducted on healthy subjects with normal lung function (NS, 14 subjects) and 28 patients (Global Initiative for Chronic Obstructive Lung Disease (Gold) 1 and Gold 2) with COPD. RESULTS There was significant (p < .001) increase in MMP-12, MDA and uric acid levels as compared to healthy controls. A significant (p < .001) decline in ascorbic acid level was observed in COPD patients. The PPI was found to be 0.833 which indicated that proteins present in COPD are linked. DISCUSSION AND CONCLUSION This study suggests oxidative stress plays an important role in COPD and the PPI provide indication that proteins present in COPD are linked.
Collapse
Affiliation(s)
- Taru Aggarwal
- a Centre for Medical Biotechnology, Amity Institute of Biotechnology , Amity University Uttar Pradesh , Noida , India
| | - Ridhima Wadhwa
- a Centre for Medical Biotechnology, Amity Institute of Biotechnology , Amity University Uttar Pradesh , Noida , India
| | - Vishwajeet Rohil
- b Department of Clinical Biochemistry , Vallabhbhai Patel Chest Institute, Delhi University , India
| | - Pawan Kumar Maurya
- a Centre for Medical Biotechnology, Amity Institute of Biotechnology , Amity University Uttar Pradesh , Noida , India
| |
Collapse
|
388
|
Yin B, Tang S, Sun J, Zhang X, Xu J, Di L, Li Z, Hu Y, Bao E. Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stress. Cell Stress Chaperones 2018; 23:735-748. [PMID: 29442224 PMCID: PMC6045543 DOI: 10.1007/s12192-018-0885-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
Heat stress is exacerbated by global warming and affects human and animal health, leading to heart damage caused by imbalances in reactive oxygen species (ROS) and the antioxidant system, acid-base chemistry, electrolytes and respiratory alkalosis. Vitamin C scavenges excess ROS, and sodium bicarbonate maintains acid-base and electrolyte balance, and alleviates respiratory alkalosis. Herein, we explored the ability of vitamin C alone and in combination with equimolar sodium bicarbonate (Vitamin C-Na) to stimulate endogenous antioxidants and heat shock proteins (HSPs) to relieve heat stress in H9C2 cells. Control, vitamin C (20 μg/ml vitamin C for 16 h) and vitamin C-Na (20 μg/ml vitamin C-Na for 16 h) groups were heat-stressed for 1, 3 or 5 h. Granular and vacuolar degeneration, karyopyknosis and damage to nuclei and mitochondria were clearly reduced in treatment groups, as were apoptosis, lactate dehydrogenase activity and ROS and malondialdehyde levels, while superoxide dismutase activity was increased. Additionally, CRYAB, Hsp27, Hsp60 and Hsp70 mRNA levels were upregulated at 3 h (p < 0.01), and protein levels were increased for CRYAB at 0 h (p < 0.05) and 1 h (p < 0.01), and for Hsp70 at 3 and 5 h (p < 0.01). Thus, pre-treatment with vitamin C or vitamin C-Na might protect H9C2 cells against heat damage by enhancing the antioxidant ability and upregulating CRYAB and Hsp70.
Collapse
Affiliation(s)
- Bin Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jiarui Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Xiaohui Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jiao Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Liangjiao Di
- Ningxia Zhihong Biotechnology Company, Kaiyuan east road 29, Yinchuan, Ningxia, 750000, China
| | - Zhihong Li
- Ningxia Animal Disease Prevention and Control Center, Yinchuan, Ningxia, 750000, China
| | - Yurong Hu
- Guyuan Animal Disease Prevention and Control Center, Guyuan, Ningxia, 756000, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
389
|
Scalera V, Giangregorio N, De Leonardis S, Console L, Carulli ES, Tonazzi A. Characterization of a Novel Mitochondrial Ascorbate Transporter From Rat Liver and Potato Mitochondria. Front Mol Biosci 2018; 5:58. [PMID: 29998111 PMCID: PMC6028771 DOI: 10.3389/fmolb.2018.00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
The Mitochondrial Ascorbic Acid Transporter (MAT) from both rat liver and potato mitochondria has been reconstituted in proteoliposomes. The protein has a molecular mass in the range of 28–35 kDa and catalyzes saturable, temperature and pH dependent, unidirectional ascorbic acid transport. The transport activity is sodium independent and it is optimal at acidic pH values. It is stimulated by proton gradient, thus supporting that ascorbate is symported with H+. It is efficiently inhibited by the lysine reagent pyridoxal phosphate and it is not affected by inhibitors of other recognized plasma and mitochondrial membranes ascorbate transporters GLUT1(glucose transporter-1) or SVCT2 (sodium-dependent vitamin C transporter-2). Rat protein catalyzes a cooperative ascorbate transport, being involved two binding sites; the measured K0.5 is 1.5 mM. Taking into account the experimental results we propose that the reconstituted ascorbate transporter is not a GLUT or SVCT, since it shows different biochemical features. Data of potato transporter overlap the mammalian ones, except for the kinetic parameters non-experimentally measurable, thus supporting the MAT in plants fulfills the same transport role.
Collapse
Affiliation(s)
- Vito Scalera
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Nicola Giangregorio
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,CNR-IBIOM (Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies), Bari, Italy
| | | | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | | | - Annamaria Tonazzi
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,CNR-IBIOM (Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies), Bari, Italy
| |
Collapse
|
390
|
Amaliya A, Risdiana AS, Van der Velden U. Effect of guava and vitamin C supplementation on experimental gingivitis: A randomized clinical trial. J Clin Periodontol 2018; 45:959-967. [PMID: 29757462 DOI: 10.1111/jcpe.12922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/26/2018] [Accepted: 05/08/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To study the effect of guava and synthetic vitamin C on the development of gingival inflammation during experimental gingivitis. MATERIAL AND METHODS Participants were randomly assigned to three groups supplemented daily with either 200 g guava, 200 mg synthetic vitamin C or water. The study included a 14 days pre-experimental period with oral hygiene instructions, scaling, prophylaxis and supplementation. Thereafter, experiment gingivitis was initiated, while continuing supplementation. At baseline, Day 7 and Day 14 of experimental gingivitis, Plaque Index (PlI) and Gingival Index (GI) were assessed. During the entire study, dietary fruit/vegetables intake was minimal. RESULTS PlI increased in guava, vitamin C and control group (ΔPlI: 1.30, 1.61 and 1.79, respectively). However, the guava group developed significantly less plaque compared to the control group. The GI increase in both guava and vitamin C group was significantly less than the increase in the control group (ΔGI: 0.10, 0.24 and 0.87, respectively). CONCLUSION In a population of young nonsmoking adults, consumption of either 200 g guava/day or 200 mg synthetic vitamin C/day, prior to and during the oral hygiene abstention period, has a preventive effect on the development of experimental gingivitis as compared to the control group that developed the usual amount of experimental gingivitis.
Collapse
Affiliation(s)
- Amaliya Amaliya
- Department of Periodontology, Padjadjaran State University, Bandung, Indonesia
| | - Ajeng S Risdiana
- Department of Periodontology, Padjadjaran State University, Bandung, Indonesia
| | - Ubele Van der Velden
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
391
|
Y de Vries J, Pundir S, Mckenzie E, Keijer J, Kussmann M. Maternal Circulating Vitamin Status and Colostrum Vitamin Composition in Healthy Lactating Women-A Systematic Approach. Nutrients 2018; 10:E687. [PMID: 29843443 PMCID: PMC6024806 DOI: 10.3390/nu10060687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Colostrum is the first ingested sole nutritional source for the newborn infant. The vitamin profile of colostrum depends on the maternal vitamin status, which in turn is influenced by diet and lifestyle. Yet, the relationship between maternal vitamin status and colostrum vitamin composition has not been systematically reviewed. This review was conducted with the aim to generate a comprehensive overview on the relationship between maternal serum (plasma) vitamin concentration and corresponding colostrum composition. Three electronic databases, Embase (Ovid), Medline (Ovid), and Cochrane, were systematically searched based on predefined inclusion and exclusion criteria. Finally, a total of 11 eligible publications were included that examined the vitamins A, C, D, E, and K in both biological fluids. Maternal vitamin A, D, E, and K blood levels were unrelated to colostrum content of the respective vitamins, and serum vitamin A was inversely correlated with colostrum vitamin E. Colostrum versus maternal serum vitamins were higher for vitamins A, C, and K, lower for vitamin D, and divergent results were reported for vitamin E levels. Colostrum appears typically enriched in vitamin A, C, and K compared to maternal serum, possibly indicative of active mammary gland transport mechanisms. Inter-individual and inter-study high variability in colostrum's vitamin content endorses its sensitivity to external factors.
Collapse
Affiliation(s)
- Jasmijn Y de Vries
- Physiology, Wageningen University, De Elst 1, Building 122, 6708 WD Wageningen, The Netherlands.
| | - Shikha Pundir
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1142, New Zealand.
| | - Elizabeth Mckenzie
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1142, New Zealand.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, De Elst 1, Building 122, 6708 WD Wageningen, The Netherlands.
| | - Martin Kussmann
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1142, New Zealand.
- New Zealand National Science Challenge "High-Value Nutrition", University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
392
|
Hofstee P, McKeating DR, Perkins AV, Cuffe JS. Placental adaptations to micronutrient dysregulation in the programming of chronic disease. Clin Exp Pharmacol Physiol 2018; 45:871-884. [PMID: 29679395 DOI: 10.1111/1440-1681.12954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022]
Abstract
Poor nutrition during pregnancy is known to impair foetal development and increase the risk of chronic disease in offspring. Both macronutrients and micronutrients are required for a healthy pregnancy although significantly less is understood about the role of micronutrients in the programming of chronic disease. This is despite the fact that modern calorie rich diets are often also deficient in key micronutrients. The importance of micronutrients in gestational disorders is clearly understood but how they impact long term disease in humans requires further investigation. In contrast, animal studies have demonstrated how diets high or low in specific micronutrients influence offspring physiology. Many of these studies highlight the importance of the placenta in determining disease risk. This review will explore the effects of individual vitamins, minerals and trace elements on offspring disease outcomes and discuss several key placental adaptations that are affected by multiple micronutrients. These placental adaptations include micronutrient induced dysregulation of oxidative stress, altered methyl donor availability and its impact on epigenetic mechanisms as well as endocrine dysfunction. Critical gaps in our current knowledge and the relative importance of different micronutrients at different gestational ages will also be highlighted. Finally, this review will discuss the need for further studies to characterise the micronutrient status of Australian women of reproductive age and correlate micronutrient status to placental adaptations, pregnancy complications and offspring disease.
Collapse
Affiliation(s)
- Pierre Hofstee
- School of Medical Science, Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | - Daniel R McKeating
- School of Medical Science, Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | - Anthony V Perkins
- School of Medical Science, Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | - James Sm Cuffe
- School of Medical Science, Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
393
|
Amrein K, Oudemans-van Straaten HM, Berger MM. Vitamin therapy in critically ill patients: focus on thiamine, vitamin C, and vitamin D. Intensive Care Med 2018. [PMID: 29520660 PMCID: PMC6244527 DOI: 10.1007/s00134-018-5107-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karin Amrein
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Heleen M Oudemans-van Straaten
- Department of Adult Intensive Care, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Mette M Berger
- Service of Adult Intensive Care and Burns, Lausanne University Hospital-CHUV, Lausanne, Switzerland
| |
Collapse
|
394
|
de Grooth HJ, Manubulu-Choo WP, Zandvliet AS, Spoelstra-de Man AME, Girbes AR, Swart EL, Oudemans-van Straaten HM. Vitamin C Pharmacokinetics in Critically Ill Patients: A Randomized Trial of Four IV Regimens. Chest 2018. [PMID: 29522710 DOI: 10.1016/j.chest.2018.02.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Early high-dose IV vitamin C is being investigated as adjuvant therapy in patients who are critically ill, but the optimal dose and infusion method are unclear. The primary aim of this study was to describe the dose-plasma concentration relationship and safety of four different dosing regimens. METHODS This was a four-group randomized pharmacokinetic trial. Patients who were critically ill with multiple organ dysfunction were randomized to receive 2 or 10 g/d vitamin C as a twice daily bolus infusion or continuous infusion for 48 h. End points were plasma vitamin C concentrations during 96 h, 12-h urine excretion of vitamin C, and oxalate excretion and base excess. A population pharmacokinetic model was developed using NONMEM. RESULTS Twenty patients were included. A two-compartment pharmacokinetic model with creatinine clearance and weight as independent covariates described all four regimens best. With 2 g/d bolus, plasma vitamin C concentrations at 1 h were 29 to 50 mg/L and trough concentrations were 5.6 to 16 mg/L. With 2 g/d continuous, steady-state concentrations were 7 to 37 mg/L at 48 h. With 10 g/d bolus, 1-h concentrations were 186 to 244 mg/L and trough concentrations were 14 to 55 mg/L. With 10 g/d continuous, steady-state concentrations were 40 to 295 mg/L at 48 h. Oxalate excretion and base excess were increased in the 10 g/d dose. Forty-eight hours after discontinuation, plasma concentrations declined to hypovitaminosis levels in 15% of patients. CONCLUSIONS The 2 g/d dose was associated with normal plasma concentrations, and the 10 g/d dose was associated with supranormal plasma concentrations, increased oxalate excretion, and metabolic alkalosis. Sustained therapy is needed to prevent hypovitaminosis. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT02455180; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Harm-Jan de Grooth
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands; Department of Anesthesiology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Wai-Ping Manubulu-Choo
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, The Netherlands; Department of Pharmacy, Westfriesgasthuis, Hoorn, The Netherlands
| | - Anthe S Zandvliet
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Armand R Girbes
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Eleonora L Swart
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
395
|
Differentiation of Promonocytic U937 Cells to Monocytes Is Associated with Reduced Mitochondrial Transport of Ascorbic Acid. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4194502. [PMID: 29576847 PMCID: PMC5822789 DOI: 10.1155/2018/4194502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/30/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
Abstract
Growth of promonocytic U937 cells in the presence of DMSO promotes their differentiation to monocytes. After 4 days of culture in differentiating medium, these cells ceased to proliferate, displayed downregulated ryanodine receptor expression, and responded to specific stimuli with enhanced NADPH-oxidase-derived superoxide formation or cytosolic phospholipase A2-dependent arachidonic acid release. We found that the 4-day differentiation process is also associated with downregulated SVCT2 mRNA expression, in the absence of apparent changes in SVCT2 protein expression and transport rate of ascorbic acid (AA). Interestingly, under the same conditions, these cells accumulated lower amounts of the vitamin in their mitochondria, with an ensuing reduced response to external stimuli sensitive to the mitochondrial fraction of AA. Further analyses demonstrated an unexpected increase in mitochondrial SVCT2 protein expression, however, associated with reduced SVCT2-dependent AA uptake in isolated mitochondria. A decrease in the transporter Vmax, with no change in affinity, was found to account for this response. Differentiation of promonocytic cells to monocytes is therefore characterized by decreased SVCT2 mRNA expression that, even prior to the onset of SVCT2 protein downregulation or apparent changes in plasma membrane transport activity, impacts on the mitochondrial accumulation of the vitamin through a decreased Vmax of the transporter.
Collapse
|
396
|
Abstract
Vitamin C is essential to prevent scurvy in humans and is implicated in the primary prevention of common and complex diseases such as coronary heart disease, stroke, and cancer. This chapter reviews the latest knowledge about dietary vitamin C in human health with an emphasis on studies of the molecular mechanisms of vitamin C maintenance as well as gene-nutrient interactions modifying these relationships. Epidemiological evidence indicates 5% prevalence for vitamin C deficiency and 13% prevalence for suboptimal status even in industrialized countries. The daily intake (dose) and the corresponding systemic concentrations (response) are related in a saturable relationship, and low systemic vitamin C concentrations in observational studies are associated with negative health outcomes. However, there is no evidence that vitamin C supplementation impacts the risks for all-cause mortality, impaired cognitive performance, reduced quality of life, the development of eye diseases, infections, cardiovascular disease, and cancers. This might be related to the fact that prevention would not be realized by supplementation in populations already adequately supplied through dietary sources. Recent genetic association studies indicate that the dietary intake might not be the sole determinant of systemic concentrations, since variations in genes participating in redox homeostasis and vitamin C transport had been associated with lowered plasma concentrations. However, impact sizes are generally low and these phenomena might only affect individual of suboptimal dietary supply.
Collapse
Affiliation(s)
- Matthew Granger
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Eck
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
397
|
Gonzalez AA, Zamora L, Reyes-Martinez C, Salinas-Parra N, Roldan N, Cuevas CA, Figueroa S, Gonzalez-Vergara A, Prieto MC. (Pro)renin receptor activation increases profibrotic markers and fibroblast-like phenotype through MAPK-dependent ROS formation in mouse renal collecting duct cells. Clin Exp Pharmacol Physiol 2017; 44:1134-1144. [PMID: 28696542 DOI: 10.1111/1440-1681.12813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/23/2017] [Accepted: 07/02/2017] [Indexed: 01/06/2023]
Abstract
Recent studies suggested that activation of the PRR upregulates profibrotic markers through reactive oxygen species (ROS) formation; however, the exact mechanisms have not been investigated in CD cells. We hypothesized that activation of the PRR increases the expression of profibrotic markers through MAPK-dependent ROS formation in CD cells. Mouse renal CD cell line (M-1) was treated with recombinant prorenin plus ROS or MAPK inhibitors and PRR-shRNA to evaluate their effect on the expression of profibrotic markers. PRR immunostaining revealed plasma membrane and intracellular localization. Recombinant prorenin increases ROS formation (6.0 ± 0.5 vs 3.9 ± 0.1 nmol/L DCF/μg total protein, P < .05) and expression of profibrotic markers CTGF (149 ± 12%, P < .05), α-SMA (160 ± 20%, P < .05), and PAI-I (153 ± 13%, P < .05) at 10-8 mol/L. Recombinant prorenin-induced phospho ERK 1/2 (p44 and p42) at 10-8 and 10-6 mol/L after 20 minutes. Prorenin-dependent ROS formation and augmentation of profibrotic factors were blunted by ROS scavengers (trolox, p-coumaric acid, ascorbic acid), the MEK inhibitor PD98059 and PRR transfections with PRR-shRNA. No effects were observed in the presence of antioxidants alone. Prorenin-induced upregulation of collagen I and fibronectin was blunted by ROS scavenging or MEK inhibition independently. PRR-shRNA partially prevented this induction. After 24 hours prorenin treatment M-1 cells undergo to epithelial-mesenchymal transition phenotype, however MEK inhibitor PD98059 and PRR knockdown prevented this effect. These results suggest that PRR might have a significant role in tubular damage during conditions of high prorenin-renin secretion in the CD.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Leonardo Zamora
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | | | - Nicolas Salinas-Parra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Nicole Roldan
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Catherina A Cuevas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Stefanny Figueroa
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Alex Gonzalez-Vergara
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Minolfa C Prieto
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
398
|
Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo. EBioMedicine 2017; 23:125-135. [PMID: 28851583 PMCID: PMC5605377 DOI: 10.1016/j.ebiom.2017.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
Despite its transport by glucose transporters (GLUTs) in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA) has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/−) unable to synthesize ascorbate (vitamin C) were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC) ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo. Red cells in vivo obtain vitamin C (ascorbate) by dehydroascorbic acid transport. Red blood cell ascorbate is necessary to maintain red blood cell structural integrity. Red blood cell ascorbate maintains external plasma ascorbate concentrations in vivo by transmembrane electron transfer.
In animals and humans, it is unknown whether the oxidized form of vitamin C, termed dehydroascorbic acid, has a physiologic purpose. Using a mouse model and a custom-synthesized vitamin C analog, we show that red blood cells obtain their vitamin C by transport of dehydroascorbic acid, instead of vitamin C itself. The transported material is reduced inside and has at least two physiologic functions. One is to maintain structural integrity of red blood cells, and the other is to maintain vitamin C in the liquid part of blood, plasma.
Collapse
|
399
|
Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression. Cell 2017; 170:1079-1095.e20. [PMID: 28823558 DOI: 10.1016/j.cell.2017.07.032] [Citation(s) in RCA: 490] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Loss-of-function mutations in TET2 occur frequently in patients with clonal hematopoiesis, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML) and are associated with a DNA hypermethylation phenotype. To determine the role of TET2 deficiency in leukemia stem cell maintenance, we generated a reversible transgenic RNAi mouse to model restoration of endogenous Tet2 expression. Tet2 restoration reverses aberrant hematopoietic stem and progenitor cell (HSPC) self-renewal in vitro and in vivo. Treatment with vitamin C, a co-factor of Fe2+ and α-KG-dependent dioxygenases, mimics TET2 restoration by enhancing 5-hydroxymethylcytosine formation in Tet2-deficient mouse HSPCs and suppresses human leukemic colony formation and leukemia progression of primary human leukemia PDXs. Vitamin C also drives DNA hypomethylation and expression of a TET2-dependent gene signature in human leukemia cell lines. Furthermore, TET-mediated DNA oxidation induced by vitamin C treatment in leukemia cells enhances their sensitivity to PARP inhibition and could provide a safe and effective combination strategy to selectively target TET deficiency in cancer. PAPERCLIP.
Collapse
|
400
|
Elste V, Troesch B, Eggersdorfer M, Weber P. Emerging Evidence on Neutrophil Motility Supporting Its Usefulness to Define Vitamin C Intake Requirements. Nutrients 2017; 9:E503. [PMID: 28509882 PMCID: PMC5452233 DOI: 10.3390/nu9050503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Establishing intake recommendations for vitamin C remains a challenge, as no suitable functional parameter has yet been agreed upon. In this report, we review the emerging evidence on neutrophil motility as a possible marker of vitamin C requirements and put the results in perspective with other approaches. A recent in vitro study showed that adequate levels of vitamin C were needed for this function to work optimally when measured as chemotaxis and chemokinesis. In a human study, neutrophil motility was optimal at intakes ≥250 mg/day. Interestingly, a Cochrane review showed a significant reduction in the duration of episodes of common cold with regular vitamin C intakes in a similar range. Additionally, it was shown that at a plasma level of 75 µmol/L, which is reached with vitamin C intakes ≥200 mg/day, incidences of cardiovascular disease were lowest. This evidence would suggest that daily intakes of 200 mg vitamin C might be advisable for the general adult population, which can be achieved by means of a diverse diet. However, additional studies are warranted to investigate the usefulness of neutrophil motility as a marker of vitamin C requirements.
Collapse
Affiliation(s)
- Volker Elste
- DSM Nutritional Products AG, Human Nutrition and Health, P.O. 3255, CH-4002 Basel, Switzerland.
| | - Barbara Troesch
- DSM Nutritional Products AG, Human Nutrition and Health, P.O. 3255, CH-4002 Basel, Switzerland.
| | - Manfred Eggersdorfer
- DSM Nutritional Products AG, Human Nutrition and Health, P.O. 3255, CH-4002 Basel, Switzerland.
| | - Peter Weber
- DSM Nutritional Products AG, Human Nutrition and Health, P.O. 3255, CH-4002 Basel, Switzerland.
| |
Collapse
|