351
|
Iskander J, Hossny M, Nahavandi S, del Porto L. An ocular biomechanic model for dynamic simulation of different eye movements. J Biomech 2018; 71:208-216. [DOI: 10.1016/j.jbiomech.2018.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/30/2017] [Accepted: 02/05/2018] [Indexed: 11/25/2022]
|
352
|
Caruthers EJ, Oxendale KK, Lewis JM, Chaudhari AMW, Schmitt LC, Best TM, Siston RA. Forces Generated by Vastus Lateralis and Vastus Medialis Decrease with Increasing Stair Descent Speed. Ann Biomed Eng 2018; 46:579-589. [PMID: 29340933 PMCID: PMC7942835 DOI: 10.1007/s10439-018-1979-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022]
Abstract
Stair descent (SD) is a common, difficult task for populations who are elderly or have orthopaedic pathologies. Joint torques of young, healthy populations during SD increase at the hip and ankle with increasing speed but not at the knee, contrasting torque patterns during gait. To better understand the sources of the knee torque pattern, we used dynamic simulations to estimate knee muscle forces and how they modulate center of mass (COM) acceleration across SD speeds (slow, self-selected, and fast) in young, healthy adults. The vastus lateralis and vastus medialis forces decreased from slow to self-selected speeds as the individual lowered to the next step. Since the vasti are primary contributors to vertical support during SD, they produced lower forces at faster speeds due to the lower need for vertical COM support observed at faster speeds. In contrast, the semimembranosus and rectus femoris forces increased across successive speeds, allowing the semimembranosus to increase acceleration downward and forward and the rectus femoris to provide more vertical support and resistance to forward progression as SD speed increased. These results demonstrate the utility of dynamic simulations to extend beyond traditional inverse dynamics analyses to gain further insight into muscle mechanisms during tasks like SD.
Collapse
Affiliation(s)
- Elena J Caruthers
- Department of Mechanical and Aerospace Engineering, The Ohio State University, E305 Scott Laboratory, 201 W 19th Ave, Columbus, OH, 43210-1142, USA.
- Department of Engineering, Otterbein University, Westerville, OH, USA.
| | | | | | - Ajit M W Chaudhari
- Department of Mechanical and Aerospace Engineering, The Ohio State University, E305 Scott Laboratory, 201 W 19th Ave, Columbus, OH, 43210-1142, USA
- Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Laura C Schmitt
- Jameson Crane Sports Medicine Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Thomas M Best
- Departments of Orthopedics, Family Medicine, Biomedical Engineering, and Kinesiology, University Health Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert A Siston
- Department of Mechanical and Aerospace Engineering, The Ohio State University, E305 Scott Laboratory, 201 W 19th Ave, Columbus, OH, 43210-1142, USA
- Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
353
|
Blache Y, Begon M. Influence of Shoulder Kinematic Estimate on Joint and Muscle Mechanics Predicted by Musculoskeletal Model. IEEE Trans Biomed Eng 2018. [DOI: 10.1109/tbme.2017.2716186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
354
|
Trinler U, Hollands K, Jones R, Baker R. A systematic review of approaches to modelling lower limb muscle forces during gait: Applicability to clinical gait analyses. Gait Posture 2018; 61:353-361. [PMID: 29433090 DOI: 10.1016/j.gaitpost.2018.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 02/02/2023]
Abstract
Computational methods to estimate muscle forces during walking are becoming more common in biomechanical research but not yet in clinical gait analysis. This systematic review aims to identify the current state-of-the-art, examine the differences between approaches, and consider applicability of the current approaches in clinical gait analysis. A systematic database search identified studies including estimated muscle force profiles of the lower limb during healthy walking. These were rated for quality and the muscle force profiles digitised for comparison. From 13.449 identified studies, 22 were finally included which used four modelling approaches: static optimisation, enhanced static optimisation, forward dynamics and EMG-driven. These used a range of different musculoskeletal models, muscle-tendon characteristics and cost functions. There is visually broad agreement between and within approaches about when muscles are active throughout the gait cycle. There remain, considerable differences (CV 7%-151%, range of timing of peak forces in gait cycle 1%-31%) in patterns and magnitudes of force between and within modelling approaches. The main source of this variability is not clear. Different musculoskeletal models, experimental protocols, and modelling approaches will clearly have an effect as will the variability of joint kinetics between healthy individuals. Limited validation of modelling approaches, particularly at the level of individual participants, makes it difficult to conclude if any of the approaches give consistently better estimates than others. While muscle force modelling has clear potential to enhance clinical gait analyses future research is needed to improve validation, accuracy and feasibility of implementation in clinical practice.
Collapse
Affiliation(s)
- Ursula Trinler
- University of Salford, School of Health Science, Allerton Building, Frederick Road Campus, Salford, M6 6PU, United Kingdom; BG Unfallklinik Ludwigshafen, Zentrum für Bewegungsanalytik, Forschung und Lehre, Ludwig-Guttmann Straße 13, 67071 Ludwigshafen, Germany.
| | - Kristen Hollands
- University of Salford, School of Health Science, Allerton Building, Frederick Road Campus, Salford, M6 6PU, United Kingdom
| | - Richard Jones
- University of Salford, School of Health Science, Allerton Building, Frederick Road Campus, Salford, M6 6PU, United Kingdom
| | - Richard Baker
- University of Salford, School of Health Science, Allerton Building, Frederick Road Campus, Salford, M6 6PU, United Kingdom
| |
Collapse
|
355
|
Lai AKM, Arnold AS, Biewener AA, Dick TJM, Wakeling JM. Does a two-element muscle model offer advantages when estimating ankle plantar flexor forces during human cycling? J Biomech 2018; 68:6-13. [PMID: 29287843 DOI: 10.1016/j.jbiomech.2017.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Traditional Hill-type muscle models, parameterized using high-quality experimental data, are often "too weak" to reproduce the joint torques generated by healthy adults during rapid, high force tasks. This study investigated whether the failure of these models to account for different types of motor units contributes to this apparent weakness; if so, muscle-driven simulations may rely on excessively high muscle excitations to generate a given force. We ran a series of forward simulations that reproduced measured ankle mechanics during cycling at five cadences ranging from 60 to 140 RPM. We generated both "nominal" simulations, in which an abstract ankle model was actuated by a 1-element Hill-type plantar flexor with a single contractile element (CE), and "test" simulations, in which the same model was actuated by a 2-element plantar flexor with two CEs that accounted for the force-generating properties of slower and faster motor units. We varied the total excitation applied to the 2-element plantar flexor between 60 and 105% of the excitation from each nominal simulation, and we varied the amount distributed to each CE between 0 and 100% of the total. Within this test space, we identified the excitation level and distribution, at each cadence, that best reproduced the plantar flexor forces generated in the nominal simulations. Our comparisons revealed that the 2-element model required substantially less total excitation than the 1-element model to generate comparable forces, especially at higher cadences. For instance, at 140 RPM, the required excitation was reduced by 23%. These results suggest that a 2-element model, in which contractile properties are "tuned" to represent slower and faster motor units, can increase the apparent strength and perhaps improve the fidelity of simulations of tasks with varying mechanical demands.
Collapse
Affiliation(s)
- Adrian K M Lai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | - Taylor J M Dick
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
356
|
Maniar N, Schache AG, Sritharan P, Opar DA. Non-knee-spanning muscles contribute to tibiofemoral shear as well as valgus and rotational joint reaction moments during unanticipated sidestep cutting. Sci Rep 2018; 8:2501. [PMID: 29410451 PMCID: PMC5802728 DOI: 10.1038/s41598-017-19098-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/20/2017] [Indexed: 01/14/2023] Open
Abstract
Anterior cruciate ligament (ACL) injuries are a burdensome condition due to potential surgical requirements and increased risk of long term debilitation. Previous studies indicate that muscle forces play an important role in the development of ligamentous loading, yet these studies have typically used cadaveric models considering only the knee-spanning quadriceps, hamstrings and gastrocnemius muscle groups. Using a musculoskeletal modelling approach, we investigated how lower-limb muscles produce and oppose key tibiofemoral reaction forces and moments during the weight acceptance phase of unanticipated sidestep cutting. Muscles capable of opposing (or controlling the magnitude of) the anterior shear force and the external valgus moment at the knee are thought to be have the greatest potential for protecting the anterior cruciate ligament from injury. We found the best muscles for generating posterior shear to be the soleus, biceps femoris long head and medial hamstrings, providing up to 173N, 111N and 77N of force directly opposing the anterior shear force. The valgus moment was primarily opposed by the gluteus medius, gluteus maximus and piriformis, with these muscles providing contributions of up to 32 Nm, 19 Nm and 21 Nm towards a knee varus moment, respectively. Our findings highlight key muscle targets for ACL preventative and rehabilitative interventions.
Collapse
Affiliation(s)
- Nirav Maniar
- School of Exercise Sciences, Australian Catholic University, Melbourne, Australia.
| | - Anthony G Schache
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Australia
| | - Prasanna Sritharan
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Australia.,Sports and Exercise Medicine Research Centre, La Trobe University, Melbourne, Australia
| | - David A Opar
- School of Exercise Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
357
|
Tomescu S, Bakker R, Wasserstein D, Kalra M, Nicholls M, Whyne C, Chandrashekar N. Dynamically tensioned ACL functional knee braces reduce ACL and meniscal strain. Knee Surg Sports Traumatol Arthrosc 2018; 26:526-533. [PMID: 29188333 DOI: 10.1007/s00167-017-4794-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/06/2017] [Indexed: 01/14/2023]
Abstract
PURPOSE The effectiveness of ACL functional knee braces to reduce meniscal and ACL strain after ACL injury or reconstruction is not well understood. A new dynamic knee tensioning brace system has been designed to apply an active stabilizing force to the knee. The ability of this system to reduce tissue strains is unknown. The purpose of this study was to test the ability of the dynamically tensioned brace to reduce strain in both the ACL and meniscus during rehabilitation activities. METHODS A combined in vivo/in silico/in vitro method was used to study three activities: gait, double leg squat, and single leg squat. Muscle forces and kinematics for each activity were derived through in vivo motion capture and applied to seven cadaveric knee specimens fitted with custom braces. Medial meniscal strain and ACL strain were measured in ACL intact, deficient and reconstructed conditions. RESULTS The brace lowered peak and average meniscal strain in ACL deficient knees (P < 0.05) by an average of 1.7%. The brace was also found to lower meniscal strain in reconstructed knees (1.1%) and lower ACL strain in ACL intact (1.3%) and reconstructed knees (1.4%) (P < 0.05). CONCLUSIONS This study supports the use of a brace equipped with a dynamic tensioning system to lower meniscal strain in ACL-deficient knees. Its use may help decrease the risk of subsequent meniscal tears in chronic ACL deficiency or delayed reconstruction. In ACL-intact and reconstructed knees, the brace may be beneficial in injury prophylaxis or in protecting the ACL graft following reconstruction. These results will aid clinicians make informed recommendations for functional brace use in patients with unstable knees. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Sebastian Tomescu
- Sunnybrook Health Sciences Centre, University of Toronto, 343 - 43 Wellesley St. E., Toronto, ON, M4Y 1H1, Canada. .,Structural Biomechanics Laboratory, Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W. E3 2115, Waterloo, ON, N2L 3G1, Canada.
| | - Ryan Bakker
- Structural Biomechanics Laboratory, Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W. E3 2115, Waterloo, ON, N2L 3G1, Canada
| | - David Wasserstein
- Sunnybrook Health Sciences Centre, University of Toronto, 343 - 43 Wellesley St. E., Toronto, ON, M4Y 1H1, Canada
| | - Mayank Kalra
- Structural Biomechanics Laboratory, Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W. E3 2115, Waterloo, ON, N2L 3G1, Canada
| | | | - Cari Whyne
- Sunnybrook Health Sciences Centre, University of Toronto, 343 - 43 Wellesley St. E., Toronto, ON, M4Y 1H1, Canada
| | - Naveen Chandrashekar
- Structural Biomechanics Laboratory, Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W. E3 2115, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
358
|
Bélaise C, Michaud B, Dal Maso F, Mombaur K, Begon M. Which data should be tracked in forward-dynamic optimisation to best predict muscle forces in a pathological co-contraction case? J Biomech 2018; 68:99-106. [DOI: 10.1016/j.jbiomech.2017.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/25/2017] [Accepted: 12/28/2017] [Indexed: 11/15/2022]
|
359
|
Geier A, Aschemann H, D Lima D, Woernle C, Bader R. Force Closure Mechanism Modeling for Musculoskeletal Multibody Simulation. IEEE Trans Biomed Eng 2018; 65:2471-2482. [PMID: 29993490 DOI: 10.1109/tbme.2018.2800293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Neuro-musculoskeletal multibody simulation (NMBS) seeks to optimize decision-making for patients with neuro-musculoskeletal disorders. In clinical practice, however, the inter-subject variability and the inaccessibility for experimental testing impede the reliable model identification. These limitations motivate the novel modeling approach termed as force closure mechanism modeling (FCM2). METHODS FCM 2 expresses the dynamics between mutually articulating joint partners with respect to instantaneous screw axes (ISA) automatically reconstructed from their relative velocity state. Thereby, FCM2 reduces arbitrary open-chain multibody topologies to force closure n-link pendulums. Within a computational validation study on the human knee joint with implemented contact surfaces, we examine FCM2 as an underlying inverse dynamic model for computed muscle control. We evaluate predicted tibiofemoral joint quantities, i.e., kinematics and contact forces along with muscle moment arms, during muscle-induced knee motion against the classic hinge joint model and experimental studies. RESULTS Our NMBS study provided the proof-of-principle of the novel modeling approach. FCM2 freed us from assuming a certain joint formulation while correctly predicting the joint dynamics in agreement with the established methods. Although experimental results were closely predicted, owing to noise in the ISA estimation, muscle moment arms were overestimated (RISA = 0.84 < RHINGE = 0.97, RMSEISA = 13.18 mm > RMSEHINGE = 6.54 mm), identifying the robust ISA estimation as key to FCM2. CONCLUSION FCM2 automatically derives the equations of motion in closed form. Moreover, it captures subject-specific joint function and, thereby, minimizes modeling and parameterization efforts. SIGNIFICANCE Model derivation becomes driven by quantitative data available in clinical settings so that FCM2 yields a promising framework toward subject-specific NMBS.
Collapse
|
360
|
Price PDB, Gissane C, Cleather DJ. Reliability and Minimal Detectable Change Values for Predictions of Knee Forces during Gait and Stair Ascent Derived from the FreeBody Musculoskeletal Model of the Lower Limb. Front Bioeng Biotechnol 2017; 5:74. [PMID: 29276707 PMCID: PMC5727024 DOI: 10.3389/fbioe.2017.00074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
FreeBody is a musculoskeletal model of the lower limb used to calculate predictions of muscle and joint contact forces. The validation of FreeBody has been described in a number of publications; however, its reliability has yet to be established. The purpose of this study was, therefore, to establish the test-retest reliability of FreeBody in a population of healthy adults in order to add support to previous and future research using FreeBody that demonstrates differences between cohorts after an intervention. We hypothesized that test-retest estimations of knee contact forces from FreeBody would demonstrate a high intra-class correlation. Kinematic and kinetic data from nine older participants (4 men: mean age = 63 ± 11 years; 5 women: mean age = 49 ± 4 years) performing level walking and stair ascent was collected on consecutive days and then analyzed using FreeBody. There was a good level of intra-session agreement between the waveforms for the individual trials of each activity during testing session 1 (R = 0.79-0.97). Similarly, overall there was a good inter-session agreement within subjects (R = 0.69-0.97) although some subjects showed better agreement than others. There was a high level of agreement between the group mean waveforms of the two sessions for all variables (R = 0.882-0.997). The intra-class correlation coefficients (ICC) were very high for peak tibiofemoral joint contact forces (TFJ) and hamstring forces during gait, for peak patellofemoral joint contact forces and quadriceps forces during stair ascent and for peak lateral TFJ and the proportion of TFJ accounted for by the medial compartment during both tasks (ICC = 0.86-0.96). Minimal detectable change (MDC) of the peak knee forces during gait ranged between 0.43 and 1.53 × body weight (18-170% of the mean peak values). The smallest MDCs were found for medial TFJ share (4.1 and 5.8% for walking and stair ascent, respectively, or 4.8 and 6.7% of the mean peak values). In conclusion, the results of this study support the use of FreeBody to investigate the effect of interventions on muscle and joint contact forces at the cohort level, but care should be taken if using FreeBody at the subject level.
Collapse
Affiliation(s)
- Phil D B Price
- School of Sport, Health and Applied Sciences, St. Mary's University, Twickenham, United Kingdom
| | - Conor Gissane
- School of Sport, Health and Applied Sciences, St. Mary's University, Twickenham, United Kingdom
| | - Daniel J Cleather
- School of Sport, Health and Applied Sciences, St. Mary's University, Twickenham, United Kingdom
| |
Collapse
|
361
|
Intraoperative and biomechanical studies of human vastus lateralis and vastus medialis sarcomere length operating range. J Biomech 2017; 67:91-97. [PMID: 29258751 DOI: 10.1016/j.jbiomech.2017.11.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 11/23/2022]
Abstract
The vast majority of musculoskeletal models are not validated against primary experimental data. Conversely, most human experimental measurements are not explained theoretically using models to provide a mechanistic understanding of experimental results. Here we present a study with both primary human data and primary modeling data. Intraoperative sarcomere length was measured on the human vastus lateralis (VL) and vastus medialis (VM) muscles (n = 8) by laser diffraction. These data were compared to a biomechanical model based on muscle architecture and moment arms obtained independently from cadaveric specimens (n = 9). Measured VL sarcomere length ranged from about 3.2 µm with the knee flexed to 45° to 3.8 µm with the knee flexed to 90°. These values were remarkably close to theoretical predictions. Measured VM sarcomere length ranged from 3.6 µm with the knee flexed to 45° to 4.1 µm with the knee flexed to 90°. These values were dramatically longer than theoretical predictions. Our measured sarcomere length values suggest that human vasti may have differing functions with regard to knee extension and patellar stabilization. This report underscores the importance of validating experimental data to theoretical models and vice versa.
Collapse
|
362
|
Valente G, Crimi G, Vanella N, Schileo E, Taddei F. nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 152:85-92. [PMID: 29054263 DOI: 10.1016/j.cmpb.2017.09.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/05/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Musculoskeletal modeling and simulations of movement have been increasingly used in orthopedic and neurological scenarios, with increased attention to subject-specific applications. In general, musculoskeletal modeling applications have been facilitated by the development of dedicated software tools; however, subject-specific studies have been limited also by time-consuming modeling workflows and high skilled expertise required. In addition, no reference tools exist to standardize the process of musculoskeletal model creation and make it more efficient. Here we present a freely available software application, nmsBuilder 2.0, to create musculoskeletal models in the file format of OpenSim, a widely-used open-source platform for musculoskeletal modeling and simulation. nmsBuilder 2.0 is the result of a major refactoring of a previous implementation that moved a first step toward an efficient workflow for subject-specific model creation. METHODS nmsBuilder includes a graphical user interface that provides access to all functionalities, based on a framework for computer-aided medicine written in C++. The operations implemented can be used in a workflow to create OpenSim musculoskeletal models from 3D surfaces. A first step includes data processing to create supporting objects necessary to create models, e.g. surfaces, anatomical landmarks, reference systems; and a second step includes the creation of OpenSim objects, e.g. bodies, joints, muscles, and the corresponding model. RESULTS We present a case study using nmsBuilder 2.0: the creation of an MRI-based musculoskeletal model of the lower limb. The model included four rigid bodies, five degrees of freedom and 43 musculotendon actuators, and was created from 3D surfaces of the segmented images of a healthy subject through the modeling workflow implemented in the software application. CONCLUSIONS We have presented nmsBuilder 2.0 for the creation of musculoskeletal OpenSim models from image-based data, and made it freely available via nmsbuilder.org. This application provides an efficient workflow for model creation and helps standardize the process. We hope this would help promote personalized applications in musculoskeletal biomechanics, including larger sample size studies, and might also represent a basis for future developments for specific applications.
Collapse
Affiliation(s)
- Giordano Valente
- Medical Technology Laboratory, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Gianluigi Crimi
- Medical Technology Laboratory, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Vanella
- Medical Technology Laboratory, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Enrico Schileo
- Computational Bioengineering Laboratory, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Fulvia Taddei
- Medical Technology Laboratory, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
363
|
Hannah I, Montefiori E, Modenese L, Prinold J, Viceconti M, Mazzà C. Sensitivity of a juvenile subject-specific musculoskeletal model of the ankle joint to the variability of operator-dependent input. Proc Inst Mech Eng H 2017; 231:415-422. [PMID: 28427313 PMCID: PMC5407509 DOI: 10.1177/0954411917701167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Subject-specific musculoskeletal modelling is especially useful in the study of juvenile and pathological subjects. However, such methodologies typically require a human operator to identify key landmarks from medical imaging data and are thus affected by unavoidable variability in the parameters defined and subsequent model predictions. The aim of this study was to thus quantify the inter- and intra-operator repeatability of a subject-specific modelling methodology developed for the analysis of subjects with juvenile idiopathic arthritis. Three operators each created subject-specific musculoskeletal foot and ankle models via palpation of bony landmarks, adjustment of geometrical muscle points and definition of joint coordinate systems. These models were then fused to a generic Arnold lower limb model for each of three modelled patients. The repeatability of each modelling operation was found to be comparable to those previously reported for the modelling of healthy, adult subjects. However, the inter-operator repeatability of muscle point definition was significantly greater than intra-operator repeatability (p < 0.05) and predicted ankle joint contact forces ranged by up to 24% and 10% of the peak force for the inter- and intra-operator analyses, respectively. Similarly, the maximum inter- and intra-operator variations in muscle force output were 64% and 23% of peak force, respectively. Our results suggest that subject-specific modelling is operator dependent at the foot and ankle, with the definition of muscle geometry the most significant source of output uncertainty. The development of automated procedures to prevent the misplacement of crucial muscle points should therefore be considered a particular priority for those developing subject-specific models.
Collapse
Affiliation(s)
- Iain Hannah
- 1 INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.,2 Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Erica Montefiori
- 1 INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.,2 Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Luca Modenese
- 1 INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.,2 Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Joe Prinold
- 1 INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.,2 Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Marco Viceconti
- 1 INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.,2 Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Claudia Mazzà
- 1 INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.,2 Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
364
|
Akrami M, Qian Z, Zou Z, Howard D, Nester CJ, Ren L. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions. Biomech Model Mechanobiol 2017; 17:559-576. [PMID: 29139051 PMCID: PMC5845092 DOI: 10.1007/s10237-017-0978-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023]
Abstract
The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle-foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935-2.258 for ground reaction forces, 1.528-2.727 for plantar flexor muscles and 4.84-11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.
Collapse
Affiliation(s)
- Mohammad Akrami
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Zhihui Qian
- Key Laboratory of Bionic Engineering, Jilin University, Changchun, 130022, People's Republic of China
| | - Zhemin Zou
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - David Howard
- School of Computing, Science and Engineering, University of Salford, Salford, M5 4WT, UK
| | - Chris J Nester
- Centre for Health Sciences Research, School of Health Sciences, University of Salford, Salford, M5 4WT, UK
| | - Lei Ren
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, UK. .,Key Laboratory of Bionic Engineering, Jilin University, Changchun, 130022, People's Republic of China.
| |
Collapse
|
365
|
Gomes AA, Ackermann M, Ferreira JP, Orselli MIV, Sacco ICN. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy. J Neuroeng Rehabil 2017; 14:111. [PMID: 29121964 PMCID: PMC5679149 DOI: 10.1186/s12984-017-0327-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 10/31/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Muscle force estimation could advance the comprehension of the neuromuscular strategies that diabetic patients adopt to preserve walking ability, which guarantees their independence as they deal with their neural and muscular impairments due to diabetes and neuropathy. In this study, the lower limb's muscle force distribution during gait was estimated and compared in diabetic patients with and without polyneuropathy. METHODS Thirty individuals were evaluated in a cross-sectional study, equally divided among controls (CG) and diabetic patients with (DNG) and without (DG) polyneuropathy. The acquired ground reaction forces and kinematic data were used as input variables for a scaled musculoskeletal model in the OpenSim software. The maximum isometric force of the ankle extensors and flexors was reduced in the model of DNG by 30% and 20%, respectively. The muscle force was calculated using static optimization, and peak forces were compared among groups (flexors and extensors of hip, knee, and ankle; ankle evertors; and hip abductors) using MANOVAs, followed by univariate ANOVAs and Newman-Keuls post-hoc tests (p < 0.05). RESULTS From the middle to late stance phase, DG showed a lower soleus muscle peak force compared to the CG (p=0.024) and the DNG showed lower forces in the gastrocnemius medialis compared to the DG (p=0.037). At the terminal swing phase, the semitendinosus and semimembranosus peak forces showed lower values in the DG compared to the CG and DNG. At the late stance, the DNG showed a higher peak force in the biceps short head, semimembranosus, and semitendinosus compared to the CG and DG. CONCLUSION Peak forces of ankle (flexors, extensors, and evertors), knee (flexors and extensors), and hip abductors distinguished DNG from DG, and both of those from CG. Both diabetic groups showed alterations in the force production of the ankle extensors with reductions in the forces of soleus (DG) and gastrocnemius medialis (DNG) seen in both diabetic groups, but only DNG showed an increase in the hamstrings (knee flexor) at push-off. A therapeutic approach focused on preserving the functionality of the knee muscles is a promising strategy, even if the ankle dorsiflexors and plantarflexors are included in the resistance training.
Collapse
Affiliation(s)
- Aline A. Gomes
- Physical Education and Physiotherapy Faculty, Federal University of Amazonas, Manaus, AM Brazil
- Physical Therapy, Speech and Occupational Therapy department, School of Medicine, University of Sao Paulo, Sao Paulo, SP Brazil
| | - Marko Ackermann
- Department of Mechanical Engineering, FEI University, Sao Bernardo do Campo, SP Brazil
| | - Jean P. Ferreira
- Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, SP Brazil
| | | | - Isabel C. N. Sacco
- Physical Therapy, Speech and Occupational Therapy department, School of Medicine, University of Sao Paulo, Sao Paulo, SP Brazil
- Centro de Docência e Pesquisa do Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Rua Cipotânea, 51, Cidade Universitária, São Paulo, SP CEP: 05360-160 Brasil
| |
Collapse
|
366
|
Graham DF, Carty CP, Lloyd DG, Barrett RS. Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults. PLoS One 2017; 12:e0185564. [PMID: 29069097 PMCID: PMC5656315 DOI: 10.1371/journal.pone.0185564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance.
Collapse
Affiliation(s)
- David F. Graham
- School of Allied Health Sciences, Griffith University, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Christopher P. Carty
- School of Allied Health Sciences, Griffith University, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
- * E-mail:
| |
Collapse
|
367
|
Sartori M, Yavuz UŞ, Farina D. In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function. Sci Rep 2017; 7:13465. [PMID: 29044165 PMCID: PMC5647446 DOI: 10.1038/s41598-017-13766-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/14/2017] [Indexed: 12/30/2022] Open
Abstract
Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.
Collapse
Affiliation(s)
- Massimo Sartori
- Institute of Biomedical Technology and Technical Medicine, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Utku Ş Yavuz
- Pain Medicine, Department of Anaesthesiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
368
|
Rankin JW, Rubenson J, Hutchinson JR. Inferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization. J R Soc Interface 2017; 13:rsif.2016.0035. [PMID: 27146688 PMCID: PMC4892259 DOI: 10.1098/rsif.2016.0035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/07/2016] [Indexed: 11/12/2022] Open
Abstract
Owing to their cursorial background, ostriches (Struthio camelus) walk and run with high metabolic economy, can reach very fast running speeds and quickly execute cutting manoeuvres. These capabilities are believed to be a result of their ability to coordinate muscles to take advantage of specialized passive limb structures. This study aimed to infer the functional roles of ostrich pelvic limb muscles during gait. Existing gait data were combined with a newly developed musculoskeletal model to generate simulations of ostrich walking and running that predict muscle excitations, force and mechanical work. Consistent with previous avian electromyography studies, predicted excitation patterns showed that individual muscles tended to be excited primarily during only stance or swing. Work and force estimates show that ostrich gaits are partially hip-driven with the bi-articular hip–knee muscles driving stance mechanics. Conversely, the knee extensors acted as brakes, absorbing energy. The digital extensors generated large amounts of both negative and positive mechanical work, with increased magnitudes during running, providing further evidence that ostriches make extensive use of tendinous elastic energy storage to improve economy. The simulations also highlight the need to carefully consider non-muscular soft tissues that may play a role in ostrich gait.
Collapse
Affiliation(s)
- Jeffery W Rankin
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Herts, UK
| | - Jonas Rubenson
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA School of Sport Science, Exercise and Health, The University of Western Australia, Perth, Western Australia, Australia
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Herts, UK
| |
Collapse
|
369
|
Scarton A, Jonkers I, Guiotto A, Spolaor F, Guarneri G, Avogaro A, Cobelli C, Sawacha Z. Comparison of lower limb muscle strength between diabetic neuropathic and healthy subjects using OpenSim. Gait Posture 2017; 58:194-200. [PMID: 28802220 DOI: 10.1016/j.gaitpost.2017.07.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 07/06/2017] [Accepted: 07/28/2017] [Indexed: 02/02/2023]
Abstract
Diabetes neuropathy and vasculopathy are the two major complications of diabetes mellitus, leading to diabetic foot disease, of which the worst consequences are plantar ulcers and amputations. Motor impairments like joint stiffness and loss of balance are distinctive effects of diabetes and they have been extensively explored. However, while altered muscle function has been also assessed through experimentally measured surface electromyography, little is known about muscle forces. The objective of this study was to estimate muscle forces in subjects with diabetes and to use these data to identify differences with respect to a population of healthy subjects matched for age and BMI. This was obtained by generating musculoskeletal models of 10 diabetic and 10 control subjects in OpenSim starting from experimentally recorded data. Dynamic simulations of motion were run and hence muscle forces calculated. Student T test (p<0.05) was used to compare joints kinematics, kinetics and muscle forces between the two populations. Significant changes were observed between lower limb muscle forces and activation of diabetic and healthy subjects, as well as between joints kinematics and kinetics. In particular muscles related to foot movements proved to be stronger in the healthy population. The typical ankle rigidity of the diabetic population was confirmed by a lower range of motion registered at the ankle plantar/flexion angle associated with weaker dorsal-plantar flexor muscles. The information provided by this methodology can help planning specific training programs aiming at augmenting muscle strength and joints mobility, and they can also improve the evaluation of the potential benefits.
Collapse
Affiliation(s)
- Alessandra Scarton
- Department of Information Engineering, University of Padova, Via Gradenigo 6b I, 35131 Padova, Italy.
| | - Ilse Jonkers
- Department of Kinesiology, KU Leuven, Tervuursevest 101 - Box 1501, 3001, Leuven, Belgium.
| | - Annamaria Guiotto
- Department of Information Engineering, University of Padova, Via Gradenigo 6b I, 35131 Padova, Italy.
| | - Fabiola Spolaor
- Department of Information Engineering, University of Padova, Via Gradenigo 6b I, 35131 Padova, Italy.
| | - Gabriella Guarneri
- Department of Clinical Medicine and Metabolic Disease, University Polyclinic, Via Giustiniani 2, Padova, Italy.
| | - Angelo Avogaro
- Department of Clinical Medicine and Metabolic Disease, University Polyclinic, Via Giustiniani 2, Padova, Italy.
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Via Gradenigo 6b I, 35131 Padova, Italy.
| | - Zimi Sawacha
- Department of Information Engineering, University of Padova, Via Gradenigo 6b I, 35131 Padova, Italy.
| |
Collapse
|
370
|
Muscle contributions to knee extension in the early stance phase in patients with knee osteoarthritis. Gait Posture 2017; 58:88-93. [PMID: 28763714 DOI: 10.1016/j.gaitpost.2017.07.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023]
Abstract
The aim of this study was to analyze individual muscle contributions to knee angular acceleration using a musculoskeletal simulation analysis and evaluate knee extension mechanics in the early stance phase in patients with knee osteoarthritis (OA). The subjects comprised 15 patients with medial knee OA and 14 healthy elderly individuals. All participants underwent gait performance test using 8 infrared cameras and two force plates to measure the kinetic and kinematic data. The simulation was driven by 92 Hill-type muscle-tendon units of the lower extremities and a trunk with 23° of freedom. We analyzed each muscle contribution to knee angular acceleration in the 5%-15% and 15%-25% periods of the stance phase (% SP) using an induced acceleration analysis. We compared accelerations by individual muscles between the two groups using an analysis of covariance for controlling gait speed. Patients with knee OA had a significantly lesser knee extension acceleration by the vasti muscles and higher knee acceleration by hip adductors than those in controls in 5-15% SP. In addition, knee OA resulted in significantly lesser knee extension acceleration by the vasti muscles in 15-25% SP. These results indicate that patients with knee OA have decreased dependency on the vasti muscles to control knee movements during early stance phase. Hip adductor muscles, which mainly control mediolateral motion, partly compensate for the weak knee extension by the vasti muscles in patients with knee OA.
Collapse
|
371
|
Lai AKM, Arnold AS, Wakeling JM. Why are Antagonist Muscles Co-activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks. Ann Biomed Eng 2017; 45:2762-2774. [PMID: 28900782 DOI: 10.1007/s10439-017-1920-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/08/2017] [Indexed: 11/26/2022]
Abstract
Existing "off-the-shelf" musculoskeletal models are problematic when simulating movements that involve substantial hip and knee flexion, such as the upstroke of pedalling, because they tend to generate excessive passive fibre force. The goal of this study was to develop a refined musculoskeletal model capable of simulating pedalling and fast running, in addition to walking, which predicts the activation patterns of muscles better than existing models. Specifically, we tested whether the anomalous co-activation of antagonist muscles, commonly observed in simulations, could be resolved if the passive forces generated by the underlying model were diminished. We refined the OpenSim™ model published by Rajagopal et al. (IEEE Trans Biomed Eng 63:1-1, 2016) by increasing the model's range of knee flexion, updating the paths of the knee muscles, and modifying the force-generating properties of eleven muscles. Simulations of pedalling, running and walking based on this model reproduced measured EMG activity better than simulations based on the existing model-even when both models tracked the same subject-specific kinematics. Improvements in the predicted activations were associated with decreases in the net passive moments; for example, the net passive knee moment during the upstroke of pedalling decreased from 36.9 N m (existing model) to 6.3 N m (refined model), resulting in a dramatic decrease in the co-activation of knee flexors. The refined model is available from SimTK.org and is suitable for analysing movements with up to 120° of hip flexion and 140° of knee flexion.
Collapse
Affiliation(s)
- Adrian K M Lai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Allison S Arnold
- Department of Organismic and Evolutionary Biology, Concord Field Station, Harvard University, Bedford, MA, USA
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
372
|
Knee joint kinematics and kinetics during the hop and cut after soft tissue artifact suppression: Time to reconsider ACL injury mechanisms? J Biomech 2017; 62:132-139. [DOI: 10.1016/j.jbiomech.2017.06.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 01/14/2023]
|
373
|
To what extent is joint and muscle mechanics predicted by musculoskeletal models sensitive to soft tissue artefacts? J Biomech 2017; 62:68-76. [DOI: 10.1016/j.jbiomech.2016.07.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/08/2023]
|
374
|
Erdemir A, Guess TM, Halloran JP, Modenese L, Reinbolt JA, Thelen DG, Umberger BR, Erdemir A, Guess TM, Halloran JP, Modenese L, Reinbolt JA, Thelen DG, Umberger BR, Umberger BR, Erdemir A, Thelen DG, Guess TM, Reinbolt JA, Modenese L, Halloran JP. Commentary on the integration of model sharing and reproducibility analysis to scholarly publishing workflow in computational biomechanics. IEEE Trans Biomed Eng 2017; 63:2080-2085. [PMID: 28072567 DOI: 10.1109/tbme.2016.2602760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The overall goal of this paper is to demonstrate that dissemination of models and analyses for assessing the reproducibility of simulation results can be incorporated in the scientific review process in biomechanics. METHODS As part of a special issue on model sharing and reproducibility in the IEEE Transactions on Biomedical Engineering, two manuscripts on computational biomechanics were submitted: Rajagopal et al., IEEE Trans. Biomed. Eng., 2016 and Schmitz and Piovesan, IEEE Trans. Biomed. Eng., 2016. Models used in these studies were shared with the scientific reviewers and the public. In addition to the standard review of the manuscripts, the reviewers downloaded the models and performed simulations that reproduced results reported in the studies. RESULTS There was general agreement between simulation results of the authors and those of the reviewers. Discrepancies were resolved during the necessary revisions. The manuscripts and instructions for download and simulation were updated in response to the reviewers' feedback; changes that may otherwise have been missed if explicit model sharing and simulation reproducibility analysis was not conducted in the review process. Increased burden on the authors and the reviewers, to facilitate model sharing and to repeat simulations, were noted. CONCLUSION When the authors of computational biomechanics studies provide access to models and data, the scientific reviewers can download and thoroughly explore the model, perform simulations, and evaluate simulation reproducibility beyond the traditional manuscript-only review process. SIGNIFICANCE Model sharing and reproducibility analysis in scholarly publishing will result in a more rigorous review process, which will enhance the quality of modeling and simulation studies and inform future users of computational models.
Collapse
|
375
|
Roelker SA, Caruthers EJ, Baker RK, Pelz NC, Chaudhari AMW, Siston RA. Interpreting Musculoskeletal Models and Dynamic Simulations: Causes and Effects of Differences Between Models. Ann Biomed Eng 2017; 45:2635-2647. [DOI: 10.1007/s10439-017-1894-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
|
376
|
Rosenberg M, Steele KM. Simulated impacts of ankle foot orthoses on muscle demand and recruitment in typically-developing children and children with cerebral palsy and crouch gait. PLoS One 2017; 12:e0180219. [PMID: 28704464 PMCID: PMC5509139 DOI: 10.1371/journal.pone.0180219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022] Open
Abstract
Passive ankle foot orthoses (AFOs) are often prescribed for children with cerebral palsy (CP) to assist locomotion, but predicting how specific device designs will impact energetic demand during gait remains challenging. Powered AFOs have been shown to reduce energy costs of walking in unimpaired adults more than passive AFOs, but have not been tested in children with CP. The goal of this study was to investigate the potential impact of powered and passive AFOs on muscle demand and recruitment in children with CP and crouch gait. We simulated gait for nine children with crouch gait and three typically-developing children with powered and passive AFOs. For each AFO design, we computed reductions in muscle demand compared to unassisted gait. Powered AFOs reduced muscle demand 15-44% compared to unassisted walking, 1-14% more than passive AFOs. A slower walking speed was associated with smaller reductions in absolute muscle demand for all AFOs (r2 = 0.60-0.70). However, reductions in muscle demand were only moderately correlated with crouch severity (r2 = 0.40-0.43). The ankle plantarflexor muscles were most heavily impacted by the AFOs, with gastrocnemius recruitment decreasing 13-73% and correlating with increasing knee flexor moments (r2 = 0.29-0.91). These findings support the potential use of powered AFOs for children with crouch gait, and highlight how subject-specific kinematics and kinetics may influence muscle demand and recruitment to inform AFO design.
Collapse
Affiliation(s)
- Michael Rosenberg
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
377
|
Dembia CL, Silder A, Uchida TK, Hicks JL, Delp SL. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads. PLoS One 2017; 12:e0180320. [PMID: 28700630 PMCID: PMC5507502 DOI: 10.1371/journal.pone.0180320] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2017] [Indexed: 11/24/2022] Open
Abstract
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work.
Collapse
Affiliation(s)
- Christopher L. Dembia
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Amy Silder
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Thomas K. Uchida
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Jennifer L. Hicks
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Scott L. Delp
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, United States of America
| |
Collapse
|
378
|
Jackson RW, Dembia CL, Delp SL, Collins SH. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking. J Exp Biol 2017; 220:2082-2095. [PMID: 28341663 PMCID: PMC6514464 DOI: 10.1242/jeb.150011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
Abstract
The goal of this study was to gain insight into how ankle exoskeletons affect the behavior of the plantarflexor muscles during walking. Using data from previous experiments, we performed electromyography-driven simulations of musculoskeletal dynamics to explore how changes in exoskeleton assistance affected plantarflexor muscle-tendon mechanics, particularly for the soleus. We used a model of muscle energy consumption to estimate individual muscle metabolic rate. As average exoskeleton torque was increased, while no net exoskeleton work was provided, a reduction in tendon recoil led to an increase in positive mechanical work performed by the soleus muscle fibers. As net exoskeleton work was increased, both soleus muscle fiber force and positive mechanical work decreased. Trends in the sum of the metabolic rates of the simulated muscles correlated well with trends in experimentally observed whole-body metabolic rate (R2=0.9), providing confidence in our model estimates. Our simulation results suggest that different exoskeleton behaviors can alter the functioning of the muscles and tendons acting at the assisted joint. Furthermore, our results support the idea that the series tendon helps reduce positive work done by the muscle fibers by storing and returning energy elastically. We expect the results from this study to promote the use of electromyography-driven simulations to gain insight into the operation of muscle-tendon units and to guide the design and control of assistive devices.
Collapse
Affiliation(s)
- Rachel W Jackson
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Christopher L Dembia
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Scott L Delp
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Steven H Collins
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
379
|
Vacuum level effects on knee contact force for unilateral transtibial amputees with elevated vacuum suspension. J Biomech 2017; 57:110-116. [PMID: 28476209 DOI: 10.1016/j.jbiomech.2017.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/17/2017] [Accepted: 04/09/2017] [Indexed: 11/22/2022]
Abstract
The elevated vacuum suspension system (EVSS) has demonstrated unique health benefits for amputees, but the effect of vacuum pressure values on knee contact force (KCF) is still unclear. The objective of this study was to investigate the effect of vacuum levels on KCF for unilateral transtibial amputees (UTA) using the EVSS. Three-dimensional gait was modeled for 9 UTA with five vacuum levels (0-20inHg [67.73kPa], 5inHg [16.93kPa] increments) and 9 non-amputees based on kinematic and ground reaction force data. The results showed that the vacuum level effects were significant for peak axial KCF, which had a relatively large value at 0 and 20inHg (67.73kPa). The intact limb exhibited a comparable peak axial KCF to the non-amputees at 15inHg (50.79kPa). At moderate vacuum levels (5inHg [16.93kPa] to 15inHg [50.79kPa]), co-contraction of quadriceps and hamstrings at peak axial KCF was similar for the intact limb, but was smaller for the residual limb comparing with the non-amputees. The intact limb showed a similar magnitude of quadriceps and hamstrings force at 15inHg (50.79kPa) to the non-amputees, but the muscle coordination patterns varied between the residual and intact limbs. These findings indicate that a proper vacuum level may partially compensate for the lack of ankle plantarflexor and reduce the knee loading. Of the tested vacuum levels, 15inHg (50.79kPa) appears most favorable, although additional analyses with more amputees are suggested to confirm these results prior to establishing clinical guidelines.
Collapse
|
380
|
Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J Biomech 2017; 58:89-96. [PMID: 28521951 DOI: 10.1016/j.jbiomech.2017.04.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
Abstract
In the panorama of available musculoskeletal modeling software, AnyBody software is a commercial tool that provides a full body musculoskeletal model which is increasingly exploited by numerous researchers worldwide. In this regard, model validation becomes essential to guarantee the suitability of the model in representing the simulated system. When focusing on lumbar spine, the previous works aimed at validating the AnyBody model in computing the intervertebral loads held several limitations, and a comprehensive validation is to be considered as lacking. The present study was aimed at extensively validating the suitability of the AnyBody model in computing lumbar spine loads at L4L5 level. The intersegmental loads were calculated during twelve specific exercise tasks designed to accurately replicate the conditions during which Wilke et al. (2001) measured in vivo the L4L5 intradiscal pressure. Motion capture data of one volunteer subject were acquired during the execution of the tasks and then imported into AnyBody to set model kinematics. Two different approaches in computing intradiscal pressure from the intersegmental load were evaluated. Lumbopelvic rhythm was compared with reference in vivo measurements to assess the accuracy of the lumbopelvic kinematics. Positive agreement was confirmed between the calculated pressures and the in vivo measurements, thus demonstrating the suitability of the AnyBody model. Specific caution needs to be taken only when considering postures characterized by large lateral displacements. Minor discrepancy was found assessing lumbopelvic rhythm. The present findings promote the AnyBody model as an appropriate tool to non-invasively evaluate the lumbar loads at L4L5 in physiological activities.
Collapse
|
381
|
Sensitivity of medial and lateral knee contact force predictions to frontal plane alignment and contact locations. J Biomech 2017; 57:125-130. [DOI: 10.1016/j.jbiomech.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 01/01/2023]
|
382
|
Effects of Gait Speed of Femoroacetabular Joint Forces. Appl Bionics Biomech 2017; 2017:6432969. [PMID: 28260849 PMCID: PMC5312453 DOI: 10.1155/2017/6432969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/30/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
Alterations in hip joint loading have been associated with diseases such as arthritis and osteoporosis. Understanding the relationship between gait speed and hip joint loading in healthy hips may illuminate changes in gait mechanics as walking speed deviates from preferred. The purpose of this study was to quantify hip joint loading during the gait cycle and identify differences with varying speed using musculoskeletal modeling. Ten, healthy, physically active individuals performed walking trials at their preferred speed, 10% faster, and 10% slower. Kinematic, kinetic, and electromyographic data were collected and used to estimate hip joint force via a musculoskeletal model. Vertical ground reaction forces, hip joint force planar components, and the resultant hip joint force were compared between speeds. There were significant increases in vertical ground reaction forces and hip joint forces as walking speed increased. Furthermore, the musculoskeletal modeling approach employed yielded hip joint forces that were comparable to previous simulation studies and in vivo measurements and was able to detect changes in hip loading due to small deviations in gait speed. Applying this approach to pathological and aging populations could identify specific areas within the gait cycle where force discrepancies may occur which could help focus management of care.
Collapse
|
383
|
Cereatti A, Bonci T, Akbarshahi M, Aminian K, Barré A, Begon M, Benoit DL, Charbonnier C, Dal Maso F, Fantozzi S, Lin CC, Lu TW, Pandy MG, Stagni R, van den Bogert AJ, Camomilla V. Standardization proposal of soft tissue artefact description for data sharing in human motion measurements. J Biomech 2017; 62:5-13. [PMID: 28259462 DOI: 10.1016/j.jbiomech.2017.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 12/01/2022]
Abstract
Soft tissue artefact (STA) represents one of the main obstacles for obtaining accurate and reliable skeletal kinematics from motion capture. Many studies have addressed this issue, yet there is no consensus on the best available bone pose estimator and the expected errors associated with relevant results. Furthermore, results obtained by different authors are difficult to compare due to the high variability and specificity of the phenomenon and the different metrics used to represent these data. Therefore, the aim of this study was twofold: firstly, to propose standards for description of STA; and secondly, to provide illustrative STA data samples for body segments in the upper and lower extremities and for a range of motor tasks specifically, level walking, stair ascent, sit-to-stand, hip- and knee-joint functional movements, cutting motion, running, hopping, arm elevation and functional upper-limb movements. The STA dataset includes motion of the skin markers measured in vivo and ex vivo using stereophotogrammetry as well as motion of the underlying bones measured using invasive or bio-imaging techniques (i.e., X-ray fluoroscopy or MRI). The data are accompanied by a detailed description of the methods used for their acquisition, with information given about their quality as well as characterization of the STA using the proposed standards. The availability of open-access and standard-format STA data will be useful for the evaluation and development of bone pose estimators thus contributing to the advancement of three-dimensional human movement analysis and its translation into the clinical practice and other applications.
Collapse
Affiliation(s)
- Andrea Cereatti
- POLCOMING Department, Information Engineering Unit, University of Sassari, Sassari, Italy; Dept. of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy; Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome "Foro Italico", Rome, Italy.
| | - Tecla Bonci
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome "Foro Italico", Rome, Italy; Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Massoud Akbarshahi
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arnaud Barré
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mickael Begon
- Laboratory of Simulation and Movement Modeling, Department of Kinesiology, University of Montreal, Montreal, Canada
| | - Daniel L Benoit
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | | | - Fabien Dal Maso
- Laboratory of Simulation and Movement Modeling, Department of Kinesiology, University of Montreal, Montreal, Canada
| | - Silvia Fantozzi
- Department of Electric, Electronic and Information Engineering "Guglielmo Marconi" - DEI, University of Bologna, Italy
| | - Cheng-Chung Lin
- Institute of Biomedical Engineering, National Taiwan University, Taiwan, ROC; Department of Electronic Engineering, Fu-Jen Catholic University, Taiwan, ROC
| | - Tung-Wu Lu
- Institute of Biomedical Engineering, National Taiwan University, Taiwan, ROC; Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taiwan, ROC
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| | - Rita Stagni
- Department of Electric, Electronic and Information Engineering "Guglielmo Marconi" - DEI, University of Bologna, Italy
| | | | - Valentina Camomilla
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome "Foro Italico", Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
384
|
Harris MD, MacWilliams BA, Bo Foreman K, Peters CL, Weiss JA, Anderson AE. Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models. J Biomech 2017; 54:80-87. [PMID: 28233552 DOI: 10.1016/j.jbiomech.2017.01.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 11/25/2022]
Abstract
Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability.
Collapse
Affiliation(s)
- Michael D Harris
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO 63108, United States; Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63108, United States
| | - Bruce A MacWilliams
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, United States; Shriners Hospitals for Children, Salt Lake City, UT 84103, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | - K Bo Foreman
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, United States; Department of Physical Therapy, University of Utah, Salt Lake City, UT 84108, United States
| | - Christopher L Peters
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Jeffrey A Weiss
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - Andrew E Anderson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Physical Therapy, University of Utah, Salt Lake City, UT 84108, United States; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
385
|
Feasibility of using MRIs to create subject-specific parallel-mechanism joint models. J Biomech 2017; 53:45-55. [DOI: 10.1016/j.jbiomech.2016.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/10/2016] [Accepted: 12/19/2016] [Indexed: 11/21/2022]
|
386
|
Cazzola D, Holsgrove TP, Preatoni E, Gill HS, Trewartha G. Cervical Spine Injuries: A Whole-Body Musculoskeletal Model for the Analysis of Spinal Loading. PLoS One 2017; 12:e0169329. [PMID: 28052130 PMCID: PMC5214544 DOI: 10.1371/journal.pone.0169329] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/13/2016] [Indexed: 11/23/2022] Open
Abstract
Cervical spine trauma from sport or traffic collisions can have devastating consequences for individuals and a high societal cost. The precise mechanisms of such injuries are still unknown as investigation is hampered by the difficulty in experimentally replicating the conditions under which these injuries occur. We harness the benefits of computer simulation to report on the creation and validation of i) a generic musculoskeletal model (MASI) for the analyses of cervical spine loading in healthy subjects, and ii) a population-specific version of the model (Rugby Model), for investigating cervical spine injury mechanisms during rugby activities. The musculoskeletal models were created in OpenSim, and validated against in vivo data of a healthy subject and a rugby player performing neck and upper limb movements. The novel aspects of the Rugby Model comprise i) population-specific inertial properties and muscle parameters representing rugby forward players, and ii) a custom scapula-clavicular joint that allows the application of multiple external loads. We confirm the utility of the developed generic and population-specific models via verification steps and validation of kinematics, joint moments and neuromuscular activations during rugby scrummaging and neck functional movements, which achieve results comparable with in vivo and in vitro data. The Rugby Model was validated and used for the first time to provide insight into anatomical loading and cervical spine injury mechanisms related to rugby, whilst the MASI introduces a new computational tool to allow investigation of spinal injuries arising from other sporting activities, transport, and ergonomic applications. The models used in this study are freely available at simtk.org and allow to integrate in silico analyses with experimental approaches in injury prevention.
Collapse
Affiliation(s)
- Dario Cazzola
- Department for Health, University of Bath, Bath, United Kingdom
| | - Timothy P. Holsgrove
- Centre for Orthopaedic Biomechanics, Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
- College of Engineering, Mathematics & Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Ezio Preatoni
- Department for Health, University of Bath, Bath, United Kingdom
| | - Harinderjit S. Gill
- Centre for Orthopaedic Biomechanics, Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Grant Trewartha
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
387
|
Gijsbertse K, Sprengers AMJ, Nillesen MM, Hansen HHG, Lopata RGP, Verdonschot N, de Korte CL. Three-dimensional ultrasound strain imaging of skeletal muscles. Phys Med Biol 2016; 62:596-611. [PMID: 28033112 DOI: 10.1088/1361-6560/aa5077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
388
|
DAO TIENTUAN, HO BA THO MARIECHRISTINE. A CONSISTENT DATA FUSION APPROACH FOR UNCERTAINTY QUANTIFICATION IN RIGID MUSCULOSKELETAL SIMULATION. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519417500622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Uncertainty quantification in rigid musculoskeletal modeling is essential to analyze the risks related to the simulation outcomes. Data fusion from multiple sources is a potential solution to reduce data uncertainties. This present study aimed at proposing a new data fusion rule leading to a more consistent and coherent data for uncertainty quantification. Moreover, a new uncertainty representation was developed using imprecise probability approach. A biggest maximal coherent subsets (BMCS) operator was defined to fuse interval-valued data ranges from multiple sources. Fusion-based probability-box structure was developed to represent the data uncertainty. Case studies were performed for uncertainty propagation through inverse dynamics and static optimization algorithms. Hip joint moment and muscle force estimation were computed under effect of the uncertainties of thigh mass and muscle properties. Respective p-boxes of these properties were generated. Regarding the uncertainty propagation analysis, correlation coefficients showed a very good value ([Formula: see text]) for the proposed fusion operator according to classical operators. Muscle force variation of the rectus femoris was computed. Peak-to-peak (i.e., difference between maximal values) rectus femoris forces showed deviations of 55[Formula: see text]N and 40[Formula: see text]N for the first and second peaks, respectively. The development of the new fusion operator and fusion-based probability-box leads to a more consistent uncertainty quantification. This allows the estimation of risks associated with the simulation outcomes under input data uncertainties for rigid musculoskeletal modeling and simulation.
Collapse
Affiliation(s)
- TIEN TUAN DAO
- Sorbonne University, Université de technologie de Compiègne, CNRS, UMR 7338, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60 319, 60203 Compiègne Cedex, France
| | - MARIE-CHRISTINE HO BA THO
- Sorbonne University, Université de technologie de Compiègne, CNRS, UMR 7338, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60 319, 60203 Compiègne Cedex, France
| |
Collapse
|
389
|
Smith CR, Vignos MF, Lenhart RL, Kaiser J, Thelen DG. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement. J Biomech Eng 2016; 138:021017. [PMID: 26769446 DOI: 10.1115/1.4032464] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 11/08/2022]
Abstract
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.
Collapse
|
390
|
Schmitz A, Piovesan D. Development of an Open-Source, Discrete Element Knee Model. IEEE Trans Biomed Eng 2016; 63:2056-67. [DOI: 10.1109/tbme.2016.2585926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
391
|
Abdollahi M, Nikkhoo M, Ashouri S, Asghari M, Parnianpour M, Khalaf K. A model for flexi-bar to evaluate intervertebral disc and muscle forces in exercises. Med Eng Phys 2016; 38:1076-82. [DOI: 10.1016/j.medengphy.2016.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
|
392
|
Blache Y, Creveaux T, Dumas R, Chèze L, Rogowski I. Glenohumeral contact force during flat and topspin tennis forehand drives. Sports Biomech 2016; 16:127-142. [PMID: 27595163 DOI: 10.1080/14763141.2016.1216585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.
Collapse
Affiliation(s)
- Yoann Blache
- a Inter-University Laboratory of Human Movement Biology , University Claude Bernard Lyon 1 , Lyon , France
| | - Thomas Creveaux
- a Inter-University Laboratory of Human Movement Biology , University Claude Bernard Lyon 1 , Lyon , France
| | - Raphaël Dumas
- b Biomechanics and Impact Mechanics Laboratory , University Claude Bernard Lyon 1 , Lyon , France
| | - Laurence Chèze
- b Biomechanics and Impact Mechanics Laboratory , University Claude Bernard Lyon 1 , Lyon , France
| | - Isabelle Rogowski
- a Inter-University Laboratory of Human Movement Biology , University Claude Bernard Lyon 1 , Lyon , France
| |
Collapse
|
393
|
Hip joint contact loads in older adults during recovery from forward loss of balance by stepping. J Biomech 2016; 49:2619-2624. [DOI: 10.1016/j.jbiomech.2016.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
|
394
|
Heinen F, Lund ME, Rasmussen J, de Zee M. Muscle-tendon unit scaling methods of Hill-type musculoskeletal models: An overview. Proc Inst Mech Eng H 2016; 230:976-84. [PMID: 27459500 DOI: 10.1177/0954411916659894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022]
Abstract
This article gives an overview of the state of the art in scaling methods of generic Hill-type muscle model parameters in view of different applications and implementation of experimental data. This article establishes the requirements used to alter a generic model toward subject-specific musculoskeletal models. This article aims to improve model transparency by a structured description of scaling methods and the associated limitations in musculoskeletal models and highlight the importance of selecting a scaling method supporting the purpose of the model.
Collapse
Affiliation(s)
- Frederik Heinen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark
| | - Morten E Lund
- Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark
| | - John Rasmussen
- Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark
| | - Mark de Zee
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
395
|
Rajagopal A, Dembia CL, DeMers MS, Delp DD, Hicks JL, Delp SL. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. IEEE Trans Biomed Eng 2016; 63:2068-79. [PMID: 27392337 DOI: 10.1109/tbme.2016.2586891] [Citation(s) in RCA: 464] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Musculoskeletal models provide a non-invasive means to study human movement and predict the effects of interventions on gait. Our goal was to create an open-source 3-D musculoskeletal model with high-fidelity representations of the lower limb musculature of healthy young individuals that can be used to generate accurate simulations of gait. METHODS Our model includes bony geometry for the full body, 37 degrees of freedom to define joint kinematics, Hill-type models of 80 muscle-tendon units actuating the lower limbs, and 17 ideal torque actuators driving the upper body. The model's musculotendon parameters are derived from previous anatomical measurements of 21 cadaver specimens and magnetic resonance images of 24 young healthy subjects. We tested the model by evaluating its computational time and accuracy of simulations of healthy walking and running. RESULTS Generating muscle-driven simulations of normal walking and running took approximately 10 minutes on a typical desktop computer. The differences between our muscle-generated and inverse dynamics joint moments were within 3% (RMSE) of the peak inverse dynamics joint moments in both walking and running, and our simulated muscle activity showed qualitative agreement with salient features from experimental electromyography data. CONCLUSION These results suggest that our model is suitable for generating muscle-driven simulations of healthy gait. We encourage other researchers to further validate and apply the model to study other motions of the lower extremity. SIGNIFICANCE The model is implemented in the open-source software platform OpenSim. The model and data used to create and test the simulations are freely available at https://simtk.org/home/full_body/, allowing others to reproduce these results and create their own simulations.
Collapse
|
396
|
Marková M, Gallo LM. The influence of the human TMJ eminence inclination on predicted masticatory muscle forces. Hum Mov Sci 2016; 49:132-40. [PMID: 27376178 DOI: 10.1016/j.humov.2016.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/09/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Aim of this paper was to investigate the change in masticatory muscle forces and temporomandibular joint (TMJ) reaction forces simulated by inverse dynamics when thesteepness of the anterior fossa slope was varied. We used the model by de Zee et al. (2007) created in AnyBody™. The model was equipped with 24musculotendon actuators. Mandibular movement was governed by thetrajectory of theincisal point. The TMJ was modelled as a planar constraint canted 5°medially and thecaudal inclination relative to the occlusal plane was varied from 10° to 70°. Our models showed that for the two simulated movements (empty chewing and unilateral clenching) the joint reaction forces were smallest for the eminence inclination of 30° and 40° and highest for 70°. The muscle forces were relatively insensitive to change of the eminence inclination for the angles between 20° and 50°. This did not hold for the pterygoid muscle, for which the muscle forces increased continually with increasing fossa inclination. For empty chewing the muscle force reached smaller values than for clenching. During clenching, the muscle forces changed by up to 200N.
Collapse
Affiliation(s)
- Michala Marková
- Clinic of Masticatory Disorders, Removable Prosthodontics, Geriatric and Special Care Dentistry, University of Zürich, Plattenstrasse 11, 8032 Zürich, Switzerland; Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 16607 Prague 6, Czech Republic.
| | - Luigi M Gallo
- Clinic of Masticatory Disorders, Removable Prosthodontics, Geriatric and Special Care Dentistry, University of Zürich, Plattenstrasse 11, 8032 Zürich, Switzerland.
| |
Collapse
|
397
|
Rasnick R, Standifird T, Reinbolt JA, Cates HE, Zhang S. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement. PLoS One 2016; 11:e0156282. [PMID: 27258086 PMCID: PMC4892639 DOI: 10.1371/journal.pone.0156282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 05/11/2016] [Indexed: 12/27/2022] Open
Abstract
Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05). No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups.
Collapse
Affiliation(s)
- Robert Rasnick
- Department of Kinesiology, Recreation, & Sport Studies, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Tyler Standifird
- Department of Exercise Science & Outdoor Recreation, Utah Valley University, Orem, Utah, United States of America
| | - Jeffrey A. Reinbolt
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Harold E. Cates
- Tennessee Orthopedic Clinics, Knoxville, Tennessee, United States of America
| | - Songning Zhang
- Department of Kinesiology, Recreation, & Sport Studies, The University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
398
|
Femoral strain during walking predicted with muscle forces from static and dynamic optimization. J Biomech 2016; 49:1206-1213. [DOI: 10.1016/j.jbiomech.2016.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 01/04/2023]
|
399
|
De Groote F, Kinney AL, Rao AV, Fregly BJ. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem. Ann Biomed Eng 2016; 44:2922-2936. [PMID: 27001399 PMCID: PMC5043004 DOI: 10.1007/s10439-016-1591-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/10/2016] [Indexed: 01/29/2023]
Abstract
Estimation of muscle forces during motion involves solving an indeterminate problem (more unknown muscle forces than joint moment constraints), frequently via optimization methods. When the dynamics of muscle activation and contraction are modeled for consistency with muscle physiology, the resulting optimization problem is dynamic and challenging to solve. This study sought to identify a robust and computationally efficient formulation for solving these dynamic optimization problems using direct collocation optimal control methods. Four problem formulations were investigated for walking based on both a two and three dimensional model. Formulations differed in the use of either an explicit or implicit representation of contraction dynamics with either muscle length or tendon force as a state variable. The implicit representations introduced additional controls defined as the time derivatives of the states, allowing the nonlinear equations describing contraction dynamics to be imposed as algebraic path constraints, simplifying their evaluation. Problem formulation affected computational speed and robustness to the initial guess. The formulation that used explicit contraction dynamics with muscle length as a state failed to converge in most cases. In contrast, the two formulations that used implicit contraction dynamics converged to an optimal solution in all cases for all initial guesses, with tendon force as a state generally being the fastest. Future work should focus on comparing the present approach to other approaches for computing muscle forces. The present approach lacks some of the major limitations of established methods such as static optimization and computed muscle control while remaining computationally efficient.
Collapse
Affiliation(s)
- Friedl De Groote
- Department of Kinesiology, KU Leuven, Tervuursevest 101 bus 1501, 3001, Leuven, Belgium.
| | - Allison L Kinney
- Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, OH, USA
| | - Anil V Rao
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Benjamin J Fregly
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
400
|
Eschweiler J, Stromps JP, Fischer M, Schick F, Rath B, Pallua N, Radermacher K. A biomechanical model of the wrist joint for patient-specific model guided surgical therapy: Part 2. Proc Inst Mech Eng H 2016; 230:326-34. [DOI: 10.1177/0954411916635443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An enhanced musculoskeletal biomechanical model of the wrist joint is presented in this article. The computational model is based on the multi-body simulation software AnyBody. Multi body dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to wrist joint degeneration and restoration. In this study, the simulation model of the wrist joint was used for investigating deeper the biomechanical function of the wrist joint. In representative physiological scenarios, the joint behavior and muscle forces were computed. Furthermore, the load transmission of the proximal wrist joint was investigated. The model was able to calculate the parameters of interest that are not easily obtainable experimentally, such as muscle forces and proximal wrist joint forces. In the case of muscle force investigation, the computational model was able to accurately predict the computational outcome for flexion and extension motion. In the case of force distribution of the proximal wrist joint, the model was able to predict accurately the computational outcome for an axial load of 140 N. The presented model and approach of using a multi-body simulation model are anticipated to have value as a predictive clinical tool including effect of injuries or anatomical variations and initial outcome of surgical procedures for patient-specific planning and custom implant design. Therefore, patient-specific multi-body simulation models are potentially valuable tools for surgeons in pre- and intraoperative planning of implant placement and orientation.
Collapse
Affiliation(s)
- Jörg Eschweiler
- Helmholtz-Institute for Biomedical Engineering, Chair of Medical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Orthopaedic, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Jan-Philipp Stromps
- Department of Plastic Surgery, Hand and Burns Surgery, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Maximilian Fischer
- Helmholtz-Institute for Biomedical Engineering, Chair of Medical Engineering, RWTH Aachen University, Aachen, Germany
| | - Fabian Schick
- Helmholtz-Institute for Biomedical Engineering, Chair of Medical Engineering, RWTH Aachen University, Aachen, Germany
| | - Björn Rath
- Department of Orthopaedic, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Norbert Pallua
- Department of Plastic Surgery, Hand and Burns Surgery, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Klaus Radermacher
- Helmholtz-Institute for Biomedical Engineering, Chair of Medical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|