351
|
Abstract
Immune cells express several adhesion G protein-coupled receptors (aGPCRs), including the ADGRE subfamily members EMR1 (F4/80, ADGRE1), EMR2 (ADGRE2), EMR3 (ADGRE3), EMR4 (FIRE, ADGRE4), and CD97 (ADGRE5), the ADGRB subfamily member BAI1 (ADGRB1), and the ADGRG subfamily members GPR56 (ADGRG1), GPR97 (Pb99, ADGRG3), and GPR114 (ADGRG5). Expression of these molecules in hematopoietic stem and progenitor cells, monocytes/macrophages (Mφs), dendritic cells, granulocytes, and lymphocytes depends on lineage diversification and maturation, making them suitable markers for individual leukocyte subsets (e.g., F4/80 on mouse Mφs). Recent studies revealed intriguing activities of aGPCRs in tolerance induction (EMR1), granulopoiesis (CD97), engulfment of apoptotic cells and bacteria (BAI1), hematopoietic stem cell formation (GPR56), and control of cytotoxicity (GPR56). Here, we review these findings and discuss their biological and translational implications.
Collapse
|
352
|
Abstract
Adhesion G protein-coupled receptors (aGPCRs/ADGRs) are unique receptors that combine cell adhesion and signaling functions. Protein networks related to ADGRs exert diverse functions, e.g., in tissue polarity, cell migration, nerve cell function, or immune response, and are regulated via different mechanisms. The large extracellular domain of ADGRs is capable of mediating cell-cell or cell-matrix protein interactions. Their intracellular surface and domains are coupled to downstream signaling pathways and often bind to scaffold proteins, organizing membrane-associated protein complexes. The cohesive interplay between ADGR-related network components is essential to prevent severe disease-causing damage in numerous cell types. Consequently, in recent years, attention has focused on the decipherment of the precise molecular composition of ADGR protein complexes and interactomes in various cellular modules. In this chapter, we discuss the affiliation of ADGR networks to cellular modules and how they can be regulated, pinpointing common features in the networks related to the diverse ADGRs. Detailed decipherment of the composition of protein networks should provide novel targets for the development of novel therapies with the aim to cure human diseases related to ADGRs.
Collapse
Affiliation(s)
- Barbara Knapp
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Johannes von Muellerweg 6, Mainz, 55099, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Johannes von Muellerweg 6, Mainz, 55099, Germany.
| |
Collapse
|
353
|
The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFκB and is involved in cell adhesion and migration. Cell Signal 2015; 27:2579-88. [DOI: 10.1016/j.cellsig.2015.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/26/2015] [Indexed: 11/24/2022]
|
354
|
Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 2015; 16:907-17. [PMID: 26287597 DOI: 10.1038/ni.3253] [Citation(s) in RCA: 611] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023]
Abstract
Human bodies collectively turn over about 200 billion to 300 billion cells every day. Such turnover is an integral part of embryonic and postnatal development, as well as routine tissue homeostasis. This process involves the induction of programmed cell death in specific cells within the tissues and the specific recognition and removal of dying cells by a clearance 'crew' composed of professional, non-professional and specialized phagocytes. In the past few years, considerable progress has been made in identifying many features of apoptotic cell clearance. Some of these new observations challenge the way dying cells themselves are viewed, as well as how healthy cells interact with and respond to dying cells. Here we focus on the homeostatic removal of apoptotic cells in tissues.
Collapse
|
355
|
The scales and tales of myelination: using zebrafish and mouse to study myelinating glia. Brain Res 2015; 1641:79-91. [PMID: 26498880 DOI: 10.1016/j.brainres.2015.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Myelin, the lipid-rich sheath that insulates axons to facilitate rapid conduction of action potentials, is an evolutionary innovation of the jawed-vertebrate lineage. Research efforts aimed at understanding the molecular mechanisms governing myelination have primarily focused on rodent models; however, with the advent of the zebrafish model system in the late twentieth century, the use of this genetically tractable, yet simpler vertebrate for studying myelination has steadily increased. In this review, we compare myelinating glial cell biology during development and regeneration in zebrafish and mouse and enumerate the advantages and disadvantages of using each model to study myelination. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
|
356
|
Niaudet C, Hofmann JJ, Mäe MA, Jung B, Gaengel K, Vanlandewijck M, Ekvärn E, Salvado MD, Mehlem A, Al Sayegh S, He L, Lebouvier T, Castro-Freire M, Katayama K, Hultenby K, Moessinger C, Tannenberg P, Cunha S, Pietras K, Laviña B, Hong J, Berg T, Betsholtz C. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium. PLoS One 2015; 10:e0137949. [PMID: 26394398 PMCID: PMC4579087 DOI: 10.1371/journal.pone.0137949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022] Open
Abstract
Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature.
Collapse
Affiliation(s)
- Colin Niaudet
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Jennifer J. Hofmann
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Maarja A. Mäe
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bongnam Jung
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Elisabet Ekvärn
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - M. Dolores Salvado
- Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Annika Mehlem
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sahar Al Sayegh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Thibaud Lebouvier
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Marco Castro-Freire
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kan Katayama
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Division of Clinical Research Center, and Karolinska Institute, Stockholm, Sweden
| | - Christine Moessinger
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Philip Tannenberg
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Division of Vascular Surgery, Karolinska Institute, Stockholm, Sweden
| | - Sara Cunha
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kristian Pietras
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Lund University, Department of Laboratory Medicine, Medicon Village, Lund, Sweden
| | - Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - JongWook Hong
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Tove Berg
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
357
|
Schöneberg T, Liebscher I, Luo R, Monk KR, Piao X. Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation. J Recept Signal Transduct Res 2015; 35:220-3. [PMID: 26366621 DOI: 10.3109/10799893.2015.1072978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The family of adhesion G protein-coupled receptors (aGPCRs) comprises 33 members in the human genome, which are subdivided into nine subclasses. Many aGPCRs undergo an autoproteolytic process via their GPCR Autoproteolysis-INducing (GAIN) domain during protein maturation to generate an N- and a C-terminal fragments, NTF and CTF, respectively. The NTF and CTF are non-covalently reassociated on the plasma membrane to form a single receptor unit. How aGPCRs are activated upon ligand binding remains one of the leading questions in the field of aGPCR research. Recent work from our labs and others shows that ligand binding can remove the NTF from the plasma membrane-bound CTF, exposing a tethered agonist which potently activates downstream signaling.
Collapse
Affiliation(s)
- Torsten Schöneberg
- a Institute of Biochemistry, Medical Faculty, University of Leipzig , Leipzig , Germany
| | - Ines Liebscher
- a Institute of Biochemistry, Medical Faculty, University of Leipzig , Leipzig , Germany
| | - Rong Luo
- b Division of Newborn Medicine, Department of Medicine , Children's Hospital and Harvard Medical School , Boston , MA , USA
| | - Kelly R Monk
- c Department of Developmental Biology , Washington University School of Medicine , St. Louis , MO , USA , and.,d Hope Center for Neurological Disorders, Washington University School of Medicine , St. Louis , MO , USA
| | - Xianhua Piao
- b Division of Newborn Medicine, Department of Medicine , Children's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|
358
|
Monk KR, Hamann J, Langenhan T, Nijmeijer S, Schöneberg T, Liebscher I. Adhesion G Protein-Coupled Receptors: From In Vitro Pharmacology to In Vivo Mechanisms. Mol Pharmacol 2015; 88:617-23. [PMID: 25956432 PMCID: PMC4551055 DOI: 10.1124/mol.115.098749] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
The adhesion family of G protein-coupled receptors (aGPCRs) comprises 33 members in humans. aGPCRs are characterized by their enormous size and complex modular structures. While the physiologic importance of many aGPCRs has been clearly demonstrated in recent years, the underlying molecular functions have only recently begun to be elucidated. In this minireview, we present an overview of our current knowledge on aGPCR activation and signal transduction with a focus on the latest findings regarding the interplay between ligand binding, mechanical force, and the tethered agonistic Stachel sequence, as well as implications on translational approaches that may derive from understanding aGPCR pharmacology.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Jörg Hamann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Tobias Langenhan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Saskia Nijmeijer
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Torsten Schöneberg
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| | - Ines Liebscher
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri (K.R.M.); Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.H.); Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany (T.L.); Department of Medicinal Chemistry/Amsterdam Institute for Molecules, Medicines and Systems, VU University, Amsterdam, The Netherlands (S.N.); and Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany (T.S., I.L.)
| |
Collapse
|
359
|
Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 2015; 464:743-7. [DOI: 10.1016/j.bbrc.2015.07.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 11/22/2022]
|
360
|
Hsiao CC, Keysselt K, Chen HY, Sittig D, Hamann J, Lin HH, Aust G. The Adhesion GPCR CD97/ADGRE5 inhibits apoptosis. Int J Biochem Cell Biol 2015; 65:197-208. [PMID: 26071181 DOI: 10.1016/j.biocel.2015.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
The Adhesion G protein-coupled receptor (GPCR) CD97/ADGRE5 is induced, upregulated, and/or biochemically modified in various malignancies, compared to the corresponding normal tissues. As tumor cells are generally more resistant to apoptosis, we here studied the ability of CD97 to regulate tumor cell survival under apoptotic conditions. Stable overexpression of wild-type CD97 reduced serum starvation- and staurosporine-induced intrinsic and tumor necrosis factor (TNF)/cycloheximide-induced extrinsic apoptosis, indicated by an increase in cell viability, a lower percentage of cells within the subG0/G1 phase, expressing annexin V, or having condensed nuclei, and a reduction of DNA laddering. Protection from cell death by CD97 was accompanied by an inhibition of caspase activation and modulation of anti- and pro-apoptotic members of the BCL-2 superfamily. shRNA-mediated knockdown of CD97 and, in part, truncation of the seven-span transmembrane (TM7) region of CD97 increased caspase-mediated apoptosis. Protection from apoptosis required not only the TM7 region but also cleavage of the receptor at its GPCR proteolysis site (GPS), whereas alternative splicing of its extracellular domain had no effect. Together, our data indicate a role of CD97 in tumor cell survival.
Collapse
Affiliation(s)
- Cheng-Chih Hsiao
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Kerstin Keysselt
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany
| | - Hsin-Yi Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Doreen Sittig
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany
| | - Jörg Hamann
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan.
| | - Gabriela Aust
- Department of Surgery, Research Laboratories, University of Leipzig, Leipzig, Germany.
| |
Collapse
|