351
|
Abstract
We propose an approach to integrate the theory, simulations, and experiments in protein-folding kinetics. This is realized by measuring the mean and high-order moments of the first-passage time and its associated distribution. The full kinetics is revealed in the current theoretical framework through these measurements. In the experiments, information about the statistical properties of first-passage times can be obtained from the kinetic folding trajectories of single molecule experiments (for example, fluorescence). Theoretical/simulation and experimental approaches can be directly related. We study in particular the temperature-varying kinetics to probe the underlying structure of the folding energy landscape. At high temperatures, exponential kinetics is observed; there are multiple parallel kinetic paths leading to the native state. At intermediate temperatures, nonexponential kinetics appears, revealing the nature of the distribution of local traps on the landscape and, as a result, discrete kinetic paths emerge. At very low temperatures, exponential kinetics is again observed; the dynamics on the underlying landscape is dominated by a single barrier. The ratio between first-passage-time moments is proposed to be a good variable to quantitatively probe these kinetic changes. The temperature-dependent kinetics is consistent with the strange kinetics found in folding dynamics experiments. The potential applications of the current results to single-molecule protein folding are discussed.
Collapse
Affiliation(s)
- Vitor B P Leite
- Departamento de Física--Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | | | | | | |
Collapse
|
352
|
Li H, Ren X, Ying L, Balasubramanian S, Klenerman D. Measuring single-molecule nucleic acid dynamics in solution by two-color filtered ratiometric fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 2004; 101:14425-30. [PMID: 15452356 PMCID: PMC521954 DOI: 10.1073/pnas.0404295101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work presents a general method for determining single-molecule intramolecular dynamics in biomolecules by using a reporter fluorophore, whose fluorescence is quenched or partially quenched as a result of intramolecular motion, and a remote observer fluorophore. These fluorophores were excited independently with two different lasers, and the ratio of the two fluorophores' fluorescence was calculated. The time-varying ratio was then filtered to reduce contributions from molecules outside the overlapped laser volume and then correlated. The rates of opening and closing of a DNA hairpin were measured by using both fluorescence correlation spectroscopy and this method for comparison. We found at 50 pM, where molecules were studied one by one as they diffused through the probe volume, we obtained accurate opening and closing rates and could also measure dynamic heterogeneity. To demonstrate applicability to a more complex biological molecule we then probed intramolecular motions in the dimer of a human telomerase RNA fragment (hTR(380-444)), in the presence of an excess of monomer. The motion was found to occur on the time scale of 180-750 micros and slowed with increasing magnesium ion concentration. Blocking experiments using complementary oligonucleotides suggested that the motion involves substantial changes in dimer tertiary structure. This method appears to be a general method for selectively studying intramolecular motion in large biomolecules or complexes.
Collapse
Affiliation(s)
- Haitao Li
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | |
Collapse
|
353
|
Saksmerprome V, Burke DH. Deprotonation stimulates productive folding in allosteric TRAP hammerhead ribozymes. J Mol Biol 2004; 341:685-94. [PMID: 15288779 DOI: 10.1016/j.jmb.2004.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/09/2004] [Accepted: 06/10/2004] [Indexed: 10/26/2022]
Abstract
Hammerhead ribozymes in crystals change conformation in response to deprotonation of the nucleophilic 2' OH, thereby aligning the hydroxyl for in-line displacement at the scissile phosphate. Published data do not address whether deprotonation affects folding in solution. Allosteric hammerhead "TRAPs," when activated by the appropriate oligonucleotide, show the expected log-linear relation between initial cleavage rate and pH. In contrast, attenuated TRAPs shows biphasic kinetics in which a rapid burst is followed by slow cleavage that is nearly independent of pH. Attenuated ribozymes are stimulated by urea at both low and high pH, confirming that rearrangement of secondary structure is rate-limiting for the attenuated ribozymes once they have folded. Plots of burst magnitude versus pH in the absence of urea show a sharp transition around pH 8.3, which is near the kinetic pKa for the cleavage reaction in Mg2+. Raising the pH after folding at pH 7.5 did not activate attenuated ribozymes even when the RNA was incubated at the elevated pH for extended periods prior to addition of Mg2+. In contrast, lowering the pH after folding at pH 9.5 rapidly re-established attenuation. Deprotonation of the ribozyme-substrate complex thus appears to alter the folding landscape such that a metastable "pre-activated" complex forms before the thermodynamically more stable attenuated state can be attained. From the initial partition into active and inactive conformers, we estimate that this deprotonation contributes approximately 1.2 kcal/mol toward stabilization of the active fold at a crucial step during folding of the TRAP. Assuming that the nucleophilic 2' OH is the relevant acid, its deprotonation would thus serve a dual role of favoring productive fold and enhancing the nucleophilicity of this oxygen.
Collapse
|
354
|
Blanchard SC, Kim HD, Gonzalez RL, Puglisi JD, Chu S. tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci U S A 2004; 101:12893-8. [PMID: 15317937 PMCID: PMC516491 DOI: 10.1073/pnas.0403884101] [Citation(s) in RCA: 359] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using single-molecule fluorescence spectroscopy, time-resolved conformational changes between fluorescently labeled tRNA have been characterized within surface-immobilized ribosomes proceeding through a complete cycle of translation elongation. Fluorescence resonance energy transfer was used to observe aminoacyl-tRNA (aa-tRNA) stably accommodating into the aminoacyl site (A site) of the ribosome via a multistep, elongation factor-Tu dependent process. Subsequently, tRNA molecules, bound at the peptidyl site and A site, fluctuate between two configurations assigned as classical and hybrid states. The lifetime of classical and hybrid states, measured for complexes carrying aa-tRNA and peptidyl-tRNA at the A site, shows that peptide bond formation decreases the lifetime of the classical-state tRNA configuration by approximately 6-fold. These data suggest that the growing peptide chain plays a role in modulating fluctuations between hybrid and classical states. Single-molecule fluorescence resonance energy transfer was also used to observe aa-tRNA accommodation coupled with elongation factor G-mediated translocation. Dynamic rearrangements in tRNA configuration are also observed subsequent to the translocation reaction. This work underscores the importance of dynamics in ribosome function and demonstrates single-particle enzymology in a system of more than two components.
Collapse
Affiliation(s)
- Scott C Blanchard
- Department of Physics and Applied Physics, Stanford University, Stanford, CA 94305-4060, USA
| | | | | | | | | |
Collapse
|
355
|
Sarkar A, Robertson RB, Fernandez JM. Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave. Proc Natl Acad Sci U S A 2004; 101:12882-6. [PMID: 15326308 PMCID: PMC516489 DOI: 10.1073/pnas.0403534101] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence techniques for monitoring single-molecule dynamics in the vertical dimension currently do not exist. Here we use an atomic force microscope to calibrate the distance-dependent intensity decay of an evanescent wave. The measured evanescent wave transfer function was then used to convert the vertical motions of a fluorescent particle into displacement (SD = < 1 nm). We demonstrate the use of the calibrated evanescent wave to resolve the 20.1 +/- 0.5-nm step increases in the length of the small protein ubiquitin during forced unfolding. The experiments that we report here make an important contribution to fluorescence microscopy by demonstrating the unambiguous optical tracking of a single molecule with a resolution comparable to that of an atomic force microscope.
Collapse
Affiliation(s)
- Atom Sarkar
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA
| | | | | |
Collapse
|
356
|
Gallego J. Sequence-dependent nucleotide dynamics revealed by intercalated ring rotation in DNA-bisnaphthalimide complexes. Nucleic Acids Res 2004; 32:3607-14. [PMID: 15240833 PMCID: PMC484180 DOI: 10.1093/nar/gkh693] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bisnaphthalimide intercalators are anti-tumour agents composed of two planar rings linked by a flexible diazanonylene chain. The intercalated rings of three bisnaphthalimide analogues complexed to DNA are found here to undergo 180 degrees rotating motions that do not affect the diazanonylene linker atoms bound to the major groove. These ring rotations are detected by NMR spectroscopy in a broad range of sequence contexts and duplex lengths. A comparative analysis of the frequency and activation energies of such excited states in different complexes and conditions indicates that these motions (i) are unrelated to drug dissociation; (ii) are a consequence of concerted, sequence-dependent nucleotide movements taking place on the millisecond time scale; and (iii) may occur inside the DNA duplexes. The rotation frequencies range from 2 to 25 s(-1) at 25 degrees C, depending on DNA composition and the size of the rotating rings. The detected nucleotide dynamics are likely to play an important role in the binding kinetics of the numerous proteins and drugs that require base unstacking when interacting with DNA.
Collapse
Affiliation(s)
- José Gallego
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
357
|
|
358
|
Rueda D, Bokinsky G, Rhodes MM, Rust MJ, Zhuang X, Walter NG. Single-molecule enzymology of RNA: essential functional groups impact catalysis from a distance. Proc Natl Acad Sci U S A 2004; 101:10066-71. [PMID: 15218105 PMCID: PMC454165 DOI: 10.1073/pnas.0403575101] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hairpin ribozyme is a minimalist paradigm for studying RNA folding and function. In this enzyme, two domains dock by induced fit to form a catalytic core that mediates a specific backbone cleavage reaction. Here, we have fully dissected its reversible reaction pathway, which comprises two structural transitions (docking/undocking) and a chemistry step (cleavage/ligation), by applying a combination of single-molecule fluorescence resonance energy transfer (FRET) assays, ensemble cleavage assays, and kinetic simulations. This has allowed us to quantify the effects that modifications of essential functional groups remote from the site of catalysis have on the individual rate constants. We find that all ribozyme variants show similar fractionations into effectively noninterchanging molecule subpopulations of distinct undocking rate constants. This leads to heterogeneous cleavage activity as commonly observed for RNA enzymes. A modification at the domain junction additionally leads to heterogeneous docking. Surprisingly, most modifications not only affect docking/undocking but also significantly impact the internal chemistry rate constants over a substantial distance from the site of catalysis. We propose that a network of coupled molecular motions connects distant parts of the RNA with its reaction site, which suggests a previously undescribed analogy between RNA and protein enzymes. Our findings also have broad implications for applications such as the action of drugs and ligands distal to the active site or the engineering of allostery into RNA.
Collapse
Affiliation(s)
- David Rueda
- Department of Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | |
Collapse
|
359
|
Najafi-Shoushtari SH, Mayer G, Famulok M. Sensing complex regulatory networks by conformationally controlled hairpin ribozymes. Nucleic Acids Res 2004; 32:3212-9. [PMID: 15199169 PMCID: PMC434448 DOI: 10.1093/nar/gkh643] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The hairpin ribozyme catalyses RNA cleavage by a mechanism utilizing its conformational flexibility during the docking of two independently folded internal loop domains A and B. Based on this mechanism, we designed hairpin ribozyme variants that can be induced or repressed by external effector oligonucleotides influencing the docking process. We incorporated a third domain C to assimilate alternate stable RNA motifs such as a pseudo-half-knot or an internal stem-loop structure. Small sequence changes in domain C allowed targeted switching of ribozyme activity: the same effector oligonucleotide can either serve as an inducer or repressor. The ribozymes were applied to trp leader mRNA, the RNA sequence tightly bound by l-tryptophan-activated trp-RNA-binding attenuation protein (TRAP). When domain C is complementary to this mRNA, ribozyme activity can be altered by annealing trp leader mRNA, then specifically reverted by its TRAP/tryptophan-mediated sequestration. This approach allows to precisely sense the activity status of a protein controlled by its metabolite molecule.
Collapse
Affiliation(s)
- S Hani Najafi-Shoushtari
- Kekule Institut fur Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | |
Collapse
|
360
|
Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci U S A 2004; 101:8936-41. [PMID: 15175430 PMCID: PMC428450 DOI: 10.1073/pnas.0401690101] [Citation(s) in RCA: 458] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We use alternating-laser excitation to achieve fluorescence-aided molecule sorting (FAMS) and enable simultaneous analysis of biomolecular structure and interactions at the level of single molecules. This was performed by labeling biomolecules with fluorophores that serve as donor-acceptor pairs for Förster resonance energy transfer, and by using alternating-laser excitation to excite directly both donors and acceptors present in single diffusing molecules. Emissions were reduced to the distance-dependent ratio E, and a distance-independent, stoichiometry-based ratio S. Histograms of E and S sorted species based on the conformation and association status of each species. S was sensitive to the stoichiometry and relative brightness of fluorophores in single molecules, observables that can monitor oligomerization and local-environment changes, respectively. FAMS permits equilibrium and kinetic analysis of macromolecule-ligand interactions; this was validated by measuring equilibrium and kinetic dissociation constants for the interaction of Escherichia coli catabolite activator protein with DNA. FAMS is a general platform for ratiometric measurements that report on structure, dynamics, stoichiometries, environment, and interactions of diffusing or immobilized molecules, thus enabling detailed mechanistic studies and ultrasensitive diagnostics.
Collapse
Affiliation(s)
- Achillefs N Kapanidis
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
361
|
Penedo JC, Wilson TJ, Jayasena SD, Khvorova A, Lilley DMJ. Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA (NEW YORK, N.Y.) 2004; 10:880-8. [PMID: 15100442 PMCID: PMC1370577 DOI: 10.1261/rna.5268404] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 02/09/2004] [Indexed: 05/18/2023]
Abstract
It has been shown that the activity of the hammerhead ribozyme at microM magnesium ion concentrations is markedly increased by the inclusion of loops in helices I and II. We have studied the effect of such loops on the magnesium ion-induced folding of the ribozyme, using fluorescence resonance energy transfer. We find that with the loops in place, folding into the active conformation occurs in a single step, in the microM range of magnesium ion concentration. Disruption of the loop-loop interaction leads to a reversion to two-step folding, with the second stage requiring mM concentrations of magnesium ion. Sodium ions also promote the folding of the natural form of the ribozyme at high concentrations, but the folding occurs as a two-stage process. The loops clearly act as important auxiliary elements in the function of the ribozyme, permitting folding to occur efficiently under physiological conditions.
Collapse
Affiliation(s)
- J Carlos Penedo
- Cancer Research UK Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
362
|
Sekatskii SK. Fluorescence resonance energy transfer scanning near-field optical microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:901-919. [PMID: 15306500 DOI: 10.1098/rsta.2003.1354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The method of fluorescence resonance energy transfer scanning near-field optical microscopy (FRET SNOM) consists in the separation of a FRET pair between an SNOM tip and a sample. The donor (or acceptor) centre is located at the tip apex and scanned in the vicinity of a sample while acceptor fluorescence (or donor-fluorescence quenching) is detected. It is shown that the spatial resolution for such an approach is governed not by the aperture size but by the FRET characteristic radius (Förster radius), and thus can attain the value of 2-7 nm with the same (or higher) sensitivity as characteristic for the aperture SNOM. The theoretical fundamentals of the method, its experimental realization and connections with other types of near-field optical microscopy are discussed. Coherent FRET SNOM, which can be realized at liquid helium temperatures, and its possible applications for quantum informatics, are briefly outlined.
Collapse
Affiliation(s)
- S K Sekatskii
- Laboratoire de Physique de la Matière Vivante, IPMC, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
363
|
Hohng S, Wilson TJ, Tan E, Clegg RM, Lilley DMJ, Ha T. Conformational flexibility of four-way junctions in RNA. J Mol Biol 2004; 336:69-79. [PMID: 14741204 DOI: 10.1016/j.jmb.2003.12.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Helical junctions are common architectural features in RNA. They are particularly important in autonomously folding molecules, as exemplified by the hairpin ribozyme. We have used single-molecule fluorescence spectroscopy to study the dynamic properties of the perfect (4H) four-way helical junction derived from the hairpin ribozyme. In the presence of Mg(2+), the junction samples parallel and antiparallel conformations and both stacking conformers, with a bias towards one antiparallel stacking conformer. There is continual interconversion between the forms, such that there are several transitions per second under physiological conditions. Our data suggest that interconversion proceeds via an open intermediate with reduced cation binding in which coaxial stacking between helices is disrupted. The rate of interconversion becomes slower at higher Mg(2+) concentrations, yet the activation barrier decreases under these conditions, indicating that entropic effects are important. Transitions also occur in the presence of Na(+) only; however, the coaxial stacking appears incomplete under these conditions. The polymorphic and dynamic character of the four-way RNA junction provides a source of structural diversity, from which particular conformations required for biological function might be stabilised by additional RNA interactions or protein binding.
Collapse
Affiliation(s)
- Sungchul Hohng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
364
|
Foquet M, Korlach J, Zipfel WR, Webb WW, Craighead HG. Focal Volume Confinement by Submicrometer-Sized Fluidic Channels. Anal Chem 2004; 76:1618-26. [PMID: 15018559 DOI: 10.1021/ac035088o] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microfluidic channels with two lateral dimensions smaller than 1 microm were fabricated in fused silica for high-sensitivity single-molecule detection and fluorescence correlation spectroscopy. The effective observation volumes created by these channels are approximately 100 times smaller than observation volumes using conventional confocal optics and thus enable single-fluorophore detection at higher concentrations. Increased signal-to-noise ratios are also attained because the molecules are restricted to diffuse through the central regions of the excitation volume. Depending on the channel geometries, the effective dimensionality of diffusion is reduced, which is taken into account by simple solutions to diffusion models with boundaries. Driven by electrokinetic forces, analytes could be flowed rapidly through the observation volume, drastically increasing the rate of detection events and reducing data acquisition times. The statistical accuracy of single-molecule characterization is improved because all molecules are counted and contribute to the analysis. Velocities as high as 0.1 m/s were reached, corresponding to average molecular residence times in the observation volume as short as 10 micros. Applications of these nanofabricated devices for high-throughput, single-molecule detection in drug screening and genomic analysis are discussed.
Collapse
Affiliation(s)
- Mathieu Foquet
- School of Applied & Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
365
|
Neuman KC, Abbondanzieri EA, Landick R, Gelles J, Block SM. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 2004; 115:437-47. [PMID: 14622598 DOI: 10.1016/s0092-8674(03)00845-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase (RNAP) transcribes DNA discontinuously, with periods of rapid nucleotide addition punctuated by frequent pauses. We investigated the mechanism of transcription by measuring the effect of both hindering and assisting forces on the translocation of single Escherichia coli transcription elongation complexes, using an optical trapping apparatus that allows for the detection of pauses as short as one second. We found that the vast majority of pauses are brief (1-6 s at 21 degrees C, 1 mM NTPs), and that the probability of pausing at any particular position on a DNA template is low and fairly constant. Neither the probability nor the duration of these ubiquitous pauses was affected by hindering or assisting loads, establishing that they do not result from the backtracking of RNAP along the DNA template. We propose instead that they are caused by a structural rearrangement within the enzyme.
Collapse
Affiliation(s)
- Keir C Neuman
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
366
|
Xie Z, Srividya N, Sosnick TR, Pan T, Scherer NF. Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme. Proc Natl Acad Sci U S A 2004; 101:534-9. [PMID: 14704266 PMCID: PMC327182 DOI: 10.1073/pnas.2636333100] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2003] [Indexed: 11/18/2022] Open
Abstract
The equilibrium folding of the catalytic domain of Bacillus subtilis RNase P RNA is investigated by single-molecule fluorescence resonance energy transfer (FRET). Previous ensemble studies of this 255-nucleotide ribozyme described the equilibrium folding with two transitions, U-to-I(eq)-to-N, and focused on the I(eq)-to-N transition. The present study focuses on the U-to-I(eq) transition. Comparative ensemble measurements of the ribozyme construct labeled with fluorescein at the 5' end and Cy3 at the 3' end show that modifications required for labeling do not interfere with folding and help to define the Mg(2+) concentration range for the U-to-I(eq) transition. Histogram analysis of the Mg(2+)-dependent single-molecule FRET efficiency reveals two previously undetermined folding intermediates. The single-molecule FRET trajectories exhibit non-two-state and nonergodic behaviors at intermediate Mg(2+) concentrations on the time scale of seconds. The trajectories at intermediate Mg(2+) concentrations are classified into five classes based on three FRET levels and their dynamics of interconversion within the measured time range. This heterogeneity, together with the observation of "nonsudden jump" FRET transitions, indicates that the early folding steps of this ribozyme involve a series of intermediates with different degrees of kinetic isolation and that folding occurs under kinetic control and involves many "local" conformational switches. A free energy contour is constructed to illustrate the complex folding surface.
Collapse
Affiliation(s)
- Zheng Xie
- Institute for Biophysical Dynamics and Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
367
|
Margittai M, Widengren J, Schweinberger E, Schröder GF, Felekyan S, Haustein E, König M, Fasshauer D, Grubmüller H, Jahn R, Seidel CAM. Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proc Natl Acad Sci U S A 2003; 100:15516-21. [PMID: 14668446 PMCID: PMC307599 DOI: 10.1073/pnas.2331232100] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Indexed: 11/18/2022] Open
Abstract
Protein conformational transitions form the molecular basis of many cellular processes, such as signal transduction and membrane traffic. However, in many cases, little is known about their structural dynamics. Here we have used dynamic single-molecule fluorescence to study at high time resolution, conformational transitions of syntaxin 1, a soluble N-ethylmaleimide-sensitive factor attachment protein receptors protein essential for exocytotic membrane fusion. Sets of syntaxin double mutants were randomly labeled with a mix of donor and acceptor dye and their fluorescence resonance energy transfer was measured. For each set, all fluorescence information was recorded simultaneously with high time resolution, providing detailed information on distances and dynamics that were used to create structural models. We found that free syntaxin switches between an inactive closed and an active open configuration with a relaxation time of 0.8 ms, explaining why regulatory proteins are needed to arrest the protein in one conformational state.
Collapse
Affiliation(s)
- M Margittai
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Abstract
Since the discovery of enzymes as biological catalysts, study of their enormous catalytic power and exquisite specificity has been central to biochemistry. Nevertheless, there is no universally accepted comprehensive description. Rather, numerous proposals have been presented over the past half century. The difficulty in developing a comprehensive description for the catalytic power of enzymes derives from the highly cooperative nature of their energetics, which renders impossible a simple division of mechanistic features and an absolute partitioning of catalytic contributions into independent and energetically additive components. Site-directed mutagenesis has emerged as an enormously powerful approach to probe enzymatic catalysis, illuminating many basic features of enzyme function and behavior. The emphasis of site-directed mutagenesis on the role of individual residues has also, inadvertently, limited experimental and conceptual attention to the fundamentally cooperative nature of enzyme function and energetics. The first part of this review highlights the structural and functional interconnectivity central to enzymatic catalysis. In the second part we ask: What are the features of enzymes that distinguish them from simple chemical catalysts? The answers are presented in conceptual models that, while simplified, help illustrate the vast amount known about how enzymes achieve catalysis. In the last section, we highlight the molecular and energetic questions that remain for future investigation and describe experimental approaches that will be necessary to answer these questions. The promise of advancing and integrating cutting edge conceptual, experimental, and computational tools brings mechanistic enzymology to a new era, one poised for novel fundamental insights into biological catalysis.
Collapse
Affiliation(s)
- Daniel A Kraut
- Department of Biochemistry, Stanford University, B400 Beckman Center, 279 Campus Drive, Stanford, California 94305-5307, USA.
| | | | | |
Collapse
|
369
|
Weninger K, Bowen ME, Chu S, Brunger AT. Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations. Proc Natl Acad Sci U S A 2003; 100:14800-5. [PMID: 14657376 PMCID: PMC299806 DOI: 10.1073/pnas.2036428100] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vesicle fusion in eukaryotes is thought to involve the assembly of a highly conserved family of proteins termed soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) into a highly stable parallel four-helix bundle. We have used intermolecular single-molecule fluorescence resonance energy transfer to characterize preassembled neuronal SNARE complexes consisting of syntaxin, synaptobrevin, and synaptosome-associated protein of 25 kDa on deposited lipid bilayers. Surprisingly, we found a mixture of parallel as well as antiparallel configurations involving the SNARE motifs of syntaxin and synaptobrevin as well as those of syntaxin and synaptosome-associated protein of 25 kDa. The subpopulation with the parallel four-helix bundle configuration could be greatly enriched by an additional purification step in the presence of denaturant, indicating that the parallel configuration is the energetically most favorable state. Interconversion between the configurations was not observed. From this observation, we infer the conversion rate to be <1.5 h-1. The existence of antiparallel configurations suggests a regulatory role of chaperones, such as N-ethylmaleimide-sensitive factor, or the membrane environment during SNARE complex assembly in vivo, and it could be a partial explanation for the relatively slow rates of vesicle fusion observed by reconstituted fusion experiments in vitro.
Collapse
Affiliation(s)
- Keith Weninger
- The Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-4060, USA
| | | | | | | |
Collapse
|
370
|
Hofkens J, Cotlet M, Vosch T, Tinnefeld P, Weston KD, Ego C, Grimsdale A, Müllen K, Beljonne D, Brédas JL, Jordens S, Schweitzer G, Sauer M, De Schryver F. Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules. Proc Natl Acad Sci U S A 2003; 100:13146-51. [PMID: 14583594 PMCID: PMC263731 DOI: 10.1073/pnas.2235805100] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Indexed: 11/18/2022] Open
Abstract
We demonstrate measurements of the efficiency of competing Förster-type energy-transfer pathways in single bichromophoric systems by monitoring simultaneously the fluorescence intensity, fluorescence lifetime, and the number of independent emitters with time. Peryleneimide end-capped fluorene trimers, hexamers, and polymers with interchromophore distances of 3.4, 5.9, and on average 42 nm, respectively, served as bichromophoric systems. Because of different energy-transfer efficiencies, variations in the interchromophore distance enable the switching between homo-energy transfer (energy hopping), singlet-singlet annihilation, and singlet-triplet annihilation. The data suggest that similar energy-transfer pathways have to be considered in the analysis of single-molecule trajectories of donor/acceptor pairs as well as in natural and synthetic multichromophoric systems such as light-harvesting antennas, oligomeric fluorescent proteins, and dendrimers. Here we report selectively visualization of different energy-transfer pathways taking place between identical fluorophores in individual bichromophoric molecules.
Collapse
Affiliation(s)
- Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200 F, 3001 Heverlee, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Schröder GF, Grubmüller H. Maximum likelihood trajectories from single molecule fluorescence resonance energy transfer experiments. J Chem Phys 2003. [DOI: 10.1063/1.1616511] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
372
|
Tolić-Nørrelykke SF, Engh AM, Landick R, Gelles J. Diversity in the rates of transcript elongation by single RNA polymerase molecules. J Biol Chem 2003; 279:3292-9. [PMID: 14604986 DOI: 10.1074/jbc.m310290200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-molecule measurements of the activities of a variety of enzymes show that rates of catalysis may vary markedly between different molecules in putatively homogeneous enzyme preparations. We measured the rate at which purified Escherichia coli RNA polymerase moves along a approximately 2650-bp DNA during transcript elongation in vitro at 0.5 mm nucleoside triphosphates. Individual molecules of a specifically biotinated RNA polymerase derivative were tagged with 199-nm diameter avidin-coated polystyrene beads; enzyme movement along a surface-linked DNA molecule was monitored by observing changes in bead Brownian motion by light microscopy. The DNA was derived from a naturally occurring transcription unit and was selected for the absence of regulatory sequences that induce lengthy pausing or termination of transcription. With rare exceptions, individual enzyme molecules moved at a constant velocity throughout the transcription reaction; the distribution of velocities across a population of 140 molecules was unimodal and was well fit by a Gaussian. However, the width of the Gaussian, sigma = 6.7 bp/s, was considerably larger than the precision of the velocity measurement (1 bp/s). The observations show that different transcription complexes have differences in catalytic rate (and thus differences in structure) that persist for thousands of catalytic turnovers. These differences may provide a parsimonious explanation for the complex transcription kinetics observed in bulk solution.
Collapse
|
373
|
Sargueil B, Hampel KJ, Lambert D, Burke JM. In vitro selection of second site revertants analysis of the hairpin ribozyme active site. J Biol Chem 2003; 278:52783-91. [PMID: 14555657 DOI: 10.1074/jbc.m306703200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used in vitro genetics to evaluate the function and interactions of the conserved base G8 in the hairpin ribozyme catalytic RNA. Second site revertant selection for a G8X mutant, where X is any of the other three natural nucleobases, yielded a family of second site suppressors of the G8U mutant, but not of G8C or G8A, indicating that only G and U can be tolerated at position 8 of the ribozyme. This result is consistent with recent observations that point to the functional importance of G8 N-1 in the chemistry of catalysis by this ribozyme reaction. Suppression of the G8U mutation was observed when changes were made directly across loop A from the mutated base at substrate position +2 or positions +2 and +3 in combination. The same changes made in the context of the natural G8 sequence resulted in a very large drop in activity. Thus, the G8U mutation results in a change in specificity of the ribozyme from 5'-N / GUC-3' to 5'-N / GCU-3'. The results presented imply that G8 interacts directly with U+2 during catalysis. We propose that this interaction favors the correct positioning of the catalytic determinants of G8. The implications for the folding of the ribozyme and the catalytic mechanism are discussed.
Collapse
Affiliation(s)
- Bruno Sargueil
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
374
|
Buchmueller KL, Hill BT, Platz MS, Weeks KM. RNA-tethered phenyl azide photocrosslinking via a short-lived indiscriminant electrophile. J Am Chem Soc 2003; 125:10850-61. [PMID: 12952464 DOI: 10.1021/ja035743+] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arylazide mediated photocrosslinking has been widely used to obtain structural constraints in biological systems, even though the reactive species generated upon photolysis in aqueous solution have not been well characterized. We establish a mechanistic framework for formation of adducts between photoactivated 3-hydroxyphenyl azide and RNA. Tethered to an internal site in an RNA duplex via a 2'-amido linkage, photolysis of the aryl azide yields a cross-strand cross-link. Analysis of the ability of reagents with diagnostic reactivities to intercept formation of this cross-strand cross-link supports the assignment that the photoactivated intermediate is the ketenimine or a ketenimine-derived ring expansion product. Neither the initially produced singlet nitrene nor the subsequently formed triplet nitrene contribute to cross-link formation. Argon matrix and time-resolved solution experiments show that photolysis of free 3-hydroxyphenyl azide releases (in <or=20 ns) either a ketenimine or azepinone intermediate that reacts with nucleophiles. Adenosine, uridine, and guanosine monophosphate nucleotides have approximately equivalent abilities to quench the cross-strand cross-link, indicating that the photoactivated intermediate reacts broadly with functional groups in RNA. The reactive intermediate forms an adduct with adenosine monophosphate when tethered to both an RNA duplex or unstructured single strand; thus, cross-link formation is independent of the local RNA environment. The lifetime of the reactive intermediate generated upon photolysis of free 3-hydroxyphenyl azide in 50 mM Hepes diamine buffer is found to be 60-160 micros or significantly shorter than large scale RNA folding events. RNA-tethered 3-hydroxyphenyl azide cross-linking in aqueous buffer can thus be used with confidence to map structural neighbors, including most dynamic interactions, in RNA.
Collapse
Affiliation(s)
- Karen L Buchmueller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
375
|
Abstract
In order to investigate the behavior of single molecules under conditions far from equilibrium, we have coupled a microfabricated laminar-flow mixer to a confocal optical system. This combination enables time-resolved measurement of Förster resonance energy transfer after an abrupt change in solution conditions. Observations of a small protein show the evolution of the intramolecular distance distribution as folding progresses. This technique can expose subpopulations, such as unfolded protein under conditions favoring the native structure, that would be obscured in equilibrium experiments.
Collapse
Affiliation(s)
- Everett A Lipman
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Building 5, Room 104, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | | | |
Collapse
|
376
|
Tan E, Wilson TJ, Nahas MK, Clegg RM, Lilley DMJ, Ha T. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc Natl Acad Sci U S A 2003; 100:9308-13. [PMID: 12883002 PMCID: PMC170914 DOI: 10.1073/pnas.1233536100] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The natural form of the hairpin ribozyme comprises two major structural elements: a four-way RNA junction and two internal loops carried by adjacent arms of the junction. The ribozyme folds into its active conformation by an intimate association between the loops, and the efficiency of this process is greatly enhanced by the presence of the junction. We have used single-molecule spectroscopy to show that the natural form fluctuates among three distinct states: the folded state and two additional, rapidly interconverting states (proximal and distal) that are inherited from the junction. The proximal state juxtaposes the two loop elements, thereby increasing the probability of their interaction and thus accelerating folding by nearly three orders of magnitude and allowing the ribozyme to fold rapidly in physiological conditions. Therefore, the hairpin ribozyme exploits the dynamics of the junction to facilitate the formation of the active site from its other elements. Dynamic interplay between structural elements, as we demonstrate for the hairpin ribozyme, may be a general theme for other functional RNA molecules.
Collapse
Affiliation(s)
- Elliot Tan
- Department of Physics and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
377
|
Bokinsky G, Rueda D, Misra VK, Rhodes MM, Gordus A, Babcock HP, Walter NG, Zhuang X. Single-molecule transition-state analysis of RNA folding. Proc Natl Acad Sci U S A 2003; 100:9302-7. [PMID: 12869691 PMCID: PMC170913 DOI: 10.1073/pnas.1133280100] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How RNA molecules fold into functional structures is a problem of great significance given the expanding list of essential cellular RNA enzymes and the increasing number of applications of RNA in biotechnology and medicine. A critical step toward solving the RNA folding problem is the characterization of the associated transition states. This is a challenging task in part because the rugged energy landscape of RNA often leads to the coexistence of multiple distinct structural transitions. Here, we exploit single-molecule fluorescence spectroscopy to follow in real time the equilibrium transitions between conformational states of a model RNA enzyme, the hairpin ribozyme. We clearly distinguish structural transitions between effectively noninterchanging sets of unfolded and folded states and characterize key factors defining the transition state of an elementary folding reaction where the hairpin ribozyme's two helical domains dock to make several tertiary contacts. Our single-molecule experiments in conjunction with site-specific mutations and metal ion titrations show that the two RNA domains are in a contact or close-to-contact configuration in the transition state even though the native tertiary contacts are at most partially formed. Such a compact transition state without well formed tertiary contacts may be a general property of elementary RNA folding reactions.
Collapse
Affiliation(s)
- Gregory Bokinsky
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
378
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:810-814. [DOI: 10.11569/wcjd.v11.i6.810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
379
|
Ha T, Xu J. Photodestruction intermediates probed by an adjacent reporter molecule. PHYSICAL REVIEW LETTERS 2003; 90:223002. [PMID: 12857312 DOI: 10.1103/physrevlett.90.223002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2001] [Revised: 12/05/2002] [Indexed: 05/24/2023]
Abstract
We used a fluorescence resonance energy transfer donor molecule to probe the multiple intermediates in the photoinduced destruction of an acceptor molecule. These intermediates are nonemitting but are still able to quench the fluorescence of the donor at a distance scale shorter than conventional fluorescence resonance energy transfer, suggesting novel biophysical applications.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | |
Collapse
|
380
|
Allemand JF, Bensimon D, Croquette V. Stretching DNA and RNA to probe their interactions with proteins. Curr Opin Struct Biol 2003; 13:266-74. [PMID: 12831877 DOI: 10.1016/s0959-440x(03)00067-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
When interacting with a single stretched DNA, many proteins modify its end-to-end distance. This distance can be monitored in real time using various micromanipulation techniques that were initially used to determine the elastic properties of bare nucleic acids and their mechanically induced structural transitions. These methods are currently being applied to the study of DNA enzymes such as DNA and RNA polymerases, topoisomerases and structural proteins such as RecA. They permit the measurement of the probability distributions of the rate, processivity, on-time, affinity and efficiency for a large variety of DNA-based molecular motors.
Collapse
Affiliation(s)
- Jean-François Allemand
- Ecole Normale Supérieure, Laboratoire de Physique Statistique, 24 rue Lhomond, 75005, Paris, France
| | | | | |
Collapse
|
381
|
Abstract
Intrinsic events during RNA folding include conformational search and metal ion binding. Several experimentally testable models have been proposed to explain how large ribozymes accomplish folding. Future challenges include the validation of these models, and the correlation of experimental results and theoretical simulations.
Collapse
Affiliation(s)
- Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
382
|
Bartley LE, Zhuang X, Das R, Chu S, Herschlag D. Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA. J Mol Biol 2003; 328:1011-26. [PMID: 12729738 DOI: 10.1016/s0022-2836(03)00272-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Docking of the P1 duplex into the pre-folded core of the Tetrahymena group I ribozyme exemplifies the formation of tertiary interactions in the context of a complex, structured RNA. We have applied Phi-analysis to P1 docking, which compares the effects of modifications on the rate constant for docking (k(dock)) with the effects on the docking equilibrium (K(dock)). To accomplish this we used a single molecule fluorescence resonance energy transfer assay that allows direct determination of the rate constants for formation of thermodynamically favorable, as well as unfavorable, states. Modification of the eight groups of the P1 duplex that make tertiary interactions with the core and changes in solution conditions decrease K(dock) up to 500-fold, whereas k(dock) changes by </=2-fold. The absence of effects on k(dock), both from atomic modifications and global perturbations, strongly suggests that the transition state for docking is early and does not closely resemble the docked state. These results, the slow rate of docking of 3s(-1), and the observation that a modification that is expected to increase the degrees of freedom between the P1 duplex and the ribozyme core accelerates docking, suggest a model in which a kinetic trap(s) slows docking substantially. Nonetheless, urea does not increase k(dock), suggesting that there is little change in the exposed surface area between the trapped, undocked state and the transition state. The findings highlight that urea and temperature dependencies can be inadequate to diagnose the presence of kinetic traps in a folding process. The results described here, combined with previous work, provide an in-depth view of an RNA tertiary structure formation event and suggest that large, highly structured RNAs may have local regions that are misordered.
Collapse
Affiliation(s)
- Laura E Bartley
- Department of Biochemistry, B400 Beckman Center, Stanford University, Stanford, CA 94305-5307, USA
| | | | | | | | | |
Collapse
|
383
|
Abstract
We study theoretically the denaturation of single RNA molecules by mechanical stretching, focusing on signatures of the (un)folding pathway in molecular fluctuations. Our model describes the interactions between nucleotides by incorporating the experimentally determined free energy rules for RNA secondary structure, whereas exterior single-stranded regions are modeled as freely jointed chains. For exemplary RNA sequences (hairpins and the Tetrahymena thermophila group I intron), we compute the quasiequilibrium fluctuations in the end-to-end distance as the molecule is unfolded by pulling on opposite ends. Unlike the average quasiequilibrium force-extension curves, these fluctuations reveal clear signatures from the unfolding of individual structural elements. We find that the resolution of these signatures depends on the spring constant of the force-measuring device, with an optimal value intermediate between very rigid and very soft. We compare and relate our results to recent experiments by Liphardt et al. (2001).
Collapse
Affiliation(s)
- Ulrich Gerland
- Department of Physics, University of California at San Diego, La Jolla 92093-0319, USA.
| | | | | |
Collapse
|
384
|
Chu S. Biology and polymer physics at the single-molecule level. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2003; 361:689-698. [PMID: 12871618 DOI: 10.1098/rsta.2002.1157] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to look at individual molecules has given us new insights into molecular processes. Examples of our recent work are given to illustrate how behaviour that may otherwise be hidden from view can be clearly seen in single-molecule experiments.
Collapse
Affiliation(s)
- Steven Chu
- Department of Physics, Stanford University, Stanford, CA 94305-4060, USA
| |
Collapse
|
385
|
Abstract
Recent advances in single-molecule techniques allow the application of force to an individual biomolecule whilst simultaneously monitoring its response using fluorescent probes. The effects of applied mechanical load on single-enzyme turnovers, biomolecular interactions and conformational changes can now be studied with nanometer precision and millisecond time resolution.
Collapse
Affiliation(s)
- Mark I Wallace
- National Institute for Medical Research, London NW7 1AA, UK
| | | | | |
Collapse
|
386
|
Zhang Y, Kua J, McCammon JA. Influence of Structural Fluctuation on Enzyme Reaction Energy Barriers in Combined Quantum Mechanical/Molecular Mechanical Studies. J Phys Chem B 2003. [DOI: 10.1021/jp022525e] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingkai Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0365
| | - Jeremy Kua
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0365
| | - J. Andrew McCammon
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0365
| |
Collapse
|
387
|
Li H, Ying L, Green JJ, Balasubramanian S, Klenerman D. Ultrasensitive coincidence fluorescence detection of single DNA molecules. Anal Chem 2003; 75:1664-70. [PMID: 12705600 DOI: 10.1021/ac026367z] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have detected individual DNA molecules labeled with two different fluorophores in solution by using two-color excitation and detection of coincidence fluorescence bursts. The confocal volumes of the two excitation lasers were carefully matched so that the volume overlap was 30% of the total confocal volume illuminated. This method greatly reduces the level of background fluorescence and, hence, extends the sensitivity of single molecule detection down to 50 fM. At these concentrations, the dual-labeled DNA is detectable in the presence of a 1000-fold excess of single-fluorophore-labeled DNA. We demonstrate that we can detect 100 fM dual-labeled DNA diluted in 1 microM unlabeled DNA, which was not possible with single color detection. This method can be used to detect rare molecules in complex mixtures.
Collapse
Affiliation(s)
- Haitao Li
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | |
Collapse
|
388
|
Rothwell PJ, Berger S, Kensch O, Felekyan S, Antonik M, Wöhrl BM, Restle T, Goody RS, Seidel CAM. Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes. Proc Natl Acad Sci U S A 2003; 100:1655-60. [PMID: 12578980 PMCID: PMC149888 DOI: 10.1073/pnas.0434003100] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By using single-molecule multiparameter fluorescence detection, fluorescence resonance energy transfer experiments, and newly developed data analysis methods, this study demonstrates directly the existence of three structurally distinct forms of reverse transcriptase (RT):nucleic acid complexes in solution. Single-molecule multiparameter fluorescence detection also provides first information on the structure of a complex not observed by x-ray crystallography. This species did not incorporate nucleotides and is structurally distinct from the other two observed species. We determined that the nucleic acid substrate is bound at a site far removed from the nucleic acid-binding tract observed by crystallography. In contrast, the other two states are identified as being similar to the x-ray crystal structure and represent distinct enzymatically productive stages in DNA polymerization. These species differ by only a 5-A shift in the position of the nucleic acid. Addition of nucleoside triphosphate or of inorganic pyrophosphate allowed us to assign them as the educt and product state in the polymerization reaction cycle; i.e., the educt state is a complex in which the nucleic acid is positioned to allow nucleotide incorporation. The second RT:nucleic acid complex is the product state, which is formed immediately after nucleotide incorporation, but before RT translates to the next nucleotide.
Collapse
Affiliation(s)
- P J Rothwell
- Abteilung Spektroskopie und Photochemische Kinetik, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
389
|
Abstract
Recent developments in fluorescence and force spectroscopy enable us to go beyond the ensemble average and measure the behavior of individual biomacromolecules. These single-molecule approaches can directly resolve transient intermediate states and multiple reaction pathways, and thus are uniquely powerful in characterizing the complex dynamics of biological processes. Recent applications of these two techniques to the protein and RNA folding problems have led to exciting new results.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
390
|
Sunney Xie X. Single-molecule approach to dispersed kinetics and dynamic disorder: Probing conformational fluctuation and enzymatic dynamics. J Chem Phys 2002. [DOI: 10.1063/1.1521159] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
391
|
Abstract
Less than a decade old, single-molecule fluorescence of nucleic acids has rapidly become an important tool in the arsenal of biological probes. A variety of novel approaches to investigate conformational dynamics, catalytic mechanisms, folding pathways and protein-nucleic-acid interactions have recently been devised for nucleic acids using this technique. Combined with biomechanical tools and ensemble measurements, single-molecule fluorescence methods extend our ability to observe and understand biomolecules and complex biological processes.
Collapse
Affiliation(s)
- Emilia T Mollova
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
392
|
Lerch HP, Mikhailov AS, Hess B. Conformational-relaxation models of single-enzyme kinetics. Proc Natl Acad Sci U S A 2002; 99:15410-5. [PMID: 12429859 PMCID: PMC137730 DOI: 10.1073/pnas.232376799] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Indexed: 11/18/2022] Open
Abstract
Fluorescent spectroscopy experiments with single-enzyme molecules yield a large volume of statistical data that can be analyzed and interpreted using stochastic models of enzyme action. Here, we present two models, each based on the mechanism that an enzyme molecule must pass through a sequence of conformational transformations to complete its catalytic turnover cycle. In the simplest model, only one path leading to the release of product is present. In contrast to this, two different catalytic paths are possible in the second considered model. If a cycle is started from an active state, immediately after the previous product release, it follows a different conformational route and is much shorter. Our numerical investigations show that both models generate non-Markovian molecular statistics. However, their memory landscapes and distributions of cycle times are significantly different. The memory landscape of the double-path model bears strong similarity to the recent experimental data for horseradish peroxidase.
Collapse
Affiliation(s)
- Hans-Philipp Lerch
- Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | | | | |
Collapse
|
393
|
Sako Y, Uyemura T. Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Struct Funct 2002; 27:357-65. [PMID: 12502890 DOI: 10.1247/csf.27.357] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Marvelous background rejection in total internal reflection fluorescence microscopy (TIR-FM) has made it possible to visualize single-fluorophores in living cells. Cell signaling proteins including peptide hormones, membrane receptors, small G proteins, cytoplasmic kinases as well as small signaling compounds have been conjugated with single chemical fluorophore or tagged with green fluorescent proteins and visualized in living cells. In this review, the reasons why single-molecule analysis is essential for studies of intracellular protein systems such as cell signaling system are discussed, the instrumentation of TIR-FM for single-molecule imaging in living cells is explained, and how single molecule visualization has been used in cell biology is illustrated by way of two examples: signaling of epidermal growth factor in mammalian cells and chemotaxis of Dictyostelium amoeba along a cAMP gradient. Single-molecule analysis is an ideal method to quantify the parameters of reaction dynamics and kinetics of unitary processes within intracellular protein systems. Knowledge of these parameters is crucial for the understanding of the molecular mechanisms underlying intracellular events, thus single-molecule imaging in living cells will be one of the major technologies in cellular nanobiology.
Collapse
Affiliation(s)
- Yasushi Sako
- Department of Physiology and Biosignaling, Graduate School of Medicine, Osaka University.
| | | |
Collapse
|
394
|
Abstract
Twenty years have passed since the initial discovery of catalytic RNA. Although initial discoveries of ribozymes (RNA enzymes) involved phosphoryl transfer reactions on RNA substrates, our knowledge of the biological repertoire of these enzymes was expanded recently as a result of new evidence suggesting that the RNA component of the ribosome catalyzes peptide bond formation. Ribozymes have posed novel challenges for mechanistic studies, but recent investigations have yielded increasing support for chemical mechanisms involving precisely positioned nucleic acid bases with environmentally perturbed pKa values and metal ions. A continuing challenge for RNA enzymologists is the separation of the structural and chemical effects in interpreting experimental results, a challenge that will be overcome as the intriguing fields of RNA enzymology and structural biology continue to expand.
Collapse
Affiliation(s)
- Victoria J DeRose
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|