351
|
Faulty RNA splicing: consequences and therapeutic opportunities in brain and muscle disorders. Hum Genet 2017; 136:1215-1235. [DOI: 10.1007/s00439-017-1802-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
|
352
|
RNA-binding proteins with prion-like domains in health and disease. Biochem J 2017; 474:1417-1438. [PMID: 28389532 DOI: 10.1042/bcj20160499] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
Collapse
|
353
|
Dutta K, Patel P, Rahimian R, Phaneuf D, Julien JP. Withania somnifera Reverses Transactive Response DNA Binding Protein 43 Proteinopathy in a Mouse Model of Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration. Neurotherapeutics 2017; 14:447-462. [PMID: 27928708 PMCID: PMC5398980 DOI: 10.1007/s13311-016-0499-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abnormal cytoplasmic mislocalization of transactive response DNA binding protein 43 (TARDBP or TDP-43) in degenerating neurons is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous work suggested that nuclear factor kappa B (NF-κB) may constitute a therapeutic target for TDP-43-mediated disease. Here, we investigated the effects of root extract of Withania somnifera (Ashwagandha), an herbal medicine with anti-inflammatory properties, in transgenic mice expressing a genomic fragment encoding human TDP-43A315T mutant. Ashwagandha extract was administered orally to hTDP-43A315T mice for a period of 8 weeks starting at 64 and 48 weeks of age for males and females, respectively. The treatment of hTDP-43A315T mice ameliorated their motor performance on rotarod test and cognitive function assessed by the passive avoidance test. Microscopy examination of tissue samples revealed that Ashwagandha treatment of hTDP-43A315T mice improved innervation at neuromuscular junctions, attenuated neuroinflammation, and reduced NF-κB activation. Remarkably, Ashwagandha treatment reversed the cytoplasmic mislocalization of hTDP-43 in spinal motor neurons and in brain cortical neurons of hTDP-43A315T mice and it reduced hTDP-43 aggregation. In vitro evidence is presented that the neuronal rescue of TDP-43 mislocalization may be due to the indirect effect of factors released from microglial cells exposed to Ashwagandha. These results suggest that Ashwagandha and its constituents might represent promising therapeutics for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Kallol Dutta
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Reza Rahimian
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada
| | - Daniel Phaneuf
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada
| | - Jean-Pierre Julien
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Québec City, G1J 2G3, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, G1V 0A6, Canada.
| |
Collapse
|
354
|
Chitramuthu BP, Kay DG, Bateman A, Bennett HPJ. Neurotrophic effects of progranulin in vivo in reversing motor neuron defects caused by over or under expression of TDP-43 or FUS. PLoS One 2017; 12:e0174784. [PMID: 28358904 PMCID: PMC5373598 DOI: 10.1371/journal.pone.0174784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Progranulin (PGRN) is a glycoprotein with multiple roles in normal and disease states. Mutations within the GRN gene cause frontotemporal lobar degeneration (FTLD). The affected neurons display distinctive TAR DNA binding protein 43 (TDP-43) inclusions. How partial loss of PGRN causes TDP-43 neuropathology is poorly understood. TDP-43 inclusions are also found in affected neurons of patients with other neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. In ALS, TDP-43 inclusions are typically also immunoreactive for fused in sarcoma (FUS). Mutations within TDP-43 or FUS are themselves neuropathogenic in ALS and some cases of FTLD. We used the outgrowth of caudal primary motor neurons (MNs) in zebrafish embryos to investigate the interaction of PGRN with TDP-43 and FUS in vivo. As reported previously, depletion of zebrafish PGRN-A (zfPGRN-A) is associated with truncated primary MNs and impaired motor function. Here we found that depletion of zfPGRN-A results in primary MNs outgrowth stalling at the horizontal myoseptum, a line of demarcation separating the myotome into dorsal and ventral compartments that is where the final destination of primary motor is assigned. Successful axonal outgrowth beyond the horizontal myoseptum depends in part upon formation of acetylcholine receptor clusters and this was found to be disorganized upon depletion of zfPGRN-A. PGRN reversed the effects of zfPGRN-A knockdown, but a related gene, zfPGRN-1, was without effect. Both knockdown of TDP-43 or FUS, as well as expression of humanTDP-43 and FUS mutants results in MN abnormalities that are reversed by co-expression of hPGRN mRNA. Neither TDP-43 nor FUS reversed MN phenotypes caused by the depletion of PGRN. Thus TDP-43 and FUS lie upstream of PGRN in a gene complementation pathway. The ability of PGRN to override TDP-43 and FUS neurotoxicity due to partial loss of function or mutation in the corresponding genes may have therapeutic relevance.
Collapse
Affiliation(s)
- Babykumari P. Chitramuthu
- Endocrine Research Laboratory, Royal Victoria Hospital, McGill University Health Centre Research Institute, Montreal, Québec, Canada
- Neurodyn Inc., Charlottetown, Prince Edward Island, Canada
- * E-mail: (BPC); (HPJB)
| | - Denis G. Kay
- Neurodyn Inc., Charlottetown, Prince Edward Island, Canada
| | - Andrew Bateman
- Endocrine Research Laboratory, Royal Victoria Hospital, McGill University Health Centre Research Institute, Montreal, Québec, Canada
| | - Hugh P. J. Bennett
- Endocrine Research Laboratory, Royal Victoria Hospital, McGill University Health Centre Research Institute, Montreal, Québec, Canada
- * E-mail: (BPC); (HPJB)
| |
Collapse
|
355
|
Amici DR, Pinal-Fernandez I, Mázala DAG, Lloyd TE, Corse AM, Christopher-Stine L, Mammen AL, Chin ER. Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis. Acta Neuropathol Commun 2017; 5:24. [PMID: 28330496 PMCID: PMC5363023 DOI: 10.1186/s40478-017-0427-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 01/08/2023] Open
Abstract
Sporadic inclusion body myositis (IBM) is the most common primary myopathy in the elderly, but its pathoetiology is still unclear. Perturbed myocellular calcium (Ca2+) homeostasis can exacerbate many of the factors proposed to mediate muscle degeneration in IBM, such as mitochondrial dysfunction, protein aggregation, and endoplasmic reticulum stress. Ca2+ dysregulation may plausibly be initiated in IBM by immune-mediated membrane damage and/or abnormally accumulating proteins, but no studies to date have investigated Ca2+ regulation in IBM patients. We first investigated protein expression via immunoblot in muscle biopsies from IBM, dermatomyositis, and non-myositis control patients, identifying several differentially expressed Ca2+-regulatory proteins in IBM. Next, we investigated the Ca2+-signaling transcriptome by RNA-seq, finding 54 of 183 (29.5%) genes from an unbiased list differentially expressed in IBM vs. controls. Using an established statistical approach to relate genes with causal transcription networks, Ca2+ abundance was considered a significant upstream regulator of observed whole-transcriptome changes. Post-hoc analyses of Ca2+-regulatory mRNA and protein data indicated a lower protein to transcript ratio in IBM vs. controls, which we hypothesized may relate to increased Ca2+-dependent proteolysis and decreased protein translation. Supporting this hypothesis, we observed robust (4-fold) elevation in the autolytic activation of a Ca2+-activated protease, calpain-1, as well as increased signaling for translational attenuation (eIF2α phosphorylation) downstream of the unfolded protein response. Finally, in IBM samples we observed mRNA and protein under-expression of calpain-3, the skeletal muscle-specific calpain, which broadly supports proper Ca2+ homeostasis. Together, these data provide novel insight into mechanisms by which intracellular Ca2+ regulation is perturbed in IBM and offer evidence of pathological downstream effects.
Collapse
|
356
|
Kindy M, Lupinacci P, Chau R, Shum T, Ko D. A Phase 2A randomized, double-blind, placebo-controlled pilot trial of GM604 in patients with Amyotrophic Lateral Sclerosis (ALS Protocol GALS-001) and a single compassionate patient treatment (Protocol GALS-C). F1000Res 2017; 6:230. [PMID: 30057745 PMCID: PMC6051227 DOI: 10.12688/f1000research.10519.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2017] [Indexed: 11/20/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that lacks effective treatment options. Genervon has discovered and developed GM604 (GM6) as a potential ALS therapy. GM6 has been modeled upon an insulin receptor tyrosine kinase binding motoneuronotrophic factor within the developing central nervous system. Methods This was a 2-center phase 2A, randomized, double-blind, placebo-controlled pilot trial with 12 definite ALS patients diagnosed within 2 years of disease onset. Patients received 6 doses of GM604 or placebo, administered as slow IV bolus injections (3x/week, 2 consecutive weeks). Objectives were to assess the safety and efficacy of GM604 based on ALSFRS-R, FVC and selected biomarkers (TDP-43, Tau and SOD1, pNFH). This report also includes results of compassionate treatment protocol GALS-C for an advanced ALS patient. Results Definite ALS patients were randomized to one of two treatment groups (GM604, n = 8; placebo, n = 4). 2 of 8 GM604-treated patients exhibited mild rash, but otherwise adverse event frequency was similar in treated and placebo groups. GM604 slowed functional decline (ALSFRS-R) when compared to a historical control (P = 0.005). At one study site, a statistically significant difference between treatment and control groups was found when comparing changes in respiratory function (FVC) between baseline and week 12 (P = 0.027). GM604 decreased plasma levels of key ALS biomarkers relative to the placebo group (TDP-43, P = 0.008; Tau, P = 0.037; SOD1, P = 0.009). The advanced ALS patient in compassionate treatment demonstrated improved speech, oral fluid consumption, mouth suction with GM604 treatment and biomarker improvements. Conclusions We observed favorable shifts in ALS biomarkers and improved functional measures during the Phase 2A study as well as in an advanced ALS patient. Although a larger trial is needed to confirm these findings, the present data are encouraging and support GM604 as an ALS drug candidate.
Collapse
Affiliation(s)
- Mark Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Paul Lupinacci
- Department of Mathematics and Statistics, Villanova University, Villanova, PA, USA
| | | | - Tony Shum
- Genervon Pharmaceuticals LLC, Pasadena, CA, USA
| | - Dorothy Ko
- Genervon Pharmaceuticals LLC, Pasadena, CA, USA
| |
Collapse
|
357
|
Krug L, Chatterjee N, Borges-Monroy R, Hearn S, Liao WW, Morrill K, Prazak L, Rozhkov N, Theodorou D, Hammell M, Dubnau J. Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. PLoS Genet 2017; 13:e1006635. [PMID: 28301478 PMCID: PMC5354250 DOI: 10.1371/journal.pgen.1006635] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders that exist on a symptomological spectrum and share both genetic underpinnings and pathophysiological hallmarks. Functional abnormality of TAR DNA-binding protein 43 (TDP-43), an aggregation-prone RNA and DNA binding protein, is observed in the vast majority of both familial and sporadic ALS cases and in ~40% of FTLD cases, but the cascade of events leading to cell death are not understood. We have expressed human TDP-43 (hTDP-43) in Drosophila neurons and glia, a model that recapitulates many of the characteristics of TDP-43-linked human disease including protein aggregation pathology, locomotor impairment, and premature death. We report that such expression of hTDP-43 impairs small interfering RNA (siRNA) silencing, which is the major post-transcriptional mechanism of retrotransposable element (RTE) control in somatic tissue. This is accompanied by de-repression of a panel of both LINE and LTR families of RTEs, with somewhat different elements being active in response to hTDP-43 expression in glia versus neurons. hTDP-43 expression in glia causes an early and severe loss of control of a specific RTE, the endogenous retrovirus (ERV) gypsy. We demonstrate that gypsy causes the degenerative phenotypes in these flies because we are able to rescue the toxicity of glial hTDP-43 either by genetically blocking expression of this RTE or by pharmacologically inhibiting RTE reverse transcriptase activity. Moreover, we provide evidence that activation of DNA damage-mediated programmed cell death underlies both neuronal and glial hTDP-43 toxicity, consistent with RTE-mediated effects in both cell types. Our findings suggest a novel mechanism in which RTE activity contributes to neurodegeneration in TDP-43-mediated diseases such as ALS and FTLD.
Collapse
Affiliation(s)
- Lisa Krug
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Nabanita Chatterjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | | | - Stephen Hearn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Wen-Wei Liao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Kathleen Morrill
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Lisa Prazak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
- Department of Biology, Farmingdale State College, Farmingdale, NY United States of America
| | - Nikolay Rozhkov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Delphine Theodorou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Josh Dubnau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
- Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, New York, United States of America
- Department of Neurobiology and Behavior, Stony Brook School of Medicine, Stony Brook, New York, United States of America
| |
Collapse
|
358
|
Li Z, Vuong JK, Zhang M, Stork C, Zheng S. Inhibition of nonsense-mediated RNA decay by ER stress. RNA (NEW YORK, N.Y.) 2017; 23:378-394. [PMID: 27940503 PMCID: PMC5311500 DOI: 10.1261/rna.058040.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/06/2016] [Indexed: 05/26/2023]
Abstract
Nonsense-mediated RNA decay (NMD) selectively degrades mutated and aberrantly processed transcripts that contain premature termination codons (PTC). Cellular NMD activity is typically assessed using exogenous PTC-containing reporters. We overcame some inherently problematic aspects of assaying endogenous targets and developed a broadly applicable strategy to reliably and easily monitor changes in cellular NMD activity. Our new method was genetically validated for distinguishing NMD regulation from transcriptional control and alternative splicing regulation, and unexpectedly disclosed a different sensitivity of NMD targets to NMD inhibition. Applying this robust method for screening, we identified NMD-inhibiting stressors but also found that NMD inactivation was not universal to cellular stresses. The high sensitivity and broad dynamic range of our method revealed a strong correlation between NMD inhibition, endoplasmic reticulum (ER) stress, and polysome disassembly upon thapsigargin treatment in a temporal and dose-dependent manner. We found little evidence of calcium signaling mediating thapsigargin-induced NMD inhibition. Instead, we discovered that of the three unfolded protein response (UPR) pathways activated by thapsigargin, mainly protein kinase RNA-like endoplasmic reticulum kinase (PERK) was required for NMD inhibition. Finally, we showed that ER stress compounded TDP-43 depletion in the up-regulation of NMD isoforms that had been implicated in the pathogenic mechanisms of amyotrophic lateral sclerosis and frontotemporal dementia, and that the additive effect of ER stress was completely blocked by PERK deficiency.
Collapse
Affiliation(s)
- Zhelin Li
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - John K Vuong
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - Min Zhang
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - Cheryl Stork
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
359
|
Gama-Carvalho M, L Garcia-Vaquero M, R Pinto F, Besse F, Weis J, Voigt A, Schulz JB, De Las Rivas J. Linking amyotrophic lateral sclerosis and spinal muscular atrophy through RNA-transcriptome homeostasis: a genomics perspective. J Neurochem 2017; 141:12-30. [PMID: 28054357 DOI: 10.1111/jnc.13945] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/02/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
In this review, we present our most recent understanding of key biomolecular processes that underlie two motor neuron degenerative disorders, amyotrophic lateral sclerosis, and spinal muscular atrophy. We focus on the role of four multifunctional proteins involved in RNA metabolism (TDP-43, FUS, SMN, and Senataxin) that play a causal role in these diseases. Recent results have led to a novel scenario of intricate connections between these four proteins, bringing transcriptome homeostasis into the spotlight as a common theme in motor neuron degeneration. We review reported functional and physical interactions between these four proteins, highlighting their common association with nuclear bodies and small nuclear ribonucleoprotein particle biogenesis and function. We discuss how these interactions are turning out to be particularly relevant for the control of transcription and chromatin homeostasis, including the recent identification of an association between SMN and Senataxin required to ensure the resolution of DNA-RNA hybrid formation and proper termination by RNA polymerase II. These connections strongly support the existence of common pathways underlying the spinal muscular atrophy and amyotrophic lateral sclerosis phenotype. We also discuss the potential of genome-wide expression profiling, in particular RNA sequencing derived data, to contribute to unravelling the underlying mechanisms. We provide a review of publicly available datasets that have addressed both diseases using these approaches, and highlight the value of investing in cross-disease studies to promote our understanding of the pathways leading to neurodegeneration.
Collapse
Affiliation(s)
- Margarida Gama-Carvalho
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marina L Garcia-Vaquero
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | - Francisco R Pinto
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Aaron Voigt
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
360
|
Regulation of mRNA splicing by MeCP2 via epigenetic modifications in the brain. Sci Rep 2017; 7:42790. [PMID: 28211484 PMCID: PMC5314398 DOI: 10.1038/srep42790] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/17/2017] [Indexed: 02/08/2023] Open
Abstract
Mutations of X-linked gene Methyl CpG binding protein 2 (MECP2) are the major causes of Rett syndrome (RTT), a severe neurodevelopmental disorder. Duplications of MECP2-containing genomic segments lead to severe autistic symptoms in human. MECP2-coding protein methyl-CpG-binding protein 2 (MeCP2) is involved in transcription regulation, microRNA processing and mRNA splicing. However, molecular mechanisms underlying the involvement of MeCP2 in mRNA splicing in neurons remain largely elusive. In this work we found that the majority of MeCP2-associated proteins are involved in mRNA splicing using mass spectrometry analysis with multiple samples from Mecp2-null rat brain, mouse primary neuron and human cell lines. We further showed that Mecp2 knockdown in cultured cortical neurons led to widespread alternations of mRNA alternative splicing. Analysis of ChIP-seq datasets indicated that MeCP2-regulated exons display specific epigenetic signatures, with DNA modification 5-hydroxymethylcytosine (5hmC) and histone modification H3K4me3 are enriched in down-regulated exons, while the H3K36me3 signature is enriched in exons up-regulated in Mecp2-knockdown neurons comparing to un-affected neurons. Functional analysis reveals that genes containing MeCP2-regulated exons are mainly involved in synaptic functions and mRNA splicing. These results suggested that MeCP2 regulated mRNA splicing through interacting with 5hmC and epigenetic changes in histone markers, and provide functional insights of MeCP2-mediated mRNA splicing in the nervous system.
Collapse
|
361
|
Li W, Reeb AN, Lin B, Subramanian P, Fey EE, Knoverek CR, French RL, Bigio EH, Ayala YM. Heat Shock-induced Phosphorylation of TAR DNA-binding Protein 43 (TDP-43) by MAPK/ERK Kinase Regulates TDP-43 Function. J Biol Chem 2017; 292:5089-5100. [PMID: 28167528 DOI: 10.1074/jbc.m116.753913] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/03/2017] [Indexed: 12/19/2022] Open
Abstract
TAR DNA-binding protein (TDP-43) is a highly conserved and essential DNA- and RNA-binding protein that controls gene expression through RNA processing, in particular, regulation of splicing. Intracellular aggregation of TDP-43 is a hallmark of amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. This TDP-43 pathology is also present in other types of neurodegeneration including Alzheimer's disease. We report here that TDP-43 is a substrate of MEK, a central kinase in the MAPK/ERK signaling pathway. TDP-43 dual phosphorylation by MEK, at threonine 153 and tyrosine 155 (p-T153/Y155), was dramatically increased by the heat shock response (HSR) in human cells. HSR promotes cell survival under proteotoxic conditions by maintaining protein homeostasis and preventing protein misfolding. MEK is activated by HSR and contributes to the regulation of proteome stability. Phosphorylated TDP-43 was not associated with TDP-43 aggregation, and p-T153/Y155 remained soluble under conditions that promote protein misfolding. We found that active MEK significantly alters TDP-43-regulated splicing and that phosphomimetic substitutions at these two residues reduce binding to GU-rich RNA. Cellular imaging using a phospho-specific p-T153/Y155 antibody showed that phosphorylated TDP-43 was specifically recruited to the nucleoli, suggesting that p-T153/Y155 regulates a previously unappreciated function of TDP-43 in the processing of nucleolar-associated RNA. These findings highlight a new mechanism that regulates TDP-43 function and homeostasis through phosphorylation and, therefore, may contribute to the development of strategies to prevent TDP-43 aggregation and to uncover previously unexplored roles of TDP-43 in cell metabolism.
Collapse
Affiliation(s)
- Wen Li
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Ashley N Reeb
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Binyan Lin
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Praveen Subramanian
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Erin E Fey
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Catherine R Knoverek
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Rachel L French
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Eileen H Bigio
- the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yuna M Ayala
- From the Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| |
Collapse
|
362
|
Jeong YH, Ling JP, Lin SZ, Donde AN, Braunstein KE, Majounie E, Traynor BJ, LaClair KD, Lloyd TE, Wong PC. Tdp-43 cryptic exons are highly variable between cell types. Mol Neurodegener 2017; 12:13. [PMID: 28153034 PMCID: PMC5289002 DOI: 10.1186/s13024-016-0144-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TDP-43 proteinopathy is a prominent pathological feature that occurs in a number of human diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and inclusion body myositis (IBM). Our recent finding that TDP-43 represses nonconserved cryptic exons led us to ask whether cell type-specific cryptic exons could exist to impact unique molecular pathways in brain or muscle. METHODS In the present work, we investigated TDP-43's function in various mouse tissues to model disease pathogenesis. We generated mice to conditionally delete TDP-43 in excitatory neurons or skeletal myocytes and identified the cell type-specific cryptic exons associated with TDP-43 loss of function. RESULTS Comparative analysis of nonconserved cryptic exons in various mouse cell types revealed that only some cryptic exons were common amongst stem cells, neurons, and myocytes; the majority of these nonconserved cryptic exons were cell type-specific. CONCLUSIONS Our results suggest that in human disease, TDP-43 loss of function may impair cell type-specific pathways.
Collapse
Affiliation(s)
- Yun Ha Jeong
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Neural Development and Disease Department, Korea Brain Research Institute, Daegu, 701-300 South Korea
| | - Jonathan P. Ling
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Sophie Z. Lin
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Aneesh N. Donde
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kerstin E. Braunstein
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Elisa Majounie
- Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20892 USA
- Present address: Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, CF24 4HQ UK
| | - Bryan J. Traynor
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20892 USA
| | - Katherine D. LaClair
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Thomas E. Lloyd
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Philip C. Wong
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
363
|
Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Curr Top Dev Biol 2017; 121:111-171. [DOI: 10.1016/bs.ctdb.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
364
|
Seidel G, Meierhofer D, Şen NE, Guenther A, Krobitsch S, Auburger G. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. J Proteome Res 2016; 16:504-515. [PMID: 27966978 DOI: 10.1021/acs.jproteome.6b00647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast protein PBP1 is implicated in very diverse pathways. Intriguingly, its deletion mitigates the toxicity of human neurodegeneration factors. Here, we performed label-free quantitative global proteomics to identify crucial downstream factors, either without stress or under cell stress conditions (heat and NaN3). Compared to the wildtype BY4741 strain, PBP1 deletion always triggered downregulation of the key bioenergetics enzyme KGD2 and the prion protein RNQ1 as well as upregulation of the leucine biosynthesis enzyme LEU1. Without stress, enrichment of stress response factors was consistently detected for both deletion mutants; upon stress, these factors were more pronounced. The selective analysis of components of stress granules and P-bodies revealed a prominent downregulation of GIS2. Our yeast data are in good agreement with a global proteomics and metabolomics publication that the PBP1 ortholog ATAXIN-2 (ATXN2) knockout (KO) in mouse results in mitochondrial deficits in leucine/fatty acid catabolism and bioenergetics, with an obesity phenotype. Furthermore, our data provide the completely novel insight that PBP1 mutations in stress periods involve GIS2, a plausible scenario in view of previous data that both PBP1 and GIS2 relocalize from ribosomes to stress granules, interact with poly(A)-binding protein in translation regulation and prevent mitochondrial precursor overaccumulation stress (mPOS). This may be relevant for human diseases like spinocerebellar ataxias, amyotrophic lateral sclerosis, and the metabolic syndrome.
Collapse
Affiliation(s)
- Gunnar Seidel
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Nesli-Ece Şen
- Experimental Neurology, Goethe University Medical School , Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Anika Guenther
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Sylvia Krobitsch
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School , Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
365
|
Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature 2016; 539:197-206. [PMID: 27830784 DOI: 10.1038/nature20413] [Citation(s) in RCA: 1367] [Impact Index Per Article: 170.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid-liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.
Collapse
Affiliation(s)
- J Paul Taylor
- Howard Hughes Medical Institute and the Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
366
|
LaClair KD, Donde A, Ling JP, Jeong YH, Chhabra R, Martin LJ, Wong PC. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathol 2016; 132:859-873. [PMID: 27785573 PMCID: PMC5131701 DOI: 10.1007/s00401-016-1637-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
TDP-43 proteinopathy, initially associated with ALS and FTD, is also found in 30-60% of Alzheimer's disease (AD) cases and correlates with worsened cognition and neurodegeneration. A major component of this proteinopathy is depletion of this RNA-binding protein from the nucleus, which compromises repression of non-conserved cryptic exons in neurodegenerative diseases. To test whether nuclear depletion of TDP-43 may contribute to the pathogenesis of AD cases with TDP-43 proteinopathy, we examined the impact of depletion of TDP-43 in populations of neurons vulnerable in AD, and on neurodegeneration in an AD-linked context. Here, we show that some populations of pyramidal neurons that are selectively vulnerable in AD are also vulnerable to TDP-43 depletion in mice, while other forebrain neurons appear spared. Moreover, TDP-43 depletion in forebrain neurons of an AD mouse model exacerbates neurodegeneration, and correlates with increased prefibrillar oligomeric Aβ and decreased Aβ plaque burden. These findings support a role for nuclear depletion of TDP-43 in the pathogenesis of AD and provide strong rationale for developing novel therapeutics to alleviate the depletion of TDP-43 and functional antemortem biomarkers associated with its nuclear loss.
Collapse
Affiliation(s)
- Katherine D LaClair
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Aneesh Donde
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
| | - Yun Ha Jeong
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
- Neural Development and Disease Department, Korea Brain Research Institute, Daegu, 701-300, Korea
| | - Resham Chhabra
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
367
|
Cookson MR. RNA-binding proteins implicated in neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27659605 DOI: 10.1002/wrna.1397] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/23/2016] [Accepted: 08/27/2016] [Indexed: 12/12/2022]
Abstract
Gene expression is regulated at many levels, including after generation of the primary RNA transcript from DNA but before translation into protein. Such post-translational gene regulation occurs via the action of a multitude of RNA binding proteins and include varied actions from splicing to regulation of association with the translational machinery. Primary evidence that such processes might contribute to disease mechanisms in neurodegenerative disorders comes from the observation of mutations in RNA binding proteins, particularly in diseases in the amyotrophic lateral sclerosis-frontotemporal dementia spectrum and in some forms of ataxia and tremor. The bulk of evidence from recent surveys of the types of RNA species that are affected in these disorders suggests a global deregulation of control rather than a very small number of RNA species, although why some groups of neurons are sensitive to these changes is not well understood. Overall, these data suggest that neurodegeneration can be initiated by mutations in RNA binding proteins and, as a corollary, that neurons are particularly sensitive to loss of control of gene expression at the post-transcriptional level. Such observations have implications not only for understanding the nature of neurodegenerative disorders but also how we might intervene therapeutically in these diseases. WIREs RNA 2017, 8:e1397. doi: 10.1002/wrna.1397 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
368
|
Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Trends Mol Med 2016; 22:769-783. [DOI: 10.1016/j.molmed.2016.07.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022]
|
369
|
Zufiría M, Gil-Bea FJ, Fernández-Torrón R, Poza JJ, Muñoz-Blanco JL, Rojas-García R, Riancho J, López de Munain A. ALS: A bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 2016; 142:104-129. [DOI: 10.1016/j.pneurobio.2016.05.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
|
370
|
Hervé M, Ibrahim EC. MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech 2016; 9:899-909. [PMID: 27483351 PMCID: PMC5007982 DOI: 10.1242/dmm.025841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022] Open
Abstract
Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a mutation in intron 20 of the IKBKAP gene (c.2204+6T>C), leading to tissue-specific skipping of exon 20 and a decrease in the synthesis of the encoded protein IKAP (also known as ELP1). Small non-coding RNAs known as microRNAs (miRNAs) are important post-transcriptional regulators of gene expression and play an essential role in the nervous system development and function. To better understand the neuronal specificity of IKAP loss, we examined expression of miRNAs in human olfactory ecto-mesenchymal stem cells (hOE-MSCs) from five control individuals and five FD patients. We profiled the expression of 373 miRNAs using microfluidics and reverse transcription coupled to quantitative PCR (RT-qPCR) on two biological replicate series of hOE-MSC cultures from healthy controls and FD patients. This led to the total identification of 26 dysregulated miRNAs in FD, validating the existence of a miRNA signature in FD. We then selected the nine most discriminant miRNAs for further analysis. The signaling pathways affected by these dysregulated miRNAs were largely within the nervous system. In addition, many targets of these dysregulated miRNAs had been previously demonstrated to be affected in FD models. Moreover, we found that four of our nine candidate miRNAs target the neuron-specific splicing factor NOVA1. We demonstrated that overexpression of miR-203a-3p leads to a decrease of NOVA1, counter-balanced by an increase of IKAP, supporting a potential interaction between NOVA1 and IKAP. Taken together, these results reinforce the choice of miRNAs as potential therapeutic targets and suggest that NOVA1 could be a regulator of FD pathophysiology. Summary: A miRNA screening conducted in olfactory stem cells from patients links the neuron-specific splicing factor NOVA1 to neurodegeneration in familial dysautonomia.
Collapse
Affiliation(s)
- Mylène Hervé
- CRN2M-UMR7286, Aix-Marseille Université, CNRS, Faculté de Médecine Nord, Marseille 13344, Cedex 15, France
| | - El Chérif Ibrahim
- CRN2M-UMR7286, Aix-Marseille Université, CNRS, Faculté de Médecine Nord, Marseille 13344, Cedex 15, France
| |
Collapse
|
371
|
Koyama A, Sugai A, Kato T, Ishihara T, Shiga A, Toyoshima Y, Koyama M, Konno T, Hirokawa S, Yokoseki A, Nishizawa M, Kakita A, Takahashi H, Onodera O. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43. Nucleic Acids Res 2016; 44:5820-36. [PMID: 27257061 PMCID: PMC4937342 DOI: 10.1093/nar/gkw499] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder. In motor neurons of ALS, TAR DNA binding protein-43 (TDP-43), a nuclear protein encoded by TARDBP, is absent from the nucleus and forms cytoplasmic inclusions. TDP-43 auto-regulates the amount by regulating the TARDBP mRNA, which has three polyadenylation signals (PASs) and three additional alternative introns within the last exon. However, it is still unclear how the autoregulatory mechanism works and how the status of autoregulation in ALS motor neurons without nuclear TDP-43 is. Here we show that TDP-43 inhibits the selection of the most proximal PAS and induces splicing of multiple alternative introns in TARDBP mRNA to decrease the amount of cytoplasmic TARDBP mRNA by nonsense-mediated mRNA decay. When TDP-43 is depleted, the TARDBP mRNA uses the most proximal PAS and is increased in the cytoplasm. Finally, we have demonstrated that in ALS motor neurons—especially neurons with mislocalized TDP-43—the amount of TARDBP mRNA is increased in the cytoplasm. Our observations indicate that nuclear TDP-43 contributes to the autoregulation and suggests that the absence of nuclear TDP-43 induces an abnormal autoregulation and increases the amount of TARDBP mRNA. The vicious cycle might accelerate the disease progression of ALS.
Collapse
Affiliation(s)
- Akihide Koyama
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan Center for Transdisciplinary Research, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Akihiro Sugai
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Taisuke Kato
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Tomohiko Ishihara
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Atsushi Shiga
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan Center for Transdisciplinary Research, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Yasuko Toyoshima
- Department of Pathology, Clinical Neuroscience Branch, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Misaki Koyama
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Takuya Konno
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Sachiko Hirokawa
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Akio Yokoseki
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Center for Bioresource-based Research, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Clinical Neuroscience Branch, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, 1-757 Asahimachi-dori, Chuo-ku, Niigata-City, Niigata 951-8585, Japan
| |
Collapse
|
372
|
Abstract
Recent improvements in experimental and computational techniques that are used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimizes their potential to disrupt gene expression. We explain how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies.
Collapse
|
373
|
Scekic-Zahirovic J, Sendscheid O, El Oussini H, Jambeau M, Sun Y, Mersmann S, Wagner M, Dieterlé S, Sinniger J, Dirrig-Grosch S, Drenner K, Birling MC, Qiu J, Zhou Y, Li H, Fu XD, Rouaux C, Shelkovnikova T, Witting A, Ludolph AC, Kiefer F, Storkebaum E, Lagier-Tourenne C, Dupuis L. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J 2016; 35:1077-97. [PMID: 26951610 PMCID: PMC4868956 DOI: 10.15252/embj.201592559] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons.
Collapse
Affiliation(s)
- Jelena Scekic-Zahirovic
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Oliver Sendscheid
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Hajer El Oussini
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Mélanie Jambeau
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Ying Sun
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Sina Mersmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marina Wagner
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Stéphane Dieterlé
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Jérome Sinniger
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Kevin Drenner
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | | | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Caroline Rouaux
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | | | - Anke Witting
- Department of Neurology University of Ulm, Ulm, Germany
| | | | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Clotilde Lagier-Tourenne
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Luc Dupuis
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| |
Collapse
|
374
|
Abstract
Examples of associations between human disease and defects in pre-messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies.
Collapse
Affiliation(s)
- Benoit Chabot
- Centre of Excellence in RNA Biology, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Lulzim Shkreta
- Centre of Excellence in RNA Biology, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
375
|
Alsultan AA, Waller R, Heath PR, Kirby J. The genetics of amyotrophic lateral sclerosis: current insights. Degener Neurol Neuromuscul Dis 2016; 6:49-64. [PMID: 30050368 PMCID: PMC6053097 DOI: 10.2147/dnnd.s84956] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that results in loss of the upper and lower motor neurons from motor cortex, brainstem, and spinal cord. While the majority of cases are sporadic, approximately 10% show familial inheritance. ALS is usually inherited in an autosomal dominant manner, although autosomal recessive and X-linked inheritance do occur. To date, 24 of the genes at 26 loci have been identified; these include loci linked to ALS and to frontotemporal dementia-ALS, where family pedigrees contain individuals with frontotemporal dementia with/without ALS. The most commonly established genetic causes of familial ALS (FALS) to date are the presence of a hexanucleotide repeat expansion in the C9ORF72 gene (39.3% FALS) and mutation of SOD1, TARDBP, and FUS, with frequencies of 12%-23.5%, 5%, and 4.1%, respectively. However, with the increasing use of next-generation sequencing of small family pedigrees, this has led to an increasing number of genes being associated with ALS. This review provides a comprehensive review on the genetics of ALS and an update of the pathogenic mechanisms associated with these genes. Commonly implicated pathways have been established, including RNA processing, the protein degradation pathways of autophagy and ubiquitin-proteasome system, as well as protein trafficking and cytoskeletal function. Elucidating the role genetics plays in both FALS and sporadic ALS is essential for understanding the subsequent cellular dysregulation that leads to motor neuron loss, in order to develop future effective therapeutic strategies.
Collapse
Affiliation(s)
- Afnan A Alsultan
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| |
Collapse
|
376
|
Monahan Z, Shewmaker F, Pandey UB. Stress granules at the intersection of autophagy and ALS. Brain Res 2016; 1649:189-200. [PMID: 27181519 DOI: 10.1016/j.brainres.2016.05.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease caused by loss of upper and lower motor neurons. The majority of ALS cases are classified as sporadic (80-90%), with the remaining considered familial based on patient history. The last decade has seen a surge in the identification of ALS-causing genes - including TARDBP (TDP-43), FUS, MATR3 (Matrin-3), C9ORF72 and several others - providing important insights into the molecular pathways involved in pathogenesis. Most of the protein products of ALS-linked genes fall into two functional categories: RNA-binding/homeostasis and protein-quality control (i.e. autophagy and proteasome). The RNA-binding proteins tend to be aggregation-prone with low-complexity domains similar to the prion-forming domains of yeast. Many also incorporate into stress granules (SGs), which are cytoplasmic ribonucleoprotein complexes that form in response to cellular stress. Mutant forms of TDP-43 and FUS perturb SG dynamics, lengthening their cytoplasmic persistence. Recent evidence suggests that SGs are regulated by the autophagy pathway, suggesting a unifying connection between many of the ALS-linked genes. Persistent SGs may give rise to intractable aggregates that disrupt neuronal homeostasis, thus failure to clear SGs by autophagic processes may promote ALS pathogenesis. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Zachary Monahan
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Frank Shewmaker
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Udai Bhan Pandey
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
377
|
The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci 2016; 17:383-95. [PMID: 27150398 DOI: 10.1038/nrn.2016.38] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A nucleotide repeat expansion (NRE) within the chromosome 9 open reading frame 72 (C9orf72) gene was the first of this type of mutation to be linked to multiple neurological conditions, including amyotrophic lateral sclerosis and frontotemporal dementia. The pathogenic mechanisms through which the C9orf72 NRE contributes to these disorders include loss of C9orf72 function and gain-of-function mechanisms of C9orf72 driven by toxic RNA and protein species encoded by the NRE. These mechanisms have been linked to several cellular defects - including nucleocytoplasmic trafficking deficits and nuclear stress - that have been observed in both patients and animal models.
Collapse
|
378
|
Alquezar C, Salado IG, de la Encarnación A, Pérez DI, Moreno F, Gil C, de Munain AL, Martínez A, Martín-Requero Á. Targeting TDP-43 phosphorylation by Casein Kinase-1δ inhibitors: a novel strategy for the treatment of frontotemporal dementia. Mol Neurodegener 2016; 11:36. [PMID: 27138926 PMCID: PMC4852436 DOI: 10.1186/s13024-016-0102-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Background Mutations in the progranulin gene (GRN) are the most common cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). TDP-43 pathology is characterized by the hyperphosphorylation of the protein at Serine 409/410 residues. Casein kinase-1δ (CK-1δ) was reported to phosphorylate TDP-43 directly. Previous works from our laboratory described the presence of CDK6/pRb-dependent cell cycle alterations, and cytosolic accumulation of TDP-43 protein in lymphoblast from FTLD-TDP patients carriers of a loss-of function mutation in GRN gene (c.709-1G > A). In this work, we have investigated the effects of two brain penetrant CK-1δ inhibitors (IGS-2.7 and IGS-3.27) designed and synthetized in our laboratory on cell proliferation, TDP-43 phosphorylation and subcellular localization, as well as their effects on the known nuclear TDP-43 function repressing the expression of CDK6. Results We report here that both CK-1δ inhibitors (IGS-2.7 and IGS-3.27) normalized the proliferative activity of PGRN-deficient lymphoblasts by preventing the phosphorylation of TDP-43 fragments, its nucleo-cytosol translocation and the overactivation of the CDK6/pRb cascade. Moreover, ours results show neuroprotective effects of CK-1δ inhibitors in a neuronal cell model of induced TDP-43 phosphorylation. Conclusions Our results suggest that modulating CK-1δ activity could be considered a novel therapeutic approach for the treatment of FTLD-TDP and other TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Carolina Alquezar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Irene G Salado
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana de la Encarnación
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Daniel I Pérez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Fermín Moreno
- Neuroscience Area-Institute Biodonostia, San Sebastian, Spain
| | - Carmen Gil
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Adolfo López de Munain
- Neuroscience Area-Institute Biodonostia, San Sebastian, Spain.,Department of Neurology, Hospital Donostia, San Sebastian, Spain.,Department of Neurosciences, University of Basque Country, San Sebastián, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ana Martínez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ángeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain. .,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
379
|
Cavaca AG, Emerich TB, Vasconcellos-Silva PR, dos Santos-Neto ET, Oliveira AE. Diseases Neglected by the Media in Espírito Santo, Brazil in 2011-2012. PLoS Negl Trop Dis 2016; 10:e0004662. [PMID: 27115486 PMCID: PMC4846084 DOI: 10.1371/journal.pntd.0004662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The aims of the present study were to identify and analyse the Diseases Neglected by the Media (DNMs) via a comparison between the most important health issues to the population of Espírito Santo, Brazil, from the epidemiological perspective (health value) and their effective coverage by the print media, and to analyse the DNMs considering the perspective of key journalists involved in the dissemination of health topics in the state media. METHODOLOGY Morbidity and mortality data were collected from official documents and from Health Information Systems. In parallel, the diseases reported in the two major newspapers of Espírito Santo in 2011-2012 were identified from 10,771 news articles. Concomitantly, eight interviews were conducted with reporters from the two newspapers to understand the journalists' reasons for the coverage or neglect of certain health/disease topics. PRINCIPAL FINDINGS Quantitatively, the DNMs identified diseases associated with poverty, including tuberculosis, leprosy, schistosomiasis, leishmaniasis, and trachoma. Apart from these, diseases with outbreaks in the period evaluated, including whooping cough and meningitis, some cancers, respiratory diseases, ischaemic heart disease, and stroke, were also seldom addressed by the media. In contrast, dengue fever, acquired immune deficiency syndrome (AIDS), diabetes, breast cancer, prostate cancer, tracheal cancer, and bronchial and lung cancers were broadly covered in the period analysed, corroborating the tradition of media disclosure of these diseases. Qualitatively, the DNMs included rare diseases, such as amyotrophic lateral sclerosis (ALS), leishmaniasis, Down syndrome, and verminoses. The reasons for the neglect of these topics by the media included the political and economic interests of the newspapers, their editorial line, and the organizational routine of the newsrooms. CONCLUSIONS Media visibility acts as a strategy for legitimising priorities and contextualizing various realities. Therefore, we propose that the health problems identified should enter the public agenda and begin to be recognized as legitimate demands.
Collapse
Affiliation(s)
- Aline Guio Cavaca
- Post-graduate Program in Public Health, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- * E-mail:
| | - Tatiana Breder Emerich
- Post-graduate Program in Public Health, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | | | - Adauto Emmerich Oliveira
- Post-graduate Program in Public Health, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
380
|
Pochet R, Nicaise C, Mitrečić D. Translation of the focus toward excellence in translational science: comment on "TDP-43 Repression of Nonconserved Cryptic Exons is Compromised in ALS-FTD". Croat Med J 2016; 56:493-5. [PMID: 26526887 PMCID: PMC4655934 DOI: 10.3325/cmj.2015.56.493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Dinko Mitrečić
- Dinko Mitrečić, Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,
| |
Collapse
|
381
|
Cykowski MD, Takei H, Van Eldik LJ, Schmitt FA, Jicha GA, Powell SZ, Nelson PT. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons. J Neuropathol Exp Neurol 2016; 75:397-407. [PMID: 26971127 DOI: 10.1093/jnen/nlw014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD).
Collapse
Affiliation(s)
- Matthew D Cykowski
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky.
| | - Hidehiro Takei
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| | - Linda J Van Eldik
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| | - Frederick A Schmitt
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| | - Gregory A Jicha
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| | - Suzanne Z Powell
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| | - Peter T Nelson
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
382
|
Roles for RNA-binding proteins in development and disease. Brain Res 2016; 1647:1-8. [PMID: 26972534 DOI: 10.1016/j.brainres.2016.02.050] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
RNA-binding protein activities are highly regulated through protein levels, intracellular localization, and post-translation modifications. During development, mRNA processing of specific gene sets is regulated through manipulation of functional RNA-binding protein activities. The impact of altered RNA-binding protein activities also affects human diseases in which there are either a gain-of-function or loss-of-function causes pathogenesis. We will discuss RNA-binding proteins and their normal developmental RNA metabolism and contrast how their function is disrupted in disease. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
|
383
|
Cytosolic localization of Fox proteins in motor neurons of G93A SOD1 mice. Histochem Cell Biol 2016; 145:545-59. [PMID: 26724814 DOI: 10.1007/s00418-015-1393-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
NeuN is a nuclear protein expressed exclusively in mature neurons and has served for many years as a reliable neuronal marker in immunohistochemical labeling studies. In 2009, NeuN was identified as Fox3, one of three closely related RNA binding proteins important in pre-mRNA splicing. During the course of a previous study using G93A SOD1 mice, a model of amyotrophic lateral sclerosis (ALS), we observed that NeuN was significantly redistributed to the cytosol. Since altered splicing may be important in the pathogenesis of ALS, we compared the localization (predominantly nuclear or cytosolic) of all three Fox proteins in the lumbar spinal cord of wild-type and G93A SOD1 mice before and after the development of clinical signs of disease. The Fox proteins regulate their own splicing, and we also examined the major Fox protein isoforms in nuclear and cytosolic fractions of lumbar spinal cord by Western blotting. We report here that Fox3 and Fox2 undergo a major cytosolic relocalization in this ALS model that increases with age and that is associated with progressive alterations in the splicing profiles of all three Fox proteins.
Collapse
|
384
|
Abstract
The human transcriptome is composed of a vast RNA population that undergoes further diversification by splicing. Detecting specific splice sites in this large sequence pool is the responsibility of the major and minor spliceosomes in collaboration with numerous splicing factors. This complexity makes splicing susceptible to sequence polymorphisms and deleterious mutations. Indeed, RNA mis-splicing underlies a growing number of human diseases with substantial societal consequences. Here, we provide an overview of RNA splicing mechanisms followed by a discussion of disease-associated errors, with an emphasis on recently described mutations that have provided new insights into splicing regulation. We also discuss emerging strategies for splicing-modulating therapy.
Collapse
Affiliation(s)
- Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| |
Collapse
|
385
|
Daguenet E, Dujardin G, Valcárcel J. The pathogenicity of splicing defects: mechanistic insights into pre-mRNA processing inform novel therapeutic approaches. EMBO Rep 2015; 16:1640-55. [PMID: 26566663 DOI: 10.15252/embr.201541116] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
Removal of introns from pre-mRNA precursors (pre-mRNA splicing) is a necessary step for the expression of most genes in multicellular organisms, and alternative patterns of intron removal diversify and regulate the output of genomic information. Mutation or natural variation in pre-mRNA sequences, as well as in spliceosomal components and regulatory factors, has been implicated in the etiology and progression of numerous pathologies. These range from monogenic to multifactorial genetic diseases, including metabolic syndromes, muscular dystrophies, neurodegenerative and cardiovascular diseases, and cancer. Understanding the molecular mechanisms associated with splicing-related pathologies can provide key insights into the normal function and physiological context of the complex splicing machinery and establish sound basis for novel therapeutic approaches.
Collapse
Affiliation(s)
- Elisabeth Daguenet
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu-Fabra, Barcelona, Spain
| | - Gwendal Dujardin
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu-Fabra, Barcelona, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu-Fabra, Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|