351
|
|
352
|
Wen W, Jin M, Li K, Liu H, Xiao Y, Zhao M, Alseekh S, Li W, de Abreu E Lima F, Brotman Y, Willmitzer L, Fernie AR, Yan J. An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1116-1128. [PMID: 29381266 DOI: 10.1111/tpj.13835] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Primary metabolism plays a pivotal role in normal plant growth, development and reproduction. As maize is a major crop worldwide, the primary metabolites produced by maize plants are of immense importance from both calorific and nutritional perspectives. Here a genome-wide association study (GWAS) of 61 primary metabolites using a maize association panel containing 513 inbred lines identified 153 significant loci associated with the level of these metabolites in four independent tissues. The genome-wide expression level of 760 genes was also linked with metabolite levels within the same tissue. On average, the genetic variants at each locus or transcriptional variance of each gene identified here were estimated to have a minor effect (4.4-7.8%) on primary metabolic variation. Thirty-six loci or genes were prioritized as being worthy of future investigation, either with regard to functional characterization or for their utility for genetic improvement. This target list includes the well-known opaque 2 (O2) and lkr/sdh genes as well as many less well-characterized genes. During our investigation of these 36 loci, we analyzed the genetic components and variations underlying the trehalose, aspartate and aromatic amino acid pathways, thereby functionally characterizing four genes involved in primary metabolism in maize.
Collapse
Affiliation(s)
- Weiwei Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
353
|
Herb D, Filichkin T, Fisk S, Helgerson L, Hayes P, Meints B, Jennings R, Monsour R, Tynan S, Vinkemeier K, Romagosa I, Moscou M, Carey D, Thiel R, Cistue L, Martens C, Thomas W. Effects of Barley (Hordeum Vulgare L.) Variety and Growing Environment on Beer Flavor. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2017-4860-01] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dustin Herb
- Crop & Soil Science Dept., Oregon State University, Corvallis, OR U.S.A
| | - Tanya Filichkin
- Crop & Soil Science Dept., Oregon State University, Corvallis, OR U.S.A
| | - Scott Fisk
- Crop & Soil Science Dept., Oregon State University, Corvallis, OR U.S.A
| | - Laura Helgerson
- Crop & Soil Science Dept., Oregon State University, Corvallis, OR U.S.A
| | - Patrick Hayes
- Crop & Soil Science Dept., Oregon State University, Corvallis, OR U.S.A
| | - Brigid Meints
- Dept. of Crop & Soil Science, Washington State University, Mt. Vernon, WA U.S.A
| | | | | | | | | | | | - Matthew Moscou
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH U.K
| | | | - Randy Thiel
- New Glarus Brewing Co., New Glarus, WI U.S.A
| | - Luis Cistue
- Estación Experimental Aula Dei, CSIC, Zaragoza, Spain
| | | | - William Thomas
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K
| |
Collapse
|
354
|
Fang X, Mao Y, Chen X. Engineering purple rice for human health. SCIENCE CHINA-LIFE SCIENCES 2018; 61:365-367. [PMID: 29411218 DOI: 10.1007/s11427-017-9157-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Affiliation(s)
- Xin Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yingbo Mao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China. .,Plant Science Research Center, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| |
Collapse
|
355
|
Ma X, Mau M, Sharbel TF. Genome Editing for Global Food Security. Trends Biotechnol 2018; 36:123-127. [DOI: 10.1016/j.tibtech.2017.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 11/29/2022]
|
356
|
Fu R, Martin C, Zhang Y. Next-Generation Plant Metabolic Engineering, Inspired by an Ancient Chinese Irrigation System. MOLECULAR PLANT 2018; 11:47-57. [PMID: 28893713 DOI: 10.1016/j.molp.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/06/2017] [Accepted: 09/01/2017] [Indexed: 05/03/2023]
Abstract
Specialized secondary metabolites serve not only to protect plants against abiotic and biotic challenges, but have also been used extensively by humans to combat diseases. Due to the great importance of medicinal plants for health, we need to find new and sustainable ways to improve the production of the specialized metabolites. In addition to direct extraction, recent progress in metabolic engineering of plants offers an alternative supply option. We argue that metabolic engineering for producing the secondary metabolites in plants may have distinct advantages over microbial production platforms, and thus propose new approaches of plant metabolic engineering, which are inspired by an ancient Chinese irrigation system. Metabolic engineering strategies work at three levels: introducing biosynthetic genes, using transcription factors, and improving metabolic flux including increasing the supply of precursors, energy, and reducing power. In addition, recent progress in biotechnology contributes markedly to better engineering, such as the use of specific promoters and the deletion of competing branch pathways. We propose that next-generation plant metabolic engineering will improve current engineering strategies, for the purpose of producing valuable metabolites in plants on industrial scales.
Collapse
Affiliation(s)
- Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
357
|
Jud W, Winkler JB, Niederbacher B, Niederbacher S, Schnitzler JP. Volatilomics: a non-invasive technique for screening plant phenotypic traits. PLANT METHODS 2018; 14:109. [PMID: 30568721 PMCID: PMC6297985 DOI: 10.1186/s13007-018-0378-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/03/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Climate change represents a grand challenge for agricultural productivity. Understanding complex plant traits such as stress tolerance, disease resistance or crop yield is thus essential for breeding and the development of sustainable agriculture strategies. When screening for the most robust plant phenotypes, fast, high-throughput phenotyping represents the means of choice. RESULTS We have developed a plant phenotyping platform to measure the emission of volatile organic compounds (VOCs), photosynthetic gas exchange and transpiration under ambient, or abiotic and biotic stress conditions. These parameters are highly suitable markers to non-invasively and dynamically study plant growth and plant stress status, making them perfect test variables for long-term, online plant monitoring. Here we introduce the new phenotyping platform, termed VOC-SCREEN, and present results of a first case study with three barley cultivars, demonstrating that the plant's volatilome can be successfully applied to discriminate different barley varieties. CONCLUSION Volatilomics is a promising technique to non-invasively screen for plant phenotypic traits.
Collapse
Affiliation(s)
- Werner Jud
- Research Unit Environmental Simulation (EUS), Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - J. Barbro Winkler
- Research Unit Environmental Simulation (EUS), Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Bishu Niederbacher
- Research Unit Environmental Simulation (EUS), Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Present Address: Ionicon Analytic GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck, Austria
| | - Simon Niederbacher
- Research Unit Environmental Simulation (EUS), Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Present Address: Ionicon Analytic GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck, Austria
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
358
|
de Abreu E Lima F, Leifels L, Nikoloski Z. Regression-Based Modeling of Complex Plant Traits Based on Metabolomics Data. Methods Mol Biol 2018; 1778:321-327. [PMID: 29761449 DOI: 10.1007/978-1-4939-7819-9_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bridging metabolomics with plant phenotypic responses is challenging. Multivariate analyses account for the existing dependencies among metabolites, and regression models in particular capture such dependencies in search for association with a given trait. However, special care should be undertaken with metabolomics data. Here we propose a modeling workflow that considers all caveats imposed by such large data sets.
Collapse
Affiliation(s)
| | - Lydia Leifels
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
359
|
Zhu Y, Sims CA, Klee HJ, Sarnoski PJ. Sensory and Flavor Characteristics of Tomato Juice from Garden Gem and Roma Tomatoes with Comparison to Commercial Tomato Juice. J Food Sci 2017; 83:153-161. [DOI: 10.1111/1750-3841.13980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Yaozhou Zhu
- Food Science and Human Nutrition Dept.; Univ. of Florida; Gainesville Fla. U.S.A
| | - Charles A. Sims
- Food Science and Human Nutrition Dept.; Univ. of Florida; Gainesville Fla. U.S.A
| | - Harry J. Klee
- Horticulture Dept.; Univ. of Florida; Gainesville Fla. 32611 U.S.A
| | - Paul J. Sarnoski
- Food Science and Human Nutrition Dept.; Univ. of Florida; Gainesville Fla. U.S.A
| |
Collapse
|
360
|
Opportunities for genome editing in vegetable crops. Emerg Top Life Sci 2017; 1:193-207. [DOI: 10.1042/etls20170033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022]
Abstract
Vegetables include high-value crops with health-promoting effects and reduced environmental impact. The availability of genomic and biotechnological tools in certain species, coupled with the recent development of new breeding techniques based on precise editing of DNA, provides unique opportunities to finally take advantage of the past decades of detailed genetic analyses, thus making improvement of traits related to quality and stress tolerance achievable in a reasonable time frame. Recent reports of such approaches in vegetables illustrate the feasibility of obtaining multiple homozygous mutations in a single generation, heritable by the progeny, using stable or transient transformation approaches, which may not rely on the integration of unwanted foreign DNA. Application of these approaches to currently non-sequenced/tissue culture recalcitrant crops will contribute to meet the challenges posed by the increase in population and climate change.
Collapse
|
361
|
Petit J, Bres C, Mauxion JP, Bakan B, Rothan C. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5369-5387. [PMID: 29036305 DOI: 10.1093/jxb/erx341] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/14/2017] [Indexed: 05/18/2023]
Abstract
Improving crop productivity and quality while promoting sustainable agriculture have become major goals in plant breeding. The cuticle is a natural film covering the aerial organs of plants and consists of lipid polyesters covered and embedded with wax. The cuticle protects plants against water loss and pathogens and affects traits with strong impacts on crop quality such as, for horticultural crops, fruit brightness, cracking, russeting, netting, and shelf life. Here we provide an overview of the most important cuticle-associated traits that can be targeted for crop improvement. To date, most studies on cuticle-associated traits aimed at crop breeding have been done on fleshy fruits. Less information is available for staple crops such as rice, wheat or maize. Here we present new insights into cuticle formation and properties resulting from the study of genetic resources available for the various crop species. Our review also covers the current strategies and tools aimed at exploiting available natural and artificially induced genetic diversity and the technologies used to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties.
Collapse
Affiliation(s)
- Johann Petit
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| | - Cécile Bres
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| | | | | | - Christophe Rothan
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| |
Collapse
|
362
|
Arora L, Narula A. Gene Editing and Crop Improvement Using CRISPR-Cas9 System. FRONTIERS IN PLANT SCIENCE 2017; 8:1932. [PMID: 29167680 PMCID: PMC5682324 DOI: 10.3389/fpls.2017.01932] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
Advancements in Genome editing technologies have revolutionized the fields of functional genomics and crop improvement. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat)-Cas9 is a multipurpose technology for genetic engineering that relies on the complementarity of the guideRNA (gRNA) to a specific sequence and the Cas9 endonuclease activity. It has broadened the agricultural research area, bringing in new opportunities to develop novel plant varieties with deletion of detrimental traits or addition of significant characters. This RNA guided genome editing technology is turning out to be a groundbreaking innovation in distinct branches of plant biology. CRISPR technology is constantly advancing including options for various genetic manipulations like generating knockouts; making precise modifications, multiplex genome engineering, and activation and repression of target genes. The review highlights the progression throughout the CRISPR legacy. We have studied the rapid evolution of CRISPR/Cas9 tools with myriad functionalities, capabilities, and specialized applications. Among varied diligences, plant nutritional improvement, enhancement of plant disease resistance and production of drought tolerant plants are reviewed. The review also includes some information on traditional delivery methods of Cas9-gRNA complexes into plant cells and incorporates the advent of CRISPR ribonucleoproteins (RNPs) that came up as a solution to various limitations that prevailed with plasmid-based CRISPR system.
Collapse
Affiliation(s)
| | - Alka Narula
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
363
|
Raffo A, Baiamonte I, Nardo N, Nicoli S, Moneta E, Peparaio M, Sinesio F, Paoletti F. Impact of early harvesting and two cold storage technologies on eating quality of red ripe tomatoes. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
364
|
Qiao L, Cao M, Zheng J, Zhao Y, Zheng ZL. Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange. BMC PLANT BIOLOGY 2017; 17:186. [PMID: 29084509 PMCID: PMC5663102 DOI: 10.1186/s12870-017-1138-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/22/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND The ratio of sugars to organic acids, two of the major metabolites in fleshy fruits, has been considered the most important contributor to fruit sweetness. Although accumulation of sugars and acids have been extensively studied, whether plants evolve a mechanism to maintain, sense or respond to the fruit sugar/acid ratio remains a mystery. In a prior study, we used an integrated systems biology tool to identify a group of 39 acid-associated genes from the fruit transcriptomes in four sweet orange varieties (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). RESULTS We reanalyzed the prior sweet orange fruit transcriptome data, leading to the identification of 72 genes highly correlated with the fruit sugar/acid ratio. The majority of these sugar/acid ratio-related genes are predicted to be involved in regulatory functions such as transport, signaling and transcription or encode enzymes involved in metabolism. Surprisingly, only three of these sugar/acid ratio-correlated genes are weakly correlated with sugar level and none of them overlaps with the acid-associated genes. Weighted Gene Coexpression Network Analysis (WGCNA) has revealed that these genes belong to four modules, Blue, Grey, Brown and Turquoise, with the former two modules being unique to the sugar/acid ratio control. CONCLUSION Our results indicate that orange fruits contain a possible mechanistically distinct class of genes that may potentially be involved in maintaining fruit sugar/acid ratios and/or responding to the cellular sugar/acid ratio status. Therefore, our analysis of orange transcriptomes provides an intriguing insight into the potentially novel genetic or molecular mechanisms controlling the sugar/acid ratio in fruits.
Collapse
Affiliation(s)
- Liang Qiao
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Minghao Cao
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Jian Zheng
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Yihong Zhao
- Division of Biostatistics, Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016 USA
| | - Zhi-Liang Zheng
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468 USA
| |
Collapse
|
365
|
Abstract
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.
Collapse
|
366
|
Hess GT, Tycko J, Yao D, Bassik MC. Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Mol Cell 2017; 68:26-43. [PMID: 28985508 PMCID: PMC5997582 DOI: 10.1016/j.molcel.2017.09.029] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022]
Abstract
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.
Collapse
Affiliation(s)
- Gaelen T Hess
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - Josh Tycko
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - David Yao
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA.
| |
Collapse
|
367
|
Science and Culture: Vegetable breeders turn to chefs for flavor boost. Proc Natl Acad Sci U S A 2017; 114:10506-10508. [PMID: 29073035 DOI: 10.1073/pnas.1714536114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
368
|
Xu Z, Li S, Zhang C, Zhang B, Zhu K, Zhou Y, Liu Q. Genetic connection between cell-wall composition and grain yield via parallel QTL analysis in indica and japonica subspecies. Sci Rep 2017; 7:12561. [PMID: 28970550 PMCID: PMC5624937 DOI: 10.1038/s41598-017-12903-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Grain yield is a complicated trait, which is highly associated with biomass productivity. The cell wall is a central element of biomass, and its biogenesis contributes to plant architecture and development. However, the genetic link between cell-wall property and grain yield is largely unclear. Here, we report on identification of quantitative trait loci (QTLs) for grain yield-related traits and cell-wall composition with a set of chromosomal segment substitution lines (CSSLs) that were generated by using 9311, an indica cultivar as donor, and Nipponbare, a japonica cultivar as recipient. Nipponbare and 9311 showed significant differences in grain yield-related traits and cell-wall composition. Genotyping with molecular markers, 125 lines covering 95.6% of the whole genome of 9311 were employed for phenotypic and chemical examinations. Thirty-seven QTLs for grain yield-related traits and nineteen QTLs for cell-wall composition have been identified. In addition to correlation analysis, we found overlapped and closely linked QTLs for two sets of traits. Fine-mapping further narrowed a QTL for cellulose content together with HD17, a known QTL for heading date and grain yield, suggesting that plants may regulate cell wall biogenesis and grain yield via related means. Our study provided genetic clues for cloning QTLs for both complicated traits.
Collapse
Affiliation(s)
- Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Shance Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.,Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kongzhi Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
369
|
NGS-Based Genotyping, High-Throughput Phenotyping and Genome-Wide Association Studies Laid the Foundations for Next-Generation Breeding in Horticultural Crops. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9030038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Demographic trends and changes to climate require a more efficient use of plant genetic resources in breeding programs. Indeed, the release of high-yielding varieties has resulted in crop genetic erosion and loss of diversity. This has produced an increased susceptibility to severe stresses and a reduction of several food quality parameters. Next generation sequencing (NGS) technologies are being increasingly used to explore “gene space” and to provide high-resolution profiling of nucleotide variation within germplasm collections. On the other hand, advances in high-throughput phenotyping are bridging the genotype-to-phenotype gap in crop selection. The combination of allelic and phenotypic data points via genome-wide association studies is facilitating the discovery of genetic loci that are associated with key agronomic traits. In this review, we provide a brief overview on the latest NGS-based and phenotyping technologies and on their role to unlocking the genetic potential of vegetable crops; then, we discuss the paradigm shift that is underway in horticultural crop breeding.
Collapse
|
370
|
Abstract
Plant metabolic studies have traditionally focused on the role and regulation of the enzymes catalyzing key reactions within specific pathways. Within the past 20 years, reverse genetic approaches have allowed direct determination of the effects of the deficiency, or surplus, of a given protein on the biochemistry of a plant. In parallel, top-down approaches have also been taken, which rely on screening broad, natural genetic diversity for metabolic diversity. Here, we compare and contrast the various strategies that have been adopted to enhance our understanding of the natural diversity of metabolism. We also detail how these approaches have enhanced our understanding of both specific and global aspects of the genetic regulation of metabolism. Finally, we discuss how such approaches are providing important insights into the evolution of plant secondary metabolism.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
371
|
Genome-Wide Linkage-Disequilibrium Mapping to the Candidate Gene Level in Melon (Cucumis melo). Sci Rep 2017; 7:9770. [PMID: 28852011 PMCID: PMC5575340 DOI: 10.1038/s41598-017-09987-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022] Open
Abstract
Cucumis melo is highly diverse for fruit traits providing wide breeding and genetic research opportunities, including genome-wide association (GWA) analysis. We used a collection of 177 accessions representing the two C. melo subspecies and 11 horticultural groups for detailed characterization of fruit traits variation and evaluation of the potential of GWA for trait mapping in melon. Through genotyping-by-sequencing, 23,931 informative SNPs were selected for genome-wide analyses. We found that linkage-disequilibrium decays at ~100 Kb in this collection and that population structure effect on association results varies between traits. We mapped several monogenic traits to narrow intervals overlapping with known causative genes, demonstrating the potential of diverse collections and GWA for mapping Mendelian traits to a candidate-gene level in melon. We further report on mapping of fruit shape quantitative trait loci (QTLs) and comparison with multiple previous QTL studies. Expansion of sample size and a more balanced representation of taxonomic groups might improve efficiency for simple traits dissection. But, as in other plant species, integrated linkage-association multi-allelic approaches are likely to produce better combination of statistical power, diversity capture and mapping resolution in melon. Our data can be utilized for selection of the most appropriate accessions for such approaches.
Collapse
|
372
|
Geisler S. Cultivating Beauty and Good Taste. Cell 2017; 170:817-819. [PMID: 28841412 DOI: 10.1016/j.cell.2017.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
373
|
Bianchetti RE, Cruz AB, Oliveira BS, Demarco D, Purgatto E, Peres LEP, Rossi M, Freschi L. Phytochromobilin deficiency impairs sugar metabolism through the regulation of cytokinin and auxin signaling in tomato fruits. Sci Rep 2017; 7:7822. [PMID: 28798491 PMCID: PMC5552807 DOI: 10.1038/s41598-017-08448-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Phytochomes and plant hormones have been emerging as important regulators of fleshy fruit biology and quality traits; however, the relevance of phytochrome-hormonal signaling crosstalk in controlling fruit development and metabolism remains elusive. Here, we show that the deficiency in phytochrome chromophore phytochromobilin (PΦB) biosynthesis inhibits sugar accumulation in tomato (Solanum lycopersicum) fruits by transcriptionally downregulating sink- and starch biosynthesis-related enzymes, such as cell-wall invertases, sucrose transporters and ADP-glucose pyrophosphorylases. PΦB deficiency was also shown to repress fruit chloroplast biogenesis, which implicates more limited production of photoassimilates via fruit photosynthesis. Genetic and physiological data revealed the involvement of auxins and cytokinins in mediating the negative impact of PΦB deficiency on fruit sink strength and chloroplast formation. PΦB deficiency was shown to transcriptionally repress type-A TOMATO RESPONSE REGULATORs and AUXIN RESPONSE FACTORs both in pericarp and columella, suggesting active phytochrome-hormonal signaling crosstalk in these tissues. Data also revealed that PΦB deficiency influences fruit ripening by delaying the climacteric rise in ethylene production and signaling. Altogether, the data uncover the impact of phytochromobilin deficiency in fine-tuning sugar metabolism, chloroplast formation and the timing of fruit ripening and also reveal a link between auxins, cytokinins and phytochromes in regulating sugar import and accumulation in fruits.
Collapse
Affiliation(s)
- Ricardo Ernesto Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Aline Bertinatto Cruz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Bruna Soares Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil.
| |
Collapse
|
374
|
Sauvage C, Rau A, Aichholz C, Chadoeuf J, Sarah G, Ruiz M, Santoni S, Causse M, David J, Glémin S. Domestication rewired gene expression and nucleotide diversity patterns in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:631-645. [PMID: 28488328 DOI: 10.1111/tpj.13592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 05/25/2023]
Abstract
Plant domestication has led to considerable phenotypic modifications from wild species to modern varieties. However, although changes in key traits have been well documented, less is known about the underlying molecular mechanisms, such as the reduction of molecular diversity or global gene co-expression patterns. In this study, we used a combination of gene expression and population genetics in wild and crop tomato to decipher the footprints of domestication. We found a set of 1729 differentially expressed genes (DEG) between the two genetic groups, belonging to 17 clusters of co-expressed DEG, suggesting that domestication affected not only individual genes but also regulatory networks. Five co-expression clusters were enriched in functional terms involving carbohydrate metabolism or epigenetic regulation of gene expression. We detected differences in nucleotide diversity between the crop and wild groups specific to DEG. Our study provides an extensive profiling of the rewiring of gene co-expression induced by the domestication syndrome in one of the main crop species.
Collapse
Affiliation(s)
- Christopher Sauvage
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), Domaine St Maurice - 67 Allée des Chênes - CS 60094, 84143, Montfavet Cedex, France
| | - Andrea Rau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Charlotte Aichholz
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), Domaine St Maurice - 67 Allée des Chênes - CS 60094, 84143, Montfavet Cedex, France
| | - Joël Chadoeuf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), Domaine St Maurice - 67 Allée des Chênes - CS 60094, 84143, Montfavet Cedex, France
| | - Gautier Sarah
- Montpellier SupAgro, UMR 1334, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, F-34398, Montpellier, France
| | - Manuel Ruiz
- CIRAD, UMR AGAP, Baillarguet, F-34980, Montferrier-sur-Lez, France
| | - Sylvain Santoni
- Montpellier SupAgro, UMR 1334, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, F-34398, Montpellier, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), Domaine St Maurice - 67 Allée des Chênes - CS 60094, 84143, Montfavet Cedex, France
| | - Jacques David
- Montpellier SupAgro, UMR 1334, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, F-34398, Montpellier, France
| | - Sylvain Glémin
- Institut des Sciences de l'Evolution de Montpellier (ISEM-UMR 5554 Université de Montpellier - CNRS-IRD-EPHE), F-34095, Montpellier, France
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, 75236, Uppsala, Sweden
| |
Collapse
|
375
|
Liu X, Geng X, Zhang H, Shen H, Yang W. Association and Genetic Identification of Loci for Four Fruit Traits in Tomato Using InDel Markers. FRONTIERS IN PLANT SCIENCE 2017; 8:1269. [PMID: 28769968 PMCID: PMC5515879 DOI: 10.3389/fpls.2017.01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/05/2017] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum) fruit weight (FW), soluble solid content (SSC), fruit shape and fruit color are crucial for yield, quality and consumer acceptability. In this study, a 192 accessions tomato association panel comprising a mixture of wild species, cherry tomato, landraces, and modern varieties collected worldwide was genotyped with 547 InDel markers evenly distributed on 12 chromosomes and scored for FW, SSC, fruit shape index (FSI), and color parameters over 2 years with three replications each year. The association panel was sorted into two subpopulations. Linkage disequilibrium ranged from 3.0 to 47.2 Mb across 12 chromosomes. A set of 102 markers significantly (p < 1.19-1.30 × 10-4) associated with SSC, FW, fruit shape, and fruit color was identified on 11 of the 12 chromosomes using a mixed linear model. The associations were compared with the known gene/QTLs for the same traits. Genetic analysis using F2 populations detected 14 and 4 markers significantly (p < 0.05) associated with SSC and FW, respectively. Some loci were commonly detected by both association and linkage analysis. Particularly, one novel locus for FW on chromosome 4 detected by association analysis was also identified in F2 populations. The results demonstrated that association mapping using limited number of InDel markers and a relatively small population could not only complement and enhance previous QTL information, but also identify novel loci for marker-assisted selection of fruit traits in tomato.
Collapse
Affiliation(s)
| | | | | | | | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural UniversityBeijing, China
| |
Collapse
|
376
|
Bauchet G, Grenier S, Samson N, Segura V, Kende A, Beekwilder J, Cankar K, Gallois JL, Gricourt J, Bonnet J, Baxter C, Grivet L, Causse M. Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. THE NEW PHYTOLOGIST 2017; 215:624-641. [PMID: 28585324 DOI: 10.1111/nph.14615] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/09/2017] [Indexed: 05/21/2023]
Abstract
Plant metabolites are important to world food security due to their roles in crop yield and nutritional quality. Here we report the metabolic profile of 300 tomato accessions (Solanum lycopersicum and related wild species) by quantifying 60 primary and secondary metabolites, including volatile organic compounds, over a period of 2 yr. Metabolite content and genetic inheritance of metabolites varied broadly, both within and between different genetic groups. Using genotype information gained from 10 000 single nucleotide polymorphism markers, we performed a metabolite genome-wide association mapping (GWAS) study. We identified 79 associations influencing 13 primary and 19 secondary metabolites with large effects at high resolution. Four genome regions were detected, highlighting clusters of associations controlling the variation of several metabolites. Local linkage disequilibrium analysis and allele mining identified possible candidate genes which may modulate the content of metabolites that are of significant importance for human diet and fruit consumption. We precisely characterized two associations involved in fruit acidity and phenylpropanoid volatile production. Taken together, this study reveals complex and distinct metabolite regulation in tomato subspecies and demonstrates that GWAS is a powerful tool for gene-metabolite annotation and identification, pathways elucidation, and further crop improvement.
Collapse
Affiliation(s)
- Guillaume Bauchet
- INRA, UR1052, GAFL, 67 Allée des Chênes Domaine Saint Maurice - CS60094, Montfavet Cedex, 84143, France
- Syngenta, 12 Chemin de l'Hobit, Saint Sauveur, 31790, France
| | | | - Nicolas Samson
- Syngenta, 12 Chemin de l'Hobit, Saint Sauveur, 31790, France
| | | | - Aniko Kende
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Jules Beekwilder
- Plant Research International, 6700 AA, Wageningen, the Netherlands
| | - Katarina Cankar
- Plant Research International, 6700 AA, Wageningen, the Netherlands
| | - Jean-Luc Gallois
- INRA, UR1052, GAFL, 67 Allée des Chênes Domaine Saint Maurice - CS60094, Montfavet Cedex, 84143, France
| | - Justine Gricourt
- INRA, UR1052, GAFL, 67 Allée des Chênes Domaine Saint Maurice - CS60094, Montfavet Cedex, 84143, France
| | - Julien Bonnet
- Syngenta, 12 Chemin de l'Hobit, Saint Sauveur, 31790, France
| | - Charles Baxter
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Laurent Grivet
- Syngenta, 12 Chemin de l'Hobit, Saint Sauveur, 31790, France
| | - Mathilde Causse
- INRA, UR1052, GAFL, 67 Allée des Chênes Domaine Saint Maurice - CS60094, Montfavet Cedex, 84143, France
| |
Collapse
|
377
|
Rayner T, Moreau C, Ambrose M, Isaac PG, Ellis N, Domoney C. Genetic Variation Controlling Wrinkled Seed Phenotypes in Pisum: How Lucky Was Mendel? Int J Mol Sci 2017; 18:E1205. [PMID: 28587311 PMCID: PMC5486028 DOI: 10.3390/ijms18061205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
One of the traits studied by Mendel in pea (Pisum sativum L.) was the wrinkled-seeded phenotype, and the molecular basis for a mutation underlying this phenotype was discovered in the 1990s. Although the starch-branching enzyme gene mutation identified at the genetic locus r is most likely to be that in seeds available to Mendel in the mid-1800s, it has remained an open question as to whether or not additional natural mutations in this gene exist within Pisum germplasm collections. Here, we explore this question and show that all but two wrinkled-seeded variants in one such collection correspond to either the mutant allele described previously for the r locus or a mutation at a second genetic locus, rb, affecting the gene encoding the large subunit of Adenosine diphosphoglucose (ADP-glucose) pyrophosphorylase; the molecular basis for the rb mutation is described here. The genetic basis for the phenotype of one (JI 2110) of the two lines which are neither r nor rb has been studied in crosses with a round-seeded variant (JI 281); for which extensive genetic marker data were expected. In marked contrast to the trait studied by Mendel and the rb phenotype; the data suggest that the wrinkled-seeded phenotype in JI 2110 is maternally determined, controlled by two genetic loci, and the extent to which it is manifested is very sensitive to the environment. Metabolite analysis of the cotyledons of JI 2110 revealed a profile for sucrose and sucrose-derived compounds that was more similar to that of wild-type round-seeded, than that of wrinkled-seeded r, pea lines. However, the metabolite profile of the seed coat (testa) of JI 2110 was distinct from that of other round-seeded genotypes tested which, together with analysis of recombinant inbred progeny lines, suggests an explanation for the seed phenotype.
Collapse
Affiliation(s)
- Tracey Rayner
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Carol Moreau
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Mike Ambrose
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Peter G Isaac
- IDna Genetics Ltd, Centrum, Norwich Research Park, Norwich NR4 7UG, UK.
| | - Noel Ellis
- Department of Biology Sciences, University of Auckland, Auckland 1142, New Zealand.
- Department of Crop Physiology, International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat 10106, Morocco.
| | - Claire Domoney
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
378
|
Wang D, Seymour GB. Tomato Flavor: Lost and Found? MOLECULAR PLANT 2017; 10:782-784. [PMID: 28478095 DOI: 10.1016/j.molp.2017.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 03/28/2017] [Accepted: 04/26/2017] [Indexed: 05/03/2023]
Affiliation(s)
- Duoduo Wang
- University of Nottingham, School of Biosciences, Division of Plant and Crop Science, Sutton Bonington, Lough, Leics LE12 5RD, UK
| | - Graham B Seymour
- University of Nottingham, School of Biosciences, Division of Plant and Crop Science, Sutton Bonington, Lough, Leics LE12 5RD, UK.
| |
Collapse
|
379
|
Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ, Goren A, Jiang K, Ramos A, van der Knaap E, Van Eck J, Zamir D, Eshed Y, Lippman ZB. Bypassing Negative Epistasis on Yield in Tomato Imposed by a Domestication Gene. Cell 2017; 169:1142-1155.e12. [PMID: 28528644 DOI: 10.1016/j.cell.2017.04.032] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 02/03/2023]
Abstract
Selection for inflorescence architecture with improved flower production and yield is common to many domesticated crops. However, tomato inflorescences resemble wild ancestors, and breeders avoided excessive branching because of low fertility. We found branched variants carry mutations in two related transcription factors that were selected independently. One founder mutation enlarged the leaf-like organs on fruits and was selected as fruit size increased during domestication. The other mutation eliminated the flower abscission zone, providing "jointless" fruit stems that reduced fruit dropping and facilitated mechanical harvesting. Stacking both beneficial traits caused undesirable branching and sterility due to epistasis, which breeders overcame with suppressors. However, this suppression restricted the opportunity for productivity gains from weak branching. Exploiting natural and engineered alleles for multiple family members, we achieved a continuum of inflorescence complexity that allowed breeding of higher-yielding hybrids. Characterizing and neutralizing similar cases of negative epistasis could improve productivity in many agricultural organisms. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sebastian Soyk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zachary H Lemmon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matan Oved
- Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Josef Fisher
- Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Katie L Liberatore
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Soon Ju Park
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, Jeonbuk 54538, Rep. of Korea
| | - Anna Goren
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ke Jiang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Alexis Ramos
- Institute of Plant Breeding, Genetic & Genomics, University of Georgia, Athens, GA 30602, USA
| | - Esther van der Knaap
- Institute of Plant Breeding, Genetic & Genomics, University of Georgia, Athens, GA 30602, USA
| | | | - Dani Zamir
- Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
380
|
Kyriacou MC, Rouphael Y, Colla G, Zrenner R, Schwarz D. Vegetable Grafting: The Implications of a Growing Agronomic Imperative for Vegetable Fruit Quality and Nutritive Value. FRONTIERS IN PLANT SCIENCE 2017; 8:741. [PMID: 28553298 PMCID: PMC5427113 DOI: 10.3389/fpls.2017.00741] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/20/2017] [Indexed: 05/19/2023]
Abstract
Grafting has become an imperative for intensive vegetable production since chlorofluorocarbon-based soil fumigants were banned from use on grounds of environmental protection. Compelled by this development, research into rootstock-scion interaction has broadened the potential applications of grafting in the vegetable industry beyond aspects of soil phytopathology. Grafting has been increasingly tapped for cultivation under adverse environs posing abiotic and biotic stresses to vegetable crops, thus enabling expansion of commercial production onto otherwise under-exploited land. Vigorous rootstocks have been employed not only in the open field but also under protected cultivation where increase in productivity improves distribution of infrastructural and energy costs. Applications of grafting have expanded mainly in two families: the Cucurbitaceae and the Solanaceae, both of which comprise major vegetable crops. As the main drives behind the expansion of vegetable grafting have been the resistance to soilborne pathogens, tolerance to abiotic stresses and increase in yields, rootstock selection and breeding have accordingly conformed to the prevailing demand for improving productivity, arguably at the expense of fruit quality. It is, however, compelling to assess the qualitative implications of this growing agronomic practice for human nutrition. Problems of impaired vegetable fruit quality have not infrequently been associated with the practice of grafting. Accordingly, the aim of the current review is to reassess how the practice of grafting and the prevalence of particular types of commercial rootstocks influence vegetable fruit quality and, partly, storability. Physical, sensorial and bioactive aspects of quality are examined with respect to grafting for watermelon, melon, cucumber, tomato, eggplant, and pepper. The physiological mechanisms at play which mediate rootstock effects on scion performance are discussed in interpreting the implications of grafting for the configuration of vegetable fruit physicochemical quality and nutritive value.
Collapse
Affiliation(s)
- Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research InstituteNicosia, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of TusciaViterbo, Italy
| | - Rita Zrenner
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Dietmar Schwarz
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| |
Collapse
|
381
|
The alleles of a tasty tomato. Nat Biotechnol 2017; 35:220-221. [DOI: 10.1038/nbt.3814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
382
|
Cheng Y, Bian W, Pang X, Yu J, Ahammed GJ, Zhou G, Wang R, Ruan M, Li Z, Ye Q, Yao Z, Yang Y, Wan H. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1440. [PMID: 28900431 PMCID: PMC5581943 DOI: 10.3389/fpls.2017.01440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/03/2017] [Indexed: 05/19/2023]
Abstract
Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR) is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs). Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red) using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170), SlFRG12 (Solyc04g009770), SlFRG16 (Solyc10g081190), SlFRG27 (Solyc06g007510), and SlFRG37 (Solyc11g005330) were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070) and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Wuying Bian
- Zhejiang Agricultural Technology Extension CenterHangzhou, China
| | - Xin Pang
- Suzhou Polytechnic Institute of AgricultureSuzhou, China
| | - Jiahong Yu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | | | - Guozhi Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Rongqing Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Meiying Ruan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Zhimiao Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Qingjing Ye
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Zhuping Yao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yuejian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Hongjian Wan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Hongjian Wan
| |
Collapse
|
383
|
Farneti B, Khomenko I, Grisenti M, Ajelli M, Betta E, Algarra AA, Cappellin L, Aprea E, Gasperi F, Biasioli F, Giongo L. Exploring Blueberry Aroma Complexity by Chromatographic and Direct-Injection Spectrometric Techniques. FRONTIERS IN PLANT SCIENCE 2017; 8:617. [PMID: 28491071 PMCID: PMC5405137 DOI: 10.3389/fpls.2017.00617] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/05/2017] [Indexed: 05/19/2023]
Abstract
Blueberry (Vaccinium spp.) fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC) composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry) and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry). The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars ("Biloxi," "Brigitta Blue," "Centurion," "Chandler," and "Ozark Blue") harvested at four ripening stages (green, pink, ripe, and over-ripe) to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V. corymbosum L. ("Brigitta," "Chandler," "Liberty," and "Ozark Blue"), V. virgatum Aiton ("Centurion," "Powder Blue," and "Sky Blue"), V. myrtillus L. (three wild genotypes of different mountain locations), and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide pull of VOCs, for the most aldehydes, alcohols, terpenoids, and esters that can be used as putative biomarkers to rapidly evaluate the blueberry aroma variations related to ripening and/or senescence as well as to genetic background differences. Moreover, the obtained results demonstrated the complementarity between chromatographic and direct-injection mass spectrometric techniques to study the blueberry aroma.
Collapse
Affiliation(s)
- Brian Farneti
- Genomics and Biology of Fruit Crop Department, Fondazione Edmund MachTrento, Italy
- *Correspondence: Brian Farneti
| | - Iuliia Khomenko
- Food Quality and Nutrition Department, Fondazione Edmund MachTrento, Italy
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universitat InnsbruckInnsbruck, Austria
| | - Marcella Grisenti
- Genomics and Biology of Fruit Crop Department, Fondazione Edmund MachTrento, Italy
| | - Matteo Ajelli
- Genomics and Biology of Fruit Crop Department, Fondazione Edmund MachTrento, Italy
| | - Emanuela Betta
- Food Quality and Nutrition Department, Fondazione Edmund MachTrento, Italy
| | | | - Luca Cappellin
- Food Quality and Nutrition Department, Fondazione Edmund MachTrento, Italy
| | - Eugenio Aprea
- Food Quality and Nutrition Department, Fondazione Edmund MachTrento, Italy
| | - Flavia Gasperi
- Food Quality and Nutrition Department, Fondazione Edmund MachTrento, Italy
| | - Franco Biasioli
- Food Quality and Nutrition Department, Fondazione Edmund MachTrento, Italy
| | - Lara Giongo
- Genomics and Biology of Fruit Crop Department, Fondazione Edmund MachTrento, Italy
| |
Collapse
|