351
|
Isobe M, Futamatsu H, Suzuki JI. Hepatocyte growth factor: Effects on immune-mediated heart diseases. Trends Cardiovasc Med 2006; 16:188-93. [PMID: 16839861 DOI: 10.1016/j.tcm.2006.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/09/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
There is growing evidence of the potential role of hepatocyte growth factor (HGF) in various cardiovascular diseases. In addition to the beneficial effects of HGF in myocardial infarction, heart failure, and occlusive peripheral arterial disease, administration of HGF effectively suppresses acute and chronic cardiac allograft rejection and autoimmune myocarditis. The present review summarizes recent advances in the utility of HGF for heart diseases, especially immune-mediated heart diseases. Possible mechanisms of action in the suppression of T-cell-mediated immunity are also discussed.
Collapse
Affiliation(s)
- Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Bunkyoku, Tokyo, Japan.
| | | | | |
Collapse
|
352
|
Yamabi H, Lu H, Dai X, Lu Y, Hannigan G, Coles JG. Overexpression of integrin-linked kinase induces cardiac stem cell expansion. J Thorac Cardiovasc Surg 2006; 132:1272-9. [PMID: 17140940 DOI: 10.1016/j.jtcvs.2006.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/29/2006] [Accepted: 08/03/2006] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Recent evidence suggests that the adult heart contains stem cells that are capable of self-renewal as well as multilineage differentiation. However, their inherent capacity for self-renewal is limiting to cell replacement applications. Integrin-linked kinase is a multifunctional protein kinase that activates Wnt target genes implicated in the symmetric replication of embryonic stem cells. METHODS Primary cultures derived from human fetal cardiac tissue (19-22 weeks' gestation) were grown in serum-free media and evaluated for the presence of cardiac progenitor cells. The effect of integrin-linked kinase was ascertained by adenoviral overexpression. RESULTS Cultures infected with wild-type integrin-linked kinase yielded a significant (P = .001), approximately 5-fold increase in both the absolute number and the frequency of c-Kit-positive, myosin-negative cells. Cardiospheres, comprised on morphologically homogeneous, anchorage-independent cells, were reproducibly present at days 7 to 10 and formed derivative cardiospheres in multiple passages. Integrin-linked kinase infection of primary cardiac cell cultures resulted in a greater number of primary spheres at each cell density tested, compared with untreated and virus controls (P = .001). Secondary spheres transferred to differentiation medium and 5-aza-deoxycytodine (10 micromol/L) generated cells exhibiting biochemical evidence of differentiation into cardiomyocytes, smooth muscle cells, and endothelial cells. CONCLUSIONS This study demonstrates that self-renewing cardiospheres generated from human fetal cardiac cells are composed of cells exhibiting the properties of stem cells, including the capacity for self-renewal and multilineage differentiation. Our results suggest that integrin-linked kinase promotes stem cell amplification and can be applied therapeutically to overcome a major limitation in the field of cardiac regenerative medicine.
Collapse
Affiliation(s)
- Hideaki Yamabi
- Cardiovascular Research, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
353
|
Tateishi K, Ashihara E, Honsho S, Takehara N, Nomura T, Takahashi T, Ueyama T, Yamagishi M, Yaku H, Matsubara H, Oh H. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling. Biochem Biophys Res Commun 2006; 352:635-41. [PMID: 17150190 DOI: 10.1016/j.bbrc.2006.11.096] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/11/2006] [Indexed: 01/25/2023]
Abstract
Recent evidence suggested that human cardiac stem cells (hCSCs) may have the clinical application for cardiac repair; however, their characteristics and the regulatory mechanisms of their growth have not been fully investigated. Here, we show the novel property of hCSCs with respect to their origin and tissue distribution in human heart, and demonstrate the signaling pathway that regulates their growth and survival. Telomerase-active hCSCs were predominantly present in the right atrium and outflow tract of the heart (infant > adult) and had a mesenchymal cell-like phenotype. These hCSCs expressed the embryonic stem cell markers and differentiated into cardiomyocytes to support cardiac function when transplanted them into ischemic myocardium. Inhibition of Akt pathway impaired the hCSC proliferation and induced apoptosis, whereas inhibition of glycogen synthase kinase-3 (GSK-3) enhanced their growth and survival. We conclude that hCSCs exhibit mesenchymal features and that Akt/GSK-3beta may be crucial modulators for hCSC maintenance in human heart.
Collapse
Affiliation(s)
- Kento Tateishi
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Pallante BA, Duignan I, Okin D, Chin A, Bressan MC, Mikawa T, Edelberg JM. Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ Res 2006; 100:e1-11. [PMID: 17122441 DOI: 10.1161/01.res.0000253487.02398.85] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mechanisms that govern the capacity of the bone marrow stem cells to generate cardiac myocytes are still unknown. Herein we demonstrate that the cardiomyogenic potential of bone marrow-derived Oct3/4(+)/cKit(+/-)/CXCR4(+/-)/CD34(-)/Sca1(-) cells is governed by age-dependent paracrine/juxtacrine platelet-derived growth factor (PDGF) pathways. Specifically, bone marrow cell cultures from both 3- and 18-month-old mice formed aggregates of Oct3/4(+) cells circumscribed by PDGFRalpha(+)/Oct3/4(-)/Sca1(+) cells. In young (3-month) bone marrow cell cultures, induction of PDGF-AB preceded the induction of cardiac genes and was required for the generation of cardiomyogenesis. Indeed, in old (18-month) cultures, diminished PDGF-B induction was associated with impaired cardiomyogenic potential, despite having Oct3/4 levels similar to those in the young cells. Importantly, supplementation with PDGF-AB specifically restored the cardiac differentiation capacity of the old bone marrow cells. Together these results demonstrate that, regardless of age, the bone marrow niche contains Oct3/4 stem cells that are capable of differentiating into cardiac myocytes. Moreover, this differentiation is governed by age-dependent PDGF-AB-mediated paracrine/juxtacrine pathways that may be essential in the translation of bone marrow cell-mediated cardiomyogenesis.
Collapse
Affiliation(s)
- Benedetta A Pallante
- Departments of Medicine, Weill Medical College of Cornell University, New York, USA
| | | | | | | | | | | | | |
Collapse
|
355
|
Abstract
Considerable hope has been vested in cell therapy strategies designed to augment the endogenous neovascularization response to obstructive coronary artery disease, and to replace cardiomyocyte loss caused by myocardial infarction. Conceptually, the relative importance of targeting angiogenesis versus myogenesis in this scheme will vary depending on the clinical context (the predominance of ischemia versus ventricular dysfunction and scarring). Although the evidence so far is encouraging, whether these processes can be effectively targeted in a selective fashion with cell therapy is still unclear. Intriguingly, data are now emerging suggesting that the beneficial effects of cardiac cell therapies in a variety of clinical settings may be accounted for by a greater interaction of angiogenesis, myocardial salvage and myogenesis than heretofore appreciated, and through mechanisms that may include both cellular and paracrine effects. Greater understanding of these mechanisms should accelerate the development of effective cell therapies for the growing number of patients with advanced, and in many cases 'no-option', cardiovascular disease. Possible clinical targets for angiogenic and myogenic cardiac cell therapy, the scientific rationale for this therapeutic approach and future directions in this field are discussed here.
Collapse
Affiliation(s)
- Brendan Doyle
- University College Cork, Biosciences Institute Rm 4.07, Cork, Ireland.
| | | |
Collapse
|
356
|
Nakamura Y, Wang X, Xu C, Asakura A, Yoshiyama M, From AHL, Zhang J. Xenotransplantation of long-term-cultured swine bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 25:612-20. [PMID: 17095707 DOI: 10.1634/stemcells.2006-0168] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Swine-derived MSCs were efficiently isolated and extensively expanded using a low fetal serum content growth medium to which selected growth factors were added. After > or =96 cell population doublings (PDs), MSCs were devoid of cytogenetic abnormalities. In vitro chondrogenic and osteogenic differentiation capacity was preserved after 80 PDs. To test therapeutic efficacy, 1 x 10(6) 80-PD MSCs were injected directly into the peri-infarct zone of hearts of immunodeficient (non-obese diabetic/severe combined immunodeficient) mice at the time of acute myocardial infarction. Engrafted MSCs survived in the infarcted hearts for at least 4 weeks. Echocardiography at 2 and 4 weeks postinfarction revealed a significant preservation of the left ventricular ejection fractions of infarct hearts receiving MSCs compared with infarct hearts receiving saline. Peri-infarct zone capillarity was better preserved in MSC-treated hearts than other infarct groups of hearts, but infarct size was comparable in all groups. Only rare engrafted MSCs expressed cardiac-specific or endothelial cell-specific markers. Hence, 80-PD MSCs retained the capacity to promote functional improvement in the infarcted heart despite minimal differentiation of MSCs into cardiomyocytes or endothelial cells. These data suggest that the beneficial effects of MSC transplantation most likely result from the trophic effects of MSC-released substances on native cardiac and vascular cells. The capacity to massively expand MSC lines without loss of therapeutic efficacy may prove to be useful in the clinical setting where "off the shelf" MSCs may be required for interventions in patients with acute coronary syndromes.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Cardiovascular Division, Department of Medicine, University of Minnesota Academic Health Center, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
357
|
Nadal-Ginard B, Torella D, Ellison G. Medicina regenerativa cardiovascular en la encrucijada. Es urgente basar los ensayos clínicos sobre terapia celular en datos sólidos obtenidos en animales experimentales relevantes para los humanos. Rev Esp Cardiol 2006. [DOI: 10.1157/13095786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
358
|
|
359
|
Kajstura J, Rota M, Urbanek K, Hosoda T, Bearzi C, Anversa P, Bolli R, Leri A. The telomere-telomerase axis and the heart. Antioxid Redox Signal 2006; 8:2125-41. [PMID: 17034355 DOI: 10.1089/ars.2006.8.2125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The preservation of myocyte number and cardiac mass throughout life is dependent on the balance between cell death and cell division. Rapidly emerging evidence indicates that new myocytes can be formed through the activation and differentiation of resident cardiac progenitor cells. The critical issue is the identification of mechanisms that define the aging of cardiac progenitor cells and, ultimately, their inability to replace dying myocytes. The most reliable marker of cellular senescence is the modification of the telomere-telomerase axis, together with the expression of the cell cycle inhibitors p16INK4a and p53. Cellular senescence is characterized by biochemical events that occur within the cell. In this regard, one of the most relevant processes is represented by repeated oxidative stress that may evolve into the activation of the cell death program or result in the development of a senescent phenotype. Thus, the modulation of telomerase activity and the control of telomeric length, together with the attenuation of the formation of reactive oxygen species, may represent important therapeutic tools in regenerative medicine and in prevention of aging and diabetic cardiomyopathies.
Collapse
Affiliation(s)
- Jan Kajstura
- Cardiovascular Research Institute, Department of Medicine, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
360
|
Abstract
Realizing the promise of therapeutic cardiac regeneration requires the targeting of accessible cell sources to promote neomyogenesis for the injured heart. After initial trials with cardiac myocytes and skeletal muscle progenitor cells (myoblasts), the rapid advances of stem cell technology have established the feasibility of endogenous stem cells to serve as donor cells for cellular cardiomyoplasty. In particular, bone marrow-derived stem cells have a great potential for clinical application due to their extracardiac locale and capacity to give rise to functional cardiac myocytes. The recent identification of resident cardiac stem cells also offers the opportunity to regenerate the infarcted myocardium, using the cells from the heart for ex vivo expansion or as targets for in vivo induction. To this end, future advances in cellular cardiomyoplasty may likely be based on therapies stimulating the trophic/cellular interactions that direct exogenous/endogenous stem cell-mediated cardiac regeneration.
Collapse
Affiliation(s)
- Benedetta A Pallante
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
361
|
Capogrossi MC. Interview with Dr. Maurizio C. Capogrossi regarding Pivotal Advance: High-mobility group box 1 protein-a cytokine with a role in cardiac repair. J Leukoc Biol 2006; 81:38-40. [PMID: 17041002 DOI: 10.1189/jlb.1306165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
362
|
Akar AR, Durdu S, Corapcioglu T, Ozyurda U. Regenerative medicine for cardiovascular disorders-new milestones: adult stem cells. Artif Organs 2006; 30:213-32. [PMID: 16643380 DOI: 10.1111/j.1525-1594.2006.00209.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiovascular disorders are the leading causes of mortality and morbidity in the developed world. Cell-based modalities have received considerable scientific attention over the last decade for their potential use in this clinical arena. This review was intended as a brief overview on the subject of therapeutic potential of adult stem cells in cardiovascular medicine with basic science findings and the current status of clinical applications. The historical perspective and basic concepts are reviewed and a description of current applications and potential adverse effects in cardiovascular medicine is given. Future improvements on cell-based therapies will likely provide remarkable improvement in survival and quality of life for millions of patients with cardiovascular disorders.
Collapse
Affiliation(s)
- A Ruchan Akar
- Department of Cardiovascular Surgery, Heart Center, Ankara University School of Medicine and Ankara University Biotechnology Institute, Turkey.
| | | | | | | |
Collapse
|
363
|
Khan S, Salloum F, Das A, Xi L, Vetrovec GW, Kukreja RC. Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J Mol Cell Cardiol 2006; 41:256-64. [PMID: 16769083 DOI: 10.1016/j.yjmcc.2006.04.014] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/30/2006] [Accepted: 04/04/2006] [Indexed: 12/22/2022]
Abstract
Rapamycin (sirolimus) is an antibiotic that inhibits protein synthesis through mammalian target of rapamycin (mTOR) signaling and is used as an immunosuppressant in the treatment of organ rejection in transplant recipients. Recently, the antigrowth properties of rapamycin have been utilized for cardiovascular benefit as stents impregnated with rapamycin effectively reduce coronary restenosis. We report here a novel role of this drug in protection against ischemia/reperfusion (I/R) injury. Adult male ICR mice were treated with rapamycin (0.25 mg/kg, IP) or volume-matched DMSO (solvent for rapamycin). The hearts were subjected to 20 min of global ischemia and 30 min of reperfusion in Langendorff mode. The blocker of mitochondrial KATP channel, 5-hydroxydecanoate (5-HD, 100 microM) was given 10 min before ischemia. Infarct size in the DMSO treated group was 28.2 +/- 1.3% and was reduced to 10.1 +/- 2.8% in the rapamycin-treated mice (64% decrease, P < 0.001). 5-HD blocked the protective effect (infarct area 32.2 +/- 1.8%, P < 0.001 vs. rapamycin). The infarct limiting effect of rapamycin was not associated with improved recovery of ventricular function. We further examined the effect of rapamycin in protection against necrosis and apoptosis in adult cardiomyocytes subjected to simulated ischemia and reoxygenation. Myocytes treated with rapamycin in doses from 25-100 nM demonstrated significantly lower trypan blue-positive necrotic cells and TUNEL-positive apoptotic nuclei, supporting the protective role of drug in the intact heart. These data suggest that rapamycin induces potent preconditioning-like effect against myocardial infarction through opening of mitochondrial KATP channels. We propose that rapamycin may be a novel therapeutic strategy to limit infarction, apoptosis, and remodeling following I/R injury in the heart.
Collapse
Affiliation(s)
- Shakil Khan
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University Medical Center, Richmond, 23298, USA
| | | | | | | | | | | |
Collapse
|
364
|
Germani A, Limana F, Capogrossi MC. Pivotal advances: high-mobility group box 1 protein--a cytokine with a role in cardiac repair. J Leukoc Biol 2006; 81:41-5. [PMID: 16940333 DOI: 10.1189/jlb.0306165] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nuclear protein high-mobility group box 1 (HMGB1) has been largely characterized for its role in inflammation. However, HMGB1 released by inflammatory cells, as well as by necrotic cells, may also act as a signal of tissue damage and participate in tissue repair by recruiting stem cells to the injury site. The emergence of this function has focused the interest on HMGB1 as a molecule with an active role in tissue regeneration. We recently demonstrated that HMGB1 administration in a mouse model of myocardial infarction activates cardiac stem cells and promotes their differentiation into cardiomyocytes. The regenerative effect results in the improvement of cardiac function. In this review, we highlight the beneficial role of HMGB1 and discuss growth factor-based therapeutic approaches for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Antonia Germani
- Laboratorio di Biologia Vascolare e Terapia Genica, Centro Cardiologico Fondazione Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | | | | |
Collapse
|
365
|
Abstract
Cardiovascular disease is a major public health challenge in the western world. Mortality of acute events has improved, but more patients develop HF--a condition affecting up to 22 million people worldwide. Cell transplantation is the first therapy to attempt replacement of lost cardiomyocytes and vasculature to restore lost contractile function. Since the first reported functional repair after injection of autologous skeletal myoblasts into the injured heart in 1998, a variety of cell types have been proposed for transplantation in different stages of cardiovascular disease. Fifteen years of preclinical research and the rapid move into clinical studies have left us with promising results and a better understanding of cells as a potential clinical tool. Cell-based cardiac repair has been the first step, but cardiac regeneration remains the more ambitious goal. Promising new cell types and the rapidly evolving concept of adult stem and progenitor cell fate may enable us to move towards regenerating viable and functional myocardium. Meeting a multidisciplinary consensus will be required to translate these findings into safe and applicable clinical tools.
Collapse
Affiliation(s)
- Harald C Ott
- Massachusetts General Hospital, Department of Surgery, Boston, MA, USA
| | | |
Collapse
|
366
|
de Muinck ED, Thompson C, Simons M. Progress and prospects: cell based regenerative therapy for cardiovascular disease. Gene Ther 2006; 13:659-71. [PMID: 16319948 DOI: 10.1038/sj.gt.3302680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Experimental and clinical studies are progressing simultaneously to investigate the mechanisms and efficacy of progenitor cell treatment after an acute myocardial infarction and in chronic congestive heart failure. Multipotent progenitor cells appear to be capable of improving cardiac perfusion and/or function; however, the mechanisms still are unclear, and the issue of whether or not trans-differentiation occurs remains unsettled. Both experimentally and clinically, cells originating from different tissues have been shown capable of restoring cardiac function, but more recently multiple groups have identified resident cardiac progenitor cells that seem to participate in regenerating the heart after injury. Clinically, cells originating from blood or bone marrow have been proven to be safe whereas injection of skeletal myoblasts has been associated with the occurrence of ventricular arrhythmias. Myoblasts can transform into rapidly beating myotubes; however, thus far convincing evidence for electro-mechanical coupling between myoblasts and cardiomyocytes is lacking. Moving forward, mechanistic studies will benefit from the use of genetic markers and Cre/lox reporter systems that are less prone to misinterpretation than fluorescent antibodies, and a more convincing answer regarding therapeutic efficacy will come from adequately powered randomized placebo controlled trials.
Collapse
Affiliation(s)
- E D de Muinck
- Department of Physiology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
367
|
Rosenthal N, Santini MP, Musarò A. Growth factor enhancement of cardiac regeneration. Cell Transplant 2006; 15 Suppl 1:S41-5. [PMID: 16826794 DOI: 10.3727/000000006783982287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The potential for endogenous or supplementary stem cells to restore the form and function of damaged tissues is particularly promising for overcoming the restricted regenerative capacity of the mammalian heart. To maintain blood circulation, this essential organ needs to launch a rapid response to repair damage of the muscle wall and to prevent muscle loss. The capacity of growth factors to supplement the repair process has been successfully applied to restore the integrity of damaged skeletal muscle, reducing the fibrotic response to injury, and recruiting local populations of self-renewing precursor cells and circulating stem cells. We review the recent evidence that extension of growth factor supplementation to the heart may overcome its inherent regenerative impediments through improvement of the local tissue environment and stimulation of cell replacement, and we speculate on future research directions for treatment of myocardial damage.
Collapse
Affiliation(s)
- Nadia Rosenthal
- Mouse Biology Unit, EMBL-Monterotondo Outstation, Monterotondo (Rome) 00016, Italy.
| | | | | |
Collapse
|
368
|
Abstract
Metastasis follows the inappropriate activation of a genetic programme termed invasive growth, which is a physiological process that occurs during embryonic development and post-natal organ regeneration. Burgeoning evidence indicates that invasive growth is also executed by stem and progenitor cells, and is usurped by cancer stem cells. The MET proto-oncogene, which is expressed in both stem and cancer cells, is a key regulator of invasive growth. Recent findings indicate that the MET tyrosine-kinase receptor is a sensor of adverse microenvironmental conditions (such as hypoxia) and drives cell invasion and metastasis through the transcriptional activation of a set of genes that control blood coagulation.
Collapse
Affiliation(s)
- Carla Boccaccio
- Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, Str. Prov. 142, 10060 Candiolo, Italy.
| | | |
Collapse
|
369
|
Abstract
The use of stem cells to generate replacement cells for damaged heart muscle, valves, vessels and conduction cells holds great potential. Recent identification of multipotent progenitor cells in the heart and improved understanding of developmental processes relevant to pluripotent embryonic stem cells may facilitate the generation of specific types of cell that can be used to treat human heart disease. Secreted factors from circulating progenitor cells that localize to sites of damage may also be useful for tissue protection or neovascularization. The exciting discoveries in basic science will require rigorous testing in animal models to determine those most worthy of future clinical trials.
Collapse
Affiliation(s)
- Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Department of Pediatrics, University of California San Francisco, 1650 Owens Street, San Francisco, California 94158, USA.
| | | |
Collapse
|
370
|
Gude N, Muraski J, Rubio M, Kajstura J, Schaefer E, Anversa P, Sussman MA. Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circ Res 2006; 99:381-8. [PMID: 16840722 DOI: 10.1161/01.res.0000236754.21499.1c] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of Akt is associated with enhanced cell cycling and cellular proliferation in nonmyocytes, but this effect of nuclear Akt accumulation has not been explored in the context of the myocardium. Cardiac-specific expression of nuclear-targeted Akt (Akt/nuc) in transgenics prolongs postnatal cell cycling as evidenced by increased numbers of Ki67+ cardiomyocytes at 2 to 3 weeks after birth. Similarly, nuclear-targeting of Akt promotes expansion of the presumptive cardiac progenitor cell population as assessed by immunolabeling for c-kit in combination with myocyte-specific markers Nkx 2.5 or MEF 2C. Increases in pro-proliferative cytokines, including tumor-necrosis superfamily 8, interleukin-17e, and hepatocyte growth factor, were found in nuclear-targeted Akt myocardial samples. Concurrent signaling mediated by paracrine factors downstream of Akt/nuc expression may be responsible for phenotypic effects of nuclear-targeted Akt in the myocardium, including enhanced cell proliferation and expansion of the stem cell population.
Collapse
Affiliation(s)
- Natalie Gude
- San Diego State University Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | |
Collapse
|
371
|
Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006; 24:2319-45. [PMID: 16794264 DOI: 10.1634/stemcells.2006-0066] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we report on recent advances on the functions of embryonic, fetal, and adult stem cell progenitors for tissue regeneration and cancer therapies. We describe new procedures for derivation and maturation of these stem cells into the tissue-specific cell progenitors. The localization of the adult stem cells and their niches, as well as their implication in the tissue repair after injuries and during cancer progression, are also described. The emphasis is on the interactions among certain developmental signaling factors, such as hormones, epidermal growth factor, hedgehog, Wnt/beta-catenin, and Notch. These factors and their pathways are involved in the stringent regulation of the self-renewal and/or differentiation of adult stem cells. Novel strategies for the treatment of both diverse degenerating disorders, by cell replacement, and some metastatic cancer types, by molecular targeting multiple tumorigenic signaling elements in cancer progenitor cells, are also illustrated.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA.
| | | |
Collapse
|
372
|
Wang M, Crisostomo PR, Herring C, Meldrum KK, Meldrum DR. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006; 291:R880-4. [PMID: 16728464 DOI: 10.1152/ajpregu.00280.2006] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence suggests that progenitor cells may decrease destructive inflammation and reduce tissue loss by antiapoptotic mechanisms. However, they remain poorly characterized, and many questions remain regarding the mechanisms by which they may positively affect wound healing, tissue remodeling, or tissue regeneration. It has been speculated that various growth factors are responsible, but what components of the wound milieu stimulate progenitor cell production of growth factors and by what mechanisms? We hypothesized that tumor necrosis factor-alpha (TNF-alpha) stimulated progenitor cell secretion of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and insulin-like growth factor I (IGF-I) by a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. Human mesenchymal stem cells (hMSCs) and human adipose progenitor cells (hAPCs) were divided into four groups: control, p38 MAPK inhibitor (p38MKI), TNF, and TNF + p38MKI. After 24 h of incubation, supernatants were harvested for ELISA of VEGF, HGF, and IGF-I. Cells were collected for Western blot analysis of p38 MAPK activation. Secretion of VEGF, HGF, and IGF-I in hMSCs and hAPCs was significantly increased by stimulation with TNF and was associated with increased activation of p38 MAPK. The p38 MAPK inhibitor decreased production of TNF-stimulated VEGF, HGF, and IGF-I in hMSCs and hAPCs. However, p38 MAPK inhibitor alone had no effect on production of growth factors. These data demonstrate that progenitor cells are potent sources of VEGF, HGF, and IGF-I. TNF, a prominent tissue cytokine, strongly stimulated production of growth factors by hMSCs and hAPCs via a p38 MAPK-dependent mechanism.
Collapse
Affiliation(s)
- Meijing Wang
- Department of Surgery, Indiana University School of Medicine, IN, USA
| | | | | | | | | |
Collapse
|
373
|
|
374
|
Affiliation(s)
- Piero Anversa
- Cardiovascular Research Institute, Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|
375
|
Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AHL, Zhang J. The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 2006; 24:1779-88. [PMID: 16614004 DOI: 10.1634/stemcells.2005-0386] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiac stem cell-like populations exist in adult hearts, and their roles in cardiac repair remain to be defined. Sca-1 is an important surface marker for cardiac and other somatic stem cells. We hypothesized that heart-derived Sca-1(+)/CD31(-) cells may play a role in myocardial infarction-induced cardiac repair/remodeling. Mouse heart-derived Sca-1(+)/CD31(-) cells cultured in vitro could be induced to express both endothelial cell and cardiomyocyte markers. Immunofluorescence staining and fluorescence-activated cell sorting analysis indicated that endogenous Sca-1(+)/CD31(-) cells were significantly increased in the mouse heart 7 days after myocardial infarction (MI). Western blotting confirmed elevated Sca-1 protein expression in myocardium 7 days after MI. Transplantation of Sca-1(+)/CD31(-) cells into the acutely infarcted mouse heart attenuated the functional decline and adverse structural remodeling initiated by MI as evidenced by an increased left ventricular (LV) ejection fraction, a decreased LV end-diastolic dimension, a decreased LV end-systolic dimension, a significant increase of myocardial neovascularization, and modest cardiomyocyte regeneration. Attenuation of LV remodeling was accompanied by remarkably improved myocardial bioenergetic characteristics. The beneficial effects of cell transplantation appear to primarily depend on paracrine effects of the transplanted cells on new vessel formation and native cardiomyocyte function. Sca-1(+)/CD31(-) cells may hold therapeutic possibilities with regard to the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Xiaohong Wang
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
376
|
Abstract
Recent advances in stem cell biology have given rise the new field of cardiac regenerative medicine. Specifically, the development of cardiac stem cell science now offers the promise of novel cardiovascular therapies based on a dynamic body of basic and translational research. Importantly, the potential wide-spread clinical application of this technology will require that therapies be optimized for individuals with potential impairments in cardiac stem cell function. To this end, the previous experience of hematopoietic stem cell therapies can provide important guidance in the development and maturation of the young cardiac stem cell field. Parallel to the impact that exogenous growth factors have made in the field of hematopoietic therapies, the discovery and potential application of the factor(s) that govern cardiac regeneration may speed the progression of cardiac stem cell technology into an assessable and potent clinical therapy.
Collapse
|
377
|
Caplice NM. The future of cell therapy for acute myocardial infarction. ACTA ACUST UNITED AC 2006; 3 Suppl 1:S129-32. [PMID: 16501619 DOI: 10.1038/ncpcardio0432] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/19/2005] [Indexed: 11/09/2022]
Abstract
Initial clinical trials of bone-marrow-derived mononuclear cells after acute myocardial infarction have shown improvement in a number of cardiac indices, including left ventricular systolic function, infarct size, stroke volume, and coronary blood flow. Functional improvements observed in cell therapy studies have been modest, with augmentation of left ventricular function in the range of 6-8%. Nevertheless, these studies have generated considerable debate on a number of issues, including the efficacy of specific cell populations, logistics of cell harvesting and isolation, and, most importantly, the mechanism of cell therapy benefit. With the field on the threshold of large-scale, randomized, controlled clinical trials, additional questions, such as the following, must be asked. Can cell therapy procedures be simplified? Can therapeutic effects be obtained earlier after myocardial infarction? Is cell harvesting a necessary component of cell therapy or can endogenous cells be mobilized sufficiently to obviate the need for processing exogenous cells? In an era when interventional devices are increasingly used in therapeutic approaches to acute myocardial infarction, can current cell therapy practice be integrated with interventional approaches to acute revascularization? Emerging concepts that may address some of these questions include whether paracrine factors released by progenitor or stem cells can be as efficacious as bone-marrow- or blood-derived cells, whether novel progenitor populations mobilized locally in the vessel wall or the heart can participate in repair or regeneration, and whether cell therapy strategies for acute myocardial infarction will evolve to include interventional technologies in combination with paracrine or mobilization factors.
Collapse
Affiliation(s)
- Noel M Caplice
- Division of Cardiovascular Diseases & Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
378
|
|
379
|
|