351
|
Akman CI, Engelstad K, Hinton VJ, Ullner P, Koenigsberger D, Leary L, Wang D, De Vivo DC. Acute hyperglycemia produces transient improvement in glucose transporter type 1 deficiency. Ann Neurol 2010; 67:31-40. [DOI: 10.1002/ana.21797] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
352
|
Lorincz ML, Kékesi KA, Juhász G, Crunelli V, Hughes SW. Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron 2009; 63:683-96. [PMID: 19755110 PMCID: PMC2791173 DOI: 10.1016/j.neuron.2009.08.012] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 05/15/2009] [Accepted: 08/17/2009] [Indexed: 12/04/2022]
Abstract
Several aspects of perception, particularly those pertaining to vision, are closely linked to the occipital alpha (α) rhythm. However, how the α rhythm relates to the activity of neurons that convey primary visual information is unknown. Here we show that in behaving cats, thalamocortical neurons in the lateral geniculate nucleus (LGN) that operate in a conventional relay-mode form two groups where the cumulative firing is subject to a cyclic suppression that is centered on the negative α rhythm peak in one group and on the positive peak in the other. This leads to an effective temporal framing of relay-mode output and results from phasic inhibition from LGN interneurons, which in turn are rhythmically excited by thalamocortical neurons that exhibit high-threshold bursts. These results provide a potential cellular substrate for linking the α rhythm to perception and further underscore the central role of inhibition in controlling spike timing during cognitively relevant brain oscillations.
Collapse
Affiliation(s)
- Magor L Lorincz
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | | | | | | | | |
Collapse
|
353
|
Jones SR, Pritchett DL, Sikora MA, Stufflebeam SM, Hämäläinen M, Moore CI. Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. J Neurophysiol 2009; 102:3554-72. [PMID: 19812290 DOI: 10.1152/jn.00535.2009] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Variations in cortical oscillations in the alpha (7-14 Hz) and beta (15-29 Hz) range have been correlated with attention, working memory, and stimulus detection. The mu rhythm recorded with magnetoencephalography (MEG) is a prominent oscillation generated by Rolandic cortex containing alpha and beta bands. Despite its prominence, the neural mechanisms regulating mu are unknown. We characterized the ongoing MEG mu rhythm from a localized source in the finger representation of primary somatosensory (SI) cortex. Subjects showed variation in the relative expression of mu-alpha or mu-beta, which were nonoverlapping for roughly 50% of their respective durations on single trials. To delineate the origins of this rhythm, a biophysically principled computational neural model of SI was developed, with distinct laminae, inhibitory and excitatory neurons, and feedforward (FF, representative of lemniscal thalamic drive) and feedback (FB, representative of higher-order cortical drive or input from nonlemniscal thalamic nuclei) inputs defined by the laminar location of their postsynaptic effects. The mu-alpha component was accurately modeled by rhythmic FF input at approximately 10-Hz. The mu-beta component was accurately modeled by the addition of approximately 10-Hz FB input that was nearly synchronous with the FF input. The relative dominance of these two frequencies depended on the delay between FF and FB drives, their relative input strengths, and stochastic changes in these variables. The model also reproduced key features of the impact of high prestimulus mu power on peaks in SI-evoked activity. For stimuli presented during high mu power, the model predicted enhancement in an initial evoked peak and decreased subsequent deflections. In agreement, the MEG-evoked responses showed an enhanced initial peak and a trend to smaller subsequent peaks. These data provide new information on the dynamics of the mu rhythm in humans and the model provides a novel mechanistic interpretation of this rhythm and its functional significance.
Collapse
Affiliation(s)
- Stephanie R Jones
- Massachusetts General Hospital, Athinoula A Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
354
|
Lee JH, Oh S, Jolesz FA, Park H, Yoo SS. Application of Independent Component Analysis for the Data Mining of Simultaneous Eeg–fMRI: Preliminary Experience on Sleep Onset. Int J Neurosci 2009; 119:1118-36. [DOI: 10.1080/00207450902854627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
355
|
Chorlian DB, Rangaswamy M, Porjesz B. EEG coherence: topography and frequency structure. Exp Brain Res 2009; 198:59-83. [DOI: 10.1007/s00221-009-1936-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 06/29/2009] [Indexed: 11/30/2022]
|
356
|
Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci 2009; 29:7679-85. [PMID: 19535579 PMCID: PMC6665626 DOI: 10.1523/jneurosci.0445-09.2009] [Citation(s) in RCA: 493] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/10/2009] [Accepted: 04/12/2009] [Indexed: 11/21/2022] Open
Abstract
The frequency tuning of a system can be directly determined by perturbing it and by observing the rate of the ensuing oscillations, the so called natural frequency. This approach is used, for example, in physics, in geology, and also when one tunes a musical instrument. In the present study, we employ transcranial magnetic stimulation (TMS) to directly perturb a set of selected corticothalamic modules (Brodmann areas 19, 7, and 6) and high-density electroencephalogram to measure their natural frequency. TMS consistently evoked dominant alpha-band oscillations (8-12 Hz) in the occipital cortex, beta-band oscillations (13-20 Hz) in the parietal cortex, and fast beta/gamma-band oscillations (21-50 Hz) in the frontal cortex. Each cortical area tended to preserve its own natural frequency also when indirectly engaged by TMS through brain connections and when stimulated at different intensities, indicating that the observed oscillations reflect local physiological mechanisms. These findings were reproducible across individuals and represent the first direct characterization of the coarse electrophysiological properties of three associative areas of the human cerebral cortex. Most importantly, they indicate that, in healthy subjects, each corticothalamic module is normally tuned to oscillate at a characteristic rate. The natural frequency can be directly measured in virtually any area of the cerebral cortex and may represent a straightforward and flexible way to probe the state of human thalamocortical circuits at the patient's bedside.
Collapse
Affiliation(s)
- Mario Rosanova
- Department of Clinical Sciences, “Luigi Sacco,” Università degli Studi di Milano, and
| | - Adenauer Casali
- Department of Clinical Sciences, “Luigi Sacco,” Università degli Studi di Milano, and
| | - Valentina Bellina
- Department of Clinical Sciences, “Luigi Sacco,” Università degli Studi di Milano, and
| | - Federico Resta
- Division of Radiology, Ospedale Luigi Sacco, 20157 Milan, Italy
| | - Maurizio Mariotti
- Department of Clinical Sciences, “Luigi Sacco,” Università degli Studi di Milano, and
| | - Marcello Massimini
- Department of Clinical Sciences, “Luigi Sacco,” Università degli Studi di Milano, and
| |
Collapse
|
357
|
Kang X, Jia X, Geocadin RG, Thakor NV, Maybhate A. Multiscale entropy analysis of EEG for assessment of post-cardiac arrest neurological recovery under hypothermia in rats. IEEE Trans Biomed Eng 2009; 56:1023-31. [PMID: 19174339 PMCID: PMC3050512 DOI: 10.1109/tbme.2008.2011917] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurological complications after cardiac arrest (CA) can be fatal. Although hypothermia has been shown to be beneficial, understanding the mechanism and establishing neurological outcomes remains challenging because effects of CA and hypothermia are not well characterized. This paper aims to analyze EEG (and the alpha-rhythms) using multiscale entropy (MSE) to demonstrate the ability of MSE in tracking changes due to hypothermia and compare MSE during early recovery with long-term neurological examinations. Ten Wistar rats, upon post-CA resuscitation, were randomly subjected to hypothermia (32 degrees C-34 degrees C, N = 5) or normothermia (36.5 degrees C-37.5 degrees C, N = 5). EEG was recorded and analyzed using MSE during seven recovery phases for each experiment: baseline, CA, and five early recovery phases (R1-R5). Postresuscitation neurological examination was performed at 6, 24, 48, and 72 h to obtain neurological deficit scores (NDSs). Results showed MSE to be a sensitive marker of changes in alpha-rhythms. Significant difference (p < 0.05) was found between the MSE for two groups during recovery, suggesting that MSE can successfully reflect temperature modulation. A comparison of short-term MSE and long-term NDS suggested that MSE could be used for predicting favorability of long-term outcome. These experiments point to the role of cortical rhythms in reporting early neurological response to ischemia and therapeutic hypothermia.
Collapse
Affiliation(s)
- Xiaoxu Kang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Xiaofeng Jia
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | | | - Nitish V. Thakor
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Anil Maybhate
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| |
Collapse
|
358
|
Lőrincz ML, Geall F, Bao Y, Crunelli V, Hughes SW. ATP-dependent infra-slow (<0.1 Hz) oscillations in thalamic networks. PLoS One 2009; 4:e4447. [PMID: 19212445 PMCID: PMC2637539 DOI: 10.1371/journal.pone.0004447] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/08/2008] [Indexed: 11/19/2022] Open
Abstract
An increasing number of EEG and resting state fMRI studies in both humans and animals indicate that spontaneous low frequency fluctuations in cerebral activity at <0.1 Hz (infra-slow oscillations, ISOs) represent a fundamental component of brain functioning, being known to correlate with faster neuronal ensemble oscillations, regulate behavioural performance and influence seizure susceptibility. Although these oscillations have been commonly indicated to involve the thalamus their basic cellular mechanisms remain poorly understood. Here we show that various nuclei in the dorsal thalamus in vitro can express a robust ISO at ∼0.005–0.1 Hz that is greatly facilitated by activating metabotropic glutamate receptors (mGluRs) and/or Ach receptors (AchRs). This ISO is a neuronal population phenomenon which modulates faster gap junction (GJ)-dependent network oscillations, and can underlie epileptic activity when AchRs or mGluRs are stimulated excessively. In individual thalamocortical neurons the ISO is primarily shaped by rhythmic, long-lasting hyperpolarizing potentials which reflect the activation of A1 receptors, by ATP-derived adenosine, and subsequent opening of Ba2+-sensitive K+ channels. We argue that this ISO has a likely non-neuronal origin and may contribute to shaping ISOs in the intact brain.
Collapse
Affiliation(s)
- Magor L. Lőrincz
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Freya Geall
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ying Bao
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Stuart W. Hughes
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
359
|
Normal electrocortical facilitation but abnormal target identification during visual sustained attention in schizophrenia. J Neurosci 2009; 28:13411-8. [PMID: 19074014 DOI: 10.1523/jneurosci.4095-08.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Attentional deficits in schizophrenia have been investigated using target identification tasks which conflate the abilities to successfully (1) attend to possible target locations and (2) detect target events. Whether compromised attentional selectivity or abnormal target detection causes schizophrenia subjects' poor performance on visual attention tasks, therefore, is unknown. To address this issue, we measured the neural activity (using electroencephalography) of 17 schizophrenia and 17 healthy subjects during a target identification task. Participants viewed superimposed images (horizontal and vertical bars differing in color) and attended to one image to identify bar width changes in specific locations. Bars were frequency tagged so attention directed to unique parts of the images could be tracked. Steady-state visual evoked potentials (ssVEPs) were used to quantify attention-related neural activity to specific parts of the visual images. Behavioral performance and event-related potentials (ERPs) in response to the target events were used to quantify target detection abilities. For both schizophrenia and healthy subjects, attending to specific parts of the attended image enhanced brain activity related to attended bars and reduced activity evoked by unattended bars. Activity in relation to the spatially overlapping unattended image was unaffected. Schizophrenia patients, however, were impaired on target detection abilities on both behavioral and brain activity measures. Target-related behavioral and brain activity measures were highly correlated in both groups. These findings indicate that deficient target detection rather than compromised attentional selectivity accounts for previously reported visual attention deficits in schizophrenia.
Collapse
|
360
|
Pankova NB. Changes in spectral measures of brain electrical activity in rats after transection of the sciatic nerve. ACTA ACUST UNITED AC 2009; 39:133-9. [DOI: 10.1007/s11055-009-9117-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 06/18/2007] [Indexed: 11/28/2022]
|
361
|
Pikov V, McCreery DB. Spinal hyperexcitability and bladder hyperreflexia during reversible frontal cortical inactivation induced by low-frequency electrical stimulation in the cat. J Neurotrauma 2009; 26:109-19. [PMID: 19119915 PMCID: PMC2733532 DOI: 10.1089/neu.2008.0584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal hyperexcitability and hyperreflexia gradually develop in the majority of stroke patients. These pathologies develop as a result of reduced cortical modulation of spinal reflexes, mediated largely indirectly via relays in the brainstem and other subcortical structures. Cortical control of spinal reflexes is markedly different in small animals, such as rodents, while in some larger species, such as cats, it is more comparable to that in humans. In this study, we developed a novel model of stroke in the cat, with controllable and reversible inhibition of cortical neuronal activity appearing approximately 1h after initiation of low-frequency electrical stimulation in the frontal cerebral cortex, evidenced by a large increase in the alpha frequency band (7-14 Hz) of the frontal electrocorticographic signal. Hyperreflexia of the urinary bladder developed 3h or more after induction of reversible cortical inactivation with optimized stimulation parameters (frequency of 1-2 Hz, amplitude of 10 mA, applied for 30 min). The bladder hyperreflexia persisted for at least 8h, and disappeared within 24h. At the S2 level of the spinal cord, where neural circuits mediating micturition and other pelvic reflexes reside, we have recorded an increase in neuronal activity correlated with the development of hyperreflexia. The low-frequency stimulation-induced reversible cortical inactivation model of stroke is highly reproducible and allows evaluation of spinal hyperexcitability and hyperreflexia using within-animal comparisons across experimental conditions, which can be of great value in examination of mechanisms of spinal hyperreflexia following stroke or brain trauma, and for developing more effective treatments for these conditions.
Collapse
Affiliation(s)
- Victor Pikov
- Neural Engineering Program, Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| | | |
Collapse
|
362
|
Kelso JAS, Tognoli E. Toward a Complementary Neuroscience: Metastable Coordination Dynamics of the Brain. UNDERSTANDING COMPLEX SYSTEMS 2009. [DOI: 10.1007/978-3-642-03205-9_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
363
|
Osipova D, Hermes D, Jensen O. Gamma power is phase-locked to posterior alpha activity. PLoS One 2008; 3:e3990. [PMID: 19098986 PMCID: PMC2602598 DOI: 10.1371/journal.pone.0003990] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 11/21/2008] [Indexed: 11/18/2022] Open
Abstract
Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of healthy human subjects at rest with their eyes closed. To examine cross-frequency coupling, we have computed coherence between the time course of the power in a given frequency band and the signal itself within every channel. The time-course of the power was calculated using a sliding tapered time window followed by a Fourier transform. Our findings show that high-frequency gamma power (30-70 Hz) is phase-locked to alpha oscillations (8-13 Hz) in the ongoing MEG signals. The topography of the coupling was similar to the topography of the alpha power and was strongest over occipital areas. Interestingly, gamma activity per se was not evident in the power spectra and only became detectable when studied in relation to the alpha phase. Intracranial data from an epileptic subject confirmed these findings albeit there was slowing in both the alpha and gamma band. A tentative explanation for this phenomenon is that the visual system is inhibited during most of the alpha cycle whereas a burst of gamma activity at a specific alpha phase (e.g. at troughs) reflects a window of excitability.
Collapse
Affiliation(s)
- Daria Osipova
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
364
|
Rangaswamy M, Porjesz B. Uncovering genes for cognitive (dys)function and predisposition for alcoholism spectrum disorders: a review of human brain oscillations as effective endophenotypes. Brain Res 2008; 1235:153-71. [PMID: 18634760 PMCID: PMC2814598 DOI: 10.1016/j.brainres.2008.06.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
Brain oscillations provide a rich source of potentially useful endophenotypes (intermediate phenotypes) for psychiatric genetics, as they represent important correlates of human information processing and are associated with fundamental processes from perception to cognition. These oscillations are highly heritable, are modulated by genes controlling neurotransmitters in the brain, and provide links to associative and integrative brain functions. These endophenotypes represent traits that are less complex and more proximal to gene function than either diagnostic labels or traditional cognitive measures, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. Our group has utilized heritable neurophysiological features (i.e., brain oscillations) as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We have discussed our findings of significant linkage and association between brain oscillations and genes in GABAergic, cholinergic and glutamatergic systems (GABRA2, CHRM2, and GRM8). We have also shown that some oscillatory indices from both resting and active cognitive states have revealed a common subset of genetic foci that are shared with the diagnosis of alcoholism and related disorders. Implications of our findings have been discussed in the context of physiological and pharmacological studies on receptor function. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of brain function and the genetic diathesis underlying complex psychiatric disorders.
Collapse
Affiliation(s)
- Madhavi Rangaswamy
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Box 1203, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
365
|
Hughes SW, Errington A, Lorincz ML, Kékesi KA, Juhász G, Orbán G, Cope DW, Crunelli V. Novel modes of rhythmic burst firing at cognitively-relevant frequencies in thalamocortical neurons. Brain Res 2008; 1235:12-20. [PMID: 18602904 PMCID: PMC2778821 DOI: 10.1016/j.brainres.2008.06.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/22/2008] [Accepted: 06/10/2008] [Indexed: 11/17/2022]
Abstract
It is now widely accepted that certain types of cognitive functions are intimately related to synchronized neuronal oscillations at both low (alpha/theta) (4-7/8-13 Hz) and high (beta/gamma) (18-35/30-70 Hz) frequencies. The thalamus is a key participant in many of these oscillations, yet the cellular mechanisms by which this participation occurs are poorly understood. Here we describe how, under appropriate conditions, thalamocortical (TC) neurons from different nuclei can exhibit a wide array of largely unrecognised intrinsic oscillatory activities at a range of cognitively-relevant frequencies. For example, both metabotropic glutamate receptor (mGluR) and muscarinic Ach receptor (mAchR) activation can cause rhythmic bursting at alpha/theta frequencies. Interestingly, key differences exist between mGluR- and mAchR-induced bursting, with the former involving extensive dendritic Ca2+ electrogenesis and being mimicked by a non-specific block of K+ channels with Ba2+, whereas the latter appears to be more reliant on proximal Na+ channels and a prominent spike afterdepolarization (ADP). This likely relates to the differential somatodendritic distribution of mGluRs and mAChRs and may have important functional consequences. We also show here that in similarity to some neocortical neurons, inhibiting large-conductance Ca2+-activated K+ channels in TC neurons can lead to fast rhythmic bursting (FRB) at approximately 40 Hz. This activity also appears to rely on a Na+ channel-dependent spike ADP and may occur in vivo during natural wakefulness. Taken together, these results show that TC neurons are considerably more flexible than generally thought and strongly endorse a role for the thalamus in promoting a range of cognitively-relevant brain rhythms.
Collapse
Affiliation(s)
- Stuart W Hughes
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | | | | | | | | | | | | | |
Collapse
|
366
|
Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput Biol 2008; 4:e1000196. [PMID: 18846206 PMCID: PMC2551736 DOI: 10.1371/journal.pcbi.1000196] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022] Open
Abstract
Traditionally brain function is studied through measuring physiological responses in controlled sensory, motor, and cognitive paradigms. However, even at rest, in the absence of overt goal-directed behavior, collections of cortical regions consistently show temporally coherent activity. In humans, these resting state networks have been shown to greatly overlap with functional architectures present during consciously directed activity, which motivates the interpretation of rest activity as day dreaming, free association, stream of consciousness, and inner rehearsal. In monkeys, it has been shown though that similar coherent fluctuations are present during deep anesthesia when there is no consciousness. Here, we show that comparable resting state networks emerge from a stability analysis of the network dynamics using biologically realistic primate brain connectivity, although anatomical information alone does not identify the network. We specifically demonstrate that noise and time delays via propagation along connecting fibres are essential for the emergence of the coherent fluctuations of the default network. The spatiotemporal network dynamics evolves on multiple temporal scales and displays the intermittent neuroelectric oscillations in the fast frequency regimes, 1–100 Hz, commonly observed in electroencephalographic and magnetoencephalographic recordings, as well as the hemodynamic oscillations in the ultraslow regimes, <0.1 Hz, observed in functional magnetic resonance imaging. The combination of anatomical structure and time delays creates a space–time structure in which the neural noise enables the brain to explore various functional configurations representing its dynamic repertoire. There has been a great deal of interest generated by the observation of resting-state or “default-mode” networks in the human brain. These networks seem to be most engaged when persons are not involved in overt goal-directed behavior. These networks are also thought to underlie certain aspects of conscious introspection and to be specific to humans. Our paper provides a new explanation for rest state fluctuations by suggesting that they reflect a deeper biological principle of organization and are a consequence of the space–time structure of primate anatomical connectivity. In a computational study using a biologically realistic primate cortical connectivity matrix, we show that the rest state networks emerge only if the time delays of signal transmission between brain areas are considered. The combination of anatomical structure and time delays creates a space–time structure in which the neural noise enables the brain to explore various functional configurations representing its dynamic repertoire. The latter repertoire spans temporal scales of multiple orders of magnitude including scales observed in electric potentials and magnetic fields on the scalp, as well as in blood flow signals. Our results provide a testable explanation of the real-world phenomenon of rest state fluctuations in the primate brain.
Collapse
Affiliation(s)
- Anandamohan Ghosh
- Theoretical Neuroscience Group, Institut des Sciences du Mouvement, Marseille, France
- UMR6233, CNRS, Marseille, France
- * E-mail: ;
| | - Y. Rho
- Center for Complex Systems and Brain Sciences, Physics Department, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - A. R. McIntosh
- Rotman Research Institute of Baycrest Center, Toronto, Ontario, Canada
| | - R. Kötter
- Department of Cognitive Neuroscience, University Medical Centre St. Radboud, Nijmegen, The Netherlands
- Vogt Brain Research Institute and Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - V. K. Jirsa
- Theoretical Neuroscience Group, Institut des Sciences du Mouvement, Marseille, France
- UMR6233, CNRS, Marseille, France
- Center for Complex Systems and Brain Sciences, Physics Department, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail: ;
| |
Collapse
|
367
|
Knyazeva MG, Jalili M, Meuli R, Hasler M, De Feo O, Do KQ. Alpha rhythm and hypofrontality in schizophrenia. Acta Psychiatr Scand 2008; 118:188-99. [PMID: 18636993 DOI: 10.1111/j.1600-0447.2008.01227.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To reveal the EEG correlates of resting hypofrontality in schizophrenia (SZ). METHOD We analyzed the whole-head EEG topography in 14 patients compared to 14 matched controls by applying a new parameterization of the multichannel EEG. We used a combination of power measures tuned for regional surface mapping with power measures that allow evaluation of global effects. RESULTS The SZ-related EEG abnormalities include i) a global decrease in absolute EEG power robustly manifested in the alpha and beta frequency bands, and ii) a relative increase in the alpha power over the prefrontal brain regions against its reduction over the posterior regions. In the alpha band both effects are linked to the SZ symptoms measured with Positive and Negative Symptom Scales and to chronicity. CONCLUSION As alpha activity is related to regional deactivation, our findings support the concept of hypofrontality in SZ and expose the alpha rhythm as a sensitive indicator of it.
Collapse
Affiliation(s)
- M G Knyazeva
- Department of Neurology, Centre Hospitalier Universitaire Vaudois and University of Lausanne and Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
368
|
Abstract
Electrophysiological data measured by electroencephalography and magnetoencephalography (MEG) are widely used to investigate human brain activity in various cognitive tasks. This is typically done by characterizing event-related potentials/fields or modulations of oscillatory activity (e.g., event-related synchronization) in response to cognitively relevant stimuli. Here, we provide a link between the two phenomena. An essential component of our theory is that peaks and troughs of oscillatory activity fluctuate asymmetrically; e.g., peaks are more strongly modulated than troughs in response to stimuli. As a consequence, oscillatory brain activity will not "average out" when multiple trials are averaged. Using MEG, we demonstrate that such asymmetric amplitude fluctuations of the oscillatory alpha rhythm explain the generation of slow event-related fields. Furthermore, we provide a physiological explanation for the observed asymmetric amplitude fluctuations. In particular, slow event-related components are modulated by a wide range of cognitive tasks. Hence, our findings provide new insight into the physiological basis of cognitive modulation in event-related brain activity.
Collapse
|
369
|
Lyamin OI, Lapierre JL, Kosenko PO, Mukhametov LM, Siegel JM. Electroencephalogram asymmetry and spectral power during sleep in the northern fur seal. J Sleep Res 2008; 17:154-65. [PMID: 18482104 DOI: 10.1111/j.1365-2869.2008.00639.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fur seal (Callorhinus ursinus), a member of the Pinniped family, displays a highly expressed electroencephalogram (EEG) asymmetry during slow wave sleep (SWS), which is comparable with the unihemispheric sleep in cetaceans. In this study, we investigated the EEG asymmetry in the fur seal using spectral analysis. Four young (2-3 years old) seals were implanted with EEG electrodes for polygraphic sleep recording. In each animal, EEG spectral power in the frequency range of 1.2-16 Hz was computed in symmetrical cortical recordings over two consecutive nights. The degree of EEG asymmetry was measured by using the asymmetry index [AI = (L - R)/(L + R), where L and R are the spectral powers in the left and right hemispheres, respectively]. In fur seals, EEG asymmetry, as measured by the percent of 20-s epochs with absolute AI > 0.3 and >0.6, was expressed in the entire frequency range (1.2-16 Hz). The asymmetry was significantly greater during SWS (25.6-44.2% of all SWS epochs had an absolute AI > 0.3 and 2.1-12.2% of all epochs had AI > 0.6) than during quiet waking (11.0-20.3% and 0-1.9% of all waking epochs, respectively) and REM sleep (4.2-8.9% of all REM sleep epochs and no epochs, respectively). EEG asymmetry was recorded during both low- and high-voltage SWS, and was maximal in the range of 1.2-4 and 12-16 Hz. As shown in this study, the degree of EEG asymmetry and the frequency range in which it is expressed during SWS in fur seals are profoundly different from those of terrestrial mammals and birds.
Collapse
|
370
|
A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 2008; 1235:172-93. [PMID: 18640103 DOI: 10.1016/j.brainres.2008.06.103] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 12/31/2022]
Abstract
The analysis of the functional correlates of "brain oscillations" has become an important branch of neuroscience. Although research on the functional correlates of brain oscillation has progressed to a high level, studies on cognitive disorders are rare and mainly limited to schizophrenia patients. The present review includes the results of the changes in brain oscillations in patients with Alzheimer's, schizophrenia, bipolar disorders, mild cognitive impairment, attention-deficit hyperactivity disorder (ADHD), alcoholism and those with genetic disorders. Furthermore, the effects of pharmaca and the influence of neurotransmitters in patients with cognitive disorders are also reviewed. Following the review, a short synopsis is given related to the analysis of brain oscillations.
Collapse
|
371
|
McAvoy M, Larson-Prior L, Nolan TS, Vaishnavi SN, Raichle ME, d'Avossa G. Resting states affect spontaneous BOLD oscillations in sensory and paralimbic cortex. J Neurophysiol 2008; 100:922-31. [PMID: 18509068 DOI: 10.1152/jn.90426.2008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain exhibits spontaneous neural activity that depends on the behavioral state of the organism. We asked whether the blood oxygenation level-dependent (BOLD) signal reflects these modulations. BOLD was measured under three steady-state conditions: while subjects kept their eyes closed, kept their eyes open, or while fixating. The BOLD spectral density was calculated across brain voxels and subjects. Visual, sensory-motor, auditory, and retrosplenial cortex showed modulations of the BOLD spectral density by resting state type. All modulated regions showed greater spontaneous BOLD oscillations in the eyes closed than the eyes open or fixation conditions, suggesting that the differences were endogenously driven. Next, we examined the pattern of correlations between regions whose ongoing BOLD signal was modulated by resting state type. Regional neuronal correlations were estimated using an analytic procedure from the comparison of BOLD-BOLD covariances in the fixation and eyes closed conditions. Most regions were highly correlated with one another, with the exception of the primary visual cortices, which showed low correlations with the other regions. In conclusion, changes in resting state were associated with synchronous modulations of spontaneous BOLD oscillations in cortical sensory areas driven by two spatially overlapping, but temporally uncorrelated signals.
Collapse
Affiliation(s)
- Mark McAvoy
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave., Campus Box 8225, Rm. 2110, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
372
|
Hughes SW, Lorincz M, Cope DW, Crunelli V. NeuReal: an interactive simulation system for implementing artificial dendrites and large hybrid networks. J Neurosci Methods 2008; 169:290-301. [PMID: 18067972 PMCID: PMC3017968 DOI: 10.1016/j.jneumeth.2007.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/24/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
The dynamic clamp is a technique which allows the introduction of artificial conductances into living cells. Up to now, this technique has been mainly used to add small numbers of 'virtual' ion channels to real cells or to construct small hybrid neuronal circuits. In this paper we describe a prototype computer system, NeuReal, that extends the dynamic clamp technique to include (i) the attachment of artificial dendritic structures consisting of multiple compartments and (ii) the construction of large hybrid networks comprising several hundred biophysically realistic modelled neurons. NeuReal is a fully interactive system that runs on Windows XP, is written in a combination of C++ and assembler, and uses the Microsoft DirectX application programming interface (API) to achieve high-performance graphics. By using the sampling hardware-based representation of membrane potential at all stages of computation and by employing simple look-up tables, NeuReal can simulate over 1000 independent Hodgkin and Huxley type conductances in real-time on a modern personal computer (PC). In addition, whilst not being a hard real-time system, NeuReal still offers reliable performance and tolerable jitter levels up to an update rate of 50kHz. A key feature of NeuReal is that rather than being a simple dedicated dynamic clamp, it operates as a fast simulation system within which neurons can be specified as either real or simulated. We demonstrate the power of NeuReal with several example experiments and argue that it provides an effective tool for examining various aspects of neuronal function.
Collapse
Affiliation(s)
- Stuart W Hughes
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | | | | | |
Collapse
|
373
|
High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res 2008; 188:249-61. [DOI: 10.1007/s00221-008-1356-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
|
374
|
Abstract
Although the resting and baseline states of the human electroencephalogram and magnetoencephalogram (MEG) are dominated by oscillations in the alpha band (approximately 10 Hz), the functional role of these oscillations remains unclear. In this study we used MEG to investigate how spontaneous oscillations in humans presented before visual stimuli modulate visual perception. Subjects had to report if there was a subtle difference in gray levels between two superimposed presented discs. We then compared the prestimulus brain activity for correctly (hits) versus incorrectly (misses) identified stimuli. We found that visual discrimination ability decreased with an increase in prestimulus alpha power. Given that reaction times did not vary systematically with prestimulus alpha power changes in vigilance are not likely to explain the change in discrimination ability. Source reconstruction using spatial filters allowed us to identify the brain areas accounting for this effect. The dominant sources modulating visual perception were localized around the parieto-occipital sulcus. We suggest that the parieto-occipital alpha power reflects functional inhibition imposed by higher level areas, which serves to modulate the gain of the visual stream.
Collapse
|
375
|
Lörincz ML, Crunelli V, Hughes SW. Cellular dynamics of cholinergically induced alpha (8-13 Hz) rhythms in sensory thalamic nuclei in vitro. J Neurosci 2008; 28:660-71. [PMID: 18199766 PMCID: PMC2778076 DOI: 10.1523/jneurosci.4468-07.2008] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/16/2007] [Accepted: 11/21/2007] [Indexed: 11/21/2022] Open
Abstract
Although EEG alpha (8-13 Hz) rhythms are traditionally thought to reflect an "idling" brain state, they are also linked to several important aspects of cognition, perception, and memory. Here we show that reactivating cholinergic input, a key component in normal cognition and memory operations, in slices of the cat primary visual and somatosensory thalamus, produces robust alpha rhythms. These rhythms rely on activation of muscarinic receptors and are primarily coordinated by activity in the recently discovered, gap junction-coupled subnetwork of high-threshold (HT) bursting thalamocortical neurons. By performing extracellular field recordings in combination with intracellular recordings of these cells, we show that (1) the coupling of HT bursting cells is sparse, with individual neurons typically receiving discernable network input from one or very few additional cells, (2) the phase of oscillatory activity at which these cells prefer to fire is readily modifiable and determined by a combination of network input, intrinsic properties and membrane polarization, and (3) single HT bursting neurons can potently influence the local network state. These results substantially extend the known effects of cholinergic activation on the thalamus and, in combination with previous studies, show that sensory thalamic nuclei possess powerful and dynamically reconfigurable mechanisms for generating synchronized alpha activity that can be engaged by both descending and ascending arousal systems.
Collapse
Affiliation(s)
- Magor L. Lörincz
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | - Vincenzo Crunelli
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | - Stuart W. Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| |
Collapse
|
376
|
Elevated anxiety and depressive-like behavior in a rat model of genetic generalized epilepsy suggesting common causation. Exp Neurol 2008; 209:254-60. [DOI: 10.1016/j.expneurol.2007.09.026] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 01/04/2023]
|
377
|
van der Hiele K, Jurgens CK, Vein AA, Reijntjes RHAM, Witjes-Ané MNW, Roos RAC, van Dijk G, Middelkoop HAM. Memory activation reveals abnormal EEG in preclinical Huntington's disease. Mov Disord 2007; 22:690-5. [PMID: 17266047 DOI: 10.1002/mds.21390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The EEG is potentially useful as a marker of early Huntington's disease (HD). In dementia, the EEG during a memory activation challenge showed abnormalities where the resting EEG did not. We investigated whether memory activation also reveals EEG abnormalities in preclinical HD. Sixteen mutation carriers for HD and 13 nonmutation carriers underwent neurological, neuropsychological, MRI and EEG investigations. The EEG was registered during a rest condition, i.e. eyes closed, and a working memory task. In each condition we determined absolute power in the theta (4-8 Hz) and alpha (8-13 Hz) bands and subsequently calculated relative alpha power. The EEG during eyes closed did not differ between groups. The EEG during memory activation showed less relative alpha power in mutation carriers as compared to nonmutation carriers, even though memory performance was similar [F (1,27) = 10.87; P = 0.003]. Absolute powers also showed less alpha power [F (1,27) = 7.02; P = 0.013] but similar theta power. No correlations were found between absolute and relative alpha power on the one hand and neuropsychological scores, motor scores or number of CAG repeats on the other. In conclusion, memory activation reveals functional brain changes in Huntington's disease before clinical signs become overt.
Collapse
Affiliation(s)
- Karin van der Hiele
- Section of Neuropsychology, Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
378
|
Destexhe A, Hughes SW, Rudolph M, Crunelli V. Are corticothalamic 'up' states fragments of wakefulness? Trends Neurosci 2007; 30:334-42. [PMID: 17481741 PMCID: PMC3005711 DOI: 10.1016/j.tins.2007.04.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/22/2007] [Accepted: 04/23/2007] [Indexed: 11/19/2022]
Abstract
The slow (<1 Hz) oscillation, with its alternating 'up' and 'down' states in individual neurons, is a defining feature of the electroencephalogram (EEG) during slow-wave sleep (SWS). Although this oscillation is well preserved across mammalian species, its physiological role is unclear. Electrophysiological and computational evidence from the cortex and thalamus now indicates that slow-oscillation 'up' states and the 'activated' state of wakefulness are remarkably similar dynamic entities. This is consistent with behavioural experiments suggesting that slow-oscillation 'up' states provide a context for the replay, and possible consolidation, of previous experience. In this scenario, the T-type Ca(2+) channel-dependent bursts of action potentials that initiate each 'up' state in thalamocortical (TC) neurons might function as triggers for synaptic and cellular plasticity in corticothalamic networks. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).
Collapse
Affiliation(s)
- Alain Destexhe
- CNRS, Integrative and Computational Neuroscience Unit, Gif sur Yvette, France
| | - Stuart W. Hughes
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK
| | - Michelle Rudolph
- CNRS, Integrative and Computational Neuroscience Unit, Gif sur Yvette, France
| | - Vincenzo Crunelli
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK
| |
Collapse
|
379
|
Regel SJ, Gottselig JM, Schuderer J, Tinguely G, Rétey JV, Kuster N, Landolt HP, Achermann P. Pulsed radio frequency radiation affects cognitive performance and the waking electroencephalogram. Neuroreport 2007; 18:803-7. [PMID: 17471070 DOI: 10.1097/wnr.0b013e3280d9435e] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the effects of radio frequency electromagnetic fields on brain physiology. Twenty-four healthy young men were exposed for 30 min to pulse-modulated or continuous-wave radio frequency electromagnetic fields (900 MHz; peak specific absorption rate 1 W/kg), or sham exposed. During exposure, participants performed cognitive tasks. Waking electroencephalogram was recorded during baseline, immediately after, and 30 and 60 min after exposure. Pulse-modulated radio frequency electromagnetic field exposure reduced reaction speed and increased accuracy in a working-memory task. It also increased spectral power in the waking electroencephalogram in the 10.5-11 Hz range 30 min after exposure. No effects were observed for continuous-wave radio frequency electromagnetic fields. These findings provide further evidence for a nonthermal biological effect of pulsed radio frequency electromagnetic fields.
Collapse
Affiliation(s)
- Sabine J Regel
- University of Zürich, Institute of Pharmacology and Toxicology, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
380
|
Hebb MO, McArthur DL, Alger J, Etchepare M, Glenn TC, Bergsneider M, Martin N, Vespa PM. Impaired Percent Alpha Variability on Continuous Electroencephalography Is Associated with Thalamic Injury and Predicts Poor Long-Term Outcome after Human Traumatic Brain Injury. J Neurotrauma 2007; 24:579-90. [PMID: 17439342 DOI: 10.1089/neu.2006.0146] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Continuous electroencephalography (cEEG) is potentially useful in determining prognosis in patients with traumatic brain injuries (TBI). The objective of this prospective, observational cohort study was to determine if the percent alpha variability (PAV) on cEEG was predictive of outcome following TBI. Injury characteristics were indexed to assess whether lesions in specific cerebral loci were correlated with PAV and patient recovery. Fifty-three TBI patients were studied using cEEG recording and serial neuroimaging. Clinical recovery was assessed at regular intervals in hospital and following discharge. The principal outcome measures included the mean 3-day PAV score, the 7-day PAV pattern, delineation of the anatomical sites of brain injury, and the 6-month clinical outcome, as measured by the Glasgow Outcome Scale (GOS). Significant univariate (p = 0.030) and multivariate (p = 0.008) relations were identified between PAV and GOS scores. PAV offered good discrimination between favorable and unfavorable 6-month outcomes (AUC 0.76) and, with a cutpoint of 0.20, had a sensitivity of 87% and negative predictive value of 82%. Multivariate modeling revealed that injuries of the thalamus (p = 0.009) and basal ganglia (p = 0.016), and the presence of diffuse edema (p = 0.009), were the key anatomical predictors of PAV. Brainstem injuries (p = 0.020) and indicators of diffuse cerebral trauma, such as deep white matter shearing (p = 0.036) and multiple subcortical lesions (p = 0.033), were the principal determinants of 6-month recovery. Inclusion of PAV enhanced the accuracy of prediction models that encompassed a selective combination of clinical and anatomical variables (adjusted R(2) = 0.458, p < 0.001). The two main results of this study are (1) PAV is a sensitive predictor of 6-month clinical outcomes following TBI, and (2) injury to the thalamus is related to impaired PAV. PAV appears best utilized as a functional adjunct to traditional clinical and anatomical predictors.
Collapse
Affiliation(s)
- Matthew O Hebb
- Brain Repair Centre, Division of Neurosurgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
381
|
Hughes SW, Crunelli V. Just a phase they're going through: the complex interaction of intrinsic high-threshold bursting and gap junctions in the generation of thalamic alpha and theta rhythms. Int J Psychophysiol 2007; 64:3-17. [PMID: 17000018 PMCID: PMC3016516 DOI: 10.1016/j.ijpsycho.2006.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhythms in the alpha frequency band (8-13 Hz) are a defining feature of the human EEG during relaxed wakefulness and are known to be influenced by the thalamus. In the early stages of sleep and in several neurological and psychiatric conditions alpha rhythms are replaced by slower activity in the theta (3-7 Hz) band. Of particular interest is how these alpha and theta rhythms are generated at the cellular level. Recently we identified a subset of thalamocortical (TC) neurons in the lateral geniculate nucleus (LGN) which exhibit rhythmic high-threshold (>-55 mV) bursting at approximately 2-13 Hz and which are interconnected by gap junctions (GJs). These cells combine to generate a locally synchronized continuum of alpha and theta oscillations, thus providing direct evidence that the thalamus can act as an independent pacemaker of alpha and theta rhythms. Interestingly, GJ coupled pairs of TC neurons can exhibit both in-phase and anti-phase synchrony and will often spontaneously alternate between these two states. This dictates that the local field oscillation amplitude is not simply linked to the extent of cell recruitment into a single synchronized neuronal assembly but also to the degree of destructive interference between dynamic, spatially overlapping, competing anti-phase groups of continuously bursting neurons. Thus, the waxing and waning of thalamic alpha/theta rhythms should not be assumed to reflect a wholesale increase and reduction, respectively, in underlying neuronal synchrony. We argue that these network dynamics might have important consequences for relating changes in the amplitude of EEG alpha and theta rhythms to the activity of thalamic networks.
Collapse
Affiliation(s)
- Stuart W Hughes
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | |
Collapse
|
382
|
The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage 2007; 35:1142-51. [PMID: 17336548 DOI: 10.1016/j.neuroimage.2007.01.022] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 11/25/2022] Open
Abstract
EEG was recorded during fMRI scanning of 16 normal controls in resting condition with eyes closed. Time variations of the occipital alpha band amplitudes were correlated to the fMRI signal variations to obtain insight into the hemodynamic correlates of the EEG alpha activity. Contrary to earlier studies, no a priori assumptions were made on the expected shape of the alpha band response function (ARF). The ARF of different brain regions and subjects were explored and compared. It was found that: (1) the ARF of the thalamus is mainly positive. (2) The ARFs at the occipital and left and right parietal points are similar in amplitude and timing. (3) The peak time of the thalamus is a few seconds earlier than that of occipital and parietal cortex. (4) No systematic BOLD activity was found preceding the alpha band activity, although in the two subjects with the strongest alpha band power such correlation was present. (5) There is a strong and immediate positive correlation at the eyeball, and a strong negative correlation at the back of the eye. Furthermore, it was found that in one subject the cortical ARF was positive, contrary to the other subjects. Finally, a cluster analysis of the observed ARF, in combination with a Modulated Sine Model (MSM) fit to the estimated ARF, revealed that within the cortex the ARF peak time shows a spatial pattern that may be interpreted as a traveling wave. The spatial pattern of alpha band response function represents the combined effect of local differences in electrical alpha band activity and local differences in the hemodynamic response function (HRF) onto these electrical activities. To disentangle the contributions of both factors, more advanced integration of EEG inverse modeling and hemodynamic response modeling is required in future studies.
Collapse
|
383
|
Manjarrez E, Vázquez M, Flores A. Computing the center of mass for traveling alpha waves in the human brain. Brain Res 2007; 1145:239-47. [PMID: 17320825 DOI: 10.1016/j.brainres.2007.01.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 11/28/2022]
Abstract
The phenomenon of traveling waves of the brain is an intriguing area of research, and its mechanisms and neurobiological bases have been unknown since the 1950s. The present study offers a new method to compute traveling alpha waves using the center of mass algorithm. Electroencephalographic alpha waves are oscillations with a characteristic frequency range and reactivity to closed eyes. Several lines of evidence derived from qualitative observations suggest that the alpha waves represent a spreading wave process with specific trajectories in the human brain. We found that during a certain alpha wave peak recorded with 30 electrodes the trajectory starts and ends in distinct regions of the brain, mostly frontal-occipital, frontal-frontal, or occipital-frontal, but the position of the trajectory at the time in which the maximal positivity of the alpha wave occurs has a definite position near the central regions. Thus we observed that the trajectory always crossed around the central zones, traveling from one region to another region of the brain. A similar trajectory pattern was observed for different alpha wave peaks in one alpha burst, and in different subjects, with a mean velocity of 2.1+/-0.29 m/s. We found that all our results were clear and reproducible in all of the subjects. To our knowledge, the present method documents the first explicit description of a spreading wave process with a singular pattern in the human brain in terms of the center of mass algorithm.
Collapse
Affiliation(s)
- Elías Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Apartado Postal 406, Puebla, Pue. CP 72570, Mexico.
| | | | | |
Collapse
|
384
|
Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. BRAIN RESEARCH REVIEWS 2007; 53:63-88. [PMID: 16887192 DOI: 10.1016/j.brainresrev.2006.06.003] [Citation(s) in RCA: 2617] [Impact Index Per Article: 145.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 06/14/2006] [Accepted: 06/21/2006] [Indexed: 12/15/2022]
Abstract
The traditional belief is that the event-related alpha response can solely be described in terms of suppression or event-related desynchronization (ERD). Recent research, however, has shown that under certain conditions alpha responds reliably with an increase in amplitudes (event-related synchronization or ERS). ERS is elicited in situations, where subjects withhold or control the execution of a response and is obtained over sites that probably are under, or exert top-down control. Thus, we assume that alpha ERS reflects top-down, inhibitory control processes. This assumption leads over to the timing aspect of our hypothesis. By the very nature of an oscillation, rhythmic amplitude changes reflect rhythmic changes in excitation of a population of neurons. Thus, the time and direction of a change - described by phase - is functionally related to the timing of neuronal activation processes. A variety of findings supports this view and shows, e.g., that alpha phase coherence increases between task-relevant sites and that phase lag lies within a time range that is consistent with neuronal transmission speed. Another implication is that phase reset will be a powerful mechanism for the event-related timing of cortical processes. Empirical evidence suggests that the extent of phase locking is a functionally sensitive measure that is related to cognitive performance. Our general conclusion is that alpha ERS plays an active role for the inhibitory control and timing of cortical processing whereas ERD reflects the gradual release of inhibition associated with the emergence of complex spreading activation processes.
Collapse
Affiliation(s)
- Wolfgang Klimesch
- University of Salzburg, Department of Physiological Psychology, Institute of Psychology, Hellbrunnerstr. 34, A-5020 SALZBURG, Austria/Europe. <>
| | | | | |
Collapse
|
385
|
Shaw FZ. 7-12 Hz high-voltage rhythmic spike discharges in rats evaluated by antiepileptic drugs and flicker stimulation. J Neurophysiol 2006; 97:238-47. [PMID: 17035363 DOI: 10.1152/jn.00340.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paroxysmal 7- to 12-Hz high-voltage rhythmic spike (HVRS) or spike-wave discharges often appear in several particular strains of rats. However, functional hypotheses of these 7-12 Hz high-voltage cortical oscillations (absence seizure vs. idling mu rhythm) are inconclusive. The mu rhythm can be provoked by flicker stimulation (FS) in most people, but FS is less effective at eliciting absence epileptic activity. Therefore FS and antiepileptic drugs were used to verify the role of HVRS activity in Long-Evans rats with spontaneous HVRS discharges and Wistar rats without spontaneous HVRS discharges. The occurrence of HVRS discharges was significantly reduced by antiabsence drugs (ethosuximide, valproic acid, and diazepam) in dose-dependent manners, but high-dose carbamazepine displayed little effect. On the other hand, oscillation frequencies and durations of spontaneous HVRS discharges were not altered by FS. Under asynchronous brain activity, many FSs (>60%) elicited small-amplitude mu-rhythm-like activity in the barrel cortex concomitant with FS-related rhythms in the occipital cortex and resulted in significant augmentation of 7-12 Hz power in the parietal region. Furthermore, a large portion of FSs (>60%) revealed increase of 7-12 Hz power of the parietal cortex after ethosuximide administration (100 mg/kg ip) in Long-Evans rats. Similar FS-elicited phenomena also appeared in Wistar rats. Characteristics of FS-elicited mu-rhythm-like activities were consistent with those observed in humans, and they remarkably differed from those of spontaneous HVRS discharges. These results support the hypothesis that HVRS activity in Long-Evans rats may be an absence-like seizure activity rather than the mu rhythm.
Collapse
Affiliation(s)
- Fu-Zen Shaw
- Institute of Cognitive Science, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| |
Collapse
|
386
|
Crunelli V, Cope DW, Hughes SW. Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 2006; 40:175-90. [PMID: 16777223 PMCID: PMC3018590 DOI: 10.1016/j.ceca.2006.04.022] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 04/25/2006] [Indexed: 11/20/2022]
Abstract
T-type Ca2+ channels play a number of different and pivotal roles in almost every type of neuronal oscillation expressed by thalamic neurones during non-rapid eye movement (NREM) sleep, including those underlying sleep theta waves, the K-complex and the slow (<1 Hz) sleep rhythm, sleep spindles and delta waves. In particular, the transient opening of T channels not only gives rise to the 'classical' low threshold Ca2+ potentials, and associated high frequency burst of action potentials, that are characteristically present during sleep spindles and delta waves, but also contributes to the high threshold bursts that underlie the thalamic generation of sleep theta rhythms. The persistent opening of a small fraction of T channels, i.e. I(Twindow), is responsible for the large amplitude and long lasting depolarization, or UP state, of the slow (<1 Hz) sleep oscillation in thalamic neurones. These cellular findings are in part matched by the wake-sleep phenotype of global and thalamic-selective CaV3.1 knockout mice that show a decreased amount of total NREM sleep time. T-type Ca2+ channels, therefore, constitute the single most crucial voltage-dependent conductance that permeates all activities of thalamic neurones during NREM sleep. Since I(Twindow) and high threshold bursts are not restricted to thalamic neurones, the cellular neurophysiology of T channels should now move away from the simplistic, though historically significant, view of these channels as being responsible only for low threshold Ca2+ potentials.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | | | |
Collapse
|