351
|
Lyons LC, Chatterjee S, Vanrobaeys Y, Gaine ME, Abel T. Translational changes induced by acute sleep deprivation uncovered by TRAP-Seq. Mol Brain 2020; 13:165. [PMID: 33272296 PMCID: PMC7713217 DOI: 10.1186/s13041-020-00702-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Sleep deprivation is a global health problem adversely affecting health as well as causing decrements in learning and performance. Sleep deprivation induces significant changes in gene transcription in many brain regions, with the hippocampus particularly susceptible to acute sleep deprivation. However, less is known about the impacts of sleep deprivation on post-transcriptional gene regulation. To identify the effects of sleep deprivation on the translatome, we took advantage of the RiboTag mouse line to express HA-labeled Rpl22 in CaMKIIα neurons to selectively isolate and sequence mRNA transcripts associated with ribosomes in excitatory neurons. We found 198 differentially expressed genes in the ribosome-associated mRNA subset after sleep deprivation. In comparison with previously published data on gene expression in the hippocampus after sleep deprivation, we found that the subset of genes affected by sleep deprivation was considerably different in the translatome compared with the transcriptome, with only 49 genes regulated similarly. Interestingly, we found 478 genes differentially regulated by sleep deprivation in the transcriptome that were not significantly regulated in the translatome of excitatory neurons. Conversely, there were 149 genes differentially regulated by sleep deprivation in the translatome but not in the whole transcriptome. Pathway analysis revealed differences in the biological functions of genes exclusively regulated in the transcriptome or translatome, with protein deacetylase activity and small GTPase binding regulated in the transcriptome and unfolded protein binding, kinase inhibitor activity, neurotransmitter receptors and circadian rhythms regulated in the translatome. These results indicate that sleep deprivation induces significant changes affecting the pool of actively translated mRNAs.
Collapse
Affiliation(s)
- Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
352
|
Li K, Luo H, Luo H, Zhu X. Clinical and prognostic pan-cancer analysis of m6A RNA methylation regulators in four types of endocrine system tumors. Aging (Albany NY) 2020; 12:23931-23944. [PMID: 33237039 PMCID: PMC7762517 DOI: 10.18632/aging.104064] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
Abstract
N6-methyladenosine (m6A), internal modification of mRNA, has recently been reported to be an important regulatory mechanism affecting tumor proliferation. However, its role in endocrine system tumors is poorly understood. We obtained datasets for four types tumors from the TCGA database, analyzed the GTEx database as a supplement to the control group, and used “Perl” and “R” software to analyze the datasets. Then we differentiated the expression level, used it to cluster consensus. Besides, we established lasso regression model to screen variables, used univariate and multivariate cox analyses to explore the independent risk factors associated with cancer prognosis. The results indicated that except for WTAP, the expression level of METTL3 was negatively correlated with other genes. The expression level of WTAP and METTL16 was positively correlated with overall survival (OS). Moreover, we found that different clinical subtypes of adrenal cortical carcinoma had significant differences in survival status, histologic grading, pathological T grade, and OS. Furthermore, different clinical subtypes of thyroid carcinoma had significant differences in histologic grading and pathological T grade. The differential expression of m6A regulatory genes is closely associated with the presence of endocrine-system-related tumors, and risk scores can be used to assess prognosis.
Collapse
Affiliation(s)
- Kai Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Zhanjiang 524023, Guangdong, China.,Cancer Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang 24023, Guangdong, China
| | - Haiqing Luo
- Cancer Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang 24023, Guangdong, China
| | - Hui Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Zhanjiang 524023, Guangdong, China
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
353
|
The m 6A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol 2020; 38:101801. [PMID: 33232910 PMCID: PMC7691619 DOI: 10.1016/j.redox.2020.101801] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The biological functions of N6-methyladenosine (m6A) RNA methylation are mainly dependent on the reader; however, its role in lung tumorigenesis remains unclear. Here, we have demonstrated that the m6A reader YT521-B homology domain containing 2 (YTHDC2) is frequently suppressed in lung adenocarcinoma (LUAD). Downregulation of YTHDC2 was associated with poor clinical outcome of LUAD. YTHDC2 decreased tumorigenesis in a spontaneous LUAD mouse model. Moreover, YTHDC2 exhibited antitumor activity in human LUAD cells. Mechanistically, YTHDC2, via its m6A-recognizing YTH domain, suppressed cystine uptake and blocked the downstream antioxidant program. Administration of cystine downstream antioxidants to pulmonary YTHDC2-overexpressing mice rescued lung tumorigenesis. Furthermore, solute carrier 7A11 (SLC7A11), the catalytic subunit of system XC−, was identified to be the direct target of YTHDC2. YTHDC2 destabilized SLC7A11 mRNA in an m6A-dependent manner because YTHDC2 preferentially bound to m6A-modified SLC7A11 mRNA and thereafter promoted its decay. Clinically, a large proportion of acinar LUAD subtype cases exhibited simultaneous YTHDC2 downregulation and SLC7A11 elevation. Patient-derived xenograft (PDX) mouse models generated from acinar LUAD showed sensitivity to system XC− inhibitors. Collectively, the promotion of cystine uptake via the suppression of YTHDC2 is critical for LUAD tumorigenesis, and blocking this process may benefit future treatment. The m6A reader YTHDC2 is frequently suppressed in LUAD and indicates poor prognosis. YTHDC2 suppresses the antioxidant function of system XC− via its m6A reading domain. The mRNA encoding SLC7A11 is a direct target of YTHDC2. YTHDC2 preferentially accelerates the decay of m6A-methylated SLC7A11 mRNA. LUAD with YTHDC2 suppression is sensitive to system XC− inhibitors.
Collapse
|
354
|
Multi-omics analysis of copy number variations of RNA regulatory genes in soft tissue sarcoma. Life Sci 2020; 265:118734. [PMID: 33166590 DOI: 10.1016/j.lfs.2020.118734] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
AIMS RNA regulatory genes were closely associated with tumorigenesis and prognosis in multiple tumors. Copy number variation (CNV) is a frequent characteristic in soft tissue sarcomas (STS). However, little is known regarding their possible roles in STS. MAIN METHODS RNA sequence profiles and CNV data of 255 STS patients were downloaded from the Cancer Genome Atlas (TCGA). The correlation analysis involved CNVs of RNA regulatory genes, patient survival, immune infiltration, and DNA methylation. Drug sensitivity (IC50) was analyzed and validated by MTT assays in STS cell lines. KEY FINDINGS CNV events were frequently observed in all kinds (m6A, m5C, ac4C, m1A, m3C, m6Am, m7G, and Ψ) of RNA regulatory genes. Diploid copy number (CN) of METTL4 was associated with better overall survival (OS) in STS and the subtypes (leiomyosarcoma, LMS; dedifferentiated liposarcoma, DDLPS). In STS and LMS, diploid CN of METTL4 was significantly associated with higher infiltration fraction of resting mast cells. In STS and DDLPS, diploid CN of METTL4 possessed lower methylation level in CpG site of cg12105018, which represented better OS. Besides, sensitive drugs for STS cell lines were analyzed according to lower IC50 for the loss CN of METTL4. Temozolomide and Olaparib were identified. Further validation by MTT assays demonstrated that GCT was the most sensitive cell line to both Temozolomide and Olaparib. SIGNIFICANCE CNV of METTL4 could be a prognostic biomarker for STS by potentially influencing mast cell infiltration and DNA methylation. Besides, STS with loss CN of METTL4 would be sensitive to Temozolomide and Olaparib.
Collapse
|
355
|
Wang YN, Jin HZ. Transcriptome-Wide m 6A Methylation in Skin Lesions From Patients With Psoriasis Vulgaris. Front Cell Dev Biol 2020; 8:591629. [PMID: 33251217 PMCID: PMC7674922 DOI: 10.3389/fcell.2020.591629] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) methylation, as the most prevalent internal RNA modification, has been revealed to play critical roles in various biological functions. In this study, we performed m6A transcriptome-wide profiling in three kinds of skin tissue: involved psoriatic skin (PP), uninvolved psoriatic skin (PN), and healthy control skin samples (NN). The findings revealed that transcripts of PP contained the fewest m6A peaks and lowest m6A peak density. The greatest differences of m6A methylation were observed in the PP vs. NN and PP vs. PN comparisons. Intriguingly, in these comparisons, hypermethylated m6A was mainly enriched within the CDSs and 3′UTRs, while hypomethylated m6A was not only enriched within CDSs and 3′UTRs, but also within 5′UTRs. GO and KEGG pathway analyses indicated that hypermethylated transcripts in PP were particularly associated with response-associated terms, cytokine production, and olfactory transduction. Meanwhile, hypomethylated transcripts in PP were mainly associated with development-related processes and the Wnt signaling pathway. In addition, we discovered that 19.3–48.4% of the differentially expressed transcripts in psoriasis vulgaris were modified by m6A, and that transcripts with lower expression were more preferentially modified by m6A. Moreover, upregulation of gene expression was often accompanied by upregulation of m6A methylation, suggesting a regulatory role of m6A in psoriasis vulgaris gene expression.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Zhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
356
|
Sang L, Sun L, Wang A, Zhang H, Yuan Y. The N6-Methyladenosine Features of mRNA and Aberrant Expression of m6A Modified Genes in Gastric Cancer and Their Potential Impact on the Risk and Prognosis. Front Genet 2020; 11:561566. [PMID: 33329697 PMCID: PMC7672124 DOI: 10.3389/fgene.2020.561566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Although N6-methyladenosine (m6A) mRNA methylation is known to be closely related to tumor events, its role in carcinogenesis and the development of gastric cancer (GC) is not yet clear. The aim of this study was to identify common m6A features and novel aberrant expression of m6A modified genes in GC and to further explore their potential impact on risk and prognosis. Three paired GC and paracancerous (PCa) tissues were collected to perform an m6A sequencing by MeRIP-seq and microarray assays. The expression profile of m6A and mRNA were determined. Gene function note and enrichment analysis were performed, and protein–protein interaction networks of differentially m6A methylated genes (DMGs) were generated using the DAVID and STRING databases, respectively. Validation of the m6A related differentially expressed genes by matching TCGA and GTEx data and human tissues. Clinical and pathological correlation and survival analysis were performed by TCGA data. The m6A motif sequence GGACAR (R = U or A) C was the consensus in both GC and PCa tissues. m6A peaks were significantly related to different coordinates, however, for most samples, the end of the coding sequence (CDS) was more prominent than the start of CDS. The genes with higher levels of m6A in their mRNAs were mainly enriched in transcriptional misregulation in carcinogenesis pathways, whereas the genes with decreased methylation mainly regulated digestion and absorption of protein. There are genes with differential m6A modifications in GC and paired PCa tissues, and these genes are mainly enriched in transcriptional misregulation and digestion/absorption pathways. m6A-GC with the down- and up-regulated genes may play an important role in gastric carcinogenesis, which can affect the risk and prognosis in GC.
Collapse
Affiliation(s)
- Liang Sang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Han Zhang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
357
|
Lin A, Zhou M, Hua RX, Zhang J, Zhou H, Li S, Cheng J, Xia H, Fu W, He J. METTL3 polymorphisms and Wilms tumor susceptibility in Chinese children: A five-center case-control study. J Gene Med 2020; 22:e3255. [PMID: 32716082 DOI: 10.1002/jgm.3255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor is a common pediatric tumor worldwide. Methyltransferase like 3 (METTL3) is a core gene of the N6 -methyladenosine (m6 A) modification that widely affects the transcription of tumor-related genes in eukaryotes. METTL3 has been extensively investigated in various tumors but not Wilms tumor. METHODS We describe a five-center case-control study with 414 patients and 1199 controls aiming to explore the associations between METTL3 polymorphisms (rs1061026 T>G, rs1061027 C>A, rs1139130 A>G and rs1263801 G>C) and Wilms tumor susceptibility. A TaqMan real-time polymerase chain reaction was performed for genotyping. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported as evaluation indicators to determine any associations. RESULTS Referring to the preliminary analysis results, protective genotypes were identified as rs1061026 TG/GG, rs1061027 CA/AA, rs1139130 GG and rs1263801 GC/CC. The children with three protective genotypes were less likely to develop Wilms tumor than children without protective genotypes (adjusted OR = 0.68, 95% CI = 0.46-0.999, p = 0.0496). Similarly, stratified analysis of the subgroup aged > 18 months, carrying 3 or 4 protective genotypes, was a protective factor for Wilms tumor compared to carrying 0-2 protective genotypes (adjusted OR = 0.59 95% CI = 0.39-0.91, p = 0.016). However, we did not observe any other significant results. CONCLUSIONS The combined effect of METTL3 polymorphisms reduce Wilms tumor susceptibility in Chinese children. This conclusion requires further verification.
Collapse
Affiliation(s)
- Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingming Zhou
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shannxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
358
|
RNA methylations in human cancers. Semin Cancer Biol 2020; 75:97-115. [DOI: 10.1016/j.semcancer.2020.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022]
|
359
|
Song Y, Wang Q, Li L, Chen S, Zhao Y, Gao L. Comprehensive epigenetic analysis of m6A modification in the hippocampal injury of diabetic rats. Epigenomics 2020; 12:1811-1824. [PMID: 33112671 DOI: 10.2217/epi-2020-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To study RNA N6-methyladenosine (m6A) modification in the diabetic hippocampus. Methods: Behavioral tests and staining were performed to evaluate the damage to the diabetic hippocampus in model rats. Western blotting was performed to investigate the expression of methylation-related enzymes, and flow cytometry was used to demonstrate HT22 cell apoptosis. M6A and RNA sequencing analyses were conducted to profile m6A-tagged transcripts in the diabetic hippocampus. Results: The rat models of diabetes mellitus suffered from cognitive disorders and hippocampal neuron damage. High glucose levels altered the expression of methylation-related enzymes. A total of 4890 differentially methylated m6A peaks and 63 differentially expressed genes and differentially methylated m6A sites were identified. Conclusion: The findings suggest that m6A modification is altered in the diabetic hippocampus and provide new insight into diabetic hippocampal injury.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qunhui Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Lei Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Songyu Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
360
|
Zhang J, Piao HY, Wang Y, Meng XY, Yang D, Zhao Y, Zheng ZC. To Develop and Validate the Combination of RNA Methylation Regulators for the Prognosis of Patients with Gastric Cancer. Onco Targets Ther 2020; 13:10785-10795. [PMID: 33122917 PMCID: PMC7591098 DOI: 10.2147/ott.s276239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Gastric cancer (GC) accounts for high mortality. RNA methylation has recently gained interest as markers in specific tumors. This study aimed to uncover the function of the roles of 25 RNA methylation regulators in GC. Methods RNA sequence and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. “STRING” and R were performed to analyze the correlation among the methylase. COX and LASSO were performed to screen for prognostic associated RNA methylation regulators. A prognostic model was established based on the expression of methylase. RT-PCR and immunohistochemistry detected the expression of methylase in GC cells and tissue. Kaplan–Meier curve and Cox analysis were applied to evaluate the effectiveness of the model. Results The prediction model was established based on the expression of m6A RNA methylation regulators FTO (fat mass and obesity-associated) and RBM15 (RNA binding motif protein 15). Based on the model, GC patients were divided into “high risk” and “low risk” groups to compare the differences in survival. The model was re-evaluated with the clinical data of our center. Conclusion The two-methylase combination model was an independent prognostic factor of GC.
Collapse
Affiliation(s)
- Jun Zhang
- Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang City, Liaoning Province 110042, People's Republic of China
| | - Hai-Yan Piao
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang City, Liaoning Province 110042, People's Republic of China
| | - Yue Wang
- Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang City, Liaoning Province 110042, People's Republic of China
| | - Xiang-Yu Meng
- Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang City, Liaoning Province 110042, People's Republic of China
| | - Dong Yang
- Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang City, Liaoning Province 110042, People's Republic of China
| | - Yan Zhao
- Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang City, Liaoning Province 110042, People's Republic of China
| | - Zhi-Chao Zheng
- Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang City, Liaoning Province 110042, People's Republic of China
| |
Collapse
|
361
|
Li H, Zhang Y, Guo Y, Liu R, Yu Q, Gong L, Liu Z, Xie W, Wang C. ALKBH1 promotes lung cancer by regulating m6A RNA demethylation. Biochem Pharmacol 2020; 189:114284. [PMID: 33068553 DOI: 10.1016/j.bcp.2020.114284] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023]
Abstract
Lung cancer has surpassed breast cancer as the leading cause of cancer death in females in developed countries and the leading cause of cancer death in males. Despite extensive research on lung cancer, the pathogenesis of lung cancer is not fully understood. ALKBH1 is a 2-oxoglutarate and Fe (II)-dependent dioxygenase responsible for the demethylation of 6-methyladenine (m6A) in RNA and is essential to multiple cellular processes in human. Numerous recent studies suggest that ALKBH1 plays a role in tumorigenesis and tumor progression, but the role of ALKBH1 in lung cancer is largely unknown. In this study, we demonstrated that the expression levels of ALKBH1 in lung cancer tissues and cells were up regulated. The invasion and migration abilities of lung cancer cells were significantly suppressed in vitro upon the silencing of ALKBH1 while they were significantly promoted upon its overexpression. We next characterized the enzyme biochemically by analyzing the contribution of essential residues Y184, H231, D233, H287, R338, and R344 to its m6A demethylation activity. Lastly, our 3.1-Å crystal structure of mouse ALKBH1 revealed that the N-terminal domain of the protein forms close contacted with the core catalytic domain and might be responsible for the recognition of nucleic acid substrates. In summary, our combined cellular, biochemical, and structural results provide insight into the potential ALKBH1-based drug design for cancer therapies.
Collapse
Affiliation(s)
- Hong Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Ying Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yajuan Guo
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Rong Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qi Yu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lingzhi Gong
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, China.
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
362
|
Yang Z, Jiang X, Li D, Jiang X. HBXIP promotes gastric cancer via METTL3-mediated MYC mRNA m6A modification. Aging (Albany NY) 2020; 12:24967-24982. [PMID: 33048840 PMCID: PMC7803577 DOI: 10.18632/aging.103767] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide with limited treatment options and distinct geographical distribution even in countries such as China. Genetic alterations during its carcinogenesis need urgent elucidation. In this study, we propose an intriguing hypothesis that the hepatitis B X-interacting protein (HBXIP) may function as an oncogene in GC. We harvested 45 GC tissues and matched the paracancerous tissues. The c-myc proto-oncogene (MYC) N6-methyladenosine (m6A) mRNA methylation was detected by m6A RNA immunoprecipitation and dot-blot assays. Expressions of HBXIP, methyltransferase like 3 (METTL3) and MYC were all determined to be upregulated in both GC tissues and cells. Silencing HBXIP led to a decreased expression of METTL3, which inhibited GC cell proliferation, migration and invasion while promoting their apoptosis. Furthermore, METTL3 enhanced MYC m6A methylation and increased MYC translation, which could potentiate the proliferation, migration and invasion of GC cells. Finally, the HBXIP knockdown impeded the tumorigenicity of GC cells in vivo. Based on the findings of this study, we conclude that HBXIP plays an oncogenic role in GC via METTL3-mediated MYC mRNA m6A modification. The study offers a comprehensive understanding of HBXIP as a potential therapeutic target to limit GC progression.
Collapse
Affiliation(s)
- Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, P. R. China
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110022, P. R. China
| | - Deming Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, P. R. China
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, P. R. China
| |
Collapse
|
363
|
Han X, Wang L, Han Q. Advances in the role of m 6A RNA modification in cancer metabolic reprogramming. Cell Biosci 2020; 10:117. [PMID: 33062255 PMCID: PMC7552565 DOI: 10.1186/s13578-020-00479-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023] Open
Abstract
N6-methyladenosine (m6A) modification is the most common internal modification of eukaryotic mRNA and is widely involved in many cellular processes, such as RNA transcription, splicing, nuclear transport, degradation, and translation. m6A has been shown to plays important roles in the initiation and progression of various cancers. The altered metabolic programming of cancer cells promotes their cell-autonomous proliferation and survival, leading to an indispensable hallmark of cancers. Accumulating evidence has demonstrated that this epigenetic modification exerts extensive effects on the cancer metabolic network by either directly regulating the expression of metabolic genes or modulating metabolism-associated signaling pathways. In this review, we summarized the regulatory mechanisms and biological functions of m6A and its role in cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Xiu Han
- Center of Clinical Laboratory, Suzhou Dushu Lake Public Hospital, 9#, Chongwen Road, Suzhou, 215000 People’s Republic of China
| | - Lin Wang
- Center of Clinical Laboratory, Suzhou Dushu Lake Public Hospital, 9#, Chongwen Road, Suzhou, 215000 People’s Republic of China
| | - Qingzhen Han
- Center of Clinical Laboratory, Suzhou Dushu Lake Public Hospital, 9#, Chongwen Road, Suzhou, 215000 People’s Republic of China
| |
Collapse
|
364
|
Xu Z, Peng B, Cai Y, Wu G, Huang J, Gao M, Guo G, Zeng S, Gong Z, Yan Y. N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochem Pharmacol 2020; 182:114258. [PMID: 33017575 DOI: 10.1016/j.bcp.2020.114258] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023]
Abstract
Several strategies, including chemotherapy and radiotherapy, have improved therapeutic outcomes among cancer patients in clinical practice. However, due to their heterogeneity, cancer cells frequently display primary or acquired therapeutic resistance, thereby resulting in treatment failure. The mechanisms underlying cancer therapeutic resistance are complex and varied. Among them, N6-methyladenosine (m6A) RNA modification has gained increasing attention as a potential determinant of therapy resistance within various cancers. In this review, we primarily describe evidence for the effect of the m6A epitranscriptome on RNA homeostasis modulation, which has been shown to alter multiple cellular pathways in cancer research and treatment. Additionally, we discuss the profiles and biological implications of m6A RNA methylation, which is undergoing intensive investigation for its effect on the control of therapeutic resistance.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
365
|
Li Y, Ge YZ, Xu L, Xu Z, Dou Q, Jia R. The Potential Roles of RNA N6-Methyladenosine in Urological Tumors. Front Cell Dev Biol 2020; 8:579919. [PMID: 33015074 PMCID: PMC7510505 DOI: 10.3389/fcell.2020.579919] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) is regarded as the most abundant, prevalent and conserved internal mRNA modification in mammalian cells. M6A can be catalyzed by m6A methyltransferases METTL3, METTL14 and WTAP (writers), reverted by demethylases ALKBH5 and FTO (erasers), and recognized by m6A -binding proteins such as YTHDF1/2/3, IGF2BP1/2/3 and HNRNPA2B1 (readers). Emerging evidence suggests that m6A modification is significant for regulating many biological and cellular processes and participates in the pathological development of various diseases, including tumors. This article reviews recent studies on the biological function of m6A modification and the methylation modification of m6A in urological tumors.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Quanliang Dou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
366
|
Wei J, Yin Y, Zhou J, Chen H, Peng J, Yang J, Tang Y. METTL3 potentiates resistance to cisplatin through m 6 A modification of TFAP2C in seminoma. J Cell Mol Med 2020; 24:11366-11380. [PMID: 32857912 PMCID: PMC7576266 DOI: 10.1111/jcmm.15738] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/23/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Testicular germ cell tumours (TGCTs) rank as the most common malignancy in men aged 20‐34 years, and seminomas are the most type of TGCTs. As a crucial anti‐tumour agent with explicit toxicity, cisplatin may render resistance through intertwined mechanisms, even in disease entities with high curative ratio, such as seminoma. Previously, we established cisplatin‐resistant seminoma TCam‐2 (TCam‐2/CDDP) cells and showed that epigenetic regulations, such as non‐coding RNA (ncRNA) interactions, might orchestrate cell fate decisions in the cisplatin treatment context in seminoma. N6‐methyladenosine (m6A) is the most prevalent internal modification in mRNA. In the present study, we assessed cisplatin resistance in seminoma from the perspective of m6A, another manner of epigenetic modification. The global m6A enrichment of TCam‐2 and TCam‐2/CDDP was depicted. Then, we elucidated whether transcription factor‐activating enhancer‐binding protein 2C (TFAP2C) was functionally m6A‐modified by methyltransferase‐like protein 3 (METTL3), which acted as an m6A ‘writer’, and insulin‐like growth factor 2 mRNA‐binding protein 1 (IGF2BP1), which acted as an m6A ‘reader’. Enhanced stability of TFAP2C mRNA promoted seminoma cell survival under cisplatin treatment burden probably through up‐regulation of DNA repair‐related genes. Hopefully, this study will help improve our understanding of the subtleties of the tumour cellular coping strategy in response to chemotherapy. Targeting factors that are involved in m6A methylation may be an effective strategy for circumventing cisplatin resistance in seminoma.
Collapse
Affiliation(s)
- Jingchao Wei
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghao Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hanfei Chen
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingxuan Peng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianfu Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
367
|
Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol 2020; 13:117. [PMID: 32854717 PMCID: PMC7457244 DOI: 10.1186/s13045-020-00951-w] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant mRNA modification and is catalyzed by the methyltransferase complex, in which methyltransferase-like 3 (METTL3) is the sole catalytic subunit. Accumulating evidence in recent years reveals that METTL3 plays key roles in a variety of cancer types, either dependent or independent on its m6A RNA methyltransferase activity. While the roles of m6A modifications in cancer have been extensively reviewed elsewhere, the critical functions of METTL3 in various types of cancer, as well as the potential targeting of METTL3 as cancer treatment, have not yet been highlighted. Here we summarize our current understanding both on the oncogenic and tumor-suppressive functions of METTL3, as well as the underlying molecular mechanisms. The well-documented protein structure of the METTL3/METTL14 heterodimer provides the basis for potential therapeutic targeting, which is also discussed in this review.
Collapse
Affiliation(s)
- Chengwu Zeng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Wanxu Huang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Hengyou Weng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China. .,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
368
|
Karthiya R, Khandelia P. m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Mol Biotechnol 2020; 62:467-484. [PMID: 32840728 DOI: 10.1007/s12033-020-00269-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular transcriptomes are frequently adorned by a variety of chemical modification marks, which in turn have a profound influence on its functioning. Of these modifications, the one which has invited a lot of attention in the recent years is m6A RNA methylation, leading to the development of RNA epigenetics or epitranscriptomics as a frontier research area. m6A RNA methylation is one of the most abundant reversible internal modification seen in cellular RNAs. Studies in the last few years have not only shed light on the molecular machinery involved in m6A RNA methylation but also on the impact of this modification in regulating gene expression and hence biological processes. In this review, we will emphasize the biological impact of this modification in normal organismal development and diseases.
Collapse
Affiliation(s)
- R Karthiya
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
369
|
Wang X, Xie H, Ying Y, Chen D, Li J. Roles of N 6 -methyladenosine (m 6 A) RNA modifications in urological cancers. J Cell Mol Med 2020; 24:10302-10310. [PMID: 32808488 PMCID: PMC7521283 DOI: 10.1111/jcmm.15750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetics has long been a hot topic in the field of scientific research. The scope of epigenetics usually includes chromatin remodelling, DNA methylation, histone modifications, non-coding RNAs and RNA modifications. In recent years, RNA modifications have emerged as important regulators in a variety of physiological processes and in disease progression, especially in human cancers. Among the various RNA modifications, m6 A is the most common. The function of m6 A modifications is mainly regulated by 3 types of proteins: m6 A methyltransferases (writers), m6 A demethylases (erasers) and m6 A-binding proteins (readers). In this review, we focus on RNA m6 A modification and its relationship with urological cancers, particularly focusing on its roles and potential clinical applications.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyun Xie
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufan Ying
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danni Chen
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangfeng Li
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
370
|
Fan MJ, He PJ, Lin XY, Yang CR, Li CZ, Xing LG. MicroRNA-324-5p affects the radiotherapy response of cervical cancer via targeting ELAV-like RNA binding protein 1. Kaohsiung J Med Sci 2020; 36:965-972. [PMID: 32757457 DOI: 10.1002/kjm2.12277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) seriously threatens the health of women. Radiation therapy (RT) is the major treatment for CC. However, the recurrent CC can acquire resistance to RT. Thus, it is necessary to find a new method for reversing RT resistance in CC. It has been reported that miR-324-5p can suppress the progression of multiple cancers. However, whether it can reverse resistance to RT in CC remains unclear. qRT-PCR and Western blotting were used to detect gene and protein expression in CC cells, respectively. Cell proliferation was tested by CCK-8 assay and colony formation assay. In addition, cell apoptosis was detected by flow cytometry. Transwell assays were performed to detect cell migration. Dual luciferase reporter assay and TargetScan were used to explore the targets of microRNA-324-5p (miR-324-5p). MiR-324-5p was downregulated in CC cells. Overexpression of miR-324-5p sensitized CC cells to RT. In addition, miR-324-5p mimics significantly induced apoptosis and inhibits the migration of CC cells in the presence of 137 Cs ionizing radiation. Furthermore, miR-324-5p sensitized CC cells to ionizing radiation by targeting ELAV-like RNA binding protein 1 (ELAVL1). MiR-324-5p overexpression affects the radiotherapy response of CC by targeting ELAVL1, which may serve as a new target for the treatment of CC.
Collapse
Affiliation(s)
- Ming-Jun Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peng-Juan He
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue-Yan Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chun-Run Yang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chang-Zhong Li
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Li-Gang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
371
|
Ashrafizadeh M, Najafi M, Ang HL, Moghadam ER, Mahabady MK, Zabolian A, Jafaripour L, Bejandi AK, Hushmandi K, Saleki H, Zarrabi A, Kumar AP. PTEN, a Barrier for Proliferation and Metastasis of Gastric Cancer Cells: From Molecular Pathways to Targeting and Regulation. Biomedicines 2020; 8:E264. [PMID: 32756305 PMCID: PMC7460532 DOI: 10.3390/biomedicines8080264] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the life-threatening disorders that, in spite of excellent advances in medicine and technology, there is no effective cure for. Surgery, chemotherapy, and radiotherapy are extensively applied in cancer therapy, but their efficacy in eradication of cancer cells, suppressing metastasis, and improving overall survival of patients is low. This is due to uncontrolled proliferation of cancer cells and their high migratory ability. Finding molecular pathways involved in malignant behavior of cancer cells can pave the road to effective cancer therapy. In the present review, we focus on phosphatase and tensin homolog (PTEN) signaling as a tumor-suppressor molecular pathway in gastric cancer (GC). PTEN inhibits the PI3K/Akt pathway from interfering with the migration and growth of GC cells. Its activation leads to better survival of patients with GC. Different upstream mediators of PTEN in GC have been identified that can regulate PTEN in suppressing growth and invasion of GC cells, such as microRNAs, long non-coding RNAs, and circular RNAs. It seems that antitumor agents enhance the expression of PTEN in overcoming GC. This review focuses on aforementioned topics to provide a new insight into involvement of PTEN and its downstream and upstream mediators in GC. This will direct further studies for evaluation of novel signaling networks and their targeting for suppressing GC progression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 6461665145, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful 3419759811, Iran;
| | - Atefe Kazemzade Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| |
Collapse
|
372
|
Asada K, Bolatkan A, Takasawa K, Komatsu M, Kaneko S, Hamamoto R. Critical Roles of N6-Methyladenosine (m 6A) in Cancer and Virus Infection. Biomolecules 2020; 10:biom10071071. [PMID: 32709063 PMCID: PMC7408378 DOI: 10.3390/biom10071071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Studies have shown that epigenetic abnormalities are involved in various diseases, including cancer. In particular, in order to realize precision medicine, the integrated analysis of genetics and epigenetics is considered to be important; detailed epigenetic analysis in the medical field has been becoming increasingly important. In the epigenetics analysis, DNA methylation and histone modification analyses have been actively studied for a long time, and many important findings were accumulated. On the other hand, recently, attention has also been focused on RNA modification in the field of epigenetics; now it is known that RNA modification is associated with various biological functions, such as regulation of gene expression. Among RNA modifications, functional analysis of N6-methyladenosine (m6A), the most abundant RNA modification found from humans to plants is actively progressing, and it has also been known that m6A abnormality is involved in cancer and other diseases. Importantly, recent studies have shown that m6A is related to viral infections. Considering the current world situation under threat of viral infections, it is important to deepen knowledge of RNA modification from the viewpoint of viral diseases. Hence, in this review, we have summarized the recent findings regarding the roles of RNA modifications in biological functions, cancer biology, and virus infection, particularly focusing on m6A in mRNA.
Collapse
Affiliation(s)
- Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
- Correspondence: (K.A.); (R.H.); Tel.: +81-3-3547-5271 (R.H.)
| | - Amina Bolatkan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Ken Takasawa
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Ryuji Hamamoto
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
- Correspondence: (K.A.); (R.H.); Tel.: +81-3-3547-5271 (R.H.)
| |
Collapse
|
373
|
Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, Zheng L. RNA-binding proteins in tumor progression. J Hematol Oncol 2020; 13:90. [PMID: 32653017 PMCID: PMC7353687 DOI: 10.1186/s13045-020-00927-w] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
RNA-binding protein (RBP) has a highly dynamic spatiotemporal regulation process and important biological functions. They are critical to maintain the transcriptome through post-transcriptionally controlling the processing and transportation of RNA, including regulating RNA splicing, polyadenylation, mRNA stability, mRNA localization, and translation. Alteration of each process will affect the RNA life cycle, produce abnormal protein phenotypes, and thus lead to the occurrence and development of tumors. Here, we summarize RBPs involved in tumor progression and the underlying molecular mechanisms whereby they are regulated and exert their effects. This analysis is an important step towards the comprehensive characterization of post-transcriptional gene regulation involved in tumor progression.
Collapse
Affiliation(s)
- Hai Qin
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yaqin Yuan
- Guizhou Medical Device Testing Center, Guiyang, 550004, Guizhou, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
374
|
Lu J, Qian J, Yin S, Zhou L, Zheng S, Zhang W. Mechanisms of RNA N 6-Methyladenosine in Hepatocellular Carcinoma: From the Perspectives of Etiology. Front Oncol 2020; 10:1105. [PMID: 32733807 PMCID: PMC7358598 DOI: 10.3389/fonc.2020.01105] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
N6-Methyladenosine (m6A) is the most common RNA internal modification in eukaryotic cells. Its regulatory effects at the post-transcriptional level on both messenger RNAs (mRNAs) and noncoding RNAs have been widely studied; these include alternative splicing, stability, translation efficiency, nucleus export, and degradation. m6A modification is implicated in a series of physiological and pathological activities, such as embryonic stem cell differentiation, immunoregulation, adipogenesis, and cancer development. Recently, the significance of m6A methylation has been identified in both viral hepatitis and non-alcohol fatty liver disease (NAFLD), which are major risk factors in the development of hepatocellular carcinoma (HCC). Given the high incidence and mortality rate of HCC worldwide, it is of great importance to elucidate the mechanisms underlying HCC initiation and progression. m6A as an emerging research focus has great potential to facilitate the understanding of HCC, particularly from an etiological perspective. Thus, in this review, we summarize recent progress in understanding m6A modification related to viral hepatitis, NAFLD, and HCC, including their mechanisms and clinical applications.
Collapse
Affiliation(s)
- Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Wu Zhang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.,Institution of Organ Transplantation, Zhejiang University, Hangzhou, China
| |
Collapse
|
375
|
Hou J, Shan H, Zhang Y, Fan Y, Wu B. m 6A RNA methylation regulators have prognostic value in papillary thyroid carcinoma. Am J Otolaryngol 2020; 41:102547. [PMID: 32474328 DOI: 10.1016/j.amjoto.2020.102547] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND N6-Methyladenosine (m6A) is a ubiquitous RNA modification with vital roles in various cancers, but little is known about its role in papillary thyroid carcinoma (PTC), a common endocrine malignancy. METHODS In this study, an m6A RNA methylation regulator-based biomarker signature was developed for the effective prediction of prognosis in patients with PTC. The gene expression profiles of m6A RNA methylation regulators and the corresponding clinical information was downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed m6A RNA methylation regulators between tumor and normal control samples, and correlation expression levels, clinical parameters, and outcomes were evaluated. And a prognostic signature was built using a PTC cohort from TCGA. RESULTS The expression level of HNRNPC was remarkably upregulated in tumor samples, while WTAP, RBM15, YTHDC2, YTHDC1, FTO, METTL14, METTL3, ALKBH5, KIAA1429, YTHDF1, and ZC3H13 were significantly downregulated in the cancer specimens compared with those in control samples. A three-gene prognostic signature comprising RBM15, KIAA1429, and FTO could predict overall survival in patients with PTC. In addition, the prognostic signature-based risk score was identified as an independent prognostic indicator for PTC. CONCLUSIONS We established a robust m6A RNA methylation regulator-based molecular signature for predicting prognosis in patients with PTC with high accuracy; this signature might provide important guidance for therapeutic strategies.
Collapse
Affiliation(s)
- Jianzhong Hou
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yingchao Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Youben Fan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
376
|
Ling-gui-zhu-gan decoction alleviates hepatic steatosis through SOCS2 modification by N6-methyladenosine. Biomed Pharmacother 2020; 127:109976. [DOI: 10.1016/j.biopha.2020.109976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/24/2022] Open
|
377
|
Xu J, Chen Q, Tian K, Liang R, Chen T, Gong A, Mathy NW, Yu T, Chen X. m6A methyltransferase METTL3 maintains colon cancer tumorigenicity by suppressing SOCS2 to promote cell proliferation. Oncol Rep 2020; 44:973-986. [PMID: 32705223 PMCID: PMC7388248 DOI: 10.3892/or.2020.7665] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification maintained by N6-methyltransferases and demethylases is involved in multiple biological functions. Methyltransferase like 3 (METTL3) is a major N6-methyltransferase. However, the role of METTL3 and its installed m6A modification in colorectal tumorigenesis remains to be fully elucidated. METTL3 is highly expressed as indicated in colorectal cancer samples in the TCGA and Oncomine databases, implying its potential role in colon tumorigenesis. SW480 cell line with stable METTL3 knockout (METTL3-KO) was generated using CRISPR/Cas9 and were confirmed by the loss of METTL3 expression and suppression of m6A modification. The proliferation of METTL3-KO cells was significantly inhibited compared with that of control cells. METTL3-KO decreased the decay rate of suppressor of cytokine signaling 2 (SOCS2) RNA, resulting in elevated SOCS2 protein expression. m6A-RNA immunoprecipitation-qPCR (MeRIP-qPCR) revealed that SOCS2 mRNA was targeted by METTL3 for m6A modification. Similar to METTL3-KO SW480 cells, SW480 cells treated with 3-deazaadenosine, an RNA methylation inhibitor, exhibited elevated SOCS2 protein expression. Increased levels of SOCS2 in METTL3-KO SW480 cells were associated with decreased expression of leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), contributing to the inhibition of cell proliferation. The underlying associations among METTL3, SOCS2, and LGR5 were further confirmed in SW480 cells transfected with si-METTL3 and in tumor samples from patients with colorectal cancer. Taken together, our data demonstrate that an increased level of METTL3 may maintain the tumorigenicity of colon cancer cells by suppressing SOCS2.
Collapse
Affiliation(s)
- Jihao Xu
- Department of Gastroenterology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Qikui Chen
- Department of Gastroenterology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Kuangyi Tian
- Department of Gastroenterology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Rongrong Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ting Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Aiyu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Nicholas W Mathy
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Tao Yu
- Department of Gastroenterology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xianming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
378
|
Liu L, Wu Y, Li Q, Liang J, He Q, Zhao L, Chen J, Cheng M, Huang Z, Ren H, Chen J, Peng L, Gao F, Chen D, Wang A. METTL3 Promotes Tumorigenesis and Metastasis through BMI1 m 6A Methylation in Oral Squamous Cell Carcinoma. Mol Ther 2020; 28:2177-2190. [PMID: 32621798 PMCID: PMC7544972 DOI: 10.1016/j.ymthe.2020.06.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/16/2020] [Accepted: 06/18/2020] [Indexed: 01/04/2023] Open
Abstract
RNA modification plays an essential function in regulating gene expression and diverse biological processes. RNA modification enzyme methyltransferase-like 3 (METTL3) affects tumor progression by regulating the N6-methyladenosine (m6A) modification in the mRNAs of critical oncogenes or tumor suppressors, but its effect in oral squamous cell carcinoma (OSCC) remains unknown. In this study, we revealed that METTL3 was consistently upregulated in two OSCC cohorts, and high METTL3 expression was associated with poor prognosis. Functionally, cell proliferation, self-renewal, migration, and invasion ability in vitro and tumor growth and metastasis in vivo were decreased after METTL3 knockdown in OSCC cells. In contrast, the opposite results were obtained after METTL3 overexpression. In addition, the results obtained with the Mettl3 genetically modified mouse model validated the essential role of Mettl3 in chemical-induced oral carcinogenesis. In mechanism, methylated RNA immunoprecipitation sequencing (MeRIP-seq), MeRIP-quantitative real-time PCR, and luciferase reporter and mutagenesis assays identified that METTL3 mediates the m6A modification in the 3′ UTR of BMI1 mRNA. METTL3 promotes BMI1 translation in OSCC under the cooperation with m6A reader IGF2BP1. Our findings revealed that METTL3 promotes OSCC proliferation and metastasis through BMI1 m6A methylation, suggesting that the METTL3-m6A-BMI1 axis may serve as a prognostic biomarker or therapeutic target in patients with OSCC.
Collapse
Affiliation(s)
- Lin Liu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yu Wu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiuli Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Luodan Zhao
- Department of Stomatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jianwen Chen
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Maosheng Cheng
- Department of Genetics, School of Life Science, Anhui Medical University, Anhui 230031, China
| | - Zhexun Huang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hui Ren
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jie Chen
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Liang Peng
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Fengxin Gao
- Guangzhou Epibiotek Co., Ltd, Guangzhou 510700, China
| | - Demeng Chen
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
379
|
LNC942 promoting METTL14-mediated m 6A methylation in breast cancer cell proliferation and progression. Oncogene 2020; 39:5358-5372. [PMID: 32576970 DOI: 10.1038/s41388-020-1338-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Increasing evidence supports that long noncoding RNAs (lncRNAs) act as master regulators involved in tumorigenesis and development at the N6-methyladenine (m6A) epigenetic modification level. However, the underlying regulatory mechanism in breast cancer (BRCA) remains elusive. Here, we unveil that LINC00942 (LNC942) exerts its functions as an oncogene in promoting METTL14-mediated m6A methylation and regulating the expression and stability of its target genes CXCR4 and CYP1B1 in BRCA initiation and progression. Specifically, LNC942 and METTL14 were significantly upregulated accompanied with the upregulation of m6A levels in BRCA cells and our included BRCA cohorts (n = 150). Functionally, LNC942 elicits potent oncogenic effects on promoting cell proliferation and colony formation and inhibiting cell apoptosis, subsequently elevating METTL14-mediated m6A methylation levels and its associated mRNA stability and protein expression of CXCR4 and CYP1B1 in BRCA cells. Mechanistically, LNC942 directly recruits METTL14 protein by harboring the specific recognize sequence (+176-+265), thereby stabilized the expression of downstream targets of LNC942 including CXCR4 and CYP1B1 through posttranscriptional m6A methylation modification in vitro and in vivo. Therefore, our results uncover a novel LNC942-METTL14-CXCR4/CYP1B1 signaling axis, which provides new targets and crosstalk m6A epigenetic modification mechanism for BRCA prevention and treatment.
Collapse
|
380
|
Yang J, Chen J, Fei X, Wang X, Wang K. N6-methyladenine RNA modification and cancer. Oncol Lett 2020; 20:1504-1512. [PMID: 32724392 DOI: 10.3892/ol.2020.11739] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) in messenger RNA (mRNA) is regulated by m6A methyltransferases and demethylases. Modifications of m6A are dynamic and reversible, may regulate gene expression levels and serve vital roles in numerous life processes, such as cell cycle regulation, cell fate decision and cell differentiation. In recent years, m6A modifications have been reported to exhibit functions in human cancers via regulation of RNA stability, microRNA processing, mRNA splicing and mRNA translation, including lung cancer, breast tumor and acute myeloid leukemia. In the present review, the roles of m6A modifications in the onset and progression of cancer were summarized. These modifications display an oncogenic role in certain types of cancer, whereas in other types of cancer they exhibit a tumor suppressor role. Therefore, understanding the biological functions performed by m6A in different types of tumors and identifying pivotal m6A target genes to deduce the potential mechanisms underlying the progression of cancer may assist in the development of novel therapeutics.
Collapse
Affiliation(s)
- Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Junwen Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
381
|
Nguyen TM, Alchalabi S, Oluwatoyosi A, Ropri AS, Herschkowitz JI, Rosen JM. New twists on long noncoding RNAs: from mobile elements to motile cancer cells. RNA Biol 2020; 17:1535-1549. [PMID: 32522127 DOI: 10.1080/15476286.2020.1760535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The purpose of this review is to highlight several areas of lncRNA biology and cancer that we hope will provide some new insights for future research. These include the relationship of lncRNAs and the epithelial to mesenchymal transition (EMT) with a focus on transcriptional and alternative splicing mechanisms and mRNA stability through miRNAs. In addition, we highlight the potential role of enhancer e-lncRNAs, the importance of transposable elements in lncRNA biology, and finally the emerging area of using antisense oligonucleotides (ASOs) and small molecules to target lncRNAs and their therapeutic implications.
Collapse
Affiliation(s)
- Tuan M Nguyen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School , Boston, MA, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Sumayya Alchalabi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Adewunmi Oluwatoyosi
- Department of Molecular & Cellular Biology, Baylor College of Medicine , Houston, TX, USA
| | - Ali S Ropri
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Jeffrey M Rosen
- Department of Molecular & Cellular Biology, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
382
|
Wang J, Wang WA, Zhang A, Liu HB. Molecular mechanism of methyltransferase-like protein family: Relationship with gastric cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:428-434. [DOI: 10.11569/wcjd.v28.i11.428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Methyltransferase-like proteins (METTL) are part of a large protein family, which is characterized by the presence of an S-adenosylmethionine (SAM; a common substrate for methylation reactions) binding domain. Although members of this protein family have been shown or predicted as methyltransferases of RNA, DNA, or proteins, most methyltransferases are still poorly characterized. Identifying the complexes where these potential enzymes work can help to understand their function and substrate specificity. The METTL protein family is closely related to the occurrence and development of gastric cancer (GC), and its relationship with GC is of great importance in the diagnosis, treatment, and prognosis of GC. Here we give a systematic and comprehensive review of the mechanism of METTL protein family and its relationship with GC, with an aim to provide important resources for further research on these potential new methyltransferases and the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Jing Wang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wen-An Wang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - An Zhang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hong-Bin Liu
- People's Liberation Army Joint Logistics Support Unit 940 Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
383
|
Liu XS, Yuan LL, Gao Y, Zhou LM, Yang JW, Pei ZJ. Overexpression of METTL3 associated with the metabolic status on 18F-FDG PET/CT in patients with Esophageal Carcinoma. J Cancer 2020; 11:4851-4860. [PMID: 32626532 PMCID: PMC7330681 DOI: 10.7150/jca.44754] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background: To investigate the expression of methyltransferase 3 (METTL3) and its relationship with 18F-FDG uptake in patients with esophageal carcinoma (ESCA). Materials and methods: This study analyzed the expression of METTL3 in ESCA and its relationship with clinicopathological features by The Cancer Genome Atlas (TCGA) database. Immunohistochemical staining was performed on 57 tumor tissues of ESCA patients who underwent PET/CT scan before surgery to evaluate the expression of METTL3, glucose transporter 1 (GLUT1), and hexokinase 2 (HK2) in tumor tissues and peritumoral tissues. Analyze the relationship between SUVmax with METTL3, HK2, and GLUT1 expression. Results: The expression of METTL3, GLUT1, and HK2 was significantly increased in ESCA tissues compared with normal tissues (p < 0.001). The expression of METTL3 was correlated with tumor size and histological differentiation (p < 0.05), and there was no significant difference between age, sex, pathological types, tumor staging, or lymph node metastasis (p > 0.05). The SUVmax was significantly higher in tumors with high METTL3 expression (17.822±6.249) compared to low METTL3 expression (9.573±5.082) (p < 0.001). There was a positive correlation between the SUVmax and METTL3 expression in ESCA (r2 = 0.647, p < 0.001). Multivariate analysis confirmed the association between SUVmax and METTL3 expression (p < 0.05). GLUT1 and HK2 expression in ESCA was positively correlated with 18F-FDG uptake and METTL3 status (p < 0.001). Conclusions: The high expression of METTL3 is related to the high SUVmax in ESCA, and METTL3 may increase 18F-FDG uptake by regulating GLUT1 and HK2.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 44200, China
| | - Ling-Ling Yuan
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 44200, China
| | - Lu-Meng Zhou
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 44200, China
| | - Jian-Wei Yang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 44200, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 44200, China.,Hubei Key Laboratory of WudangLocal Chinese Medicine Research, Shiyan, 442000, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, China
| |
Collapse
|
384
|
Bera A, Lewis SM. Regulation of Epithelial-to-Mesenchymal Transition by Alternative Translation Initiation Mechanisms and Its Implications for Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21114075. [PMID: 32517298 PMCID: PMC7312463 DOI: 10.3390/ijms21114075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Translation initiation plays a critical role in the regulation of gene expression for development and disease conditions. During the processes of development and disease, cells select specific mRNAs to be translated by controlling the use of diverse translation initiation mechanisms. Cells often switch translation initiation from a cap-dependent to a cap-independent mechanism during epithelial-to-mesenchymal transition (EMT), a process that plays an important role in both development and disease. EMT is involved in tumor metastasis because it leads to cancer cell migration and invasion, and is also associated with chemoresistance. In this review we will provide an overview of both the internal ribosome entry site (IRES)-dependent and N6-methyladenosine (m6A)-mediated translation initiation mechanisms and discuss how cap-independent translation enables cells from primary epithelial tumors to achieve a motile mesenchymal-like phenotype, which in turn drives tumor metastasis.
Collapse
Affiliation(s)
- Amit Bera
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada;
| | - Stephen M. Lewis
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada;
- Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Correspondence: ; Tel.: +1-506-869-2892
| |
Collapse
|
385
|
Liu S, Zhuo L, Wang J, Zhang Q, Li Q, Li G, Yan L, Jin T, Pan T, Sui X, Lv Q, Xie T. METTL3 plays multiple functions in biological processes. Am J Cancer Res 2020; 10:1631-1646. [PMID: 32642280 PMCID: PMC7339281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common internal modification of mRNAs in higher eukaryotic. This process is performed by methyltransferase. Methyltransferase-like 3 (METTL3) is the best known m6A methyltransferase that functions in the reversible epi-transcriptome modulation of m6A modification. Besides acting as a m6A methyltransferase, METTL3 also regulates mRNA translation and other biological processes. In recent years, studies have identified numerous roles and molecular mechanisms associated with METTL3 in multiple biological processes. However, these findings have not been summarized. In this review, we have systematically summarized the most recent important roles of METTL3 in various biological processes, including cell cycle progression, cell proliferation, cell apoptosis, cell migration and invasion, cell differentiation and inflammatory response. In addition, we discuss the prospect of using a METTL3 as a new diagnostic biomarker and therapeutic target for human cancers.
Collapse
Affiliation(s)
- Shuiping Liu
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province & Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province & Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Lvjia Zhuo
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province & Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province & Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Jianjun Wang
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Qin Zhang
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province & Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province & Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Qiujie Li
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province & Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province & Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Guohua Li
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province & Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province & Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Lili Yan
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province & Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province & Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Ting Jin
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province & Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province & Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Ting Pan
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province & Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province & Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Xinbing Sui
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province & Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province & Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Qun Lv
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes of Medicine School, Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province & Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province & Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| |
Collapse
|
386
|
Wang Q, Geng W, Guo H, Wang Z, Xu K, Chen C, Wang S. Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. J Hematol Oncol 2020; 13:57. [PMID: 32429972 PMCID: PMC7238608 DOI: 10.1186/s13045-020-00895-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancer, the most common solid tumor, has a poor prognosis. With the development of high-throughput sequencing and detection technology, recent studies have suggested that many chemical modifications of human RNA are involved in the development of human diseases, including cancer. m6A, the most abundant modification, was revealed to participate in a series of aspects of cancer progression. Recent evidence has shown that methyltransferase-like 3 (METTL3), the first identified and a critical methyltransferase, catalyzes m6A methylation on mRNA or non-coding RNA in mammals, affecting RNA metabolism. Abnormal m6A levels caused by METTL3 have been reported to be involved in different aspects of cancer development, including proliferation, apoptosis, and metastasis. In this review, we will shed light on recent findings regarding the biological function of METTL3 in gastrointestinal cancer and discuss future research directions and potential clinical applications of METTL3 for gastrointestinal cancer.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| | - Wei Geng
- The Affiliated Yancheng No. 1 People's Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Kaiyue Xu
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Chen
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China. .,Center for Public Health Research, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
387
|
Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer 2020; 19:88. [PMID: 32398132 PMCID: PMC7216508 DOI: 10.1186/s12943-020-01204-7] [Citation(s) in RCA: 581] [Impact Index Per Article: 145.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) is considered the most common, abundant, and conserved internal transcript modification, especially in eukaryotic messenger RNA (mRNA). m6A is installed by m6A methyltransferases (METTL3/14, WTAP, RBM15/15B, VIRMA and ZC3H13, termed “writers”), removed by demethylases (FTO, ALKBH5, and ALKBH3, termed “erasers”), and recognized by m6A-binding proteins (YTHDC1/2, YTHDF1/2/3, IGF2BP1/2/3, HNRNP, and eIF3, termed “readers”). Accumulating evidence suggests that m6A RNA methylation greatly impacts RNA metabolism and is involved in the pathogenesis of many kinds of diseases, including cancers. In this review, we focus on the physiological functions of m6A modification and its related regulators, as well as on the potential biological roles of these elements in human tumors.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Shan Kong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Mei Tao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,School of Public Health, Nantong University, NO 9, Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
388
|
Zhang R, Li SW, Liu L, Yang J, Huang G, Sang Y. TRIM11 facilitates chemoresistance in nasopharyngeal carcinoma by activating the β-catenin/ABCC9 axis via p62-selective autophagic degradation of Daple. Oncogenesis 2020; 9:45. [PMID: 32382014 PMCID: PMC7206012 DOI: 10.1038/s41389-020-0229-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy resistance is the major cause of nasopharyngeal carcinoma (NPC) treatment failure. Tripartite motif-containing protein (TRIM) family members play important roles in tumor development and chemotherapy failure. Here, based on a screening analysis of 71 TRIM family members by qRT-PCR, we first confirmed that the TRIM11 levels were significantly higher in drug-resistant NPC cells than in non-drug-resistant NPC cells, and high TRIM11 expression predicted poor overall survival (OS) and progression-free survival (PFS). N(6)-Methyladenosine (m6A) was highly enriched in TRIM11 in NPC drug-resistant cells and enhanced its RNA stability. TRIM11 enhanced the multidrug resistance in NPC by inhibiting apoptosis in vitro and promoting cisplatin (DDP) resistance in vivo. TRIM11 associated with Daple and promoted Daple ubiquitin-mediated degradation in a p62-selective autophagic manner, further upregulating β-catenin expression to induce ABCC9 expression by directly binding to the ABCC9 promoter. TRIM11 may regulate NPC drug resistance by positively modulating the Daple/β-catenin/ABCC9 signaling pathway. Thus, TRIM11 may be a potential diagnostic marker and therapeutic target for chemoresistant NPC.
Collapse
Affiliation(s)
- Runa Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Si-Wei Li
- Department of Oncology, Tongji Huangzhou Hospital of Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Lijuan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Jun Yang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Guofu Huang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
389
|
Huang H, Bai Y, Lu X, Xu Y, Zhao H, Sang X. N6-methyladenosine associated prognostic model in hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:633. [PMID: 32566570 PMCID: PMC7290648 DOI: 10.21037/atm-20-2894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background N6-methyladenosine (m6A), the most internal mRNA modification, is involved in various cancers. However, the function of m6A in hepatocellular carcinoma (HCC) is still not well explored. Here, we aimed to develop a prognostic model consist of m6A associated genes in HCC. Methods The mRNA expression profiles and the corresponding clinical information from the patients with HCC were obtained from The Cancer Genome Atlas (TCGA) database, m6A differentially expressed genes (DEGs) were screened by univariate, Lasso and multivariate Cox regression analyses to develop the prognostic model. The differentially expressed m6A genes in HCC tissues were verified by quantitative reverse transcription PCR (qRT-PCR). Results The DEGs were obtained between the HCC (n=374) and normal tissues (n=50). Nine m6A genes were correlated with the prognosis, and five of them (KIAA1429, METTL3, YTHDF1, YTHDF2, ZC3H13) were included in the prognostic model by Lasso regression analyses. Four genes (KIAA1429, METTL3, YTHDF1, YTHDF2) were proved significantly high expression in our ten pairs of matched HCC and normal tissues by PCR. The HCC patients were divided into two groups (high- and low-risk) according to the risk score. The high-risk group associated with a significant poor prognosis (P=1.72×10–4). The time-dependent receiver operating characteristic (ROC) curve analysis confirmed the good performance of this prognostic model (AUC =0.617). After univariate [P<0.001, 1.213 (1.136−1.295)] and multivariate Cox regression analyses [P<0.001, 1.198 (1.115−1.288)] by combined with other clinical factors, this prognostic model was identified as an independent prognostic factor of HCC patients. Conclusions The m6A genes were differentially expressed between HCC and normal tissues, and associated with the prognosis of HCC.
Collapse
Affiliation(s)
- Hanchun Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yi Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yiyao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
390
|
Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Mol Cancer 2020; 19:78. [PMID: 32303268 PMCID: PMC7164178 DOI: 10.1186/s12943-020-01194-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
RNA modifications can be added or removed by a variety of enzymes that catalyse the necessary reactions, and these modifications play roles in essential molecular mechanisms. The prevalent modifications on mRNA include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C), pseudouridine (Ψ), inosine (I), uridine (U) and ribosemethylation (2’-O-Me). Most of these modifications contribute to pre-mRNA splicing, nuclear export, transcript stability and translation initiation in eukaryotic cells. By participating in various physiological processes, RNA modifications also have regulatory roles in the pathogenesis of tumour and non-tumour diseases. We discussed the physiological roles of RNA modifications and associated these roles with disease pathogenesis. Functioning as the bridge between transcription and translation, RNA modifications are vital for the progression of numerous diseases and can even regulate the fate of cancer cells.
Collapse
Affiliation(s)
- Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P.R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P.R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P.R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P.R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China.
| |
Collapse
|
391
|
The emerging molecular mechanism of m 6A modulators in tumorigenesis and cancer progression. Biomed Pharmacother 2020; 127:110098. [PMID: 32299028 DOI: 10.1016/j.biopha.2020.110098] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification; m6A modifications are installed by methyltransferases, removed by demethylases and recognized by reader proteins. M6A plays crucial roles in a variety of biological processes by regulating target RNA translation, splicing, nuclear export, and decay. Since the establishment of methylated RNA immunoprecipitation-sequencing methodology, over three hundred articles about m6A modulators, including "writers", "erasers" and "readers", have been reported in the last four years. In addition, an increasing number of molecular mechanisms underlying m6A RNA methylation in human cancers have been comprehensively clarified. The recently emerged molecular mechanisms of m6A modulators in cancer cell proliferation, cell cycle progression, migration and invasion, apoptosis, and autophagy remain to be summarized. Hence, this review specifically summarizes these recent advances in the understanding of m6A molecular mechanisms in tumorigenesis and cancer progression. In addition, we discuss the prospect of using an m6A methylation modulator as a new diagnostic biomarker and therapeutic target for human cancers.
Collapse
|
392
|
Zhao Y, Shi Y, Shen H, Xie W. m 6A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol 2020; 13:35. [PMID: 32276589 PMCID: PMC7146974 DOI: 10.1186/s13045-020-00872-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is a well-known post-transcriptional modification that is the most common type of methylation in eukaryotic mRNAs. The regulation of m6A is dynamic and reversible, which is erected by m6A methyltransferases ("writers") and removed by m6A demethylases ("erasers"). Notably, the effects on targeted mRNAs resulted by m6A predominantly depend on the functions of different m6A-binding proteins ("readers") including YT521-B homology (YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs). Indeed, m6A readers not only participate in multiple procedures of RNA metabolism, but also are involved in a variety of biological processes. In this review, we summarized the specific functions and underlying mechanisms of m6A-binding proteins in tumorigenesis, hematopoiesis, virus replication, immune response, and adipogenesis.
Collapse
Affiliation(s)
- Yanchun Zhao
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yuanfei Shi
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
393
|
VIRMA-Dependent N6-Methyladenosine Modifications Regulate the Expression of Long Non-Coding RNAs CCAT1 and CCAT2 in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12040771. [PMID: 32218194 PMCID: PMC7226055 DOI: 10.3390/cancers12040771] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/26/2023] Open
Abstract
RNA methylation at position N6 in adenosine (m6A) and its associated methyltransferase complex (MTC) are involved in tumorigenesis. We aimed to explore m6A biological function for long non-coding RNAs (lncRNAs) in prostate cancer (PCa) and its clinical significance. m6A and MTC levels in PCa cells were characterized by ELISA and western blot. Putative m6A-regulated lncRNAs were identified and validated by lncRNA profiler qPCR array and bioinformatics analysis, followed by m6A/RNA co-immunoprecipitation. Impact of m6A depletion on RNA stability was assessed by Actinomycin D assay. The association of m6A-levels with PCa prognosis was examined in clinical samples. Higher m6A-levels and VIRMA overexpression were detected in metastatic castration-resistant PCa (mCRPC) cells (p < 0.05). VIRMA knockdown in PC-3 cells significantly decreased m6A-levels (p = 0.0317), attenuated malignant phenotype and suppressed the expression of oncogenic lncRNAs CCAT1 and CCAT2 (p < 0.00001). VIRMA depletion and m6A reduction decreased the stability and abundance of CCAT1/2 transcripts. Higher expression of VIRMA, CCAT1, and CCAT2 as a group variable was an independent predictor of poor prognosis (HR = 9.083, CI95% 1.911–43.183, p = 0.006). VIRMA is a critical factor sustaining m6A-levels in PCa cells. VIRMA downregulation attenuates the aggressive phenotype of PCa by overall reduction of m6A-levels decreasing stability and abundance of oncogenic lncRNAs.
Collapse
|
394
|
Huang H, Weng H, Chen J. m 6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell 2020; 37:270-288. [PMID: 32183948 PMCID: PMC7141420 DOI: 10.1016/j.ccell.2020.02.004] [Citation(s) in RCA: 744] [Impact Index Per Article: 186.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
N6-Methyladenosine (m6A) RNA modification has emerged in recent years as a new layer of regulatory mechanism controlling gene expression in eukaryotes. As a reversible epigenetic modification found not only in messenger RNAs but also in non-coding RNAs, m6A affects the fate of the modified RNA molecules and plays important roles in almost all vital bioprocesses, including cancer development. Here we review the up-to-date knowledge of the pathological roles and underlying molecular mechanism of m6A modifications (in both coding and non-coding RNAs) in cancer pathogenesis and drug response/resistance, and discuss the therapeutic potential of targeting m6A regulators for cancer therapy.
Collapse
Affiliation(s)
- Huilin Huang
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, the Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hengyou Weng
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, the Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Jianjun Chen
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, the Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| |
Collapse
|
395
|
Sun X, Dai Y, Tan G, Liu Y, Li N. Integration Analysis of m 6A-SNPs and eQTLs Associated With Sepsis Reveals Platelet Degranulation and Staphylococcus aureus Infection are Mediated by m 6A mRNA Methylation. Front Genet 2020; 11:7. [PMID: 32174955 PMCID: PMC7054457 DOI: 10.3389/fgene.2020.00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a major threat with high mortality rate for critically ill patients. Response to pathogen infection by the host immune system is a key biological process involved in the onset and development of sepsis. Heterogeneous host genome variation, especially single nucleotide polymorphisms (SNPs), has long been suggested to contribute to differences in disease progression. However, the function of SNPs located in non-coding regions remains to be elucidated. Recently, m6A mRNA modification levels were revealed to differ at SNPs. As m6A is a crucial regulator of gene expression, these SNPs might control genes by changing the m6A level on mRNA. To investigate the potential role of m6A SNPs in sepsis, we integrated m6A-SNP and expression quantitative trait loci (eQTLs) data. Analysis revealed 15,720 m6A-cis-eQTLs and 381 m6A-trans-eQTLs associated with sepsis. We identified 1321 genes as locations of m6A-cis-eQTLs. These were enriched in platelet degranulation and Staphylococcus aureus infection pathways, which are vital for the pathophysiological process of sepsis. We conclude that m6A modification of mRNA plays a very important role in sepsis, with m6A-cis-eQTLs potentially having the most effect on individual variation in sepsis progression.
Collapse
Affiliation(s)
- Xuri Sun
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Yishuang Dai
- Department of Outpatient operating room, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Guoliang Tan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Yuqi Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Neng Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
396
|
Yang DD, Chen ZH, Yu K, Lu JH, Wu QN, Wang Y, Ju HQ, Xu RH, Liu ZX, Zeng ZL. METTL3 Promotes the Progression of Gastric Cancer via Targeting the MYC Pathway. Front Oncol 2020; 10:115. [PMID: 32175271 PMCID: PMC7054453 DOI: 10.3389/fonc.2020.00115] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/22/2020] [Indexed: 12/28/2022] Open
Abstract
Methyltransferase-like 3 (METTL3), a major component of the N6-methyladenosine (m6A) methyltransferase complex, has been suggested to function as an oncogene in several cancers. However, its biological mechanism and the involved pathways in gastric cancer (GC) remain unknown. Here, we reported that frequent upregulation of METTL3 was responsible for the aberrant m6A levels in gastric carcinoma. On the other hand, a high level of METTL3 was significantly associated with several clinicopathological features and poor survival in patients with GC. The knockdown of METTL3 effectively inhibited cell proliferation and migration and invasion capacity. Moreover, overexpression of METTL3 considerably augmented its oncogenic function. Integrated RNA-seq and m6A-seq analysis first indicated that several component molecules (e.g., MCM5, MCM6, etc.) of MYC target genes were mediated by METTL3 via altered m6A modification. Our work uncovers the oncogenic roles of METTL3 in GC and suggests a critical mechanism of GC progression.
Collapse
Affiliation(s)
- Dong-Dong Yang
- State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Shaoguan Municipal Health Bureau, Shaoguan, China
| | - Zhan-Hong Chen
- State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kai Yu
- State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia-Huan Lu
- State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun Wang
- State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Department of Medical Oncology of Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
397
|
Zhao W, Cui Y, Liu L, Ma X, Qi X, Wang Y, Liu Z, Ma S, Liu J, Wu J. METTL3 Facilitates Oral Squamous Cell Carcinoma Tumorigenesis by Enhancing c-Myc Stability via YTHDF1-Mediated m 6A Modification. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:1-12. [PMID: 32145676 PMCID: PMC7057159 DOI: 10.1016/j.omtn.2020.01.033] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
N6-Methyladenosine (m6A) is the most common internal modification of eukaryotic messenger RNA (mRNA) that occurred on the N6 nitrogen of adenosine. However, the roles of m6A in oral squamous cell carcinoma (OSCC) are still elusive. Here, we investigate the function and mechanism of methyltransferase-like 3 (METTL3) in OSCC tumorigenesis. Clinically, METTL3 was significantly upregulated in tissue samples and correlated with the poor prognosis of OSCC patients. Functionally, loss and gain studies illustrated that METTL3 promoted the proliferation, invasion, and migration of OSCC cells in vitro, and METTL3 knockdown inhibited tumor growth in vivo. Mechanistically, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that METTL3 targeted the 3′ UTR (near to stop codon) of the c-Myc transcript to install the m6A modification, thereby enhancing its stability. Furthermore, results revealed that YTH N6-methyladenosine RNA binding protein 1 (YTH domain family, member 1 [YTHDF1]) mediated the m6A-increased stability of c-Myc mRNA catalyzed by METTL3. In conclusion, our findings herein identify that METTL3 accelerates the c-Myc stability via YTHDF1-mediated m6A modification, thereby giving rise to OSCC tumorigenesis.
Collapse
Affiliation(s)
- Wei Zhao
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yameng Cui
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lina Liu
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, NanKai University, Tianjin 300041, China
| | - Xiaozhou Ma
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoqian Qi
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Wang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Zihao Liu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Shiqing Ma
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Jingwen Liu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| | - Jie Wu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
398
|
Zheng W, Dong X, Zhao Y, Wang S, Jiang H, Zhang M, Zheng X, Gu M. Multiple Functions and Mechanisms Underlying the Role of METTL3 in Human Cancers. Front Oncol 2019; 9:1403. [PMID: 31921660 PMCID: PMC6920212 DOI: 10.3389/fonc.2019.01403] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Methyltransferase-like 3 (METTL3), a predominantly catalytic enzyme in the N6-methyladenosine (m6A) methyltransferase system, is dysregulated and plays a dual role (oncogene or tumor suppressor) in different human cancers. The expression and pro- or anticancer role of METTL3 in different cancers remain controversial. METTL3 is implicated in many aspects of tumor progression, including tumorigenesis, proliferation, invasion, migration, cell cycle, differentiation, and viability. Most underlying mechanisms involve multiple signaling pathways that rely on m6A-dependent modification. However, METTL3 can also modulate the cancer process by directly promoting the translation of oncogenes via interaction with the translation initiation machinery through recruitment of eukaryotic translation initiation factor 3 subunit h (eIF3h). In this review, we summarized the current evidence on METTL3 in diverse human malignancies and its potential as a prognostic/ therapeutic target.
Collapse
Affiliation(s)
- Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoshen Dong
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiyang Jiang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xinyu Zheng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.,Lab 1, Cancer Institute, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ming Gu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
399
|
Functions of N6-methyladenosine and its role in cancer. Mol Cancer 2019; 18:176. [PMID: 31801551 PMCID: PMC6892141 DOI: 10.1186/s12943-019-1109-9] [Citation(s) in RCA: 807] [Impact Index Per Article: 161.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023] Open
Abstract
N6-methyladenosine (m6A) is methylation that occurs in the N6-position of adenosine, which is the most prevalent internal modification on eukaryotic mRNA. Accumulating evidence suggests that m6A modulates gene expression, thereby regulating cellular processes ranging from cell self-renewal, differentiation, invasion and apoptosis. M6A is installed by m6A methyltransferases, removed by m6A demethylases and recognized by reader proteins, which regulate of RNA metabolism including translation, splicing, export, degradation and microRNA processing. Alteration of m6A levels participates in cancer pathogenesis and development via regulating expression of tumor-related genes like BRD4, MYC, SOCS2 and EGFR. In this review, we elaborate on recent advances in research of m6A enzymes. We also highlight the underlying mechanism of m6A in cancer pathogenesis and progression. Finally, we review corresponding potential targets in cancer therapy.
Collapse
|
400
|
The Emerging Role of GC-MSCs in the Gastric Cancer Microenvironment: From Tumor to Tumor Immunity. Stem Cells Int 2019; 2019:8071842. [PMID: 31885627 PMCID: PMC6914970 DOI: 10.1155/2019/8071842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been declared to not only participate in wound repair but also affect tumor progression. Tumor-associated MSCs, directly existing in the tumor microenvironment, play a critical role in tumor initiation, progression, and development. And different tumor-derived MSCs have their own unique characteristics. In this review, we mainly describe and discuss recent advances in our understanding of the emerging role of gastric cancer-derived MSC-like cells (GC-MSCs) in regulating gastric cancer progression and development, as well as the bidirectional influence between GC-MSCs and immune cells of the tumor microenvironment. Moreover, we also discuss the potential biomarker and therapeutic role of GC-MSCs. It is anticipated that new and deep insights into the functionality of GC-MSCs and the underlying mechanisms will promote the novel and promising therapeutic strategies against gastric cancer.
Collapse
|