3951
|
Morfeldt E, Berggård K, Persson J, Drakenberg T, Johnsson E, Lindahl E, Linse S, Lindahl G. Isolated hypervariable regions derived from streptococcal M proteins specifically bind human C4b-binding protein: implications for antigenic variation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3870-7. [PMID: 11564804 DOI: 10.4049/jimmunol.167.7.3870] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antigenic variation in microbial surface proteins represents an apparent paradox, because the variable region must retain an important function, while exhibiting extensive immunological variability. We studied this problem for a group of streptococcal M proteins in which the approximately 50-residue hypervariable regions (HVRs) show essentially no residue identity but nevertheless bind the same ligand, the human complement regulator C4b-binding protein (C4BP). Synthetic peptides derived from different HVRs were found to retain the ability to bind C4BP, implying that the HVR corresponds to a distinct ligand-binding domain that can be studied in isolated form. This finding allowed direct characterization of the ligand-binding properties of isolated HVRs and permitted comparisons between different HVRs in the absence of conserved parts of the M proteins. Affinity chromatography of human serum on immobilized peptides showed that they bound C4BP with high specificity and inhibition experiments indicated that different peptides bound to the same site in C4BP. Different C4BP-binding peptides did not exhibit any immunological cross-reactivity, but structural analysis suggested that they have similar folds. These data show that the HVR of streptococcal M protein can exhibit extreme variability in sequence and immunological properties while retaining a highly specific ligand-binding function.
Collapse
Affiliation(s)
- E Morfeldt
- Department of Medical Microbiology, Dermatology, and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
3952
|
Abstract
The mapping of the human genome was completed earlier this year and efforts are underway to understand the role of gene products (i.e. proteins) in biological pathways and human disease and to exploit their functional roles to derive protein therapeutics and protein-based drugs. A key component to the next revolution in the 'post-genomic' era will be the increasingly widespread use of protein structure in rational experimental design. Improvements in quality, availability and utility of large-scale three- and four-dimensional protein structural information are enabling a revolution in rational design, having particular impact on drug discovery and optimization. New computational methodologies now yield modeled structures that are, in many cases, quantitatively comparable with crystal structures, at a fraction of the cost.
Collapse
Affiliation(s)
- E T. Maggio
- Structural Bioinformatics, 92127, Tel: +1 858 675 2400 fax: +1 858 618 1040, San Diego, CA, USA
| | | |
Collapse
|
3953
|
Pang YP, Zheng XE, Weinshilboum RM. Theoretical 3D model of histamine N-methyltransferase: insights into the effects of a genetic polymorphism on enzymatic activity and thermal stability. Biochem Biophys Res Commun 2001; 287:204-8. [PMID: 11549275 DOI: 10.1006/bbrc.2001.5570] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histamine N-methyltransferase (HNMT) catalyzes the N-methylation of histamine in mammals. The experimentally determined HNMT three-dimensional (3D) structure is not available. However, there is a common genetic polymorphism for human HNMT (Thr105Ile) that reduces enzymatic activity and is a risk factor for asthma. To obtain insights into mechanisms responsible for the effects of that polymorphism on enzymatic activity and thermal stability, we predicted the 3D structure of HNMT using the threading method and molecular dynamics simulations in water. Herein, we report a theoretical 3D model of human HNMT which reveals that polymorphic residue Thr105Ile is located in the turn between a beta strand and an alpha helix on the protein surface away from the active site of HNMT. Ile105 energetically destabilizes folded HNMT because of its low Chou-Fasman score for forming a turn conformation and the exposure of its hydrophobic side chain to aqueous solution. It thus promotes the formation of misfolded proteins that are prone to the clearance by proteasomes. This information explains, for the first time, how genetic polymorphisms can cause enhanced protein degradation and why the thermal stability of allozyme Ile105 is lower than that of Thr105. It also supports the hypothesis that the experimental observation of a significantly lower level of HNMT enzymatic activity for allozyme Ile105 than that with Thr105 is due to a decreased concentration of allozyme Ile105, but not an alternation of the active-site topology of HNMT caused by the difference at residue 105.
Collapse
Affiliation(s)
- Y P Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Foundation for Medical Education and Research, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
3954
|
Abstract
This review assembles data from three bodies of literature (bacterial genetics, plastid biogenesis and parasitology) that seldom have much direct cross-talk. After overcoming terminological complications to sort out microbial nifS from sufS genes, we connect a bacterial operon, recently found to be involved in iron metabolism, the formation of [Fe-S] clusters and oxidative stress to a potentially important gene (sufB) carried on the degenerate plastid genome of malaria and related parasites.
Collapse
Affiliation(s)
- K E Ellis
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
3955
|
Kihara D, Lu H, Kolinski A, Skolnick J. TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints. Proc Natl Acad Sci U S A 2001; 98:10125-30. [PMID: 11504922 PMCID: PMC56926 DOI: 10.1073/pnas.181328398] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Accepted: 06/28/2001] [Indexed: 11/18/2022] Open
Abstract
The successful prediction of protein structure from amino acid sequence requires two features: an efficient conformational search algorithm and an energy function with a global minimum in the native state. As a step toward addressing both issues, a threading-based method of secondary and tertiary restraint prediction has been developed and applied to ab initio folding. Such restraints are derived by extracting consensus contacts and local secondary structure from at least weakly scoring structures that, in some cases, can lack any global similarity to the sequence of interest. Furthermore, to generate representative protein structures, a reduced lattice-based protein model is used with replica exchange Monte Carlo to explore conformational space. We report results on the application of this methodology, termed TOUCHSTONE, to 65 proteins whose lengths range from 39 to 146 residues. For 47 (40) proteins, a cluster centroid whose rms deviation from native is below 6.5 (5) A is found in one of the five lowest energy centroids. The number of correctly predicted proteins increases to 50 when atomic detail is added and a knowledge-based atomic potential is combined with clustered and nonclustered structures for candidate selection. The combination of the ratio of the relative number of contacts to the protein length and the number of clusters generated by the folding algorithm is a reliable indicator of the likelihood of successful fold prediction, thereby opening the way for genome-scale ab initio folding.
Collapse
Affiliation(s)
- D Kihara
- Laboratory of Computational Genomics, Donald Danforth Plant Science Center, 893 North Warson Road, St. Louis, MO 63141, USA
| | | | | | | |
Collapse
|
3956
|
Maier T, Förster HH, Asperger O, Hahn U. Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 2001; 286:652-8. [PMID: 11511110 DOI: 10.1006/bbrc.2001.5449] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CYP153 a cytochrome P450 from Acinetobacter sp. EB104 catalyzes the hydroxylation of unsubstituted n-alkanes. We have decided to use the CYP153 system as a model for mechanistic studies on regioselective n-alkane oxidation and the interaction of hydrophobic substrates with soluble enzymes. Here the molecular cloning of the CYP153 gene is reported. Single specific primer PCR was applied to yield the whole gene sequence via chromosomal walks. CYP153 consists of 497 amino acids (M(r) = 56 kDa) and thus represents an unusually long bacterial P450, containing all P450 typical structural elements. It constitutes the new P450 family CYP153. The prolonged N-terminus of about 90 amino acids does not contain a so far known membrane-anchoring sequence but a 28-amino acid long amphipathic helix. The relevance of the remarkably long N-terminus and of other sequence motives like the hydrophobic F-G loop is discussed with respect to substrate binding and recognition.
Collapse
Affiliation(s)
- T Maier
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy, and Psychology, University of Leipzig, Talstrabetae 33, Leipzig, D-04103, Federal Republic of Germany
| | | | | | | |
Collapse
|
3957
|
Scholz GM, Cartledge K, Hall NE. Identification and characterization of Harc, a novel Hsp90-associating relative of Cdc37. J Biol Chem 2001; 276:30971-9. [PMID: 11413142 DOI: 10.1074/jbc.m103889200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although little is known about the precise mechanisms by which the molecular chaperone Hsp90 recognizes its client proteins, Cdc37 has been shown to play a critical role in the targeting of Hsp90 to client protein kinases. Described here is the identification and characterization of a novel 35-kDa human protein that is 31% identical to Cdc37. We have named this novel protein Harc (Hsp90-associating relative of Cdc37). Northern blot analysis revealed the presence of Harc mRNA in several human tissues, including liver, skeletal muscle, and kidney. Biochemical fractionation and immunofluorescent localization of epitope-tagged Harc (i.e. FLAG-Harc) indicated that it is present in the cytoplasm of cells. FLAG-Harc binds Hsp90 but unlike Cdc37 does not bind Src family kinases or Raf-1. Mapping experiments indicate that the central 120 amino acids of both Harc and Cdc37 constitute a Hsp90-binding domain not described previously. FLAG-Harc is basally serine-phosphorylated and hyperphosphorylated when co-expressed with an activated mutant of the Src family kinase Hck. Notably, FLAG-Harc forms complexes with Hsp90, Hsp70, p60Hop, immunophilins, and an unidentified p22 protein but not with the Hsp90 co-chaperone p23. Thus Harc likely represents a novel participant in Hsp90-mediated protein folding, potentially targeting Hsp90 to Hsp70-client protein heterocomplexes.
Collapse
Affiliation(s)
- G M Scholz
- Ludwig Institute for Cancer Research, Post Office Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia.
| | | | | |
Collapse
|
3958
|
Pasquier C, Promponas VJ, Hamodrakas SJ. PRED-CLASS: cascading neural networks for generalized protein classification and genome-wide applications. Proteins 2001; 44:361-9. [PMID: 11455609 DOI: 10.1002/prot.1101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A cascading system of hierarchical, artificial neural networks (named PRED-CLASS) is presented for the generalized classification of proteins into four distinct classes-transmembrane, fibrous, globular, and mixed-from information solely encoded in their amino acid sequences. The architecture of the individual component networks is kept very simple, reducing the number of free parameters (network synaptic weights) for faster training, improved generalization, and the avoidance of data overfitting. Capturing information from as few as 50 protein sequences spread among the four target classes (6 transmembrane, 10 fibrous, 13 globular, and 17 mixed), PRED-CLASS was able to obtain 371 correct predictions out of a set of 387 proteins (success rate approximately 96%) unambiguously assigned into one of the target classes. The application of PRED-CLASS to several test sets and complete proteomes of several organisms demonstrates that such a method could serve as a valuable tool in the annotation of genomic open reading frames with no functional assignment or as a preliminary step in fold recognition and ab initio structure prediction methods. Detailed results obtained for various data sets and completed genomes, along with a web sever running the PRED-CLASS algorithm, can be accessed over the World Wide Web at http://o2.biol.uoa.gr/PRED-CLASS.
Collapse
Affiliation(s)
- C Pasquier
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | | | | |
Collapse
|
3959
|
Zhou HX, Shan Y. Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins 2001; 44:336-43. [PMID: 11455607 DOI: 10.1002/prot.1099] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein-protein interaction sites are predicted from a neural network with sequence profiles of neighboring residues and solvent exposure as input. The network was trained on 615 pairs of nonhomologous complex-forming proteins. Tested on a different set of 129 pairs of nonhomologous complex-forming proteins, 70% of the 11,004 predicted interface residues are actually located in the interfaces. These 7732 correctly predicted residues account for 65% of the 11,805 residues making up the 129 interfaces. The main strength of the network predictor lies in the fact that neighbor lists and solvent exposure are relatively insensitive to structural changes accompanying complex formation. As such, it performs equally well with bound or unbound structures of the proteins. For a set of 35 test proteins, when the input was calculated from the bound and unbound structures, the correct fractions of the predicted interface residues were 69 and 70%, respectively.
Collapse
Affiliation(s)
- H X Zhou
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
3960
|
Bonneau R, Baker D. Ab initio protein structure prediction: progress and prospects. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:173-89. [PMID: 11340057 DOI: 10.1146/annurev.biophys.30.1.173] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considerable recent progress has been made in the field of ab initio protein structure prediction, as witnessed by the third Critical Assessment of Structure Prediction (CASP3). In spite of this progress, much work remains, for the field has yet to produce consistently reliable ab initio structure prediction protocols. In this work, we review the features of current ab initio protocols in an attempt to highlight the foundations of recent progress in the field and suggest promising directions for future work.
Collapse
Affiliation(s)
- R Bonneau
- Department of Biochemistry, University of Washington, Seattle, Washington, Box 357350, 98195, USA.
| | | |
Collapse
|
3961
|
Brown LM, Gonzalez RA, Novotny J, Flint SJ. Structure of the adenovirus E4 Orf6 protein predicted by fold recognition and comparative protein modeling. Proteins 2001; 44:97-109. [PMID: 11391772 DOI: 10.1002/prot.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To facilitate investigation of the molecular and biochemical functions of the adenovirus E4 Orf6 protein, we sought to derive three-dimensional structural information using computational methods, particularly threading and comparative protein modeling. The amino acid sequence of the protein was used for secondary structure and hidden Markov model (HMM) analyses, and for fold recognition by the ProCeryon program. Six alternative models were generated from the top-scoring folds identified by threading. These models were examined by 3D-1D analysis and evaluated in the light of available experimental evidence. The final model of the E4 protein derived from these and additional threading calculations was a chimera, with the tertiary structure of its C-terminal 226 residues derived from a TIM barrel template and a mainly alpha-nonbundle topology for its poorly conserved N-terminal 68 residues. To assess the accuracy of this model, additional threading calculations were performed with E4 Orf6 sequences altered as in previous experimental studies. The proposed structural model is consistent with the reported secondary structure of a functionally important C-terminal sequence and can account for the properties of proteins carrying alterations in functionally important sequences or of those that disrupt an unusual zinc-coordination motif.
Collapse
Affiliation(s)
- L M Brown
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
3962
|
Johnson KN, Johnson KL, Dasgupta R, Gratsch T, Ball LA. Comparisons among the larger genome segments of six nodaviruses and their encoded RNA replicases. J Gen Virol 2001; 82:1855-1866. [PMID: 11457991 DOI: 10.1099/0022-1317-82-8-1855] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Nodaviridae are a family of isometric RNA viruses that infect insects and fish. Their genomes, which are among the smallest known for animal viruses, consist of two co-encapsidated positive-sense RNA segments: RNA1 encodes the viral contribution to the RNA-dependent RNA polymerase (RdRp) which replicates the viral genome, whereas RNA2 encodes the capsid protein precursor. In this study, the RNA1 sequences of two insect nodaviruses - Nodamura virus (the prototype of the genus) and Boolarra virus - are reported as well as detailed comparisons of their encoded RdRps with those of three other nodaviruses of insects and one of fish. Although the 5' and 3' untranslated regions did not reveal common features of RNA sequence or secondary structure, these divergent viruses showed similar genome organizations and encoded RdRps that had from 26 to 99% amino acid sequence identity. All six RdRp amino acid sequences contained canonical RNA polymerase motifs in their C-terminal halves and conserved elements of predicted secondary structure throughout. A search for structural homologues in the protein structure database identified the poliovirus RdRp, 3D(pol), as the best template for homology modelling of the RNA polymerase domain of Pariacoto virus and allowed the construction of a congruent three-dimensional model. These results extend our understanding of the relationships among the RNA1 segments of nodaviruses and the predicted structures of their encoded RdRps.
Collapse
Affiliation(s)
- Karyn N Johnson
- Department of Microbiology, University of Alabama at Birmingham, BBRB 373/17, 845 19th Street South, Birmingham, AL 35294-2170, USA1
| | - Kyle L Johnson
- Department of Microbiology, University of Alabama at Birmingham, BBRB 373/17, 845 19th Street South, Birmingham, AL 35294-2170, USA1
| | - Ranjit Dasgupta
- Department of Animal Health and Biomedical Science, University of Wisconsin-Madison, Madison, WI 53706, USA2
| | - Theresa Gratsch
- Department of Microbiology, University of Alabama at Birmingham, BBRB 373/17, 845 19th Street South, Birmingham, AL 35294-2170, USA1
| | - L Andrew Ball
- Department of Microbiology, University of Alabama at Birmingham, BBRB 373/17, 845 19th Street South, Birmingham, AL 35294-2170, USA1
| |
Collapse
|
3963
|
Sciandra F, Schneider M, Giardina B, Baumgartner S, Petrucci TC, Brancaccio A. Identification of the beta-dystroglycan binding epitope within the C-terminal region of alpha-dystroglycan. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4590-7. [PMID: 11502221 DOI: 10.1046/j.1432-1327.2001.02386.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dystroglycan is a receptor for extracellular matrix proteins that plays a crucial role during embryogenesis in addition to adult tissue stabilization. A precursor product of a single gene is post-translationally cleaved to form two different subunits, alpha and beta. The extracellular alpha-dystroglycan is a membrane-associated, highly glycosylated protein that binds to various extracellular matrix molecules, whereas the transmembrane beta-dystroglycan binds, via its cytosolic domain, to dystrophin and many other proteins. alpha- and beta-Dystroglycan interact tightly but noncovalently. We have previously shown that the N-terminal region of beta-dystroglycan, beta-DG(654-750), binds to the C-terminal region of murine alpha-dystroglycan independently from glycosylation. Preparing a series of deleted recombinant fragments and using solid-phase binding assays, the C-terminal sequence of alpha-dystroglycan containing the binding epitope for beta-dystroglycan has been defined more precisely. We found that a region of 36 amino acids, from position 550-585, is required for binding the extracellular region, amino acids 654-750 of beta-dystroglycan. Recently, a dystroglycan-like gene was identified in Drosophila that showed a moderate degree of conservation with vertebrate dystroglycan (31% identity, 48% similarity). Surprisingly, the Drosophila sequence contains a region showing a higher degree of identity and conservation (45% and 66%) that coincides with the 550-585 sequence of vertebrate alpha-dystroglycan. We have expressed this Drosophila dystroglycan fragment and measured its binding to the extracellular region of vertebrate (murine) beta-dystroglycan (Kd = 6 +/- 1 microM). These data confirm the proper identification of the beta-dystroglycan binding epitope and stress the importance of this region during evolution. This finding might help the rational design of dystroglycan-specific binding drugs, that could have important biomedical applications.
Collapse
Affiliation(s)
- F Sciandra
- Center for Receptor Chemistry (CNR) Institute of Chemistry and Clinical Chemistry, Catholic University of Rome, Italy
| | | | | | | | | | | |
Collapse
|
3964
|
Kahn RA, Le Bouquin R, Pinot F, Benveniste I, Durst F. A conservative amino acid substitution alters the regiospecificity of CYP94A2, a fatty acid hydroxylase from the plant Vicia sativa. Arch Biochem Biophys 2001; 391:180-7. [PMID: 11437349 DOI: 10.1006/abbi.2001.2415] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid omega-hydroxylation is involved in the biosynthesis of the plant cuticle, formation of plant defense signaling molecules, and possibly in the rapid catabolism of free fatty acids liberated under stress conditions. CYP94A2 is a cytochrome P450-dependent medium-chain fatty acid hydroxylase that was recently isolated from Vicia sativa. Contrary to CYP94A1 and CYP86A1, two other fatty acid hydroxylases previously characterized in V. sativa and Arabidopsis thaliana, CYP94A2 is not a strict omega-hydroxylase, but exhibits chain-length-dependent regioselectivity of oxidative attack. Sequence alignments of CYP94A2 with CYP94A1 and molecular modeling studies suggested that F494, located in SRS-6 (substrate recognition site) was involved in substrate recognition and positioning. Indeed, a conservative amino acid substitution at that position markedly altered the regiospecificity of CYP94A2. The observed shift from omega toward omega-1 hydroxylation was prominent with lauric acid as substrate and declined with increasing fatty acid chain length.
Collapse
Affiliation(s)
- R A Kahn
- Département d'Enzymologie Cellulaire et Moléculaire, Institut de Biologie Moléculaire des Plantes-CNRS UPR 406, 28 rue Goethe, Strasbourg Cedex, F-67083, France
| | | | | | | | | |
Collapse
|
3965
|
Doherty AJ, Jackson SP, Weller GR. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett 2001; 500:186-8. [PMID: 11445083 DOI: 10.1016/s0014-5793(01)02589-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3966
|
Taylor AB, Smith BS, Kitada S, Kojima K, Miyaura H, Otwinowski Z, Ito A, Deisenhofer J. Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure 2001; 9:615-25. [PMID: 11470436 DOI: 10.1016/s0969-2126(01)00621-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mitochondrial processing peptidase (MPP) is a metalloendopeptidase that cleaves the N-terminal signal sequences of nuclear-encoded proteins targeted for transport from the cytosol to the mitochondria. Mitochondrial signal sequences vary in length and sequence, but each is cleaved at a single specific site by MPP. The cleavage sites typically contain an arginine at position -2 (in the N-terminal portion) from the scissile peptide bond in addition to other distal basic residues, and an aromatic residue at position +1. Mitochondrial import machinery recognizes amphiphilic helical conformations in signal sequences. However, it is unclear how MPP specifically recognizes diverse presequence substrates. RESULTS The crystal structures of recombinant yeast MPP and a cleavage-deficient mutant of MPP complexed with synthetic signal peptides have been determined. MPP is a heterodimer; its alpha and beta subunits are homologous to the core II and core I proteins, respectively, of the ubiquinol-cytochrome c oxidoreductase complex. Crystal structures of two different synthetic substrate peptides cocrystallized with the mutant MPP each show the peptide bound in an extended conformation at the active site. Recognition sites for the arginine at position -2 and the +1 aromatic residue are observed. CONCLUSIONS MPP bound two mitochondrial import presequence peptides in extended conformations in a large polar cavity. The presequence conformations differ from the amphiphilic helical conformation recognized by mitochondrial import components. Our findings suggest that the presequences adopt context-dependent conformations through mitochondrial import and processing, helical for recognition by mitochondrial import machinery and extended for cleavage by the main processing component.
Collapse
Affiliation(s)
- A B Taylor
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
3967
|
Abstract
The mapping of the human genome was completed earlier this year and efforts are underway to understand the role of gene products (i.e. proteins) in biological pathways and human disease and to exploit their functional roles to derive protein therapeutics and protein-based drugs. A key component to the next revolution in the 'post-genomic' era will be the increasingly widespread use of protein structure in rational experimental design. Improvements in quality, availability and utility of large-scale 3D and 4D protein structural information are enabling a revolution in rational design, having particular impact on drug discovery and optimization. New computational methodologies now yield modeled structures that are, in many cases, quantitatively comparable with crystal structures, at a fraction of the cost.
Collapse
Affiliation(s)
- E T Maggio
- Structural Bioinformatics Inc., 92127, San Diego, CA, USA.
| | | |
Collapse
|
3968
|
Grigoriev IV, Zhang C, Kim SH. Sequence-based detection of distantly related proteins with the same fold. PROTEIN ENGINEERING 2001; 14:455-8. [PMID: 11522917 DOI: 10.1093/protein/14.7.455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- I V Grigoriev
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
3969
|
Schein CH, Nagle GT, Page JS, Sweedler JV, Xu Y, Painter SD, Braun W. Aplysia attractin: biophysical characterization and modeling of a water-borne pheromone. Biophys J 2001; 81:463-72. [PMID: 11423429 PMCID: PMC1301526 DOI: 10.1016/s0006-3495(01)75714-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Attractin, a 58-residue protein secreted by the mollusk Aplysia californica, stimulates sexually mature animals to approach egg cordons. Attractin from five different Aplysia species are approximately 40% identical in sequence. Recombinant attractin, expressed in insect cells and purified by reverse-phase high-performance liquid chromatography (RP-HPLC), is active in a bioassay using A. brasiliana; its circular dichroism (CD) spectrum indicates a predominantly alpha-helical structure. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) characterization of proteolytic fragments identified disulfide bonds between the six conserved cysteines (I-VI, II-V, III-IV, where the Roman numeral indicates the order of occurrence in the primary sequence). Attractin has no significant similarity to any other sequence in the database. The protozoan Euplotes pheromones were selected by fold recognition as possible templates. These diverse proteins have three alpha-helices, with six cysteine residues disulfide-bonded in a different pattern from attractin. Model structures with good stereochemical parameters were prepared using the EXDIS/DIAMOD/FANTOM program suite and constraints based on sequence alignments with the Euplotes templates and the attractin disulfide bonds. A potential receptor-binding site is suggested based on these data. Future structural characterization of attractin will be needed to confirm these models.
Collapse
Affiliation(s)
- C H Schein
- Sealy Center for Structural Biology, Department of Human Biological Chemistry and Genetics, Galveston, Texas 77555, USA
| | | | | | | | | | | | | |
Collapse
|
3970
|
Campanacci V, Krieger J, Bette S, Sturgis JN, Lartigue A, Cambillau C, Breer H, Tegoni M. Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J Biol Chem 2001; 276:20078-84. [PMID: 11274212 DOI: 10.1074/jbc.m100713200] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pheromone-binding proteins (PBPs), located in the sensillum lymph of pheromone-responsive antennal hairs, are thought to transport the hydrophobic pheromones to the chemosensory membranes of olfactory neurons. It is currently unclear what role PBPs may play in the recognition and discrimination of species-specific pheromones. We have investigated the binding properties and specificity of PBPs from Mamestra brassicae (MbraPBP1), Antheraea polyphemus (ApolPBP1), Bombyx mori (BmorPBP), and a hexa-mutant of MbraPBP1 (Mbra1-M6), mutated at residues of the internal cavity to mimic that of BmorPBP, using the fluorescence probe 1-aminoanthracene (AMA). AMA binds to MbraPBP1 and ApolPBP1, however, no binding was observed with either BmorPBP or Mbra1-M6. The latter result indicates that relatively limited modifications to the PBP cavity actually interfere with AMA binding, suggesting that AMA binds in the internal cavity. Several pheromones are able to displace AMA from the MbraPBP1- and ApolPBP1-binding sites, without, however, any evidence of specificity for their physiologically relevant pheromones. Moreover, some fatty acids are also able to compete with AMA binding. These findings bring into doubt the currently held belief that all PBPs are specifically tuned to distinct pheromonal compounds.
Collapse
Affiliation(s)
- V Campanacci
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 6098, CNRS et Universités d'Aix-Marseille I et II, 31 ch. Joseph Aiguier, 13402 Marseille, Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
3971
|
Abstract
By analysing the surface composition of a set of protein 3D structures, complemented with predicted surface compositional information for homologous proteins, we have found significant evidence for a layer composition of protein structures. In the innermost and outermost parts of proteins there is a net negative charge, while the middle has a net positive charge. In addition, our findings indicate that the concept of conservative mutation needs substantial revision, e.g. very different spatial preferences were found for glutamic acid and aspartic acid. The alanine screening often used in protein engineering projects involves the substitution of residues to alanine, based on the assumption that alanine is a "neutral" residue. However, alanine has a high negative correlation with all but the non-polar residues. We therefore propose the use of, for example, serine as a substitute for the residues that are negatively correlated with alanine.
Collapse
Affiliation(s)
- P H Jonson
- Biostructure and Protein Engineering Group, Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | |
Collapse
|
3972
|
Abstract
With a protein structure comparison, an iterative database search with sequence profiles, and a multiple-alignment analysis, we show that two domains with the helix-grip fold, the star-related lipid-transfer (START) domain of the MLN64 protein and the birch allergen, are homologous. They define a large, previously underappreciated superfamily that we call the START superfamily. In addition to the classical START domains that are primarily involved in eukaryotic signaling mediated by lipid binding and the birch antigen family that consists of plant proteins implicated in stress/pathogen response, the START superfamily includes bacterial polyketide cyclases/aromatases (e.g., TcmN and WhiE VI) and two families of previously uncharacterized proteins. The identification of this domain provides a structural prediction of an important class of enzymes involved in polyketide antibiotic synthesis and allows the prediction of their active site. It is predicted that all START domains contain a similar ligand-binding pocket. Modifications of this pocket determine the ligand-binding specificity and may also be the basis for at least two distinct enzymatic activities, those of a cyclase/aromatase and an RNase. Thus, the START domain superfamily is a rare case of the adaptation of a protein fold with a conserved ligand-binding mode for both a broad variety of catalytic activities and noncatalytic regulatory functions. Proteins 2001;43:134-144.
Collapse
Affiliation(s)
- L M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
3973
|
Aravind L. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem Sci 2001; 26:273-5. [PMID: 11343911 DOI: 10.1016/s0968-0004(01)01787-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sequence profile analysis was used to detect a conserved globular domain in several proteins including deltex, Trip12 and poly-ADP-ribose polymerase homologs. It was named the WWE domain after its most conserved residues and is predicted to mediate specific protein-protein interactions in ubiquitin and ADP-ribose conjugation systems.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
3974
|
Abstract
With a protein structure comparison, an iterative database search with sequence profiles, and a multiple-alignment analysis, we show that two domains with the helix-grip fold, the star-related lipid-transfer (START) domain of the MLN64 protein and the birch allergen, are homologous. They define a large, previously underappreciated superfamily that we call the START superfamily. In addition to the classical START domains that are primarily involved in eukaryotic signaling mediated by lipid binding and the birch antigen family that consists of plant proteins implicated in stress/pathogen response, the START superfamily includes bacterial polyketide cyclases/aromatases (e.g., TcmN and WhiE VI) and two families of previously uncharacterized proteins. The identification of this domain provides a structural prediction of an important class of enzymes involved in polyketide antibiotic synthesis and allows the prediction of their active site. It is predicted that all START domains contain a similar ligand-binding pocket. Modifications of this pocket determine the ligand-binding specificity and may also be the basis for at least two distinct enzymatic activities, those of a cyclase/aromatase and an RNase. Thus, the START domain superfamily is a rare case of the adaptation of a protein fold with a conserved ligand-binding mode for both a broad variety of catalytic activities and noncatalytic regulatory functions. Proteins 2001;43:134-144.
Collapse
Affiliation(s)
- L M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
3975
|
Abstract
Methods predicting protein secondary structure improved substantially in the 1990s through the use of evolutionary information taken from the divergence of proteins in the same structural family. Recently, the evolutionary information resulting from improved searches and larger databases has again boosted prediction accuracy by more than four percentage points to its current height of around 76% of all residues predicted correctly in one of the three states, helix, strand, and other. The past year also brought successful new concepts to the field. These new methods may be particularly interesting in light of the improvements achieved through simple combining of existing methods. Divergent evolutionary profiles contain enough information not only to substantially improve prediction accuracy, but also to correctly predict long stretches of identical residues observed in alternative secondary structure states depending on nonlocal conditions. An example is a method automatically identifying structural switches and thus finding a remarkable connection between predicted secondary structure and aspects of function. Secondary structure predictions are increasingly becoming the work horse for numerous methods aimed at predicting protein structure and function. Is the recent increase in accuracy significant enough to make predictions even more useful? Because the recent improvement yields a better prediction of segments, and in particular of beta strands, I believe the answer is affirmative. What is the limit of prediction accuracy? We shall see.
Collapse
Affiliation(s)
- B Rost
- CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, New York 10032, USA
| |
Collapse
|
3976
|
Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 2001; 308:397-407. [PMID: 11327775 DOI: 10.1006/jmbi.2001.4580] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have introduced a new method of protein secondary structure prediction which is based on the theory of support vector machine (SVM). SVM represents a new approach to supervised pattern classification which has been successfully applied to a wide range of pattern recognition problems, including object recognition, speaker identification, gene function prediction with microarray expression profile, etc. In these cases, the performance of SVM either matches or is significantly better than that of traditional machine learning approaches, including neural networks.The first use of the SVM approach to predict protein secondary structure is described here. Unlike the previous studies, we first constructed several binary classifiers, then assembled a tertiary classifier for three secondary structure states (helix, sheet and coil) based on these binary classifiers. The SVM method achieved a good performance of segment overlap accuracy SOV=76.2 % through sevenfold cross validation on a database of 513 non-homologous protein chains with multiple sequence alignments, which out-performs existing methods. Meanwhile three-state overall per-residue accuracy Q(3) achieved 73.5 %, which is at least comparable to existing single prediction methods. Furthermore a useful "reliability index" for the predictions was developed. In addition, SVM has many attractive features, including effective avoidance of overfitting, the ability to handle large feature spaces, information condensing of the given data set, etc. The SVM method is conveniently applied to many other pattern classification tasks in biology.
Collapse
Affiliation(s)
- S Hua
- Institute of Bioinformatics, State key Laboratory of Biemembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
3977
|
Batista CV, Scaloni A, Rigden DJ, Silva LR, Rodrigues Romero A, Dukor R, Sebben A, Talamo F, Bloch C. A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett 2001; 494:85-9. [PMID: 11297740 DOI: 10.1016/s0014-5793(01)02324-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We present here the purification and the analysis of the structural and functional properties of distinctin, a 5.4 kDa heterodimeric peptide with antimicrobial activity from the tree-frog Phyllomedusa distincta. This peptide was isolated from the crude extract of skin granular glands by different chromatographic steps. Its minimal inhibitory concentration was determined against pathogenic Escherichia coli, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa strains. Amino acid sequencing and mass spectrometric investigations demonstrated that distinctin is constituted of two different polypeptide chains connected by an intermolecular disulphide bridge. Circular dichroism and Fourier-transformed infrared spectroscopy studies showed that this molecule adopts, in water, a structure containing a significant percentage of anti-parallel beta-sheet. A conformational variation was observed under experimental conditions mimicking a membrane-like environment. Database searches did not show sequence similarities with any known antimicrobial peptides. In the light of these results, we can consider distinctin as the first example of a new class of antimicrobial heterodimeric peptides from frog skin.
Collapse
Affiliation(s)
- C V Batista
- Institute of Biology, University of Brasilia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
3978
|
Bonneau R, Strauss CE, Baker D. Improving the performance of Rosetta using multiple sequence alignment information and global measures of hydrophobic core formation. Proteins 2001; 43:1-11. [PMID: 11170209 DOI: 10.1002/1097-0134(20010401)43:1<1::aid-prot1012>3.0.co;2-a] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study explores the use of multiple sequence alignment (MSA) information and global measures of hydrophobic core formation for improving the Rosetta ab initio protein structure prediction method. The most effective use of the MSA information is achieved by carrying out independent folding simulations for a subset of the homologous sequences in the MSA and then identifying the free energy minima common to all folded sequences via simultaneous clustering of the independent folding runs. Global measures of hydrophobic core formation, using ellipsoidal rather than spherical representations of the hydrophobic core, are found to be useful in removing non-native conformations before cluster analysis. Through this combination of MSA information and global measures of protein core formation, we significantly increase the performance of Rosetta on a challenging test set. Proteins 2001;43:1-11.
Collapse
Affiliation(s)
- R Bonneau
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
3979
|
Hernández P, Debray H, Jaekel H, Garfias Y, Jiménez Md MDC, Martínez-Cairo S, Zenteno E. Chemical characterization of the lectin from Amaranthus leucocarpus syn. hypocondriacus by 2-D proteome analysis. Glycoconj J 2001; 18:321-9. [PMID: 11788800 DOI: 10.1023/a:1013760915738] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this work, we characterized chemically the N-acetyl-D-galactosamine specific lectin from Amaranthus leucocarpus syn hypocondriacus lectin (ALL). It is a dimeric glycoprotein composed by three isoforms with pl at 4.8, 4.9, and 5.2. Circular dichroism analysis indicated that the secondary structure of ALL contains 45% of \bibeta-sheet and 5% of \bialpha-helix. Amino acid sequence of the purified lectin and its isoforms was determined from peptides obtained after trypsin digestion by MALDI-TOF (Matrix assisted laser desorption ionization-time of flight). The tryptic peptides prepared from the purified lectin and the three isoforms showed different degrees (80 to 83%) of identity with the amino acid sequence belonging to a previously described high nutritional value protein from A. hypocondriacus not shown at the time to be a lectin. Furthermore, analysis of tryptic peptides obtained from ALL previously treated with peptide N-glycosidase, revealed a 93% identity with the aforementioned protein. Presence of N-glycosidically linked glycans of the oligomannosidic type and, in minor proportion, of the N-acetyllactosaminic type glycans was determined by affinity chromatography on immobilized Con A.
Collapse
Affiliation(s)
- P Hernández
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias, Tlalpan D.F., 14080, México
| | | | | | | | | | | | | |
Collapse
|
3980
|
El-Agnaf OM, Sheridan JM, Sidera C, Siligardi G, Hussain R, Haris PI, Austen BM. Effect of the disulfide bridge and the C-terminal extension on the oligomerization of the amyloid peptide ABri implicated in familial British dementia. Biochemistry 2001; 40:3449-57. [PMID: 11297410 DOI: 10.1021/bi002287i] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Familial British dementia (FBD) is a rare neurodegenerative disorder and shares features with Alzheimer's disease, including amyloid plaque deposits, neurofibrillary tangles, neuronal loss, and progressive dementia. Immunohistochemical and biochemical analysis of plaques and vascular amyloid of FBD brains revealed that a 4 kDa peptide named ABri is the main component of the highly insoluble amyloid deposits. In FBD patients, the ABri peptide is produced as a result of a point mutation in the usual stop codon of the BRI gene. This mutation produces a BRI precursor protein 11 amino acids longer than the wild-type protein. Mutant and wild-type precursor proteins both undergo furin cleavage between residues 243 and 244, producing a peptide of 34 amino acids in the case of ABri and 23 amino acids in the case of the wild-type (WT) peptide. Here we demonstrate that the intramolecular disulfide bond in ABri and the C-terminal extension are required to elongate initially formed dimers to oligomers and fibrils. In contrast, the shorter WT peptide did not aggregate under the same conditions. Conformational analyses indicate that the disulfide bond and the C-terminal extension of ABri are required for the formation of beta-sheet structure. Soluble nonfibrillar ABri oligomers were observed prior to the appearance of mature fibrils. A molecular model of ABri containing three beta-strands, and two beta-hairpins annealed by a disulfide bond, has been constructed, and predicts a hydrophobic surface which is instrumental in promoting oligomerization.
Collapse
Affiliation(s)
- O M El-Agnaf
- Neurodegeneration Unit, Department of Surgery, St. George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 0RE, UK.
| | | | | | | | | | | | | |
Collapse
|
3981
|
Liepman AH, Olsen LJ. Peroxisomal alanine : glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:487-98. [PMID: 11309139 DOI: 10.1046/j.1365-313x.2001.00961.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
At least two glyoxylate aminotransferases are hypothesized to participate in the steps of photorespiration located in peroxisomes. Until recently, however, genes encoding these enzymes had not been identified. We describe the isolation and characterization of an alanine : glyoxylate aminotransferase (AGT1, formerly AGT) cDNA from Arabidopsis thaliana. Southern blot analysis confirmed that Arabidopsis AGT1 is encoded by a single gene. Homologs of this class IV aminotransferase are also known in other plants, animals, and methylotrophic bacteria, suggesting an ancient evolutionary origin of this enzyme. AGT1 transcripts were present in all tissues of Arabidopsis, but were most abundant in green, leafy tissues. Purified, recombinant Arabidopsis AGT1 expressed in Escherichia coli catalyzed three transamination reactions using the following amino donor : acceptor combinations: alanine : glyoxylate, serine : glyoxylate, and serine : pyruvate. AGT1 had the highest specific activity with the serine : glyoxylate transamination, and apparent Km measurements indicate that this is the preferred in vivo reaction. In vitro import experiments and subcellular fractionations localized AGT1 to peroxisomes. Sequence analysis of the photorespiratory sat mutants revealed a single nucleotide substitution in the AGT1 gene from these plants. This transition mutation is predicted to result in a proline-to-leucine substitution at residue 251 of AGT1. When this mutation was engineered into the recombinant AGT1 protein, enzymatic activity using all three donor : acceptor pairs was abolished. We conclude that Arabidopsis AGT1 is a peroxisomal photorespiratory enzyme that catalyzes transamination reactions with multiple substrates.
Collapse
Affiliation(s)
- A H Liepman
- Department of Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
3982
|
Kono H, Saven JG. Statistical theory for protein combinatorial libraries. Packing interactions, backbone flexibility, and the sequence variability of a main-chain structure. J Mol Biol 2001; 306:607-28. [PMID: 11178917 DOI: 10.1006/jmbi.2000.4422] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combinatorial experiments provide new ways to probe the determinants of protein folding and to identify novel folding amino acid sequences. These types of experiments, however, are complicated both by enormous conformational complexity and by large numbers of possible sequences. Therefore, a quantitative computational theory would be helpful in designing and interpreting these types of experiment. Here, we present and apply a statistically based, computational approach for identifying the properties of sequences compatible with a given main-chain structure. Protein side-chain conformations are included in an atom-based fashion. Calculations are performed for a variety of similar backbone structures to identify sequence properties that are robust with respect to minor changes in main-chain structure. Rather than specific sequences, the method yields the likelihood of each of the amino acids at preselected positions in a given protein structure. The theory may be used to quantify the characteristics of sequence space for a chosen structure without explicitly tabulating sequences. To account for hydrophobic effects, we introduce an environmental energy that it is consistent with other simple hydrophobicity scales and show that it is effective for side-chain modeling. We apply the method to calculate the identity probabilities of selected positions of the immunoglobulin light chain-binding domain of protein L, for which many variant folding sequences are available. The calculations compare favorably with the experimentally observed identity probabilities.
Collapse
Affiliation(s)
- H Kono
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
3983
|
Lemos RS, Gomes CM, Teixeira M. Acidianus ambivalens Complex II typifies a novel family of succinate dehydrogenases. Biochem Biophys Res Commun 2001; 281:141-50. [PMID: 11178972 DOI: 10.1006/bbrc.2001.4317] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complex II from the thermoacidophilic archaeon Acidianus ambivalens, an archetype of an emerging class of succinate dehydrogenases (SDH), was extracted from intact membranes and purified to homogeneity. The complex contains one molecule of covalently bound FAD and 10 Fe atoms. EPR studies showed that the complex contains the canonical centres S1 ([2Fe-2S]2+/1+) and S2 ([4Fe-4S]+2/+1) but lacks centre S3 ([3Fe-4S]+1/0); these observations agree with the fact that the iron-sulfur subunit contains an extra cysteine that may allow the binding of a new centre, most probably a tetranuclear one. Succinate-driven oxygen consumption is observed in intact membranes indicating that in vivo, complex II operates as a succinate:quinone oxidoreductase, despite missing the typical anchor domain subunits. The pure complex was found to contain bound caldariella quinone, the enzyme physiological partner. An alternative membrane anchoring for this new type of SDHs, based on the amphipathic nature of the putative helices found in SdhC, is suggested.
Collapse
Affiliation(s)
- R S Lemos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apt 127, Oeiras, 2780-156, Portugal
| | | | | |
Collapse
|
3984
|
Tobiason DM, Buchner JM, Thiel WH, Gernert KM, Karls AC. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv. Mol Microbiol 2001; 39:641-51. [PMID: 11169105 DOI: 10.1046/j.1365-2958.2001.02276.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.
Collapse
Affiliation(s)
- D M Tobiason
- Department of Microbiology, University of Georgia, 527 Biological Sciences Bldg., Cedar Street, Athens, GA 30602-2605, USA
| | | | | | | | | |
Collapse
|
3985
|
Whatmore AM. Streptococcus pyogenes sclB encodes a putative hypervariable surface protein with a collagen-like repetitive structure. MICROBIOLOGY (READING, ENGLAND) 2001; 147:419-429. [PMID: 11158359 DOI: 10.1099/00221287-147-2-419] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus pyogenes is the causative agent in a wide range of diseases of humans of varying severity. During a study scanning the genome sequence of a serotype M1 invasive isolate SF370 for novel surface proteins, an ORF, designated sclB, was identified. The putative protein encoded by sclB contains both a signal peptide and classic Gram-positive wall-associated sequences. Comparison of the sequences of this ORF with those from a number of unrelated isolates demonstrated that sclB encodes a putative surface protein with a variable N-terminal sequence followed by a variable length tract of collagen-like GXY(n) repeats. A further feature of sclB is the presence of CAAAA repeat tracts immediately downstream of the putative start codon. The number of these pentameric repeats varies from 4 to 15 between strains and variation in repeat number results in the predicted SclB protein being either in or out of frame relative to the start codon. These observations suggest that expression of this protein may be regulated at the translational level as a result of gain or loss of CAAAA repeats. While the function of SclB remains to be elucidated, an sclB-specific transcript was detected by RT-PCR during in vitro culture. Finally, it is shown that a second gene, sclA, potentially encoding a protein with a similar extensive collagen-like structure and variable N-terminal sequence, is present in all isolates of S. pyogenes tested to date. Thus S. pyogenes harbours a novel family of structurally related and surface-exposed proteins of potential importance in the pathogenic process.
Collapse
Affiliation(s)
- Adrian M Whatmore
- Infectious Disease Research Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK1
| |
Collapse
|
3986
|
Raman B, Siva Kumar LV, Ramakrishna T, Mohan Rao C. Redox-regulated chaperone function and conformational changes of Escherichia coli Hsp33. FEBS Lett 2001; 489:19-24. [PMID: 11231006 DOI: 10.1016/s0014-5793(01)02074-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the chaperone activity and conformation of Escherichia coli heat shock protein (Hsp)33, whose activity is known to be switched on by oxidative conditions. While oxidized Hsp33 completely prevents the heat-induced aggregation of zeta-crystallin at 42 degrees C at a ratio of 1:1 (w/w), the reduced form exhibits only a marginal effect on the aggregation. Far UV-circular dichroism (CD) spectra show that reduced Hsp33 contains a significant alpha-helical component. Oxidation results in significant changes in the far UV-CD spectrum. Near UV-CD spectra show changes in tertiary structural packing upon oxidation. Polarity-sensitive fluorescent probes report enhanced hydrophobic surfaces in the oxidized Hsp33. Our studies show that the oxidative activation of the chaperone function of Hsp33 involves observable conformational changes accompanying increased exposure of hydrophobic pockets.
Collapse
Affiliation(s)
- B Raman
- Centre for Cellular and Molecular Biology, 500 007, Hyderabad, India
| | | | | | | |
Collapse
|
3987
|
Gijsbers R, Ceulemans H, Stalmans W, Bollen M. Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. J Biol Chem 2001; 276:1361-8. [PMID: 11027689 DOI: 10.1074/jbc.m007552200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nucleotide pyrophosphatases/phosphodiesterases (NPPs) generate nucleoside 5'-monophosphates from a variety of nucleotides and their derivatives. Here we show by data base analysis that these enzymes are conserved from eubacteria to higher eukaryotes. We also provide evidence for the existence of two additional members of the mammalian family of ecto-NPPs. Homology searches and alignment-assisted mutagenesis revealed that the catalytic core of NPPs assumes a fold similar to that of a superfamily of phospho-/sulfo-coordinating metalloenzymes comprising alkaline phosphatases, phosphoglycerate mutases, and arysulfatases. Mutation of mouse NPP1 in some of its predicted metal-coordinating residues (D358N or H362Q) or in the catalytic site threonine (T238S) resulted in an enzyme that could still form the nucleotidylated catalytic intermediate but was hampered in the second step of catalysis. We also obtained data indicating that the ability of some mammalian NPPs to auto(de)phosphorylate is due to an intrinsic phosphatase activity, whereby the enzyme phosphorylated on Thr-238 represents the covalent intermediate of the phosphatase reaction. The results of site-directed mutagenesis suggested that the nucleotide pyrophosphatase/phosphodiesterase and the phosphatase activities of NPPs are mediated by a single catalytic site.
Collapse
Affiliation(s)
- R Gijsbers
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
3988
|
|
3989
|
Amino Acids, Peptides, and Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3990
|
Aravind L, Koonin EV. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol 2001; 2:RESEARCH0007. [PMID: 11276424 PMCID: PMC30706 DOI: 10.1186/gb-2001-2-3-research0007] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Revised: 12/14/2000] [Accepted: 01/12/2001] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Protein fold recognition using sequence profile searches frequently allows prediction of the structure and biochemical mechanisms of proteins with an important biological function but unknown biochemical activity. Here we describe such predictions resulting from an analysis of the 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenases, a class of enzymes that are widespread in eukaryotes and bacteria and catalyze a variety of reactions typically involving the oxidation of an organic substrate using a dioxygen molecule. RESULTS We employ sequence profile analysis to show that the DNA repair protein AlkB, the extracellular matrix protein leprecan, the disease-resistance-related protein EGL-9 and several uncharacterized proteins define novel families of enzymes of the 2OG-Fe(II) oxygenase superfamily. The identification of AlkB as a member of the 2OG-Fe(II) oxygenase superfamily suggests that this protein catalyzes oxidative detoxification of alkylated bases. More distant homologs of AlkB were detected in eukaryotes and in plant RNA viruses, leading to the hypothesis that these proteins might be involved in RNA demethylation. The EGL-9 protein from Caenorhabditis elegans is necessary for normal muscle function and its inactivation results in resistance against paralysis induced by the Pseudomonas aeruginosa toxin. EGL-9 and leprecan are predicted to be novel protein hydroxylases that might be involved in the generation of substrates for protein glycosylation. CONCLUSIONS Here, using sequence profile searches, we show that several previously undetected protein families contain 2OG-Fe(II) oxygenase fold. This allows us to predict the catalytic activity for a wide range of biologically important, but biochemically uncharacterized proteins from eukaryotes and bacteria.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
3991
|
Abstract
A homology-based structure prediction method ideally gives both a correct fold assignment and an accurate query-template alignment. In this article we show that the combination of two existing methods, PSI-BLAST and threading, leads to significant enhancement in the success rate of fold recognition. The combined approach, termed COBLATH, also yields much higher alignment accuracy than found in previous studies. It consists of two-way searches both by PSI-BLAST and by threading. In the PSI-BLAST portion, a query is used to search for hits in a library of potential templates and, conversely, each potential template is used to search for hits in a library of queries. In the threading portion, the scoring function is the sum of a sequence profile and a 6x6 substitution matrix between predicted query and known template secondary structure and solvent exposure. "Two-way" in threading means that the query's sequence profile is used to match the sequences of all potential templates and the sequence profiles of all potential templates are used to match the query's sequence. When tested on a set of 533 nonhomologous proteins, COBLATH was able to assign folds for 390 (73%). Among these 390 queries, 265 (68%) had root-mean-square deviations (RMSDs) of less than 8 A between predicted and actual structures. Such high success rate and accuracy make COBLATH an ideal tool for structural genomics.
Collapse
Affiliation(s)
- Y Shan
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
3992
|
Jacoboni I, Martelli PL, Fariselli P, Compiani M, Casadio R. Predictions of protein segments with the same aminoacid sequence and different secondary structure: a benchmark for predictive methods. Proteins 2000; 41:535-44. [PMID: 11056040 DOI: 10.1002/1097-0134(20001201)41:4<535::aid-prot100>3.0.co;2-c] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The most stringent test for predictive methods of protein secondary structure is whether identical short sequences that are known to be present with different conformations in different proteins known at atomic resolution can be correctly discriminated. In this study, we show that the prediction efficiency of this type of segments in unrelated proteins reaches an average accuracy per residue ranging from about 72 to 75% (depending on the alignment method used to generate the input sequence profile) only when methods of the third generation are used. A comparison of different methods based on segment statistics (2nd generation methods) and/or including also evolutionary information (3rd generation methods) indicate that the discrimination of the different conformations of identical segments is dependent on the method used for the prediction. Accuracy is similar when methods similarly performing on the secondary structure prediction are tested. When evolutionary information is taken into account as compared to single sequence input, the number of correctly discriminated pairs is increased twofold. The results also highlight the predictive capability of neural networks for identical segments whose conformation differs in different proteins.
Collapse
Affiliation(s)
- I Jacoboni
- Laboratory of Biocomputing, Centro Interdipartimentale per le Ricerche Biotecnologiche (CIRB), Bologna, Italy
| | | | | | | | | |
Collapse
|
3993
|
Schulze W, Weise A, Frommer WB, Ward JM. Function of the cytosolic N-terminus of sucrose transporter AtSUT2 in substrate affinity. FEBS Lett 2000; 485:189-94. [PMID: 11094165 DOI: 10.1016/s0014-5793(00)02180-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AtSUT2 was found to be a low-affinity sucrose transporter (K(M)=11.7 mM at pH 4). Chimeric proteins between AtSUT2 and the high-affinity StSUT1 were constructed in which the extended N-terminus and central loop of AtSUT2 were exchanged with those domains of StSUT1 and vice versa. Chimeras containing the N-terminus of AtSUT2 showed significantly lower affinity for sucrose compared to chimeras containing the N-terminus of StSUT1. The results indicate a significant function of the N-terminus but not the central cytoplasmic loop in determining substrate affinity. Expression of AtSUT2 in major veins of source leaves and in flowers is compatible with a role as a second low-affinity sucrose transporter or as a sucrose sensor.
Collapse
Affiliation(s)
- W Schulze
- Plant Physiology, ZMBP, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
3994
|
Copley RR, Bork P. Homology among (betaalpha)(8) barrels: implications for the evolution of metabolic pathways. J Mol Biol 2000; 303:627-41. [PMID: 11054297 DOI: 10.1006/jmbi.2000.4152] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We provide statistically reliable sequence evidence indicating that at least 12 of 23 SCOP (betaalpha)(8) (TIM) barrel superfamilies share a common origin. This includes all but one of the known and predicted TIM barrels found in central metabolism. The statistical evidence is complemented by an examination of the details of protein structure, with certain structural locations favouring catalytic residues even though the nature of their molecular function may change. The combined analysis of sequence, structure and function also enables us to propose a phylogeny of TIM barrels. Based on these data, we are able to examine differing theories of pathway and enzyme evolution, by mapping known TIM barrel folds to the pathways of central metabolism. The results favour widespread recruitment of enzymes between pathways, rather than a "backwards evolution" model, and support the idea that modern proteins may have arisen from common ancestors that bound key metabolites.
Collapse
Affiliation(s)
- R R Copley
- Biocomputing, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany.
| | | |
Collapse
|
3995
|
Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 2000; 103:375-86. [PMID: 11081625 DOI: 10.1016/s0092-8674(00)00130-6] [Citation(s) in RCA: 635] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In eukaryotic cells, replicated DNA strands remain physically connected until their segregation to opposite poles of the cell during anaphase. This "sister chromatid cohesion" is essential for the alignment of chromosomes on the mitotic spindle during metaphase. Cohesion depends on the multisubunit cohesin complex, which possibly forms the physical bridges connecting sisters. Proteolytic cleavage of cohesin's Sccl subunit at the metaphase to anaphase transition is essential for sister chromatid separation and depends on a conserved protein called separin. We show here that separin is a cysteine protease related to caspases that alone can cleave Sccl in vitro. Cleavage of Sccl in metaphase arrested cells is sufficient to trigger the separation of sister chromatids and their segregation to opposite cell poles.
Collapse
Affiliation(s)
- F Uhlmann
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | | | |
Collapse
|
3996
|
Abstract
Isoprenoid compounds are ubiquitous in living species and diverse in biological function. Isoprenoid side chains of the membrane lipids are biochemical markers distinguishing archaea from the rest of living forms. The mevalonate pathway of isoprenoid biosynthesis has been defined completely in yeast, while the alternative, deoxy-D-xylulose phosphate synthase pathway is found in many bacteria. In archaea, some enzymes of the mevalonate pathway are found, but the orthologs of three yeast proteins, accounting for the route from phosphomevalonate to geranyl pyrophosphate, are missing, as are the enzymes from the alternative pathway. To understand the evolution of isoprenoid biosynthesis, as well as the mechanism of lipid biosynthesis in archaea, sequence motifs in the known enzymes of the two pathways of isoprenoid biosynthesis were analyzed. New sequence relationships were detected, including similarities between diphosphomevalonate decarboxylase and kinases of the galactokinase superfamily, between the metazoan phosphomevalonate kinase and the nucleoside monophosphate kinase superfamily, and between isopentenyl pyrophosphate isomerases and MutT pyrophosphohydrolases. Based on these findings, orphan members of the galactokinase, nucleoside monophosphate kinase, and pyrophosphohydrolase families in archaeal genomes were evaluated as candidate enzymes for the three missing steps. Alternative methods of finding these missing links were explored, including physical linkage of open reading frames and patterns of ortholog distribution in different species. Combining these approaches resulted in the generation of a short list of 13 candidate genes for the three missing functions in archaea, whose participation in isoprenoid biosynthesis is amenable to biochemical and genetic investigation.
Collapse
Affiliation(s)
- A Smit
- Institute for Systems Biology, Seattle, Washington 98195, USA
| | | |
Collapse
|
3997
|
Harrington DJ, Greated JS, Chanter N, Sutcliffe IC. Identification of lipoprotein homologues of pneumococcal PsaA in the equine pathogens Streptococcus equi and Streptococcus zooepidemicus. Infect Immun 2000; 68:6048-51. [PMID: 10992520 PMCID: PMC101572 DOI: 10.1128/iai.68.10.6048-6051.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus equi and Streptococcus zooepidemicus are major etiological agents of upper and lower airway disease in horses. Despite the considerable animal suffering and economic burden associated with these diseases, the factors that contribute to the virulence of these equine pathogens have not been extensively investigated. Here we demonstrate the presence of a homologue of the Streptococcus pneumoniae PsaA protein in both of these equine pathogens. Inhibition of signal peptide processing by the antibiotic globomycin confirmed the lipoprotein nature of the mature proteins, and surface exposure was confirmed by their release from intact cells by mild trypsinolysis.
Collapse
Affiliation(s)
- D J Harrington
- School of Sciences, University of Sunderland, Sunderland, United Kingdom.
| | | | | | | |
Collapse
|
3998
|
Aravind L, Makarova KS, Koonin EV. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res 2000; 28:3417-32. [PMID: 10982859 PMCID: PMC110722 DOI: 10.1093/nar/28.18.3417] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Holliday junction resolvases (HJRs) are key enzymes of DNA recombination. A detailed computer analysis of the structural and evolutionary relationships of HJRs and related nucleases suggests that the HJR function has evolved independently from at least four distinct structural folds, namely RNase H, endonuclease, endonuclease VII-colicin E and RusA. The endonuclease fold, whose structural prototypes are the phage lambda exonuclease, the very short patch repair nuclease (Vsr) and type II restriction enzymes, is shown to encompass by far a greater diversity of nucleases than previously suspected. This fold unifies archaeal HJRs, repair nucleases such as RecB and Vsr, restriction enzymes and a variety of predicted nucleases whose specific activities remain to be determined. Within the RNase H fold a new family of predicted HJRs, which is nearly ubiquitous in bacteria, was discovered, in addition to the previously characterized RuvC family. The proteins of this family, typified by Escherichia coli YqgF, are likely to function as an alternative to RuvC in most bacteria, but could be the principal HJRs in low-GC Gram-positive bacteria and AQUIFEX: Endonuclease VII of phage T4 is shown to serve as a structural template for many nucleases, including MCR:A and other type II restriction enzymes. Together with colicin E7, endonuclease VII defines a distinct metal-dependent nuclease fold. As a result of this analysis, the principal HJRs are now known or confidently predicted for all bacteria and archaea whose genomes have been completely sequenced, with many species encoding multiple potential HJRs. Horizontal gene transfer, lineage-specific gene loss and gene family expansion, and non-orthologous gene displacement seem to have been major forces in the evolution of HJRs and related nucleases. A remarkable case of displacement is seen in the Lyme disease spirochete Borrelia burgdorferi, which does not possess any of the typical HJRs, but instead encodes, in its chromosome and each of the linear plasmids, members of the lambda exonuclease family predicted to function as HJRs. The diversity of HJRs and related nucleases in bacteria and archaea contrasts with their near absence in eukaryotes. The few detected eukaryotic representatives of the endonuclease fold and the RNase H fold have probably been acquired from bacteria via horizontal gene transfer. The identity of the principal HJR(s) involved in recombination in eukaryotes remains uncertain; this function could be performed by topoisomerase IB or by a novel, so far undetected, class of enzymes. Likely HJRs and related nucleases were identified in the genomes of numerous bacterial and eukaryotic DNA viruses. Gene flow between viral and cellular genomes has probably played a major role in the evolution of this class of enzymes. This analysis resulted in the prediction of numerous previously unnoticed nucleases, some of which are likely to be new restriction enzymes.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | |
Collapse
|
3999
|
Abstract
SUMMARY
Profound changes are occurring in the strategies that biotechnology-based industries are deploying in the search for exploitable biology and to discover new products and develop new or improved processes. The advances that have been made in the past decade in areas such as combinatorial chemistry, combinatorial biosynthesis, metabolic pathway engineering, gene shuffling, and directed evolution of proteins have caused some companies to consider withdrawing from natural product screening. In this review we examine the paradigm shift from traditional biology to bioinformatics that is revolutionizing exploitable biology. We conclude that the reinvigorated means of detecting novel organisms, novel chemical structures, and novel biocatalytic activities will ensure that natural products will continue to be a primary resource for biotechnology. The paradigm shift has been driven by a convergence of complementary technologies, exemplified by DNA sequencing and amplification, genome sequencing and annotation, proteome analysis, and phenotypic inventorying, resulting in the establishment of huge databases that can be mined in order to generate useful knowledge such as the identity and characterization of organisms and the identity of biotechnology targets. Concurrently there have been major advances in understanding the extent of microbial diversity, how uncultured organisms might be grown, and how expression of the metabolic potential of microorganisms can be maximized. The integration of information from complementary databases presents a significant challenge. Such integration should facilitate answers to complex questions involving sequence, biochemical, physiological, taxonomic, and ecological information of the sort posed in exploitable biology. The paradigm shift which we discuss is not absolute in the sense that it will replace established microbiology; rather, it reinforces our view that innovative microbiology is essential for releasing the potential of microbial diversity for biotechnology penetration throughout industry. Various of these issues are considered with reference to deep-sea microbiology and biotechnology.
Collapse
|
4000
|
Bull AT, Ward AC, Goodfellow M. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 2000; 64:573-606. [PMID: 10974127 PMCID: PMC99005 DOI: 10.1128/mmbr.64.3.573-606.2000] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Profound changes are occurring in the strategies that biotechnology-based industries are deploying in the search for exploitable biology and to discover new products and develop new or improved processes. The advances that have been made in the past decade in areas such as combinatorial chemistry, combinatorial biosynthesis, metabolic pathway engineering, gene shuffling, and directed evolution of proteins have caused some companies to consider withdrawing from natural product screening. In this review we examine the paradigm shift from traditional biology to bioinformatics that is revolutionizing exploitable biology. We conclude that the reinvigorated means of detecting novel organisms, novel chemical structures, and novel biocatalytic activities will ensure that natural products will continue to be a primary resource for biotechnology. The paradigm shift has been driven by a convergence of complementary technologies, exemplified by DNA sequencing and amplification, genome sequencing and annotation, proteome analysis, and phenotypic inventorying, resulting in the establishment of huge databases that can be mined in order to generate useful knowledge such as the identity and characterization of organisms and the identity of biotechnology targets. Concurrently there have been major advances in understanding the extent of microbial diversity, how uncultured organisms might be grown, and how expression of the metabolic potential of microorganisms can be maximized. The integration of information from complementary databases presents a significant challenge. Such integration should facilitate answers to complex questions involving sequence, biochemical, physiological, taxonomic, and ecological information of the sort posed in exploitable biology. The paradigm shift which we discuss is not absolute in the sense that it will replace established microbiology; rather, it reinforces our view that innovative microbiology is essential for releasing the potential of microbial diversity for biotechnology penetration throughout industry. Various of these issues are considered with reference to deep-sea microbiology and biotechnology.
Collapse
Affiliation(s)
- A T Bull
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| | | | | |
Collapse
|