401
|
Fox PD, Haberkorn CJ, Akin EJ, Seel PJ, Krapf D, Tamkun MM. Induction of stable ER-plasma-membrane junctions by Kv2.1 potassium channels. J Cell Sci 2015; 128:2096-105. [PMID: 25908859 DOI: 10.1242/jcs.166009] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/13/2015] [Indexed: 12/25/2022] Open
Abstract
Junctions between cortical endoplasmic reticulum (cER) and the plasma membrane are a subtle but ubiquitous feature in mammalian cells; however, very little is known about the functions and molecular interactions that are associated with neuronal ER-plasma-membrane junctions. Here, we report that Kv2.1 (also known as KCNB1), the primary delayed-rectifier K(+) channel in the mammalian brain, induces the formation of ER-plasma-membrane junctions. Kv2.1 localizes to dense, cell-surface clusters that contain non-conducting channels, indicating that they have a function that is unrelated to membrane-potential regulation. Accordingly, Kv2.1 clusters function as membrane-trafficking hubs, providing platforms for delivery and retrieval of multiple membrane proteins. Using both total internal reflection fluorescence and electron microscopy we demonstrate that the clustered Kv2.1 plays a direct structural role in the induction of stable ER-plasma-membrane junctions in both transfected HEK 293 cells and cultured hippocampal neurons. Glutamate exposure results in a loss of Kv2.1 clusters in neurons and subsequent retraction of the cER from the plasma membrane. We propose Kv2.1-induced ER-plasma-membrane junctions represent a new macromolecular plasma-membrane complex that is sensitive to excitotoxic insult and functions as a scaffolding site for both membrane trafficking and Ca(2+) signaling.
Collapse
Affiliation(s)
- Philip D Fox
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Elizabeth J Akin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Peter J Seel
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
402
|
Extended synaptotagmins (E-Syts): Architecture and dynamics of membrane contact sites revealed. Proc Natl Acad Sci U S A 2015; 112:4837-8. [PMID: 25852145 DOI: 10.1073/pnas.1504487112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
403
|
Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth. Nature 2015; 520:234-8. [DOI: 10.1038/nature14359] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 02/27/2015] [Indexed: 01/03/2023]
|
404
|
Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. Proc Natl Acad Sci U S A 2015; 112:E2004-13. [PMID: 25787254 DOI: 10.1073/pnas.1503191112] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The close apposition between the endoplasmic reticulum (ER) and the plasma membrane (PM) plays important roles in Ca(2+) homeostasis, signaling, and lipid metabolism. The extended synaptotagmins (E-Syts; tricalbins in yeast) are ER-anchored proteins that mediate the tethering of the ER to the PM and are thought to mediate lipid transfer between the two membranes. E-Syt cytoplasmic domains comprise a synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain followed by five C2 domains in E-Syt1 and three C2 domains in E-Syt2/3. Here, we used cryo-electron tomography to study the 3D architecture of E-Syt-mediated ER-PM contacts at molecular resolution. In vitrified frozen-hydrated mammalian cells overexpressing individual E-Syts, in which E-Syt-dependent contacts were by far the predominant contacts, ER-PM distance (19-22 nm) correlated with the amino acid length of the cytosolic region of E-Syts (i.e., the number of C2 domains). Elevation of cytosolic Ca(2+) shortened the ER-PM distance at E-Syt1-dependent contacts sites. E-Syt-mediated contacts displayed a characteristic electron-dense layer between the ER and the PM. These features were strikingly different from those observed in cells exposed to conditions that induce contacts mediated by the stromal interaction molecule 1 (STIM1) and the Ca(2+) channel Orai1 as well as store operated Ca(2+) entry. In these cells the gap between the ER and the PM was spanned by filamentous structures perpendicular to the membranes. Our results define specific ultrastructural features of E-Syt-dependent ER-PM contacts and reveal their structural plasticity, which may impact on the cross-talk between the ER and the PM and the functions of E-Syts in lipid transport between the two bilayers.
Collapse
|
405
|
Lomenick B, Shi H, Huang J, Chen C. Identification and characterization of β-sitosterol target proteins. Bioorg Med Chem Lett 2015; 25:4976-4979. [PMID: 25804720 DOI: 10.1016/j.bmcl.2015.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/27/2022]
Abstract
β-Sitosterol is the most abundant plant sterol in the human diet. It is also the major component of several traditional medicines, including saw palmetto and devil's claw. Although β-sitosterol is effective against enlarged prostate in human clinical trials and has anti-cancer and anti-inflammatory activities, the mechanisms of action are poorly understood. Here, we report the identification of two new binding proteins for β-sitosterol that may underlie its beneficial effects.
Collapse
Affiliation(s)
- Brett Lomenick
- Department of Molecular and Medical Pharmacology, 23-231 Center for Health Sciences, 650 Charles E Young Dr. South, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Heping Shi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jing Huang
- Department of Molecular and Medical Pharmacology, 23-231 Center for Health Sciences, 650 Charles E Young Dr. South, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Chuo Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
406
|
Saüc S, Bulla M, Nunes P, Orci L, Marchetti A, Antigny F, Bernheim L, Cosson P, Frieden M, Demaurex N. STIM1L traps and gates Orai1 channels without remodeling the cortical ER. J Cell Sci 2015; 128:1568-79. [PMID: 25736291 PMCID: PMC4406124 DOI: 10.1242/jcs.164228] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/26/2015] [Indexed: 12/23/2022] Open
Abstract
STIM proteins populate and expand cortical endoplasmic reticulum (ER) sheets to mediate store-operated Ca2+ entry (SOCE) by trapping and gating Orai channels in ER-plasma membrane clusters. A longer splice variant, STIM1L, forms permanent ER-plasma membrane clusters and mediates rapid Ca2+ influx in muscle. Here, we used electron microscopy, total internal reflection fluorescence (TIRF) microscopy and Ca2+ imaging to establish the trafficking and signaling properties of the two STIM1 isoforms in Stim1−/−/Stim2−/− fibroblasts. Unlike STIM1, STIM1L was poorly recruited into ER-plasma membrane clusters and did not mediate store-dependent expansion of cortical ER cisternae. Removal of the STIM1 lysine-rich tail prevented store-dependent cluster enlargement, whereas inhibition of cytosolic Ca2+ elevations or removal of the STIM1L actin-binding domain had no impact on cluster expansion. Finally, STIM1L restored robust but not accelerated SOCE and clustered with Orai1 channels more slowly than STIM1 following store depletion. These results indicate that STIM1L does not mediate rapid SOCE but can trap and gate Orai1 channels efficiently without remodeling cortical ER cisternae. The ability of STIM proteins to induce cortical ER formation is dispensable for SOCE and requires the lysine-rich tail of STIM1 involved in binding to phosphoinositides.
Collapse
Affiliation(s)
- Sophie Saüc
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland Basic Neurosciences, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Monica Bulla
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Lelio Orci
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Fabrice Antigny
- Basic Neurosciences, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Laurent Bernheim
- Basic Neurosciences, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland Basic Neurosciences, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| |
Collapse
|
407
|
Plattner H, Verkhratsky A. The ancient roots of calcium signalling evolutionary tree. Cell Calcium 2015; 57:123-32. [DOI: 10.1016/j.ceca.2014.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022]
|
408
|
Burgoyne T, Patel S, Eden ER. Calcium signaling at ER membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2012-7. [PMID: 25662816 DOI: 10.1016/j.bbamcr.2015.01.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 11/27/2022]
Abstract
Communication between organelles is a necessary consequence of intracellular compartmentalization. Membrane contact sites (MCSs) are regions where the membranes of two organelles come into close apposition allowing exchange of small molecules and ions including Ca²⁺. The ER, the cell's major Ca²⁺ store, forms an extensive and dynamic network of contacts with multiple organelles. Here we review established and emerging roles of ER contacts as platforms for Ca²⁺ exchange and further consider a potential role for Ca²⁺ in the regulation of MCS formation. We additionally discuss the challenges associated with the study of MCS biology and highlight advances in microscopy-based solutions. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
| | - Sandip Patel
- Department of Cell and Developmental Biology, UCL, London, UK
| | | |
Collapse
|
409
|
Garcia-Alvarez G, Lu B, Yap KAF, Wong LC, Thevathasan JV, Lim L, Ji F, Tan KW, Mancuso JJ, Tang W, Poon SY, Augustine GJ, Fivaz M. STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol Biol Cell 2015; 26:1141-59. [PMID: 25609091 PMCID: PMC4357513 DOI: 10.1091/mbc.e14-07-1222] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
STIMs (STIM1 and STIM2 in mammals) are transmembrane proteins that reside in the endoplasmic reticulum and regulate store-operated Ca2+ entry. STIM2 mediates cAMP/PKA-dependent phosphorylation of the AMPA receptor subunit GluA1 in excitatory neurons. In addition, STIM2 promotes cAMP-dependent surface delivery of GluA1. STIMs (STIM1 and STIM2 in mammals) are transmembrane proteins that reside in the endoplasmic reticulum (ER) and regulate store-operated Ca2+ entry (SOCE). The function of STIMs in the brain is only beginning to be explored, and the relevance of SOCE in nerve cells is being debated. Here we identify STIM2 as a central organizer of excitatory synapses. STIM2, but not its paralogue STIM1, influences the formation of dendritic spines and shapes basal synaptic transmission in excitatory neurons. We further demonstrate that STIM2 is essential for cAMP/PKA-dependent phosphorylation of the AMPA receptor (AMPAR) subunit GluA1. cAMP triggers rapid migration of STIM2 to ER–plasma membrane (PM) contact sites, enhances recruitment of GluA1 to these ER-PM junctions, and promotes localization of STIM2 in dendritic spines. Both biochemical and imaging data suggest that STIM2 regulates GluA1 phosphorylation by coupling PKA to the AMPAR in a SOCE-independent manner. Consistent with a central role of STIM2 in regulating AMPAR phosphorylation, STIM2 promotes cAMP-dependent surface delivery of GluA1 through combined effects on exocytosis and endocytosis. Collectively our results point to a unique mechanism of synaptic plasticity driven by dynamic assembly of a STIM2 signaling complex at ER-PM contact sites.
Collapse
Affiliation(s)
- Gisela Garcia-Alvarez
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - Bo Lu
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - Kenrick An Fu Yap
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - Loo Chin Wong
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - Jervis Vermal Thevathasan
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - Lynette Lim
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - Fang Ji
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - Kia Wee Tan
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - James J Mancuso
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - Willcyn Tang
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - Shou Yu Poon
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553 Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Marc Fivaz
- Program in Neuroscience and Behavioral Disorders, DUKE-NUS Graduate Medical School, Singapore 169857 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| |
Collapse
|
410
|
Westrate LM, Lee JE, Prinz WA, Voeltz GK. Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem 2015; 84:791-811. [PMID: 25580528 DOI: 10.1146/annurev-biochem-072711-163501] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endoplasmic reticulum (ER) has a remarkably complex structure, composed of a single bilayer that forms the nuclear envelope, along with a network of sheets and dynamic tubules. Our understanding of the biological significance of the complex architecture of the ER has improved dramatically in the last few years. The identification of proteins and forces required for maintaining ER shape, as well as more advanced imaging techniques, has allowed the relationship between ER shape and function to come into focus. These studies have also revealed unexpected new functions of the ER and novel ER domains regulating alterations in ER dynamics. The importance of ER structure has become evident as recent research has identified diseases linked to mutations in ER-shaping proteins. In this review, we discuss what is known about the maintenance of ER architecture, the relationship between ER structure and function, and diseases associated with defects in ER structure.
Collapse
Affiliation(s)
- L M Westrate
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80303;
| | | | | | | |
Collapse
|
411
|
Membrane contact sites, gateways for lipid homeostasis. Curr Opin Cell Biol 2015; 33:82-87. [PMID: 25569848 DOI: 10.1016/j.ceb.2014.12.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Maintaining the proper lipid composition of cellular membranes is critical for numerous cellular processes but mechanisms of membrane lipid homeostasis are not well understood. There is growing evidence that membrane contact sites (MCSs), regions where two organelles come in close proximity to one another, play major roles in the regulation of intracellular lipid composition and distribution. MCSs are thought to mediate the exchange of lipids and signals between organelles. In this review, we discuss how lipid exchange occurs at MCSs and evidence for roles of MCSs in regulating lipid synthesis and degradation. We also discuss how networks of organelles connected by MCSs may modulate cellular lipid homeostasis and help determine organelle lipid composition.
Collapse
|
412
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
413
|
Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:999-1005. [PMID: 25542507 DOI: 10.1016/j.bbalip.2014.12.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 12/16/2022]
Abstract
Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are lipid-rich and multilamellar membrane stacks. The lipid composition of myelin varies significantly from other biological membranes. Studies in mutant mice targeting various lipid biosynthesis pathways have shown that myelinating glia have a remarkable capacity to compensate the lack of individual lipids. However, compensation fails when it comes to maintaining long-term stability of myelin. Here, we summarize how lipids function in myelin biogenesis, axon-glia communication and in supporting long-term maintenance of myelin. We postulate that change in myelin lipid composition might be relevant for our understanding of aging and demyelinating diseases. This article is part of a Special Issue titled Brain Lipids.
Collapse
Affiliation(s)
- Sebastian Schmitt
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany
| | - Ludovici Cantuti Castelvetri
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany
| | - Mikael Simons
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
414
|
Maléth J, Choi S, Muallem S, Ahuja M. Translocation between PI(4,5)P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating. Nat Commun 2014; 5:5843. [PMID: 25517631 PMCID: PMC4270102 DOI: 10.1038/ncomms6843] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/12/2014] [Indexed: 01/04/2023] Open
Abstract
The Orai1-STIM1 current undergoes slow Ca(2+)-dependent inactivation (SCDI) mediated by the binding of SARAF to STIM1. Here we report the use of SCDI by SARAF as a probe of the conformation and microdomain localization of the Orai1-STIM1 complex. We find that the interaction of STIM1 with Orai1 carboxyl terminus (C terminus) and the STIM1 K-domain are required for the interaction of SARAF with STIM1 and SCDI. STIM1-Orai1 must be in a PM/ER microdomain tethered by E-Syt1, stabilized by septin4 and enriched in PI(4,5)P2 for STIM1-SARAF interaction. Targeting STIM1 to PI(4,5)P2-rich and -poor microdomains reveals that SARAF-dependent SCDI is observed only when STIM1-Orai1 are within the PI(4,5)P2-rich microdomain. Notably, store depletion results in transient localization of STIM1-Orai1 in the PI(4,5)P2-poor microdomain, which then translocates to the PI(4,5)P2-rich domain. These findings reveal the role of PM/ER tethers in the regulation of Orai1 function and a mode of regulation by PI(4,5)P2 involving translocation between PI(4,5)P2 microdomains.
Collapse
Affiliation(s)
- Jozsef Maléth
- 1] Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, Maryland 20892, USA [2] First Department of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Seok Choi
- 1] Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, Maryland 20892, USA [2] Department of Physiology, College of Medicine, Chosun University, Chosun 501-375, South Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, Maryland 20892, USA
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
415
|
Idevall-Hagren O, De Camilli P. Detection and manipulation of phosphoinositides. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:736-45. [PMID: 25514766 DOI: 10.1016/j.bbalip.2014.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/27/2014] [Accepted: 12/09/2014] [Indexed: 12/23/2022]
Abstract
Phosphoinositides (PIs) are minor components of cell membranes, but play key roles in cell function. Recent refinements in techniques for their detection, together with imaging methods to study their distribution and changes, have greatly facilitated the study of these lipids. Such methods have been complemented by the parallel development of techniques for the acute manipulation of their levels, which in turn allow bypassing the long-term adaptive changes implicit in genetic perturbations. Collectively, these advancements have helped elucidate the role of PIs in physiology and the impact of the dysfunction of their metabolism in disease. Combining methods for detection and manipulation enables the identification of specific roles played by each of the PIs and may eventually lead to the complete deconstruction of the PI signaling network. Here, we review current techniques used for the study and manipulation of cellular PIs and also discuss advantages and disadvantages associated with the various methods. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden.
| | - Pietro De Camilli
- Department of Cell Biology, Howard Hughes Medical Institute and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
416
|
Apical localization of inositol 1,4,5-trisphosphate receptors is independent of extended synaptotagmins in hepatocytes. PLoS One 2014; 9:e114043. [PMID: 25437447 PMCID: PMC4250053 DOI: 10.1371/journal.pone.0114043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022] Open
Abstract
Extended synaptotagmins (E-Syts) are a recently identified family of proteins that tether the endoplasmic reticulum (ER) to the plasma membrane (PM) in part by conferring regulation of cytosolic calcium (Ca2+) at these contact sites (Cell, 2013). However, the mechanism by which E-Syts link this tethering to Ca2+ signaling is unknown. Ca2+ waves in polarized epithelia are initiated by inositol 1,4,5-trisphosphate receptors (InsP3Rs), and these waves begin in the apical region because InsP3Rs are targeted to the ER adjacent to the apical membrane. In this study we investigated whether E-Syts are responsible for this targeting. Primary rat hepatocytes were used as a model system, because a single InsP3R isoform (InsP3R-II) is tethered to the peri-apical ER in these cells. Additionally, it has been established in hepatocytes that the apical localization of InsP3Rs is responsible for Ca2+ waves and secretion and is disrupted in disease states in which secretion is impaired. We found that rat hepatocytes express two of the three identified E-Syts (E-Syt1 and E-Syt2). Individual or simultaneous siRNA knockdown of these proteins did not alter InsP3R-II expression levels, apical localization or average InsP3R-II cluster size. Moreover, apical secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was not changed in cells lacking E-Syts but was reduced in cells in which cytosolic Ca2+ was buffered. These data provide evidence that E-Syts do not participate in the targeting of InsP3Rs to the apical region. Identifying tethers that bring InsP3Rs to the apical region remains an important question, since mis-targeting of InsP3Rs leads to impaired secretory activity.
Collapse
|
417
|
Karunarathne WKA, O'Neill PR, Gautam N. Subcellular optogenetics - controlling signaling and single-cell behavior. J Cell Sci 2014; 128:15-25. [PMID: 25433038 DOI: 10.1242/jcs.154435] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Variation in signaling activity across a cell plays a crucial role in processes such as cell migration. Signaling activity specific to organelles within a cell also likely plays a key role in regulating cellular functions. To understand how such spatially confined signaling within a cell regulates cell behavior, tools that exert experimental control over subcellular signaling activity are required. Here, we discuss the advantages of using optogenetic approaches to achieve this control. We focus on a set of optical triggers that allow subcellular control over signaling through the activation of G-protein-coupled receptors (GPCRs), receptor tyrosine kinases and downstream signaling proteins, as well as those that inhibit endogenous signaling proteins. We also discuss the specific insights with regard to signaling and cell behavior that these subcellular optogenetic approaches can provide.
Collapse
Affiliation(s)
- W K Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Narasimhan Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
418
|
Fürthauer M, Smythe E. Systems dynamics in endocytosis. Traffic 2014; 15:338-46. [PMID: 24405722 DOI: 10.1111/tra.12147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/22/2013] [Accepted: 01/09/2014] [Indexed: 11/28/2022]
Abstract
The endocytic system acts at the crossroads of different cellular activities to play a central role in the regulation of cell signaling and membrane dynamics. An European Molecular Biology Organization (EMBO) conference held in October 2013 in Villars-sur-Ollon gathered researchers from all over the world to present their latest findings on the endolysosomal system and identify major challenges for the future. The conference covered the entire spectrum of research in this rapidly evolving field ranging from the cellular mechanics of endocytosis to the role of proteins and lipids in the biogenesis and function of endolysosomal organelles and the analysis of higher order system properties in multicellular contexts. In particular, the meeting highlighted current efforts to complement the insights that can be gained by biochemical and cell biological approaches with the use of quantitative biophysics, systems biology and animal model systems to achieve an integrated view of the properties of the endomembrane system and its role in cellular information processing.
Collapse
Affiliation(s)
- Maximilian Fürthauer
- Institut de Biologie Valrose, CNRS UMR7277, INSERM 1091, University of Nice Sophia-Antipolis, Nice, France
| | | |
Collapse
|
419
|
Plattner H. Calcium signalling in the ciliated protozoan model, Paramecium: strict signal localisation by epigenetically controlled positioning of different Ca²⁺-channels. Cell Calcium 2014; 57:203-13. [PMID: 25277862 DOI: 10.1016/j.ceca.2014.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022]
Abstract
The Paramecium tetraurelia cell is highly organised, with regularly spaced elements pertinent to Ca(2+) signalling under epigenetic control. Vesicles serving as stationary Ca(2+) stores or undergoing trafficking contain Ca(2+)-release channels (PtCRCs) which, according to sequence and domain comparison, are related either to inositol 1,4,5-trisphosphate (InsP3) receptors (IP3R) or to ryanodine receptor-like proteins (RyR-LP) or to both, with intermediate characteristics or deviation from conventional domain structure. Six groups of such PtCRCs have been found. The ryanodine-InsP3-receptor homology (RIH) domain is not always recognisable, in contrast to the channel domain with six trans-membrane domains and the pore between transmembrane domain 5 and 6. Two CRC subtypes tested more closely, PtCRC-II and PtCRC-IV, with and without an InsP3-binding domain, reacted to InsP3 and to caffeine, respectively, and hence represent IP3Rs and RyR-LPs. IP3Rs occur in the contractile vacuole complex where they allow for stochastic constitutive Ca(2+) reflux into the cytosol. RyR-LPs are localised to cortical Ca(2+) stores; they are engaged in dense core-secretory vesicle exocytosis by Ca(2+) release, superimposed by Ca(2+)-influx via non-ciliary Ca(2+)-channels. One or two different types of PtCRCs also occur in other vesicles undergoing trafficking. Since the PtCRCs described combine different features they are considered derivatives of primitive precursors. The highly regular, epigenetically controlled design of a Paramecium cell allows it to make Ca(2+) available very locally, in a most efficient way, along predetermined trafficking pathways, including regulation of exocytosis, endocytosis, phagocytosis and recycling phenomena. The activity of cilia is also regulated by Ca(2+), yet independently from any CRCs, by de- and hyperpolarisation of the cell membrane potential.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box M625, 78457 Konstanz, Germany.
| |
Collapse
|
420
|
Prinz WA. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. ACTA ACUST UNITED AC 2014; 205:759-69. [PMID: 24958771 PMCID: PMC4068136 DOI: 10.1083/jcb.201401126] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regions of close apposition between two organelles, often referred to as membrane contact sites (MCSs), mostly form between the endoplasmic reticulum and a second organelle, although contacts between mitochondria and other organelles have also begun to be characterized. Although these contact sites have been noted since cells first began to be visualized with electron microscopy, the functions of most of these domains long remained unclear. The last few years have witnessed a dramatic increase in our understanding of MCSs, revealing the critical roles they play in intracellular signaling, metabolism, the trafficking of metabolites, and organelle inheritance, division, and transport.
Collapse
Affiliation(s)
- William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
421
|
Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 2014; 510:552-5. [PMID: 24847877 PMCID: PMC4135724 DOI: 10.1038/nature13269] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/21/2014] [Indexed: 11/25/2022]
Abstract
Growing evidence suggests that close appositions between the endoplasmic reticulum (ER) and other membranes, including appositions with the plasma membrane (PM), mediate exchange of lipids between the two bilayers. The mechanisms of such exchange, which allows lipid transfer independently of vesicular transport, remain poorly understood. The presence of an SMP (synaptotagmin-like-mitochondrial-lipid binding protein) domain, a proposed lipid binding module, in several proteins localized at membrane contact sites raised the possibility that such domains may be implicated in lipid transport1,2. SMP-containing proteins include components of the ERMES complex, an ER-mitochondrial tether3, and the Extended-Synaptotagmins/tricalbins, which are ER-PM tethers4-6. Here we present at 2.44 Å resolution the crystal structure of a fragment of Extended-Synaptotagmin 2 (E-Syt2), including an SMP domain and two adjacent C2 domains. The SMP domain has a beta-barrel structure like protein modules in the TULIP superfamily. It dimerizes to form a ~90 Å long cylinder traversed by a channel lined entirely with hydrophobic residues, with the two C2A-C2B fragments forming arched structures flexibly linked to the SMP domain. Importantly, structural analysis complemented by mass spectrometry revealed the presence of glycerophospholipids in the E-Syt2 SMP channel, indicating a direct role for E-Syts in lipid transport. These findings provide strong evidence for a role of SMP domain containing proteins in the control of lipid transfer at membrane contact sites and have broad implication beyond the field of ER to PM appositions.
Collapse
|
422
|
Barriers to uniformity within the endoplasmic reticulum. Curr Opin Cell Biol 2014; 29:31-8. [DOI: 10.1016/j.ceb.2014.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/19/2014] [Indexed: 11/30/2022]
|
423
|
Abstract
Selective autophagy is a quality control pathway through which cellular components are sequestered into double-membrane vesicles and delivered to specific intracellular compartments. This process requires autophagy receptors that link cargo to growing autophagosomal membranes. Selective autophagy is also implicated in various membrane trafficking events. Here we discuss the current view on how cargo selection and transport are achieved during selective autophagy, and point out molecular mechanisms that are congruent between autophagy and vesicle trafficking pathways.
Collapse
|
424
|
Hubber A, Arasaki K, Nakatsu F, Hardiman C, Lambright D, De Camilli P, Nagai H, Roy CR. The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins. PLoS Pathog 2014; 10:e1004222. [PMID: 24992562 PMCID: PMC4081824 DOI: 10.1371/journal.ppat.1004222] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis. The intracellular pathogen Legionella pneumophila encodes at least 270 effectors that modulate trafficking of the pathogen-occupied vacuole. The mechanisms by which effectors are controlled in host cells are of key interest. Spatial and temporal regulation of effector function has been proposed to involve effector binding to host phosphoinositides. We present results showing that L. pneumophila utilizes the host kinase PI4KIIIα to generate PI4P on the bacterial vacuole and this signature mediates the localization of DrrA and subsequent recruitment of the GTPase Rab1. Additionally, it was found that the host PI4P phosphatase Sac1 was involved in consuming PI4P on the vacuole, which reduced DrrA-mediated recruitment of Rab1 to the LCV. Our data supports the recent concept that PI4KIIIα is important for generation of the plasma-membrane pool of PI4P in host cells, and demonstrates a functional consequence for PI4P-binding by an L. pneumophila effector protein.
Collapse
Affiliation(s)
- Andree Hubber
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
- * E-mail: (AH); (CRR)
| | - Kohei Arasaki
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | - Fubito Nakatsu
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Camille Hardiman
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - David Lambright
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Pietro De Camilli
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Craig R. Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (AH); (CRR)
| |
Collapse
|
425
|
Hönscher C, Mari M, Auffarth K, Bohnert M, Griffith J, Geerts W, van der Laan M, Cabrera M, Reggiori F, Ungermann C. Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria. Dev Cell 2014; 30:86-94. [DOI: 10.1016/j.devcel.2014.06.006] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/04/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022]
|
426
|
Daniele T, Schiaffino MV. Organelle biogenesis and interorganellar connections: Better in contact than in isolation. Commun Integr Biol 2014; 7:e29587. [PMID: 25346798 PMCID: PMC4203768 DOI: 10.4161/cib.29587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 12/22/2022] Open
Abstract
Membrane contact sites (MCSs) allow the exchange of molecules and information between organelles, even when their membranes cannot fuse directly. In recent years, a number of functions have been attributed to these contacts, highlighting their critical role in cell homeostasis. Although inter-organellar connections typically involve the endoplasmic reticulum (ER), we recently reported the presence of a novel MCSs between melanosomes and mitochondria. Melanosome-mitochondrion contacts appear mediated by fibrillar bridges resembling the protein tethers linking mitochondria and the ER, both for their ultrastructural features and the involvement of Mitofusin 2. The frequency of these connections correlates spatially and timely with melanosome biogenesis, suggesting a functional link between the 2 processes and in general that organelle biogenesis in the secretory pathway requires interorganellar crosstalks at multiple steps. Here, we summarize the different functions attributed to MCSs, and discuss their possible relevance for the newly identified melanosome-mitochondrion liaison.
Collapse
Affiliation(s)
- Tiziana Daniele
- San Raffaele Scientific Institute; Experimental Imaging Center; Milan, Italy ; University of Genoa; Department of Experimental Medicine; Genoa, Italy
| | | |
Collapse
|
427
|
Wang P, Hawkins TJ, Richardson C, Cummins I, Deeks MJ, Sparkes I, Hawes C, Hussey PJ. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr Biol 2014; 24:1397-1405. [PMID: 24909329 DOI: 10.1016/j.cub.2014.05.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/04/2014] [Accepted: 05/02/2014] [Indexed: 02/03/2023]
Abstract
The cortical endoplasmic reticulum (ER) network in plants is a highly dynamic structure, and it contacts the plasma membrane (PM) at ER-PM anchor/contact sites. These sites are known to be essential for communication between the ER and PM for lipid transport, calcium influx, and ER morphology in mammalian and fungal cells. The nature of these contact sites is unknown in plants, and here, we have identified a complex that forms this bridge. This complex includes (1) NET3C, which belongs to a plant-specific superfamily (NET) of actin-binding proteins, (2) VAP27, a plant homolog of the yeast Scs2 ER-PM contact site protein, and (3) the actin and microtubule networks. We demonstrate that NET3C and VAP27 localize to puncta at the PM and that NET3C and VAP27 form homodimers/oligomers and together form complexes with actin and microtubules. We show that F-actin modulates the turnover of NET3C at these puncta and microtubules regulate the exchange of VAP27 at the same sites. Based on these data, we propose a model for the structure of the plant ER-PM contact sites.
Collapse
Affiliation(s)
- Pengwei Wang
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Timothy J Hawkins
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Christine Richardson
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Ian Cummins
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Michael J Deeks
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Imogen Sparkes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Patrick J Hussey
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
428
|
Fameli N, Ogunbayo OA, van Breemen C, Evans AM. Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Res 2014; 3:93. [PMID: 25126414 PMCID: PMC4126599 DOI: 10.12688/f1000research.3720.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 01/21/2023] Open
Abstract
Herein we demonstrate how nanojunctions between lysosomes and sarcoplasmic reticulum (L-SR junctions) serve to couple lysosomal activation to regenerative, ryanodine receptor-mediated cellular Ca
2+ waves. In pulmonary artery smooth muscle cells (PASMCs) it has been proposed that nicotinic acid adenine dinucleotide phosphate (NAADP) triggers increases in cytoplasmic Ca
2+ via L-SR junctions, in a manner that requires initial Ca
2+ release from lysosomes and subsequent Ca
2+-induced Ca
2+ release (CICR) via ryanodine receptor (RyR) subtype 3 on the SR membrane proximal to lysosomes. L-SR junction membrane separation has been estimated to be < 400 nm and thus beyond the resolution of light microscopy, which has restricted detailed investigations of the junctional coupling process. The present study utilizes standard and tomographic transmission electron microscopy to provide a thorough ultrastructural characterization of the L-SR junctions in PASMCs. We show that L-SR nanojunctions are prominent features within these cells and estimate that the junctional membrane separation and extension are about 15 nm and 300 nm, respectively. Furthermore, we develop a quantitative model of the L-SR junction using these measurements, prior kinetic and specific Ca
2+ signal information as input data. Simulations of NAADP-dependent junctional Ca
2+ transients demonstrate that the magnitude of these signals can breach the threshold for CICR via RyR3. By correlation analysis of live cell Ca
2+ signals and simulated Ca
2+ transients within L-SR junctions, we estimate that “trigger zones” comprising 60–100 junctions are required to confer a signal of similar magnitude. This is compatible with the 110 lysosomes/cell estimated from our ultrastructural observations. Most importantly, our model shows that increasing the L-SR junctional width above 50 nm lowers the magnitude of junctional [Ca
2+] such that there is a failure to breach the threshold for CICR via RyR3. L-SR junctions are therefore a pre-requisite for efficient Ca
2+signal coupling and may contribute to cellular function in health and disease.
Collapse
Affiliation(s)
- Nicola Fameli
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, V6T 1Z3, Canada.,Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Current address: Institute for Biophysics, Medical University of Graz, Graz, 8010, Austria
| | - Oluseye A Ogunbayo
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Cornelis van Breemen
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - A Mark Evans
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
429
|
Petkovic M, Jemaiel A, Daste F, Specht CG, Izeddin I, Vorkel D, Verbavatz JM, Darzacq X, Triller A, Pfenninger KH, Tareste D, Jackson CL, Galli T. The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion. Nat Cell Biol 2014; 16:434-44. [PMID: 24705552 DOI: 10.1038/ncb2937] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
Development of the nervous system requires extensive axonal and dendritic growth during which neurons massively increase their surface area. Here we report that the endoplasmic reticulum (ER)-resident SNARE Sec22b has a conserved non-fusogenic function in plasma membrane expansion. Sec22b is closely apposed to the plasma membrane SNARE syntaxin1. Sec22b forms a trans-SNARE complex with syntaxin1 that does not include SNAP23/25/29, and does not mediate fusion. Insertion of a long rigid linker between the SNARE and transmembrane domains of Sec22b extends the distance between the ER and plasma membrane, and impairs neurite growth but not the secretion of VSV-G. In yeast, Sec22 interacts with lipid transfer proteins, and inhibition of Sec22 leads to defects in lipid metabolism at contact sites between the ER and plasma membrane. These results suggest that close apposition of the ER and plasma membrane mediated by Sec22 and plasma membrane syntaxins generates a non-fusogenic SNARE bridge contributing to plasma membrane expansion, probably through non-vesicular lipid transfer.
Collapse
Affiliation(s)
- Maja Petkovic
- 1] INSERM, U950, F-75013 Paris, France [2] Université Paris Diderot, Sorbonne Paris Cité, ERL U950, F-75013 Paris, France [3] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France [4] Ecole des Neurosciences de Paris (ENP), F-75006 Paris, France [5]
| | - Aymen Jemaiel
- 1] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France [2] Membrane Dynamics and Intracellular Trafficking, Institute Jacques Monod, F-75013 Paris, France [3]
| | - Frédéric Daste
- 1] INSERM, U950, F-75013 Paris, France [2] Université Paris Diderot, Sorbonne Paris Cité, ERL U950, F-75013 Paris, France [3] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France [4] Ecole Doctorale Frontières du Vivant (FdV) - Programme Bettencourt, Université Paris Descartes, Sorbonne Paris Cité, F-75004 Paris, France [5]
| | - Christian G Specht
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Biologie Cellulaire de la Synapse, INSERM U1024, CNRS UMR8197, F-75005 Paris, France
| | - Ignacio Izeddin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Functional Imaging of Transcription, INSERM U1024, CNRS UMR8197, F-75005 Paris, France
| | - Daniela Vorkel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jean-Marc Verbavatz
- 1] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France [2] Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Xavier Darzacq
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Functional Imaging of Transcription, INSERM U1024, CNRS UMR8197, F-75005 Paris, France
| | - Antoine Triller
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Biologie Cellulaire de la Synapse, INSERM U1024, CNRS UMR8197, F-75005 Paris, France
| | - Karl H Pfenninger
- Linda Crnic Institute for Down Syndrome and Department of Pediatrics, University Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - David Tareste
- 1] INSERM, U950, F-75013 Paris, France [2] Université Paris Diderot, Sorbonne Paris Cité, ERL U950, F-75013 Paris, France [3] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France
| | - Catherine L Jackson
- 1] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France [2] Membrane Dynamics and Intracellular Trafficking, Institute Jacques Monod, F-75013 Paris, France
| | - Thierry Galli
- 1] INSERM, U950, F-75013 Paris, France [2] Université Paris Diderot, Sorbonne Paris Cité, ERL U950, F-75013 Paris, France [3] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
430
|
Abstract
UNLABELLED Alphaviruses are small enveloped RNA viruses with highly organized structures that exclude host cell proteins. They contain an internal nucleocapsid and an external lattice of the viral E2 and E1 transmembrane proteins. Alphaviruses bud from the plasma membrane (PM), but the process and dynamics of alphavirus assembly and budding are poorly understood. Here we generated Sindbis viruses (SINVs) with fluorescent protein labels on the E2 envelope protein and exploited them to characterize virus assembly and budding in living cells. During virus infection, E2 became enriched in localized patches on the PM and in filopodium-like extensions. These E2-labeled patches and extensions contained all of the viral structural proteins. Correlative light and electron microscopy studies established that the patches and extensions colocalized with virus budding structures, while light microscopy showed that they excluded a freely diffusing PM marker protein. Exclusion required the interaction of the E2 protein with the capsid protein, a critical step in virus budding, and was associated with the immobilization of the envelope proteins on the cell surface. Virus infection induced two distinct types of extensions: tubulin-negative extensions that were ∼2 to 4 μm in length and excluded the PM marker, and tubulin-positive extensions that were >10 μm long, contained the PM marker, and could transfer virus particles to noninfected cells. Tubulin-positive extensions were selectively reduced in cells infected with a nonbudding SINV mutant. Together, our data support a model in which alphavirus infection induces reorganization of the PM and cytoskeleton, leading to virus budding from specialized sites. IMPORTANCE Alphaviruses are important and widely distributed human pathogens for which vaccines and antiviral therapies are urgently needed. These small highly organized viruses bud from the host cell PM. Virus assembly and budding are critical but little understood steps in the alphavirus life cycle. We developed alphaviruses with fluorescent protein tags on one of the viral membrane (envelope) proteins and used a variety of microscopy techniques to follow the envelope protein and a host cell PM protein during budding. We showed that alphavirus infection induced the formation of patches and extensions on the PM where the envelope proteins accumulate. These sites excluded other PM proteins and correlated with virus budding structures. Exclusion of PM proteins required specific interactions of the viral envelope proteins with the internal capsid protein. Together, our data indicate that alphaviruses extensively reorganize the cell surface and cytoskeleton to promote their assembly and budding.
Collapse
|
431
|
Abstract
Lipids are unevenly distributed within and between cell membranes, thus defining organelle identity. Such distribution relies on local metabolic branches and mechanisms that move lipids. These processes are regulated by feedback mechanisms that decipher topographical information in organelle membranes and then regulate lipid levels or flows. In the endoplasmic reticulum, the major lipid source, transcriptional regulators and enzymes sense changes in membrane features to modulate lipid production. At the Golgi apparatus, lipid-synthesizing, lipid-flippase, and lipid-transport proteins (LTPs) collaborate to control lipid balance and distribution within the membrane to guarantee remodeling processes crucial for vesicular trafficking. Open questions exist regarding LTPs, which are thought to be lipid sensors that regulate lipid synthesis or carriers that transfer lipids between organelles across long distances or in contact sites. A novel model is that LTPs, by exchanging two different lipids, exploit one lipid gradient between two distinct membranes to build a second lipid gradient.
Collapse
Affiliation(s)
- Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and CNRS, 06560 Valbonne, France;
| |
Collapse
|
432
|
Ambudkar IS. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium 2014; 55:297-305. [PMID: 24646566 DOI: 10.1016/j.ceca.2014.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 01/04/2023]
Abstract
Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion.
Collapse
Affiliation(s)
- Indu S Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
433
|
Specificity and Commonality of the Phosphoinositide-Binding Proteome Analyzed by Quantitative Mass Spectrometry. Cell Rep 2014; 6:578-91. [DOI: 10.1016/j.celrep.2013.12.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 12/03/2013] [Accepted: 12/26/2013] [Indexed: 01/03/2023] Open
|
434
|
Signaling through C2 domains: more than one lipid target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1536-47. [PMID: 24440424 DOI: 10.1016/j.bbamem.2014.01.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 02/05/2023]
Abstract
C2 domains are membrane-binding modules that share a common overall fold: a single compact Greek-key motif organized as an eight-stranded anti-parallel β-sandwich consisting of a pair of four-stranded β-sheets. A myriad of studies have demonstrated that in spite of sharing the common structural β-sandwich core, slight variations in the residues located in the interconnecting loops confer C2 domains with functional abilities to respond to different Ca(2+) concentrations and lipids, and to signal through protein-protein interactions as well. This review summarizes the main structural and functional findings on Ca(2+) and lipid interactions by C2 domains, including the discovery of the phosphoinositide-binding site located in the β3-β4 strands. The wide variety of functions, together with the different Ca(2+) and lipid affinities of these domains, converts this superfamily into a crucial player in many functions in the cell and more to be discovered. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
|
435
|
Wolf W, Meese K, Seedorf M. Ist2 in the yeast cortical endoplasmic reticulum promotes trafficking of the amino acid transporter Bap2 to the plasma membrane. PLoS One 2014; 9:e85418. [PMID: 24416406 PMCID: PMC3885692 DOI: 10.1371/journal.pone.0085418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
The equipment of the plasma membrane in Saccharomyces cerevisiae with specific nutrient transporters is highly regulated by transcription, translation and protein trafficking allowing growth in changing environments. The activity of these transporters depends on a H+ gradient across the plasma membrane generated by the H+-ATPase Pma1. We found that the polytopic membrane protein Ist2 in the cortical endoplasmic reticulum (ER) is required for efficient leucine uptake during the transition from fermentation to respiration. Experiments employing tandem fluorescence timer protein tag showed that Ist2 was necessary for efficient trafficking of newly synthesized leucine transporter Bap2 from the ER to the plasma membrane. This finding explains the growth defect of ist2Δ mutants during nutritional challenges and illustrates the important role of physical coupling between cortical ER and plasma membrane.
Collapse
Affiliation(s)
- Wendelin Wolf
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Allianz, Heidelberg, Germany
| | - Klaus Meese
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Allianz, Heidelberg, Germany
| | - Matthias Seedorf
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH-Allianz, Heidelberg, Germany
| |
Collapse
|
436
|
Hönscher C, Ungermann C. A close-up view of membrane contact sites between the endoplasmic reticulum and the endolysosomal system: from yeast to man. Crit Rev Biochem Mol Biol 2014; 49:262-8. [PMID: 24382115 DOI: 10.3109/10409238.2013.875512] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Maintenance of organelle identity is crucial for the functionality of eukaryotic cells. Hence, transfer reactions between different compartments must be highly efficient and tightly regulated at the same time. Membrane contact sites (MCSs) represent an important route for inter-organelle transport and communication independent of vesicular trafficking. Due to extensive research, the mechanistic understanding of these sites increases constantly. However, how the formation and the versatile functions of MCSs are regulated is mainly unclear. Within this review, we focus on one well-known MCS, the nucleus-vacuole junction in yeast and discuss its analogy to endoplasmic reticulum-late endosome contacts in metazoan. Formation of the junction in yeast requires Vac8, a protein that is involved in various cellular processes at the yeast vacuole and a target of multiple posttranslational modifications. We discuss the possibility that dual functionality of proteins involved in contact formation is a common principle to coordinate inter-organelle transfer with organellar biogenesis.
Collapse
Affiliation(s)
- Carina Hönscher
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück , Osnabrück , Germany
| | | |
Collapse
|
437
|
Uchiyama A, Shimada-Beltran H, Levy A, Zheng JY, Javia PA, Lazarowitz SG. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses. FRONTIERS IN PLANT SCIENCE 2014; 5:584. [PMID: 25414709 PMCID: PMC4222171 DOI: 10.3389/fpls.2014.00584] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 10/09/2014] [Indexed: 05/20/2023]
Abstract
Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV) and the Tobamovirus Tobacco mosaic virus (TMV) through plasmodesmata (Lewis and Lazarowitz, 2010). To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV), the Caulimovirus Cauliflower mosaic virus (CaMV) and the Tobamovirus Turnip vein clearing virus (TVCV), which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP), Tobamoviruses (TVCV and TMV 30K protein) and Potyviruses (TuMV P3N-PIPO) to alter PD and thereby mediate virus cell-to-cell spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Sondra G. Lazarowitz
- *Correspondence: Sondra G. Lazarowitz, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, USA e-mail:
| |
Collapse
|
438
|
Xu J, Bacaj T, Zhou A, Tomchick DR, Südhof TC, Rizo J. Structure and Ca²⁺-binding properties of the tandem C₂ domains of E-Syt2. Structure 2013; 22:269-80. [PMID: 24373768 DOI: 10.1016/j.str.2013.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/30/2022]
Abstract
Contacts between the endoplasmic reticulum and the plasma membrane involve extended synaptotagmins (E-Syts) in mammals or tricalbins in yeast, proteins with multiple C₂ domains. One of the tandem C₂ domains of E-Syt2 is predicted to bind Ca²⁺, but no Ca²⁺-dependent function has been attributed to this protein. We have determined the crystal structures of the tandem C₂ domains of E-Syt2 in the absence and presence of Ca²⁺ and analyzed their Ca²⁺-binding properties by nuclear magnetic resonance spectroscopy. Our data reveal an unexpected V-shaped structure with a rigid orientation between the two C₂ domains that is not substantially altered by Ca²⁺. The E-Syt2 C2A domain binds up to four Ca²⁺ ions, whereas the C₂B domain does not bind Ca²⁺. These results suggest that E-Syt2 performs an as yet unidentified Ca²⁺-dependent function through its C₂A domain and uncover fundamental differences between the properties of the tandem C₂ domains of E-Syts and synaptotagmins.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Taulant Bacaj
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Amy Zhou
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
439
|
Chang CL, Hsieh TS, Yang TT, Rothberg KG, Azizoglu DB, Volk E, Liao JC, Liou J. Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep 2013; 5:813-25. [PMID: 24183667 DOI: 10.1016/j.celrep.2013.09.038] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/06/2013] [Accepted: 09/25/2013] [Indexed: 11/18/2022] Open
Abstract
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are highly conserved subcellular structures. Despite their importance in Ca(2+) signaling and lipid trafficking, the molecular mechanisms underlying the regulation and functions of ER-PM junctions remain unclear. By developing a genetically encoded marker that selectively monitors ER-PM junctions, we found that the connection between ER and PM was dynamically regulated by Ca(2+) signaling. Elevation of cytosolic Ca(2+) triggered translocation of E-Syt1 to ER-PM junctions to enhance ER-to-PM connection. This subsequently facilitated the recruitment of Nir2, a phosphatidylinositol transfer protein (PITP), to ER-PM junctions following receptor stimulation. Nir2 promoted the replenishment of PM phosphatidylinositol 4,5-bisphosphate (PIP2) after receptor-induced hydrolysis via its PITP activity. Disruption of the enhanced ER-to-PM connection resulted in reduced PM PIP2 replenishment and defective Ca(2+) signaling. Altogether, our results suggest a feedback mechanism that replenishes PM PIP2 during receptor-induced Ca(2+) signaling via the Ca(2+) effector E-Syt1 and the PITP Nir2 at ER-PM junctions.
Collapse
Affiliation(s)
- Chi-Lun Chang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
440
|
Cockcroft S, Garner K. Potential role for phosphatidylinositol transfer protein (PITP) family in lipid transfer during phospholipase C signalling. Adv Biol Regul 2013; 53:280-291. [PMID: 23916246 DOI: 10.1016/j.jbior.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
The hallmark of mammalian phosphatidylinositol transfer proteins (PITPs) is to transfer phosphatidylinositol between membrane compartments. In the mammalian genome, there are three genes that code for soluble PITP proteins, PITPα, PITPβ and RdgBβ and two genes that code for membrane-associated multi-domain proteins (RdgBαI and II) containing a PITP domain. PITPα and PITPβ constitute Class I PITPs whilst the RdgB proteins constitute Class II proteins based on sequence analysis. The PITP domain of both Class I and II can sequester one molecule of phosphatidylinositol (PI) in its hydrophobic cavity. Therefore, in principle, PITPs are therefore ideally poised to couple phosphatidylinositol delivery to the PI kinases for substrate provision for phospholipases C during cell activation. Since phosphatidylinositol (4,5)bisphosphate plays critical roles in cells, particularly at the plasma membrane, where it is a substrate for both phospholipase C and phosphoinositide-3-kinases as well as required as an intact lipid to regulate ion channels and the actin cytoskeleton, homeostatic mechanisms to maintain phosphatidylinositol(4,5)bisphosphate levels are vital. To maintain phosphatidylinositol levels, phospholipase C activation inevitably leads to the resynthesis of PI at the endoplasmic reticulum where the enzymes are located. Phosphatidic acid generated at the plasma membrane during phospholipase C activation needs to move to the ER for conversion to PI and here we provide evidence that Class II PITPs are also able to bind and transport phosphatidic acid. Thus RdgB proteins could couple PA and PI transport bidirectionally during phospholipase C signalling.
Collapse
Affiliation(s)
- Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| | | |
Collapse
|
441
|
Abstract
Junctions that connect the endoplasmic reticulum (ER) and the plasma membrane (PM) are unique yet ubiquitous subcellular compartments. Giordano et al. now report that extended synaptotagmins (E-Syts) promote their formation, providing fundamental insight into the molecular machinery controlling ER and plasma membrane crosstalk.
Collapse
Affiliation(s)
- Seth Malmersjö
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
442
|
Abstract
The endoplasmic reticulum (ER) Ca(2+) sensor STIM1 recruits and activates the plasma membrane (PM) Ca(2+) channel Orai1 at ER-PM junctions for store-operated Ca(2+) entry (SOCE). Reporting in Nature, Sharma et al. (2013) showed that septins are necessary for Orai1 recruitment and SOCE, implicating these scaffolding proteins in signaling at ER-PM junctions.
Collapse
Affiliation(s)
- Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|