401
|
RNA-binding proteins with prion-like domains in health and disease. Biochem J 2017; 474:1417-1438. [PMID: 28389532 DOI: 10.1042/bcj20160499] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
Collapse
|
402
|
Quantitative Analysis of the KSHV Transcriptome Following Primary Infection of Blood and Lymphatic Endothelial Cells. Pathogens 2017; 6:pathogens6010011. [PMID: 28335496 PMCID: PMC5371899 DOI: 10.3390/pathogens6010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
The transcriptome of the Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters. Similar patterns of KSHV expression were detected in BCBL-1 cells undergoing long-term latent infections and in primary latent infections of both BEC and LEC cultures. High expression levels of poly-adenylated nuclear (PAN) RNA and spliced and unspliced transcripts encoding the K12 Kaposin B/C complex and associated microRNA region were detected, with an elevated expression of a large set of lytic genes in all latently infected cultures. Quantitation of non-overlapping regions of transcripts across the complete KSHV genome enabled for the first time accurate evaluation of the KSHV transcriptome associated with viral latency in different cell types. Hierarchical clustering applied to a gene correlation matrix identified modules of co-regulated genes with similar correlation profiles, which corresponded with biological and functional similarities of the encoded gene products. Gene modules were differentially upregulated during latency in specific cell types indicating a role for cellular factors associated with differentiated and/or proliferative states of the host cell to influence viral gene expression.
Collapse
|
403
|
Clarke TL, Sanchez-Bailon MP, Chiang K, Reynolds JJ, Herrero-Ruiz J, Bandeiras TM, Matias PM, Maslen SL, Skehel JM, Stewart GS, Davies CC. PRMT5-Dependent Methylation of the TIP60 Coactivator RUVBL1 Is a Key Regulator of Homologous Recombination. Mol Cell 2017; 65:900-916.e7. [PMID: 28238654 PMCID: PMC5344794 DOI: 10.1016/j.molcel.2017.01.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/20/2016] [Accepted: 01/17/2017] [Indexed: 11/29/2022]
Abstract
Protein post-translation modification plays an important role in regulating DNA repair; however, the role of arginine methylation in this process is poorly understood. Here we identify the arginine methyltransferase PRMT5 as a key regulator of homologous recombination (HR)-mediated double-strand break (DSB) repair, which is mediated through its ability to methylate RUVBL1, a cofactor of the TIP60 complex. We show that PRMT5 targets RUVBL1 for methylation at position R205, which facilitates TIP60-dependent mobilization of 53BP1 from DNA breaks, promoting HR. Mechanistically, we demonstrate that PRMT5-directed methylation of RUVBL1 is critically required for the acetyltransferase activity of TIP60, promoting histone H4K16 acetylation, which facilities 53BP1 displacement from DSBs. Interestingly, RUVBL1 methylation did not affect the ability of TIP60 to facilitate ATM activation. Taken together, our findings reveal the importance of PRMT5-mediated arginine methylation during DSB repair pathway choice through its ability to regulate acetylation-dependent control of 53BP1 localization.
Collapse
Affiliation(s)
- Thomas L Clarke
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Maria Pilar Sanchez-Bailon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kelly Chiang
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Joaquin Herrero-Ruiz
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tiago M Bandeiras
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Pedro M Matias
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Clare C Davies
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
404
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
405
|
Ariyachet C, Beißel C, Li X, Lorrey S, Mackenzie O, Martin PM, O'Brien K, Pholcharee T, Sim S, Krebber H, McBride AE. Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1. Mol Microbiol 2017; 104:499-519. [PMID: 28187496 PMCID: PMC5405739 DOI: 10.1111/mmi.13643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
The morphological transition of the opportunistic fungal pathogen Candida albicans from budding to hyphal growth has been implicated in its ability to cause disease in animal models. Absence of SR‐like RNA‐binding protein Slr1 slows hyphal formation and decreases virulence in a systemic candidiasis model, suggesting a role for post‐transcriptional regulation in these processes. SR (serine–arginine)‐rich proteins influence multiple steps in mRNA metabolism and their localization and function are frequently controlled by modification. We now demonstrate that Slr1 binds to polyadenylated RNA and that its intracellular localization is modulated by phosphorylation and methylation. Wildtype Slr1‐GFP is predominantly nuclear, but also co‐fractionates with translating ribosomes. The non‐phosphorylatable slr1‐6SA‐GFP protein, in which six serines in SR/RS clusters are substituted with alanines, primarily localizes to the cytoplasm in budding cells. Intriguingly, hyphal cells display a slr1‐6SA‐GFP focus at the tip near the Spitzenkörper, a vesicular structure involved in molecular trafficking to the tip. The presence of slr1‐6SA‐GFP hyphal tip foci is reduced in the absence of the mRNA‐transport protein She3, suggesting that unphosphorylated Slr1 associates with mRNA–protein complexes transported to the tip. The impact of SLR1 deletion on hyphal formation and function thus may be partially due to a role in hyphal mRNA transport.
Collapse
Affiliation(s)
| | - Christian Beißel
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Xiang Li
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Selena Lorrey
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | | | | | | | | | - Sue Sim
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Anne E McBride
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| |
Collapse
|
406
|
Arginine Methylation by PRMT1 Regulates Muscle Stem Cell Fate. Mol Cell Biol 2017; 37:MCB.00457-16. [PMID: 27849571 PMCID: PMC5247616 DOI: 10.1128/mcb.00457-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022] Open
Abstract
Quiescent muscle stem cells (MSCs) become activated in response to skeletal muscle injury to initiate regeneration. Activated MSCs proliferate and differentiate to repair damaged fibers or self-renew to maintain the pool and ensure future regeneration. The balance between self-renewal, proliferation, and differentiation is a tightly regulated process controlled by a genetic cascade involving determinant transcription factors such as Pax7, Myf5, MyoD, and MyoG. Recently, there have been several reports about the role of arginine methylation as a requirement for epigenetically mediated control of muscle regeneration. Here we report that the protein arginine methyltransferase 1 (PRMT1) is expressed in MSCs and that conditional ablation of PRMT1 in MSCs using Pax7CreERT2 causes impairment of muscle regeneration. Importantly, PRMT1-deficient MSCs have enhanced cell proliferation after injury but are unable to terminate the myogenic differentiation program, leading to regeneration failure. We identify the coactivator of Six1, Eya1, as a substrate of PRMT1. We show that PRMT1 methylates Eya1 in vitro and that loss of PRMT1 function in vivo prevents Eya1 methylation. Moreover, we observe that PRMT1-deficient MSCs have reduced expression of Eya1/Six1 target MyoD due to disruption of Eya1 recruitment at the MyoD promoter and subsequent Eya1-mediated coactivation. These findings suggest that arginine methylation by PRMT1 regulates muscle stem cell fate through the Eya1/Six1/MyoD axis.
Collapse
|
407
|
Wall ML, Lewis SM. Methylarginines within the RGG-Motif Region of hnRNP A1 Affect Its IRES Trans-Acting Factor Activity and Are Required for hnRNP A1 Stress Granule Localization and Formation. J Mol Biol 2016; 429:295-307. [PMID: 27979648 DOI: 10.1016/j.jmb.2016.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 12/30/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a stress granule-associated RNA-binding protein that plays a role in apoptosis and cellular stress recovery. HnRNP A1 is a major non-histone target of protein arginine methyltransferase 1, which asymmetrically dimethylates hnRNP A1 at several key arginine residues within its arginine-glycine-glycine (RGG)-motif region. Although arginine methylation is known to regulate general RNA binding of hnRNP A1 in vitro, the functional role of arginine methylation in hnRNP A1 cytoplasmic activity is unknown. To test the impact of key methylarginine residues on hnRNP A1 cytoplasmic activity and stress granule association, cytoplasmically restricted Flag-tagged mutants of hnRNP A1 were generated in which key methylarginine residues within the RGG-motif region were changed to either lysine or alanine. Lysine substitution, which mimics unmethylated arginine, resulted in a 40% increase in internal ribosome entry site trans-acting factor (ITAF) activity and the protein readily associates with stress granules. Alanine substitution resulted in a loss of ITAF activity and reduced mRNA binding. The alanine mutant also displays reduced stress granule association and suppresses stress granule formation. Our data suggest that arginine residues within the RGG-motif region are critical for hnRNP A1 cytoplasmic activities and that endogenous asymmetric dimethylation of the RGG-motif region suppresses hnRNP A1 ITAF activity in cells. Our findings indicate that methylarginine residues within the RGG-motif region of hnRNP A1 are important for its cytoplasmic activities and that hypomethylation and/or mutation of the RGG-motif region may contribute to the role of hnRNP A1 in diseases such as cancer.
Collapse
Affiliation(s)
- Michael L Wall
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada; Department of Chemistry & Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.
| |
Collapse
|
408
|
Pérez-Díaz L, Silva TC, Teixeira SMR. Involvement of an RNA binding protein containing Alba domain in the stage-specific regulation of beta-amastin expression in Trypanosoma cruzi. Mol Biochem Parasitol 2016; 211:1-8. [PMID: 27986451 DOI: 10.1016/j.molbiopara.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022]
Abstract
Amastins are surface glycoproteins, first identified in amastigotes of T. cruzi but later found to be expressed in several Leishmania species, as well as in T. cruzi epimastigotes. Amastins are encoded by a diverse gene family that can be grouped into four subfamilies named α, β, γ, and δ amastins. Differential expression of amastin genes results from regulatory mechanisms involving changes in mRNA stability and/or translational control. Although distinct regulatory elements were identified in the 3' UTR of T. cruzi and Leishmania amastin mRNAs, RNA binding proteins involved with amastin gene regulation have only being characterized in L. infantum where an Alba-domain protein (LiAlba20) able to bind to the 3' UTR of a δ-amastin mRNA was identified. Here we investigated the role of TcAlba30, the LiAlba20 homologue in T. cruzi, in the post transcriptional regulation of amastin genes. TcAlba30 transcripts are present in all stages of the T. cruzi life cycle. RNA immunoprecipitation assays using a transfected cell line expressing a cMyc tagged TcAlba30 revealed that TcAlba30 can interact with β-amastin mRNA. In addition, over-expression of TcAlba30 in epimastigotes resulted in 50% decreased levels of β-amastin mRNAs compared to wild type parasites. Since luciferase assays indicated the presence of regulatory elements in the 3' UTR of β-amastin mRNA and reduced levels of luciferase mRNA were found in parasites over expressing TcAlba30, we conclude that TcAlba30 acts as a T. cruzi RNA binding protein involved in the negative control of β-amastin expression through interactions with its 3'UTR.
Collapse
Affiliation(s)
- Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Tais Caroline Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Santuza M R Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
409
|
Wang Y, Hsu JM, Kang Y, Wei Y, Lee PC, Chang SJ, Hsu YH, Hsu JL, Wang HL, Chang WC, Li CW, Liao HW, Chang SS, Xia W, Ko HW, Chou CK, Fleming JB, Wang H, Hwang RF, Chen Y, Qin J, Hung MC. Oncogenic Functions of Gli1 in Pancreatic Adenocarcinoma Are Supported by Its PRMT1-Mediated Methylation. Cancer Res 2016; 76:7049-7058. [PMID: 27758883 PMCID: PMC5135656 DOI: 10.1158/0008-5472.can-16-0715] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
The oncogenic transcription factor Gli1 is a critical effector in the Hedgehog (Hh) pathway, which is necessary for the development and progression of pancreatic ductal adenocarcinoma (PDAC). Although TGFβ and K-Ras are known regulators of Gli1 gene transcription in this setting, it is not understood how Gli1 functional activity is regulated. Here, we report the identification of Gli1 as a substrate for the protein arginine N-methyltransferase PRMT1 in PDAC. We found that PRMT1 methylates Gli1 at R597, promoting its transcriptional activity by enhancing the binding of Gli1 to its target gene promoters. Interruption of Gli1 methylation attenuates oncogenic functions of Gli1 and sensitizes PDAC cells to gemcitabine treatment. In human PDAC specimens, the levels of both total Gli1 and methylated Gli1 were correlated positively with PRMT1 protein levels. Notably, PRMT1 regulated Gli1 independently of the canonical Hh pathway as well as the TGFβ/Kras-mediated noncanonical Hh pathway, thereby signifying a novel regulatory mechanism for Gli1 transcriptional activity. Taken together, our results identified a new posttranslational modification of Gli1 that underlies its pivotal oncogenic functions in PDAC. Cancer Res; 76(23); 7049-58. ©2016 AACR.
Collapse
Affiliation(s)
- Yan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pei-Chih Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shing-Jyh Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Yi-Hsin Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hung-Ling Wang
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsin-Wei Liao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rosa F Hwang
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yue Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Jun Qin
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
410
|
The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins. Biochem J 2016; 473:4271-4288. [DOI: 10.1042/bcj20160649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein–protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins.
Collapse
|
411
|
The properties of the RNA-binding protein NF90 are considerably modulated by complex formation with NF45. Biochem J 2016; 474:259-280. [PMID: 28062840 DOI: 10.1042/bcj20160790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Nuclear factor 90 (NF90) is an RNA-binding protein (RBP) that regulates post-transcriptionally the expression of various mRNAs. NF90 was recently shown to be capable of discriminating between different RNA substrates. This is mediated by an adaptive and co-operative interplay between three RNA-binding motifs (RBMs) in the protein's C-terminus. In many cell types, NF90 exists predominantly in a complex with NF45. Here, we compared the RNA-binding properties of the purified NF90 monomer and the NF90-NF45 heterodimer by biophysical and biochemical means, and demonstrate that the interaction with NF45 considerably affects the characteristics of NF90. Along with a thermodynamic stabilization, complex formation substantially improves the RNA-binding capacity of NF90 by modulating its binding mode and by enhancing its affinity for single- and double-stranded RNA substrates. Our data suggest that features of both the N- and C-termini of NF90 participate in the heterodimerization with NF45 and that the formation of NF90-NF45 changes the conformation of NF90's RBMs to a status in which the co-operative interplay of the RBMs is optimal. NF45 is considered to act as a conformational scaffold for NF90's RBMs, which alters the RNA-binding specificity of NF90. Accordingly, the monomeric NF90 and the NF90-NF45 heterodimer may exert different functions in the cell.
Collapse
|
412
|
Klein G, Mathé C, Biola-Clier M, Devineau S, Drouineau E, Hatem E, Marichal L, Alonso B, Gaillard JC, Lagniel G, Armengaud J, Carrière M, Chédin S, Boulard Y, Pin S, Renault JP, Aude JC, Labarre J. RNA-binding proteins are a major target of silica nanoparticles in cell extracts. Nanotoxicology 2016; 10:1555-1564. [PMID: 27705051 DOI: 10.1080/17435390.2016.1244299] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Upon contact with biological fluids, nanoparticles (NPs) are readily coated by cellular compounds, particularly proteins, which are determining factors for the localization and toxicity of NPs in the organism. Here, we improved a methodological approach to identify proteins that adsorb on silica NPs with high affinity. Using large-scale proteomics and mixtures of soluble proteins prepared either from yeast cells or from alveolar human cells, we observed that proteins with large unstructured region(s) are more prone to bind on silica NPs. These disordered regions provide flexibility to proteins, a property that promotes their adsorption. The statistical analyses also pointed to a marked overrepresentation of RNA-binding proteins (RBPs) and of translation initiation factors among the adsorbed proteins. We propose that silica surfaces, which are mainly composed of Si-O- and Si-OH groups, mimic ribose-phosphate molecules (rich in -O- and -OH) and trap the proteins able to interact with ribose-phosphate containing molecules. Finally, using an in vitro assay, we showed that the sequestration of translation initiation factors by silica NPs results in an inhibition of the in vitro translational activity. This result demonstrates that characterizing the protein corona of various NPs would be a relevant approach to predict their potential toxicological effects.
Collapse
Affiliation(s)
- Géraldine Klein
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France.,b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Christelle Mathé
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France.,b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Mathilde Biola-Clier
- c Univ. Grenoble Alpes, CEA, INAC-SyMMES, Laboratoire Lésions des Acides Nucléiques , Grenoble , France , and
| | - Stéphanie Devineau
- b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Emilie Drouineau
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Elie Hatem
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Laurent Marichal
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France.,b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Béatrice Alonso
- d CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', BP 17171 , Bagnols-sur-Cèze , France
| | - Jean-Charles Gaillard
- d CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', BP 17171 , Bagnols-sur-Cèze , France
| | - Gilles Lagniel
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Jean Armengaud
- d CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', BP 17171 , Bagnols-sur-Cèze , France
| | - Marie Carrière
- c Univ. Grenoble Alpes, CEA, INAC-SyMMES, Laboratoire Lésions des Acides Nucléiques , Grenoble , France , and
| | - Stéphane Chédin
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Yves Boulard
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Serge Pin
- b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Jean-Philippe Renault
- b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Jean-Christophe Aude
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Jean Labarre
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| |
Collapse
|
413
|
Lien PTK, Izumikawa K, Muroi K, Irie K, Suda Y, Irie K. Analysis of the Physiological Activities of Scd6 through Its Interaction with Hmt1. PLoS One 2016; 11:e0164773. [PMID: 27776129 PMCID: PMC5077174 DOI: 10.1371/journal.pone.0164773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/30/2016] [Indexed: 01/26/2023] Open
Abstract
Scd6, a yeast homologue of human RAP55, is a component of messenger ribonucleoproteins (mRNPs) that repress translation by binding to translation initiation factors, and also is a decapping activator along with the binding partners Edc3 and Dhh1. Herein, we report that Scd6 is a substrate of the intrinsic protein arginine methyltransferase, Hmt1, in budding yeast Saccharomyces cerevisiae. Mass spectrometric analysis revealed that several arginine residues within the Scd6 RGG motif, which is important for mRNA binding, were methylated in Hmt1 dependent manner. Under stress conditions such as glucose starvation, Scd6 localized to cytoplasmic processing bodies (P-bodies) wherein translationally repressed mRNPs and untranslated mRNAs accumulate. Localization of Scd6 to P-bodies was impaired in hmt1 deletion mutant and in the presence of methylation-deficient substitution of Scd6. In addition, deletion of scd6 and dhh1 led to severe synthetic growth defect at high temperature. Methylation-deficient mutation of Scd6 suppressed the phenotypic defects of scd6 dhh1 double mutant, whereas methylation-mimic mutation did not, suggesting that the arginine methylation might negatively regulate Scd6 function relating to Dhh1. Therefore, the present data suggest that Hmt1-based arginine methylation is required for Scd6 localization and function.
Collapse
Affiliation(s)
- Pham Thi Kim Lien
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiichi Izumikawa
- Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kei Muroi
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaoru Irie
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
- * E-mail:
| | - Kenji Irie
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
414
|
Song J, Perreault JP, Topisirovic I, Richard S. RNA G-quadruplexes and their potential regulatory roles in translation. ACTA ACUST UNITED AC 2016; 4:e1244031. [PMID: 28090421 PMCID: PMC5173311 DOI: 10.1080/21690731.2016.1244031] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
DNA guanine (G)-rich 4-stranded helical nucleic acid structures called G-quadruplexes (G4), have been extensively studied during the last decades. However, emerging evidence reveals that 5′- and 3′-untranslated regions (5′- and 3′-UTRs) as well as open reading frames (ORFs) contain putative RNA G-quadruplexes. These stable secondary structures play key roles in telomere homeostasis and RNA metabolism including pre-mRNA splicing, polyadenylation, mRNA targeting and translation. Interestingly, multiple RNA binding proteins such as nucleolin, FMRP, DHX36, and Aven were identified to bind RNA G-quadruplexes. Moreover, accumulating reports suggest that RNA G-quadruplexes regulate translation in cap-dependent and -independent manner. Herein, we discuss potential roles of RNA G-quadruplexes and associated trans-acting factors in the regulation of mRNA translation.
Collapse
Affiliation(s)
- Jingwen Song
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Ivan Topisirovic
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
415
|
Zhu X, Bührer C, Wellmann S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 2016; 73:3839-59. [PMID: 27147467 PMCID: PMC5021741 DOI: 10.1007/s00018-016-2253-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Cold-inducible RNA-binding protein (CIRP) and RNA-binding motif protein 3 (RBM3) are two evolutionarily conserved RNA-binding proteins that are transcriptionally upregulated in response to low temperature. Featuring an RNA-recognition motif (RRM) and an arginine-glycine-rich (RGG) domain, these proteins display many similarities and specific disparities in the regulation of numerous molecular and cellular events. The resistance to serum withdrawal, endoplasmic reticulum stress, or other harsh conditions conferred by RBM3 has led to its reputation as a survival gene. Once CIRP protein is released from cells, it appears to bolster inflammation, contributing to poor prognosis in septic patients. A variety of human tumor specimens have been analyzed for CIRP and RBM3 expression. Surprisingly, RBM3 expression was primarily found to be positively associated with the survival of chemotherapy-treated patients, while CIRP expression was inversely linked to patient survival. In this comprehensive review, we summarize the evolutionary conservation of CIRP and RBM3 across species as well as their molecular interactions, cellular functions, and roles in diverse physiological and pathological processes, including circadian rhythm, inflammation, neural plasticity, stem cell properties, and cancer development.
Collapse
Affiliation(s)
- Xinzhou Zhu
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany
| | - Sven Wellmann
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
416
|
Friedrich S, Schmidt T, Schierhorn A, Lilie H, Szczepankiewicz G, Bergs S, Liebert UG, Golbik RP, Behrens SE. Arginine methylation enhances the RNA chaperone activity of the West Nile virus host factor AUF1 p45. RNA (NEW YORK, N.Y.) 2016; 22:1574-1591. [PMID: 27520967 PMCID: PMC5029455 DOI: 10.1261/rna.055269.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
A prerequisite for the intracellular replication process of the Flavivirus West Nile virus (WNV) is the cyclization of the viral RNA genome, which enables the viral replicase to initiate RNA synthesis. Our earlier studies indicated that the p45 isoform of the cellular AU-rich element binding protein 1 (AUF1) has an RNA chaperone activity, which supports RNA cyclization and viral RNA synthesis by destabilizing a stem structure at the WNV RNA's 3'-end. Here we show that in mammalian cells, AUF1 p45 is consistently modified by arginine methylation of its C terminus. By a combination of different experimental approaches, we can demonstrate that the methyltransferase PRMT1 is necessary and sufficient for AUF1 p45 methylation and that PRMT1 is required for efficient WNV replication. Interestingly, in comparison to the nonmethylated AUF1 p45, the methylated AUF1 p45(aDMA) exhibits a significantly increased affinity to the WNV RNA termini. Further data also revealed that the RNA chaperone activity of AUF1 p45(aDMA) is improved and the methylated protein stimulates viral RNA synthesis considerably more efficiently than the nonmethylated AUF1 p45. In addition to its destabilizing RNA chaperone activity, we identified an RNA annealing activity of AUF1 p45, which is not affected by methylation. Arginine methylation of AUF1 p45 thus represents a specific determinant of its RNA chaperone activity while functioning as a WNV host factor. Our data suggest that the methylation modifies the conformation of AUF1 p45 and in this way affects its RNA binding and restructuring activities.
Collapse
Affiliation(s)
- Susann Friedrich
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| | - Tobias Schmidt
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| | - Angelika Schierhorn
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| | | | - Sandra Bergs
- Institute of Virology, Leipzig University, 04130 Leipzig, Germany
| | - Uwe G Liebert
- Institute of Virology, Leipzig University, 04130 Leipzig, Germany
| | - Ralph P Golbik
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, 60120 Halle, Germany
| |
Collapse
|
417
|
Poornima G, Shah S, Vignesh V, Parker R, Rajyaguru PI. Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6. Nucleic Acids Res 2016; 44:9358-9368. [PMID: 27613419 PMCID: PMC5100564 DOI: 10.1093/nar/gkw762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022] Open
Abstract
Regulation of translation plays a critical role in determining mRNA fate. A new role was recently reported for a subset of RGG-motif proteins in repressing translation initiation by binding eIF4G1. However the signaling mechanism(s) that leads to spatial and temporal regulation of repression activity of RGG-motif proteins remains unknown. Here we report the role of arginine methylation in regulation of repression activity of Scd6, a conserved RGG-motif protein. We demonstrate that Scd6 gets arginine methylated at its RGG-motif and Hmt1 plays an important role in its methylation. We identify specific methylated arginine residues in the Scd6 RGG-motif in vivo We provide evidence that methylation augments Scd6 repression activity. Arginine methylation defective (AMD) mutant of Scd6 rescues the growth defect caused by overexpression of Scd6, a feature of translation repressors in general. Live-cell imaging of the AMD mutant revealed that it is defective in inducing formation of stress granules. Live-cell imaging and pull-down results indicate that it fails to bind eIF4G1 efficiently. Consistent with these results, a strain lacking Hmt1 is also defective in Scd6-eIF4G1 interaction. Our results establish that arginine methylation augments Scd6 repression activity by promoting eIF4G1-binding. We propose that arginine methylation of translation repressors with RGG-motif could be a general modulator of their repression activity.
Collapse
Affiliation(s)
- Gopalakrishna Poornima
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| | - Shanaya Shah
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| | | | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| |
Collapse
|
418
|
Saha S, Weber CA, Nousch M, Adame-Arana O, Hoege C, Hein MY, Osborne-Nishimura E, Mahamid J, Jahnel M, Jawerth L, Pozniakovski A, Eckmann CR, Jülicher F, Hyman AA. Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism. Cell 2016; 166:1572-1584.e16. [PMID: 27594427 DOI: 10.1016/j.cell.2016.08.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
Abstract
P granules are non-membrane-bound RNA-protein compartments that are involved in germline development in C. elegans. They are liquids that condense at one end of the embryo by localized phase separation, driven by gradients of polarity proteins such as the mRNA-binding protein MEX-5. To probe how polarity proteins regulate phase separation, we combined biochemistry and theoretical modeling. We reconstitute P granule-like droplets in vitro using a single protein PGL-3. By combining in vitro reconstitution with measurements of intracellular concentrations, we show that competition between PGL-3 and MEX-5 for mRNA can regulate the formation of PGL-3 droplets. Using theory, we show that, in a MEX-5 gradient, this mRNA competition mechanism can drive a gradient of P granule assembly with similar spatial and temporal characteristics to P granule assembly in vivo. We conclude that gradients of polarity proteins can position RNP granules during development by using RNA competition to regulate local phase separation.
Collapse
Affiliation(s)
- Shambaditya Saha
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Christoph A Weber
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Marco Nousch
- Martin Luther University, 06120 Halle (Saale), Germany
| | - Omar Adame-Arana
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Carsten Hoege
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Marco Y Hein
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - Julia Mahamid
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Louise Jawerth
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Andrej Pozniakovski
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
419
|
Larsen SC, Sylvestersen KB, Mund A, Lyon D, Mullari M, Madsen MV, Daniel JA, Jensen LJ, Nielsen ML. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci Signal 2016; 9:rs9. [DOI: 10.1126/scisignal.aaf7329] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
420
|
Human EHMT2/G9a activates p53 through methylation-independent mechanism. Oncogene 2016; 36:922-932. [PMID: 27452519 DOI: 10.1038/onc.2016.258] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/01/2016] [Accepted: 05/23/2016] [Indexed: 12/23/2022]
Abstract
p53 is a critical tumor suppressor in humans. It functions mostly as a transcriptional factor and its activity is regulated by numerous post-translational modifications. Among different covalent modifications found on p53 the most controversial one is lysine methylation. We found that human G9a (hG9a) unlike its mouse orthologue (mG9a) potently stimulated p53 transcriptional activity. Both ectopic and endogenous hG9a augmented p53-dependent transcription of pro-apoptotic genes, including Bax and Puma, resulting in enhanced apoptosis and reduced colony formation. Significantly, shRNA-mediated knockdown of hG9a attenuated p53-dependent activation of Puma. On the molecular level, hG9a interacted with histone acetyltransferase, p300/CBP, resulting in increased histone acetylation at the promoter of Puma. The bioinformatics data substantiated our findings showing that positive correlation between G9a and p53 expression is associated with better survival of lung cancer patients. Collectively, this study demonstrates that depending on the cellular and organismal context, orthologous proteins may exert both overlapping and opposing functions. Furthermore, this finding has important ramifications on the use of G9a inhibitors in combination with genotoxic drugs to treat p53-positive tumors.
Collapse
|
421
|
Castello A, Fischer B, Frese CK, Horos R, Alleaume AM, Foehr S, Curk T, Krijgsveld J, Hentze MW. Comprehensive Identification of RNA-Binding Domains in Human Cells. Mol Cell 2016; 63:696-710. [PMID: 27453046 PMCID: PMC5003815 DOI: 10.1016/j.molcel.2016.06.029] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Mammalian cells harbor more than a thousand RNA-binding proteins (RBPs), with half of these employing unknown modes of RNA binding. We developed RBDmap to determine the RNA-binding sites of native RBPs on a proteome-wide scale. We identified 1,174 binding sites within 529 HeLa cell RBPs, discovering numerous RNA-binding domains (RBDs). Catalytic centers or protein-protein interaction domains are in close relationship with RNA-binding sites, invoking possible effector roles of RNA in the control of protein function. Nearly half of the RNA-binding sites map to intrinsically disordered regions, uncovering unstructured domains as prevalent partners in protein-RNA interactions. RNA-binding sites represent hot spots for defined posttranslational modifications such as lysine acetylation and tyrosine phosphorylation, suggesting metabolic and signal-dependent regulation of RBP function. RBDs display a high degree of evolutionary conservation and incidence of Mendelian mutations, suggestive of important functional roles. RBDmap thus yields profound insights into native protein-RNA interactions in living cells.
Collapse
Affiliation(s)
- Alfredo Castello
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Bernd Fischer
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christian K Frese
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rastislav Horos
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anne-Marie Alleaume
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sophia Foehr
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Tomaz Curk
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Faculty of Computer and Information Science, University of Ljubljana, 1001 Ljubljana, Slovenia
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
422
|
Aguzzi A, Altmeyer M. Phase Separation: Linking Cellular Compartmentalization to Disease. Trends Cell Biol 2016; 26:547-558. [DOI: 10.1016/j.tcb.2016.03.004] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/29/2022]
|
423
|
Bolognesi B, Lorenzo Gotor N, Dhar R, Cirillo D, Baldrighi M, Tartaglia GG, Lehner B. A Concentration-Dependent Liquid Phase Separation Can Cause Toxicity upon Increased Protein Expression. Cell Rep 2016; 16:222-231. [PMID: 27320918 PMCID: PMC4929146 DOI: 10.1016/j.celrep.2016.05.076] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 05/18/2016] [Indexed: 11/17/2022] Open
Abstract
Multiple human diseases are associated with a liquid-to-solid phase transition resulting in the formation of amyloid fibers or protein aggregates. Here, we present an alternative mechanism for cellular toxicity based on a concentration-dependent liquid-liquid demixing. Analyzing proteins that are toxic when their concentration is increased in yeast reveals that they share physicochemical properties with proteins that participate in physiological liquid-liquid demixing in the cell. Increasing the concentration of one of these proteins indeed results in the formation of cytoplasmic foci with liquid properties. Demixing occurs at the onset of toxicity and titrates proteins and mRNAs from the cytoplasm. Focus formation is reversible, and resumption of growth occurs as the foci dissolve as protein concentration falls. Preventing demixing abolishes the dosage sensitivity of the protein. We propose that triggering inappropriate liquid phase separation may be an important cause of dosage sensitivity and a determinant of human disease.
Collapse
Affiliation(s)
- Benedetta Bolognesi
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Nieves Lorenzo Gotor
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Riddhiman Dhar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Davide Cirillo
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Baldrighi
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Ben Lehner
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
424
|
Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs. Sci Rep 2016; 6:28718. [PMID: 27338245 PMCID: PMC4919620 DOI: 10.1038/srep28718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022] Open
Abstract
Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes - PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies.
Collapse
|
425
|
Small RNA-Based Antiviral Defense in the Phytopathogenic Fungus Colletotrichum higginsianum. PLoS Pathog 2016; 12:e1005640. [PMID: 27253323 PMCID: PMC4890784 DOI: 10.1371/journal.ppat.1005640] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
Even though the fungal kingdom contains more than 3 million species, little is known about the biological roles of RNA silencing in fungi. The Colletotrichum genus comprises fungal species that are pathogenic for a wide range of crop species worldwide. To investigate the role of RNA silencing in the ascomycete fungus Colletotrichum higginsianum, knock-out mutants affecting genes for three RNA-dependent RNA polymerase (RDR), two Dicer-like (DCL), and two Argonaute (AGO) proteins were generated by targeted gene replacement. No effects were observed on vegetative growth for any mutant strain when grown on complex or minimal media. However, Δdcl1, Δdcl1Δdcl2 double mutant, and Δago1 strains showed severe defects in conidiation and conidia morphology. Total RNA transcripts and small RNA populations were analyzed in parental and mutant strains. The greatest effects on both RNA populations was observed in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains, in which a previously uncharacterized dsRNA mycovirus [termed Colletotrichum higginsianum non-segmented dsRNA virus 1 (ChNRV1)] was derepressed. Phylogenetic analyses clearly showed a close relationship between ChNRV1 and members of the segmented Partitiviridae family, despite the non-segmented nature of the genome. Immunoprecipitation of small RNAs associated with AGO1 showed abundant loading of 5’U-containing viral siRNA. C. higginsianum parental and Δdcl1 mutant strains cured of ChNRV1 revealed that the conidiation and spore morphology defects were primarily caused by ChNRV1. Based on these results, RNA silencing involving ChDCL1 and ChAGO1 in C. higginsianum is proposed to function as an antiviral mechanism. Colletotrichum sp. comprises a diverse group of fungal pathogens that attack over 3000 plant species worldwide. Understanding the underlying mechanisms that govern fungal development and pathogenicity may enable more effective and sustainable approaches to crop disease management and control. In most organisms, RNA silencing is an important mechanism to control endogenous and exogenous RNA. RNA silencing utilizes small regulatory molecules (small RNAs) produced by proteins called Dicer (DCL), and exercise their function though effector proteins named Argonaute (AGO). Here, we investigated the role of RNA silencing machinery in the fungus Colletotrichum higginsianum, by generating deletions in genes encoding RNA silencing components. Severe defects were observed in both conidiation and conidia morphology in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains. Analysis of transcripts and small RNAs revealed an uncharacterized dsRNA virus persistently infecting C. higginsianum. The virus was shown (1) to be de-repressed in the Δdcl1, Δdcl1Δdcl2 and Δago1 strains, and (2) to cause the conidiation and spore mutant phenotypes. Our results indicate that C. higginsianum employs RNA silencing as an antiviral mechanism to suppress viruses and their debilitating effects.
Collapse
|
426
|
Filarsky M, Zillner K, Araya I, Villar-Garea A, Merkl R, Längst G, Németh A. The extended AT-hook is a novel RNA binding motif. RNA Biol 2016; 12:864-76. [PMID: 26156556 PMCID: PMC4615771 DOI: 10.1080/15476286.2015.1060394] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12-15 amino acids from the G-R-P core. We identified 80 human and 60 mouse eAT-hook proteins and biochemically characterized the eAT-hooks of Tip5/BAZ2A, PTOV1 and GPBP1. Microscale thermophoresis and electrophoretic mobility shift assays reveal the nucleic acid binding features of this peptide motif, and show that eAT-hooks bind RNA with one order of magnitude higher affinity than DNA. In addition, cellular localization studies suggest a role for the N-terminal eAT-hook of PTOV1 in nucleocytoplasmic shuttling. In summary, our findings classify the eAT-hook as a novel nucleic acid binding motif, which potentially mediates various RNA-dependent cellular processes.
Collapse
Affiliation(s)
- Michael Filarsky
- a Biochemistry Center Regensburg ; University of Regensburg ; Regensburg , Germany
| | | | | | | | | | | | | |
Collapse
|
427
|
Wei H, Yu X. Functions of PARylation in DNA Damage Repair Pathways. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:131-139. [PMID: 27240471 PMCID: PMC4936651 DOI: 10.1016/j.gpb.2016.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/15/2022]
Abstract
Protein poly ADP-ribosylation (PARylation) is a widespread post-translational modification at DNA lesions, which is catalyzed by poly(ADP-ribose) polymerases (PARPs). This modification regulates a number of biological processes including chromatin reorganization, DNA damage response (DDR), transcriptional regulation, apoptosis, and mitosis. PARP1, functioning as a DNA damage sensor, can be activated by DNA lesions, forming PAR chains that serve as a docking platform for DNA repair factors with high biochemical complexity. Here, we highlight molecular insights into PARylation recognition, the expanding role of PARylation in DDR pathways, and the functional interaction between PARylation and ubiquitination, which will offer us a better understanding of the biological roles of this unique post-translational modification.
Collapse
Affiliation(s)
- Huiting Wei
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, MOE Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
428
|
The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Arch 2016; 468:1029-40. [PMID: 27165283 PMCID: PMC4893068 DOI: 10.1007/s00424-016-1819-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023]
Abstract
Post-transcriptional regulation of gene expression plays a critical role in almost all cellular processes. Regulation occurs mostly by RNA-binding proteins (RBPs) that recognise RNA elements and form ribonucleoproteins (RNPs) to control RNA metabolism from synthesis to decay. Recently, the repertoire of RBPs was significantly expanded owing to methodological advances such as RNA interactome capture. The newly identified RNA binders are involved in diverse biological processes and belong to a broad spectrum of protein families, many of them exhibiting enzymatic activities. This suggests the existence of an extensive crosstalk between RNA biology and other, in principle unrelated, cell functions such as intermediary metabolism. Unexpectedly, hundreds of new RBPs do not contain identifiable RNA-binding domains (RBDs), raising the question of how they interact with RNA. Despite the many functions that have been attributed to RNA, our understanding of RNPs is still mostly governed by a rather protein-centric view, leading to the idea that proteins have evolved to bind to and regulate RNA and not vice versa. However, RNPs formed by an RNA-driven interaction mechanism (RNA-determined RNPs) are abundant and offer an alternative explanation for the surprising lack of classical RBDs in many RNA-interacting proteins. Moreover, RNAs can act as scaffolds to orchestrate and organise protein networks and directly control their activity, suggesting that nucleic acids might play an important regulatory role in many cellular processes, including metabolism.
Collapse
|
429
|
Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res 2016; 44:3989-4004. [PMID: 27084935 PMCID: PMC4872119 DOI: 10.1093/nar/gkw271] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Nuclear proteins are often given a concise title that captures their function, such as 'transcription factor,' 'polymerase' or 'nuclear-receptor.' However, for members of the Drosophila behavior/human splicing (DBHS) protein family, no such clean-cut title exists. DBHS proteins are frequently identified engaging in almost every step of gene regulation, including but not limited to, transcriptional regulation, RNA processing and transport, and DNA repair. Herein, we present a coherent picture of DBHS proteins, integrating recent structural insights on dimerization, nucleic acid binding modalities and oligomerization propensity with biological function. The emerging paradigm describes a family of dynamic proteins mediating a wide range of protein-protein and protein-nucleic acid interactions, on the whole acting as a multipurpose molecular scaffold. Overall, significant steps toward appreciating the role of DBHS proteins have been made, but we are only beginning to understand the complexity and broader importance of this family in cellular biology.
Collapse
Affiliation(s)
- Gavin J Knott
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Archa H Fox
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
430
|
Järvelin AI, Noerenberg M, Davis I, Castello A. The new (dis)order in RNA regulation. Cell Commun Signal 2016; 14:9. [PMID: 27048167 PMCID: PMC4822317 DOI: 10.1186/s12964-016-0132-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
RNA-binding proteins play a key role in the regulation of all aspects of RNA metabolism, from the synthesis of RNA to its decay. Protein-RNA interactions have been thought to be mostly mediated by canonical RNA-binding domains that form stable secondary and tertiary structures. However, a number of pioneering studies over the past decades, together with recent proteome-wide data, have challenged this view, revealing surprising roles for intrinsically disordered protein regions in RNA binding. Here, we discuss how disordered protein regions can mediate protein-RNA interactions, conceptually grouping these regions into RS-rich, RG-rich, and other basic sequences, that can mediate both specific and non-specific interactions with RNA. Disordered regions can also influence RNA metabolism through protein aggregation and hydrogel formation. Importantly, protein-RNA interactions mediated by disordered regions can influence nearly all aspects of co- and post-transcriptional RNA processes and, consequently, their disruption can cause disease. Despite growing interest in disordered protein regions and their roles in RNA biology, their mechanisms of binding, regulation, and physiological consequences remain poorly understood. In the coming years, the study of these unorthodox interactions will yield important insights into RNA regulation in cellular homeostasis and disease.
Collapse
Affiliation(s)
- Aino I. Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
431
|
Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathol 2016; 131:587-604. [PMID: 26895297 DOI: 10.1007/s00401-016-1544-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits are hypomethylated in FTLD-FUS but not in ALS-FUS, we have now investigated whether genetic or pharmacological inactivation of Protein arginine methyltransferase 1 (PRMT1) activity results in unmethylated FUS or in alternatively methylated forms of FUS. To do so, we generated FUS-specific monoclonal antibodies that specifically recognize unmethylated arginine (UMA), monomethylated arginine (MMA) or asymmetrically dimethylated arginine (ADMA). Loss of PRMT1 indeed not only results in an increase of UMA FUS and a decrease of ADMA FUS, but also in a significant increase of MMA FUS. Compared to ADMA FUS, UMA and MMA FUS exhibit much higher binding affinities to Transportin-1, the nuclear import receptor of FUS, as measured by pull-down assays and isothermal titration calorimetry. Moreover, we show that MMA FUS occurs exclusively in FTLD-FUS, but not in ALS-FUS. Our findings therefore provide additional evidence that FTLD-FUS and ALS-FUS are caused by distinct disease mechanisms although both share FUS deposits as a common denominator.
Collapse
|
432
|
Abstract
The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states.
Collapse
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Paul R. Thompson
- Department
of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program
in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
433
|
Langbein L, Eckhart L, Fischer H, Rogers MA, Praetzel-Wunder S, Parry DAD, Kittstein W, Schweizer J. Localisation of keratin K78 in the basal layer and first suprabasal layers of stratified epithelia completes expression catalogue of type II keratins and provides new insights into sequential keratin expression. Cell Tissue Res 2016; 363:735-50. [PMID: 26340985 DOI: 10.1007/s00441-015-2278-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 01/21/2023]
Abstract
Among the 26 human type II keratins, K78 is the only one that has not yet been explored with regard to its expression characteristics. Here, we show that, at both the transcriptional and translational levels, K78 is strongly expressed in the basal and parabasal cell layers with decreasing intensity in the lower suprabasal cells of keratinising and non-keratinising squamous epithelia and keratinocyte cultures. The same pattern has been detected at the transcriptional level in the corresponding mouse epithelia. Murine K78 protein, which contains an extraordinary large extension of its tail domain, which is unique among all known keratins, is not detectable by the antibody used. Concomitant studies in human epithelia have confirmed K78 co-expression with the classical basal keratins K5 and K14. Similarly, K78 co-expression with the differentiation-related type I keratins K10 (epidermis) and K13 (non-keratinising epithelia) occurs in the parabasal cell layer, whereas that of the corresponding type II keratins K1 (epidermis) and K4 (non-keratinising epithelia) unequivocally starts subsequent to the respective type I keratins. Our data concerning K78 expression modify the classical concept of keratin pair K5/K14 representing the basal compartment and keratin pairs K1/K10 or K4/K13 defining the differentiating compartment of stratified epithelia. Moreover, the K78 expression pattern and the decoupled K1/K10 and K4/K13 expression define the existence of a hitherto unperceived early differentiation stage in the parabasal layer characterized by K78/K10 or K78/K13 expression.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Animals
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Embryonic Development
- Epidermis/metabolism
- Epithelium/metabolism
- Evolution, Molecular
- Fluorescent Antibody Technique
- Gene Expression Regulation
- Genetic Loci
- Humans
- In Situ Hybridization
- Keratinocytes/metabolism
- Keratins, Type II/chemistry
- Keratins, Type II/genetics
- Keratins, Type II/metabolism
- Mice, Inbred C57BL
- Molecular Sequence Data
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, Protein
Collapse
Affiliation(s)
- Lutz Langbein
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, A110, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Leopold Eckhart
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Heinz Fischer
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Michael A Rogers
- Department of Molecular Genetics of the German Cancer Research Center, Heidelberg, Germany
| | - Silke Praetzel-Wunder
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, A110, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - David A D Parry
- Institute of Fundamental Sciences and Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
434
|
Goyal M, Banerjee C, Nag S, Bandyopadhyay U. The Alba protein family: Structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:570-83. [PMID: 26900088 DOI: 10.1016/j.bbapap.2016.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/06/2016] [Accepted: 02/16/2016] [Indexed: 01/05/2023]
Abstract
Alba family proteins are small, basic, dimeric nucleic acid-binding proteins, which are widely distributed in archaea and a number of eukaryotes. This family of proteins bears the distinct features of regulation through acetylation/deacetylation, hence named as acetylation lowers binding affinity (Alba). Alba family proteins bind DNA cooperatively with no apparent sequence specificity. Besides DNA, Alba proteins also interact with diverse RNA species and associate with ribonucleo-protein complexes. Initially, Alba proteins were recognized as chromosomal proteins and supposed to be involved in the maintenance of chromatin architecture and transcription repression. However, recent studies have shown increasing evidence of functional plasticity among Alba family of proteins that widely range from genome packaging and organization, transcriptional and translational regulation, RNA metabolism, and development and differentiation processes. In recent years, Alba family proteins have attracted growing interest due to their widespread occurrence in large number of organisms. Presence in multiple copies, functional crosstalk, differential binding affinity, and posttranslational modifications are some of the key factors that might regulate the biological functions of Alba family proteins. In this review article, we present an overview of the Alba family proteins, their salient features and emphasize their functional role in different organisms reported so far.
Collapse
Affiliation(s)
- Manish Goyal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
435
|
Blanc RS, Vogel G, Chen T, Crist C, Richard S. PRMT7 Preserves Satellite Cell Regenerative Capacity. Cell Rep 2016; 14:1528-1539. [PMID: 26854227 DOI: 10.1016/j.celrep.2016.01.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/13/2015] [Accepted: 01/04/2016] [Indexed: 02/02/2023] Open
Abstract
Regeneration of skeletal muscle requires the continued presence of quiescent muscle stem cells (satellite cells), which become activated in response to injury. Here, we report that whole-body protein arginine methyltransferase PRMT7(-/-) adult mice and mice conditionally lacking PRMT7 in satellite cells using Pax7-CreERT2 both display a significant reduction in satellite cell function, leading to defects in regenerative capacity upon muscle injury. We show that PRMT7 is preferentially expressed in activated satellite cells and, interestingly, PRMT7-deficient satellite cells undergo cell-cycle arrest and premature cellular senescence. These defects underlie poor satellite cell stem cell capacity to regenerate muscle and self-renew after injury. PRMT7-deficient satellite cells express elevated levels of the CDK inhibitor p21CIP1 and low levels of its repressor, DNMT3b. Restoration of DNMT3b in PRMT7-deficient cells rescues PRMT7-mediated senescence. Our findings define PRMT7 as a regulator of the DNMT3b/p21 axis required to maintain muscle stem cell regenerative capacity.
Collapse
Affiliation(s)
- Roméo Sébastien Blanc
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada
| | - Gillian Vogel
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada
| | - Taiping Chen
- Department of Molecular Carcinogenesis and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Colin Crist
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, Montréal, QC H3T 1E2, Canada.
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
436
|
Stein C, Nötzold RR, Riedl S, Bouchard C, Bauer UM. The Arginine Methyltransferase PRMT6 Cooperates with Polycomb Proteins in Regulating HOXA Gene Expression. PLoS One 2016; 11:e0148892. [PMID: 26848759 PMCID: PMC4746130 DOI: 10.1371/journal.pone.0148892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyses asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a), which has been shown to impede the deposition of histone H3 lysine 4 trimethylation (H3K4me3) by blocking the binding and activity of the MLL1 complex. Importantly, the genomic occurrence of H3R2me2a has been found to coincide with histone H3 lysine 27 trimethylation (H3K27me3), a repressive histone mark generated by the Polycomb repressive complex 2 (PRC2). Therefore, we investigate here a putative crosstalk between PRMT6- and PRC-mediated repression in a cellular model of neuronal differentiation. We show that PRMT6 and subunits of PRC2 as well as PRC1 are bound to the same regulatory regions of rostral HOXA genes and that they control the differentiation-associated activation of these genes. Furthermore, we find that PRMT6 interacts with subunits of PRC1 and PRC2 and that depletion of PRMT6 results in diminished PRC1/PRC2 and H3K27me3 occupancy and in increased H3K4me3 levels at these target genes. Taken together, our data uncover a novel, additional mechanism of how PRMT6 contributes to gene repression by cooperating with Polycomb proteins.
Collapse
Affiliation(s)
- Claudia Stein
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - René Reiner Nötzold
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Riedl
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
437
|
IgE-tailpiece associates with α-1-antitrypsin (A1AT) to protect IgE from proteolysis without compromising its ability to interact with FcεRI. Sci Rep 2016; 6:20509. [PMID: 26842628 PMCID: PMC4740804 DOI: 10.1038/srep20509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/05/2016] [Indexed: 11/08/2022] Open
Abstract
Several splice variants of IgE exist in human plasma, including a variant called IgE-tailpiece (IgE-tp) that differs from classical IgE by the replacement of two carboxy-terminal amino acids with eight novel residues that include an ultimate cysteine. To date, the role of the secreted IgE-tp isoform in human immunity is unknown. We show that levels of IgE-tp are raised in helminth-infected donors, and that both the classical form of IgE (IgE-c) and IgE-tp interact with polymers of the serine protease inhibitor alpha-1-antitrypsin (A1AT). The association of IgE-tp with A1AT polymers in plasma protects the antibody from serine protease-mediated degradation, without affecting the functional interaction of IgE-tp with important receptors, including FcεR1. That polymers of A1AT protect IgE from degradation by helminth proteases may explain why these common and normally non-disease causing polymorphic variants of A1AT have been retained by natural selection. The observation that IgE can be complexed with polymeric forms of A1AT may therefore have important consequences for our understanding of the pathophysiology of pulmonary diseases that arise either as a consequence of A1AT-deficiency or through IgE-mediated type 1 hypersensitivity responses.
Collapse
|
438
|
PGL germ granule assembly protein is a base-specific, single-stranded RNase. Proc Natl Acad Sci U S A 2016; 113:1279-84. [PMID: 26787882 DOI: 10.1073/pnas.1524400113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular RNA-protein (RNP) granules are ubiquitous and have fundamental roles in biology and RNA metabolism, but the molecular basis of their structure, assembly, and function is poorly understood. Using nematode "P-granules" as a paradigm, we focus on the PGL granule scaffold protein to gain molecular insights into RNP granule structure and assembly. We first identify a PGL dimerization domain (DD) and determine its crystal structure. PGL-1 DD has a novel 13 α-helix fold that creates a positively charged channel as a homodimer. We investigate its capacity to bind RNA and discover unexpectedly that PGL-1 DD is a guanosine-specific, single-stranded endonuclease. Discovery of the PGL homodimer, together with previous results, suggests a model in which the PGL DD dimer forms a fundamental building block for P-granule assembly. Discovery of the PGL RNase activity expands the role of RNP granule assembly proteins to include enzymatic activity in addition to their job as structural scaffolds.
Collapse
|
439
|
Mitrea DM, Kriwacki RW. Phase separation in biology; functional organization of a higher order. Cell Commun Signal 2016; 14:1. [PMID: 26727894 PMCID: PMC4700675 DOI: 10.1186/s12964-015-0125-7] [Citation(s) in RCA: 478] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
Inside eukaryotic cells, macromolecules are partitioned into membrane-bounded compartments and, within these, some are further organized into non-membrane-bounded structures termed membrane-less organelles. The latter structures are comprised of heterogeneous mixtures of proteins and nucleic acids and assemble through a phase separation phenomenon similar to polymer condensation. Membrane-less organelles are dynamic structures maintained through multivalent interactions that mediate diverse biological processes, many involved in RNA metabolism. They rapidly exchange components with the cellular milieu and their properties are readily altered in response to environmental cues, often implicating membrane-less organelles in responses to stress signaling. In this review, we discuss: (1) the functional roles of membrane-less organelles, (2) unifying structural and mechanistic principles that underlie their assembly and disassembly, and (3) established and emerging methods used in structural investigations of membrane-less organelles.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
440
|
Ikeda T, Yoshitomi Y, Saito H, Shimasaki T, Yamaya H, Kobata T, Ishigaki Y, Tomosugi N, Yoshitake Y, Yonekura H. Regulation of soluble Flt-1 (VEGFR-1) production by hnRNP D and protein arginine methylation. Mol Cell Biochem 2016; 413:155-64. [DOI: 10.1007/s11010-015-2649-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
|
441
|
Teloni F, Altmeyer M. Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 2015; 44:993-1006. [PMID: 26673700 PMCID: PMC4756826 DOI: 10.1093/nar/gkv1383] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/26/2015] [Indexed: 01/14/2023] Open
Abstract
Post-translational modifications (PTMs) regulate many aspects of protein function and are indispensable for the spatio-temporal regulation of cellular processes. The proteome-wide identification of PTM targets has made significant progress in recent years, as has the characterization of their writers, readers, modifiers and erasers. One of the most elusive PTMs is poly(ADP-ribosyl)ation (PARylation), a nucleic acid-like PTM involved in chromatin dynamics, genome stability maintenance, transcription, cell metabolism and development. In this article, we provide an overview on our current understanding of the writers of this modification and their targets, as well as the enzymes that degrade and thereby modify and erase poly(ADP-ribose) (PAR). Since many cellular functions of PARylation are exerted through dynamic interactions of PAR-binding proteins with PAR, we discuss the readers of this modification and provide a synthesis of recent findings, which suggest that multiple structurally highly diverse reader modules, ranging from completely folded PAR-binding domains to intrinsically disordered sequence stretches, evolved as PAR effectors to carry out specific cellular functions.
Collapse
Affiliation(s)
- Federico Teloni
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matthias Altmeyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
442
|
Zhang Y, Wu Y, Mao P, Li F, Han X, Zhang Y, Jiang S, Chen Y, Huang J, Liu D, Zhao Y, Ma W, Songyang Z. Cold-inducible RNA-binding protein CIRP/hnRNP A18 regulates telomerase activity in a temperature-dependent manner. Nucleic Acids Res 2015; 44:761-75. [PMID: 26673712 PMCID: PMC4737163 DOI: 10.1093/nar/gkv1465] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 12/01/2015] [Indexed: 01/22/2023] Open
Abstract
The telomerase is responsible for adding telomeric repeats to chromosomal ends and consists of the reverse transcriptase TERT and the RNA subunit TERC. The expression and activity of the telomerase are tightly regulated, and aberrant activation of the telomerase has been observed in >85% of human cancers. To better understand telomerase regulation, we performed immunoprecipitations coupled with mass spectrometry (IP-MS) and identified cold inducible RNA-binding protein (CIRP or hnRNP A18) as a telomerase-interacting factor. We have found that CIRP is necessary to maintain telomerase activities at both 32°C and 37°C. Furthermore, inhibition of CIRP by CRISPR-Cas9 or siRNA knockdown led to reduced telomerase activities and shortened telomere length, suggesting an important role of CIRP in telomere maintenance. We also provide evidence here that CIRP associates with the active telomerase complex through direct binding of TERC and regulates Cajal body localization of the telomerase. In addition, CIRP regulates the level of TERT mRNAs. At the lower temperature, TERT mRNA is upregulated in a CIRP-dependent manner to compensate for reduced telomerase activities. Taken together, these findings highlight the dual roles that CIRP plays in regulating TERT and TERC, and reveal a new class of telomerase modulators in response to hypothermia conditions.
Collapse
Affiliation(s)
- Youwei Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China Collaborative Innovation Center for Cancer Medicine, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Yangxiu Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pingsu Mao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Han
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Zhang
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuai Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuxi Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China Collaborative Innovation Center for Cancer Medicine, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China Collaborative Innovation Center for Cancer Medicine, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
443
|
Sylvestersen KB, Nielsen ML. Large‐Scale Identification of the Arginine Methylome by Mass Spectrometry. ACTA ACUST UNITED AC 2015; 82:24.7.1-24.7.17. [DOI: 10.1002/0471140864.ps2407s82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kathrine B. Sylvestersen
- Department of Proteomics The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health Sciences Copenhagen Denmark
| | - Michael L. Nielsen
- Department of Proteomics The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health Sciences Copenhagen Denmark
| |
Collapse
|
444
|
Emerging Roles of Disordered Sequences in RNA-Binding Proteins. Trends Biochem Sci 2015; 40:662-672. [DOI: 10.1016/j.tibs.2015.08.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/21/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022]
|
445
|
Akter KA, Mansour MA, Hyodo T, Ito S, Hamaguchi M, Senga T. FAM98A is a novel substrate of PRMT1 required for tumor cell migration, invasion, and colony formation. Tumour Biol 2015; 37:4531-9. [DOI: 10.1007/s13277-015-4310-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/20/2015] [Indexed: 11/29/2022] Open
|
446
|
Maeda M, Hasegawa H, Sugiyama M, Hyodo T, Ito S, Chen D, Asano E, Masuda A, Hasegawa Y, Hamaguchi M, Senga T. Arginine methylation of ubiquitin-associated protein 2-like is required for the accurate distribution of chromosomes. FASEB J 2015; 30:312-23. [PMID: 26381755 DOI: 10.1096/fj.14-268987] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/08/2015] [Indexed: 01/01/2023]
Abstract
Proper bioriented attachment of microtubules and kinetochores is essential for the precise distribution of duplicated chromosomes to each daughter cell. An aberrant kinetochore-microtubule attachment results in chromosome instability, which leads to cellular transformation or apoptosis. In this article, we show that ubiquitin-associated protein 2-like (UBAP2L) is necessary for correct kinetochore-microtubule attachment. Depletion of UBAP2L inhibited chromosome alignment in metaphase and delayed progression to anaphase by activating spindle assembly checkpoint signaling. In addition, UBAP2L knockdown increased side-on attachment of kinetochores along the microtubules and suppressed stable kinetochore fiber formation. A proteomics analysis identified protein arginine methyltransferase (PRMT)1 as a direct interaction partner of UBAP2L. UBAP2L has an arginine- and glycine-rich motif called the RGG/RG or GAR motif in the N terminus. Biochemical analysis confirmed that arginine residues in the RGG/RG motif of UBAP2L were directly methylated by PRMT1. Finally, we demonstrated that the RGG/RG motif of UBAP2L is essential for the proper alignment of chromosomes in metaphase for the accurate distribution of chromosomes. Our results show a possible role for arginine methylation in UBAP2L for the progression of mitosis.
Collapse
Affiliation(s)
- Masao Maeda
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoki Hasegawa
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mai Sugiyama
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshinori Hyodo
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Ito
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dan Chen
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Asano
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michinari Hamaguchi
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Senga
- *Division of Cancer Biology, Division of Neurogenetics, and Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
447
|
Crystal structure reveals specific recognition of a G-quadruplex RNA by a β-turn in the RGG motif of FMRP. Proc Natl Acad Sci U S A 2015; 112:E5391-400. [PMID: 26374839 DOI: 10.1073/pnas.1515737112] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X Mental Retardation Protein (FMRP) is a regulatory RNA binding protein that plays a central role in the development of several human disorders including Fragile X Syndrome (FXS) and autism. FMRP uses an arginine-glycine-rich (RGG) motif for specific interactions with guanine (G)-quadruplexes, mRNA elements implicated in the disease-associated regulation of specific mRNAs. Here we report the 2.8-Å crystal structure of the complex between the human FMRP RGG peptide bound to the in vitro selected G-rich RNA. In this model system, the RNA adopts an intramolecular K(+)-stabilized G-quadruplex structure composed of three G-quartets and a mixed tetrad connected to an RNA duplex. The RGG peptide specifically binds to the duplex-quadruplex junction, the mixed tetrad, and the duplex region of the RNA through shape complementarity, cation-π interactions, and multiple hydrogen bonds. Many of these interactions critically depend on a type I β-turn, a secondary structure element whose formation was not previously recognized in the RGG motif of FMRP. RNA mutagenesis and footprinting experiments indicate that interactions of the peptide with the duplex-quadruplex junction and the duplex of RNA are equally important for affinity and specificity of the RGG-RNA complex formation. These results suggest that specific binding of cellular RNAs by FMRP may involve hydrogen bonding with RNA duplexes and that RNA duplex recognition can be a characteristic RNA binding feature for RGG motifs in other proteins.
Collapse
|
448
|
Basso M, Pennuto M. Serine phosphorylation and arginine methylation at the crossroads to neurodegeneration. Exp Neurol 2015; 271:77-83. [DOI: 10.1016/j.expneurol.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 12/13/2022]
|
449
|
Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grøfte M, Rask MBD, Streicher W, Jungmichel S, Nielsen ML, Lukas J. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun 2015; 6:8088. [PMID: 26286827 PMCID: PMC4560800 DOI: 10.1038/ncomms9088] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
Intrinsically disordered proteins can phase separate from the soluble intracellular space, and tend to aggregate under pathological conditions. The physiological functions and molecular triggers of liquid demixing by phase separation are not well understood. Here we show in vitro and in vivo that the nucleic acid-mimicking biopolymer poly(ADP-ribose) (PAR) nucleates intracellular liquid demixing. PAR levels are markedly induced at sites of DNA damage, and we provide evidence that PAR-seeded liquid demixing results in rapid, yet transient and fully reversible assembly of various intrinsically disordered proteins at DNA break sites. Demixing, which relies on electrostatic interactions between positively charged RGG repeats and negatively charged PAR, is amplified by aggregation-prone prion-like domains, and orchestrates the earliest cellular responses to DNA breakage. We propose that PAR-seeded liquid demixing is a general mechanism to dynamically reorganize the soluble nuclear space with implications for pathological protein aggregation caused by derailed phase separation.
Collapse
Affiliation(s)
- Matthias Altmeyer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark.,Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Kai J Neelsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Federico Teloni
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Irina Pozdnyakova
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Stefania Pellegrino
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Merete Grøfte
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Maj-Britt Druedahl Rask
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Werner Streicher
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Stephanie Jungmichel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Michael Lund Nielsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| |
Collapse
|
450
|
Park H, Turkalo TK, Nelson K, Folmsbee SS, Robb C, Roper B, Azuma M. Ewing sarcoma EWS protein regulates midzone formation by recruiting Aurora B kinase to the midzone. Cell Cycle 2015; 13:2391-9. [PMID: 25483190 DOI: 10.4161/cc.29337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ewing sarcoma is a malignant bone cancer that primarily occurs in children and adolescents. Eighty-five percent of Ewing sarcoma is characterized by the presence of the aberrant chimeric EWS/FLI1 fusion gene. Previously, we demonstrated that an interaction between EWS/FLI1 and wild-type EWS led to the inhibition of EWS activity and mitotic dysfunction. Although defective mitosis is considered to be a critical step in cancer initiation, it is unknown how interference with EWS contributes to Ewing sarcoma formation. Here, we demonstrate that EWS/FLI1- and EWS-knockdown cells display a high incidence of defects in the midzone, a midline structure located between segregating chromatids during anaphase. Defects in the midzone can lead to the failure of cytokinesis and can result in the induction of aneuploidy. The similarity among the phenotypes of EWS/FLI1- and EWS siRNA-transfected HeLa cells points to the inhibition of EWS as the key mechanism for the induction of midzone defects. Supporting this observation, the ectopic expression of EWS rescues the high incidence of midzone defects observed in Ewing sarcoma A673 cells. We discovered that EWS interacts with Aurora B kinase, and that EWS is also required for recruiting Aurora B to the midzone. A domain analysis revealed that the R565 in the RGG3 domain of EWS is essential for both Aurora B interaction and the recruitment of Aurora B to the midzone. Here, we propose that the impairment of EWS-dependent midzone formation via the recruitment of Aurora B is a potential mechanism of Ewing sarcoma development.
Collapse
Affiliation(s)
- Hyewon Park
- a Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| | | | | | | | | | | | | |
Collapse
|