401
|
Hillman GG, Singh-Gupta V, Lonardo F, Hoogstra DJ, Abernathy LM, Yunker CK, Rothstein SE, Rakowski J, Sarkar FH, Gadgeel S, Konski AA, Joiner MC. Radioprotection of lung tissue by soy isoflavones. J Thorac Oncol 2013; 8:1356-64. [PMID: 24077456 PMCID: PMC3800250 DOI: 10.1097/jto.0b013e3182a4713e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Radiation-induced pneumonitis and fibrosis have restricted radiotherapy for lung cancer. In a preclinical lung tumor model, soy isoflavones showed the potential to enhance radiation damage in tumor nodules and simultaneously protect normal lung from radiation injury. We have further dissected the role of soy isoflavones in the radioprotection of lung tissue. METHODS Naive Balb/c mice were treated with oral soy isoflavones for 3 days before and up to 4 months after radiation. Radiation was administered to the left lung at 12 Gy. Mice were monitored for toxicity and breathing rates at 2, 3, and 4 months after radiation. Lung tissues were processed for histology for in situ evaluation of response. RESULTS Radiation caused damage to normal hair follicles, leading to hair loss in the irradiated left thoracic area. Supplementation with soy isoflavones protected mice against radiation-induced skin injury and hair loss. Lung irradiation also caused an increase in mouse breathing rate that was more pronounced by 4 months after radiation, probably because of the late effects of radiation-induced injury to normal lung tissue. However, this effect was mitigated by soy isoflavones. Histological examination of irradiated lungs revealed a chronic inflammatory infiltration involving alveoli and bronchioles and a progressive increase in fibrosis. These adverse effects of radiation were alleviated by soy isoflavones. CONCLUSION Soy isoflavones given pre- and postradiation protected the lungs against adverse effects of radiation including skin injury, hair loss, increased breathing rates, inflammation, pneumonitis and fibrosis, providing evidence for a radioprotective effect of soy.
Collapse
Affiliation(s)
- Gilda G. Hillman
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Vinita Singh-Gupta
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fulvio Lonardo
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David J. Hoogstra
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lisa M. Abernathy
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Christopher K. Yunker
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shoshana E. Rothstein
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Joseph Rakowski
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shirish Gadgeel
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Andre A. Konski
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael C. Joiner
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
402
|
Nawroth I, Alsner J, Deleuran BW, Dagnaes-Hansen F, Yang C, Horsman MR, Overgaard J, Howard KA, Kjems J, Gao S. Peritoneal macrophages mediated delivery of chitosan/siRNA nanoparticle to the lesion site in a murine radiation-induced fibrosis model. Acta Oncol 2013; 52:1730-8. [PMID: 23020526 DOI: 10.3109/0284186x.2012.726373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Radiation-induced fibrosis (RIF) is a dose-limiting complication of cancer radiotherapy and causes serious problems, i.e. restricted tissue flexibility, pain, ulceration or necrosis. Recently, we have successfully treated RIF in a mouse model by intraperitoneal administration of chitosan/siRNA nanoparticles directed towards silencing TNF alpha in local macrophage populations, but the mechanism for the therapeutic effect at the lesion site remains unclear. METHODS Using the same murine RIF model we utilized an optical imaging technique and fluorescence microscopy to investigate the uptake of chitosan/fluorescently labeled siRNA nanoparticles by peritoneal macrophages and their subsequent migration to the inflamed tissue in the RIF model. RESULTS We observed strong accumulation of the fluorescent signal in the lesion site of the irradiated leg up to 24 hours using the optical imaging system. We further confirm by immunohistochemical staining that Cy3 labeled siRNA resides in macrophages of the irradiated leg. CONCLUSION We provide a proof-of-concept for host macrophage trafficking towards the inflamed region in a murine RIF model, which thereby suggests that the chitosan/siRNA nanoparticle may constitute a general treatment for inflammatory diseases using the natural homing potential of macrophages to inflammatory sites.
Collapse
Affiliation(s)
- Isabel Nawroth
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University, Aarhus C , Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Forrester HB, Ivashkevich A, McKay MJ, Leong T, de Kretser DM, Sprung CN. Follistatin is induced by ionizing radiation and potentially predictive of radiosensitivity in radiation-induced fibrosis patient derived fibroblasts. PLoS One 2013; 8:e77119. [PMID: 24204752 PMCID: PMC3799767 DOI: 10.1371/journal.pone.0077119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
Follistatin is a potent regulator of the inflammatory response and binds to and inhibits activin A action. Activin A is a member of the TGFβ protein superfamily which has regulatory roles in the inflammatory response and in the fibrotic process. Fibrosis can occur following cell injury and cell death induced by agents such as ionizing radiation (IR). IR is used to treat cancer and marked fibrotic response is a normal tissue (non-tumour) consequence in a fraction of patients under the current dose regimes. The discovery and development of a therapeutic to abate fibrosis in these radiosensitive patients would be a major advance for cancer radiotherapy. Likewise, prediction of which patients are susceptible to fibrosis would enable individualization of treatment and provide an opportunity for pre-emptive fibrosis control and better tumour treatment outcomes. The levels of activin A and follistatin were measured in fibroblasts derived from patients who developed severe radiation-induced fibrosis following radiotherapy and compared to fibroblasts from patients who did not. Both follistatin and activin A gene expression levels were increased following IR and the follistatin gene expression level was lower in the fibroblasts from fibrosis patients compared to controls at both basal levels and after IR. The major follistatin transcript variants were found to have a similar response to IR and both were reduced in fibrosis patients. Levels of follistatin and activin A secreted in the fibroblast culture medium also increased in response to IR and the relative follistatin protein levels were significantly lower in the samples derived from fibrosis patients. The decrease in the follistatin levels can lead to an increased bioactivity of activin A and hence may provide a useful measurement to identify patients at risk of a severe fibrotic response to IR. Additionally, follistatin, by its ability to neutralise the actions of activin A may be of value as an anti-fibrotic for radiation induced fibrosis.
Collapse
Affiliation(s)
- Helen B. Forrester
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Alesia Ivashkevich
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Michael J. McKay
- North Coast Cancer Institute, Lismore, New South Wales, Australia
| | - Trevor Leong
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - David M. de Kretser
- Centre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Carl N. Sprung
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
404
|
Ding NH, Li JJ, Sun LQ. Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr Drug Targets 2013; 14:1347-56. [PMID: 23909719 PMCID: PMC4156316 DOI: 10.2174/13894501113149990198] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023]
Abstract
Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients.
Collapse
Affiliation(s)
- Nian-Hua Ding
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jian Jian Li
- Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
405
|
Hillman GG, Singh-Gupta V, Hoogstra DJ, Abernathy L, Rakowski J, Yunker CK, Rothstein SE, Sarkar FH, Gadgeel S, Konski AA, Lonardo F, Joiner MC. Differential effect of soy isoflavones in enhancing high intensity radiotherapy and protecting lung tissue in a pre-clinical model of lung carcinoma. Radiother Oncol 2013; 109:117-25. [PMID: 24021346 PMCID: PMC3840154 DOI: 10.1016/j.radonc.2013.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Radiotherapy of locally-advanced non-small cell lung cancer is limited by radiation-induced pneumonitis and fibrosis. We have further investigated the role of soy isoflavones to improve the effect of a high intensity radiation and reduce lung damage in a pre-clinical lung tumor model. METHODS Human A549 NSCLC cells were injected i.v. in nude mice to generate a large tumor burden in the lungs. Mice were treated with lung irradiation at 10 Gy and with oral soy. The therapy effect on the tumor cells and surrounding lung tissue was analyzed on lung sections stained with H&E, Ki-67 and Masson's Trichrome. Pneumonitis and vascular damage were evaluated by measurements of alveolar septa and immunofluorescent staining of vessel walls. RESULTS Combined soy and radiation caused a significantly stronger inhibition of tumor progression compared to each modality alone in contrast to large invasive tumor nodules seen in control mice. At the same time, soy reduced radiation injury in lung tissue by decreasing pneumonitis, fibrosis and protecting alveolar septa, bronchioles and vessels. CONCLUSIONS These studies demonstrate a differential effect of soy isoflavones on augmenting tumor destruction induced by radiation while radioprotecting the normal lung tissue and support using soy to alleviate radiotoxicity in lung cancer.
Collapse
Affiliation(s)
- Gilda G Hillman
- Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Oliver L, Hue E, Séry Q, Lafargue A, Pecqueur C, Paris F, Vallette FM. Differentiation-related response to DNA breaks in human mesenchymal stem cells. Stem Cells 2013; 31:800-7. [PMID: 23341263 DOI: 10.1002/stem.1336] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/25/2012] [Indexed: 12/19/2022]
Abstract
We have recently shown that the in vitro differentiation of human mesenchymal stem cells (hMSCs) was accompanied by an increased sensitivity toward apoptosis; however, the mechanism responsible for this shift is not known. Here, we show that the repair of DNA double-strand breaks (DSBs) was more rapid in undifferentiated hMSCs than in differentiated osteoblasts by quantification of the disappearance of γ-H2AX foci in the nuclei after γ-irradiation-induced DNA damage. In addition, there was a marked and prolonged increase in the level of nuclear Ku70 and an increased phosphorylation of DNA-PKcs. This was accompanied by an augmentation in the phosphorylation of ATM in hMSCs post-irradiation suggesting the nonhomologous end joining repair mechanism. However, when hMSCs were induced to differentiate along the osteogenic or adipogenic pathways; irradiation of these cells caused an expeditious and robust cell death, which was primarily apoptotic. This was in sharp contrast to undifferentiated hMSCs, which were highly resistant to irradiation and/or temozolomide-induced DSBs. In addition, we observed a 95% recovery from DSB in these cells. Our results suggest that apoptosis and DNA repair are major safeguard mechanisms in the control of hMSCs differentiation after DNA damage.
Collapse
Affiliation(s)
- Lisa Oliver
- CRCNA-INSERM UMR 892-CNRS UMR 6299, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
407
|
Chargari C, Riet F, Mazevet M, Morel E, Lepechoux C, Deutsch E. Complications of thoracic radiotherapy. Presse Med 2013; 42:e342-51. [PMID: 23972736 DOI: 10.1016/j.lpm.2013.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 12/25/2022] Open
Abstract
The issue of toxicity is a primary concern for chest irradiation, because it is a dose-limiting toxicity and because in some circumstances it can alleviate the survival benefit of radiation therapy. Potential acute and delayed side effects can compromise the patients' prognosis and generate significant morbidity. Here we review on chest complications of radiation therapy, with focus on cardiac and pulmonary radio-induced side effects. Most radiographic changes associated with thoracic irradiation are asymptomatic. However, chest irradiation generated by treatment of breast cancer, bronchopulmonary malignancies, or mediastinal lymphoma has been associated with a risk of acute radiation pneumonitis and late lung fibrosis. An increasing number of clinical studies suggest that some dosimetric factors (e.g. V20, V30, mean lung dose) should be considered for limiting the risk of lung toxicity. Improvements in radiation techniques as well as changes in indications, volumes and prescribed doses of radiation therapy should help to better spare lungs from irradiation and thus decreasing the risk of subsequent toxicity. Numerous other contributing factors should also be considered, such as chemotherapeutic agents, smoking, tumor topography, or intrinsic sensitivity. Cardiac toxicity is another clinically relevant issue in patients receiving radiation therapy for breast cancer or for lymphoma. This life threatening toxicity should be analyzed in the light of dosimetric factors (including low doses) but also associated systemic agents which almost carry a potential for additive toxicity toward myocardium or coronaries. A long-term follow-up of patients as well as an increasing knowledge of the underlying biological pathways involved in cardiac toxicity should help designing effective preventing strategies.
Collapse
Affiliation(s)
- Cyrus Chargari
- Université Paris-Sud, institut Gustave-Roussy, LabEx Lermit - DHU Torino, radiothérapie moléculaire, Inserm 1030, 94805 Villejuif, France
| | | | | | | | | | | |
Collapse
|
408
|
Aichele K, Bubel M, Deubel G, Pohlemann T, Oberringer M. Bromelain down-regulates myofibroblast differentiation in an in vitro wound healing assay. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:853-63. [PMID: 23771413 DOI: 10.1007/s00210-013-0890-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022]
Abstract
Bromelain, a pineapple-derived enzyme mixture, is a widely used drug to improve tissue regeneration. Clinical and experimental data indicate a better outcome of soft tissue healing under the influence of bromelain. Proteolytic, anti-bacterial, anti-inflammatory, and anti-oedematogenic effects account for this improvement on the systemic level. It remains unknown, whether involved tissue cells are directly influenced by bromelain. In order to gain more insight into those mechanisms by which bromelain modulates tissue regeneration at the cellular level, we applied a well-established in vitro wound healing assay. Two main players of soft tissue healing--fibroblasts and microvascular endothelial cells--were used as mono- and co-cultures. Cell migration, proliferation, apoptosis, and the differentiation of fibroblasts to myofibroblasts as well as interleukin-6 were quantified in response to bromelain (36 × 10(-3) IU/ml) under normoxia and hypoxia. Bromelain attenuated endothelial cell and fibroblast proliferation in a moderate way. This proliferation decrease was not caused by apoptosis, rather, by driving cells into the resting state G0 of the cell cycle. Endothelial cell migration was not influenced by bromelain, whereas fibroblast migration was clearly slowed down, especially under hypoxia. Bromelain led to a significant decrease of myofibroblasts under both normoxic (from 19 to 12 %) and hypoxic conditions (from 22 to 15 %), coincident with higher levels of interleukin-6. Myofibroblast differentiation, a clear sign of fibrotic development, can be attenuated by the application of bromelain in vitro. Usage of bromelain as a therapeutic drug for chronic human wounds thus remains a very promising concept for the future.
Collapse
Affiliation(s)
- Kathrin Aichele
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | | | | | | | | |
Collapse
|
409
|
Amber KT, Shiman MI, Badiavas EV. The use of antioxidants in radiotherapy-induced skin toxicity. Integr Cancer Ther 2013; 13:38-45. [PMID: 23729466 DOI: 10.1177/1534735413490235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Radiation-induced skin damage is one of the most common complications of radiotherapy. In order to combat these side effects, patients often turn to alternative therapies, which often include antioxidants. Antioxidants such as those in the polyphenol chemical class, xanthine derivatives, tocepherol, sucralfate, and ascorbate have been studied for their use in either preventing or treating radiotherapy-induced skin damage. Apart from their known role as free radical scavengers, some of these antioxidants appear to alter cytokine release affecting cutaneous and systemic changes. We review the role of antioxidants in treating and preventing radiation-induced skin damage as well as the possible complications of using such therapy.
Collapse
|
410
|
Liu H, Xue JX, Li X, Ao R, Lu Y. Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model. Oncol Lett 2013; 6:453-459. [PMID: 24137346 PMCID: PMC3789113 DOI: 10.3892/ol.2013.1365] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/17/2013] [Indexed: 02/05/2023] Open
Abstract
In the present study, the hypothesis that quercetin liposomes are able to effectively protect against radiation-induced pulmonary injury in a murine model was tested. C57BL/6J mice receiving whole-thorax radiotherapy (16 Gy) were randomly divided into three groups: control, radiation therapy plus saline (RT+NS) and RT plus quercetin (RT+QU). At 1, 4, 8 and 24 weeks post-irradiation, lung injury was assessed by measuring oxidative damage and the extent of acute pneumonitis and late fibrosis. In the lung tissues from the RT+NS group, the malondialdehyde (MDA) levels were significantly elevated and superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities were significantly reduced; the total cell counts and inflammatory cell proportions in the bronchoalveolar lavage fluid (BALF), plasma tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 concentrations and the hydroxyproline (HP) content were significantly increased. Quercetin liposome administration significantly reduced the MDA content and increased SOD and GSH-PX activities in the lung tissues, and reduced the total cell counts and inflammatory cell proportions in the BALF, plasma TNF-α and TGF-β1 concentrations and the HP content in the lung tissues. A histological examination revealed suppression of the inflammatory response and reduced TGF-β1 expression and fibrosis scores. Radiation-induced oxidative damage ranged from pneumonitis to lung fibrosis. Quercetin liposomes were shown to protect against radiation-induced acute pneumonitis and late fibrosis, potentially by reducing oxidative damage.
Collapse
Affiliation(s)
- Hao Liu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, P.R. China ; ; Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610041, P.R. China
| | | | | | | | | |
Collapse
|
411
|
Abstract
BACKGROUND Ionizing radiation is known to have deleterious chronic effects on skin, including fibrosis and poor wound healing, hypothesized as mediated by ischemia and hypoxia. Past studies have been unable to simultaneously investigate changes in perfusion and oxygenation as separate parameters. Hyperspectral imaging has emerged as a tool with which to concurrently measure skin perfusion and oxygenation. The authors investigated the use of hyperspectral imaging in a novel murine model of chronic radiation injury. METHODS Areas of flank skin (n = 20) on hairless mice were exposed to a 50-Gy dose of beta-radiation. Hyperspectral imaging acquisition was performed at select points through 8 weeks. Immunohistochemical staining and gene expression analysis were performed to evaluate cutaneous vascular density, epidermal cell hypoxia, and angiogenic factors. RESULTS All irradiated areas developed a chronic-phase wound by day 28. Hyperspectral imaging demonstrated a 21 percent decline in perfusion on day 56 (p < 0.001), whereas oxygenation levels were unchanged. A 1.7-fold reduction in blood vessel density was measured in irradiated skin compared with control tissue (p < 0.001), but no difference in epidermal cell hypoxia was observed. Vascular endothelial growth factor and related receptor expression were significantly lower in irradiated tissue. CONCLUSIONS The authors' analysis does not support the presence of hypoxia in chronic-phase irradiated skin but suggests that hypoperfusion may be a predominant characteristic. The concurrent states of hypoperfusion and normoxia may be explained by the lower metabolic demands of fibrosed tissue.
Collapse
|
412
|
Layliev J, Sagebin F, Weinstein A, Marchac A, Szpalski C, Saadeh PB, Warren SM. Percutaneous gene therapy heals cranial defects. Gene Ther 2013; 20:922-9. [PMID: 23594990 DOI: 10.1038/gt.2013.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/03/2013] [Accepted: 02/18/2013] [Indexed: 11/09/2022]
Abstract
Nonhealing bone defects are difficult to treat. As the bone morphogenic protein and transforming growth factor beta pathways have been implicated in bone healing, we hypothesized that percutaneous Smad7 silencing would enhance signaling through both pathways and improve bone formation. Critical sized parietal trephine defects were created and animals received percutaneous injection of: agarose alone or agarose containing nonsense or Smad7 small interfering RNA (siRNA). At 12 weeks, SMADs1, 2, 3, 5, 7 and 8 levels were assessed. Smad1/5/8 osteogenic target, Dlx5, and SMAD2/3 angiogenic target, plasminogen activator inhibitor-1 (Pai1), transcription levels were measured. Noncanonical signaling through TGFβ activated kinase-1 (Tak1) and target, runt-related transcription factor 2 (Runx2) and collagen1α1 (Col1α1), transcription were also measured. Micro-computed tomography and Gomori trichome staining were used to assess healing. Percutaneous injection of Smad7 siRNA significantly knocked down Smad7 mRNA (86.3 ± 2.5%) and protein levels (46.3 ± 3.1%). The SMAD7 knockdown resulted in a significant increase in receptor-regulated SMADs (R-SMAD) (Smad 1/5/8 and Smad2/3) nuclear translocation. R-SMAD nuclear translocation increased Dlx5 and Pai1 transcription. Additionally, noncanonical signaling through Tak1 increased Runx2 and Col1α1 target transcription. Compared with animals treated with agarose alone (33.9 ± 2.8% healing) and nonsense siRNA (31.5 ± 11.8% healing), animals treated Smad7 siRNA had significantly great (91.2 ± 3.8%) healing. Percutaneous Smad7 silencing increases signal transduction through canonical and noncanonical pathways resulting in significant bone formation. Minimally invasive gene therapies may prove effective in the treatment of nonhealing bone defects.
Collapse
Affiliation(s)
- J Layliev
- The Department of Plastic Surgery, Institute of Reconstructive Plastic Surgery Laboratories, New York University Medical Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
413
|
Ferreira-Machado SC, Salata C, Rocha NN, Corrêa AF, Côrte-Real S, Peregrino AA, Campos VMD, Andrade CB, Bernardo-Filho M, Cabral-Neto JB, Dealmeida CE. Caspase-3 activation and increased procollagen type I in irradiated hearts. AN ACAD BRAS CIENC 2013; 85:215-22. [DOI: 10.1590/s0001-37652013005000009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023] Open
Abstract
The caspase-3-cleaved presence was evaluated in this study in the heart of irradiated rats, during the decline of ventricular function. Female Wistar rats were irradiated with a single dose of radiation (15 Gy) delivered directly to the heart and the molecular, histological and physiological evaluations were performed at thirteen months post-irradiation. The expressions of procollagen type I, TGF-ß1 and caspase-3-cleaved were analyzed using Western blotting. Cardiac structural and functional alterations were investigated by echocardiography and electron microscopy. In the irradiated group, the levels of procollagen type I, TGF-ß1 and caspase-3-cleaved are increased. Significant histological changes (degeneration of heart tissue and collagen deposition) and functional (reduced ejection fraction) were observed. Data suggest that the cardiac function decline after exposure to ionizing radiation is related, in part, to increased collagen and increased caspase-3-cleaved.
Collapse
Affiliation(s)
- Samara C. Ferreira-Machado
- Universidade Federal Fluminense, Brasil; Universidade Federal do Rio de Janeiro, Brasil; Universidade do Estado do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
414
|
Monceau V, Meziani L, Strup-Perrot C, Morel E, Schmidt M, Haagen J, Escoubet B, Dörr W, Vozenin MC. Enhanced sensitivity to low dose irradiation of ApoE-/- mice mediated by early pro-inflammatory profile and delayed activation of the TGFβ1 cascade involved in fibrogenesis. PLoS One 2013; 8:e57052. [PMID: 23451141 PMCID: PMC3579799 DOI: 10.1371/journal.pone.0057052] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/17/2013] [Indexed: 12/15/2022] Open
Abstract
Aim Investigating long-term cardiac effects of low doses of ionizing radiation is highly relevant in the context of interventional cardiology and radiotherapy. Epidemiological data report that low doses of irradiation to the heart can result in significant increase in the cardiovascular mortality by yet unknown mechanisms. In addition co-morbidity factor such as hypertension or/and atherosclerosis can enhance cardiac complications. Therefore, we explored the mechanisms that lead to long-term cardiac remodelling and investigated the interaction of radiation-induced damage to heart and cardiovascular systems with atherosclerosis, using wild-type and ApoE-deficient mice. Methods and Results ApoE−/− and wild-type mice were locally irradiated to the heart at 0, 0.2 and 2 Gy (RX). Twenty, 40 and 60 weeks post-irradiation, echocardiography were performed and hearts were collected for cardiomyocyte isolation, histopathological analysis, study of inflammatory infiltration and fibrosis deposition. Common and strain-specific pathogenic pathways were found. Significant alteration of left ventricular function (eccentric hypertrophy) occurred in both strains of mice. Low dose irradiation (0.2 Gy) induced premature death in ApoE−/− mice (47% died at 20 weeks). Acute inflammatory infiltrate was observed in scarring areas with accumulation of M1-macrophages and secretion of IL-6. Increased expression of the fibrogenic factors (TGF-β1 and PAI-1) was measured earlier in cardiomyocytes isolated from ApoE−/− than in wt animals. Conclusion The present study shows that cardiac exposure to low dose of ionizing radiation induce significant physiological, histopathological, cellular and molecular alterations in irradiated heart with mild functional impairment. Atherosclerotic predisposition precipitated cardiac damage induced by low doses with an early pro-inflammatory polarization of macrophages.
Collapse
|
415
|
Johns MM, Kolachala V, Berg E, Muller S, Creighton FX, Branski RC. Radiation fibrosis of the vocal fold: from man to mouse. Laryngoscope 2013; 122 Suppl 5:S107-25. [PMID: 23242839 DOI: 10.1002/lary.23735] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/01/2012] [Accepted: 08/22/2012] [Indexed: 01/06/2023]
Abstract
OBJECTIVES/HYPOTHESIS To characterize fundamental late tissue effects in the human vocal fold following radiation therapy. To develop a murine model of radiation fibrosis in order to ultimately develop both treatment and prevention paradigms. DESIGN Translational study using archived human and fresh murine irradiated vocal fold tissue. METHODS 1) Irradiated vocal fold tissue from patients undergoing laryngectomy for loss of function from radiation fibrosis was identified from pathology archives. Histomorphometry, immunohistochemistry, and whole-genome microarray, as well as real-time transcriptional analyses, were performed. 2) Focused radiation to the head and neck was delivered to mice in a survival fashion. One month following radiation, vocal fold tissue was analyzed with histomorphometry, immunohistochemistry, and real-time PCR transcriptional analysis for selected markers of fibrosis. RESULTS Human irradiated vocal folds demonstrated increased collagen transcription, with increased deposition and disorganization of collagen in both the thyroarytenoid muscle and the superficial lamina propria. Fibronectin were increased in the superficial lamina propria. Laminin decreased in the thyroarytenoid muscle. Whole genome microarray analysis demonstrated increased transcription of markers for fibrosis, oxidative stress, inflammation, glycosaminoglycan production, and apoptosis. Irradiated murine vocal folds demonstrated increases in collagen and fibronectin transcription and deposition in the lamina propria. Transforming growth factor (TGF)-β increased in the lamina propria. CONCLUSION Human irradiated vocal folds demonstrate molecular changes leading to fibrosis that underlie loss of vocal fold pliability occurring in patients following laryngeal irradiation. The irradiated murine tissue demonstrates similar findings, and this mouse model may have utility in creating prevention and treatment strategies for vocal fold radiation fibrosis.
Collapse
Affiliation(s)
- Michael M Johns
- Department Otolaryngology-Head and Neck Surgery, NYU Voice Center, New York University, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
416
|
Kim JH, Kolozsvary AJJ, Jenrow KA, Brown SL. Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int J Radiat Biol 2013; 89:311-8. [DOI: 10.3109/09553002.2013.765055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
417
|
Tian J, Tian S, Gridley DS. Comparison of acute proton, photon, and low-dose priming effects on genes associated with extracellular matrix and adhesion molecules in the lungs. FIBROGENESIS & TISSUE REPAIR 2013; 6:4. [PMID: 23374750 PMCID: PMC3579759 DOI: 10.1186/1755-1536-6-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/09/2013] [Indexed: 02/06/2023]
Abstract
Background Crew members on space missions inevitably are exposed to low background radiation and can receive much higher doses during solar particle events (SPE) that consist primarily of protons. Ionizing radiation could cause lung pathologies. Cell adhesion molecules (CAM) are believed to participate in fibrogenesis. Interactions between CAM and extracellular matrix (ECM) affect epithelial repair mechanisms in the lung. However, there are very limited data on biological effects of protons on normal lung tissue. Numerous reports have shown that exposure to low-dose/low-dose-rate (LDR) radiation can result in radioadaptation that renders cells more resistant to subsequent acute radiation. The goal of this study was to compare expression of genes associated with ECM and CAM, as well as critical profibrotic mediators, in mouse lungs after acute irradiation with photons and protons, and also determine whether pre-exposure to LDR γ-rays induces an adaptive effect. Results Overall, a marked difference was present in the proton vs. photon groups in gene expression. When compared to 0 Gy, more genes were affected by protons than by photons at both time points (11 vs. 6 on day 21 and 14 vs. 8 on day 56), and all genes affected by protons were upregulated. Many genes were modulated by LDR γ-rays when combined with photons or protons. Col1a1, mmp14, and mmp15 were significantly upregulated by all radiation regimens on day 21. Similarly, the change in expression of profibrotic proteins was also detected after acute and combination irradiation. Conclusion These data show that marked differences were present between acutely delivered protons and photons in modulating genes, and the effect of protons was more profound than that of photons. Pre-exposure to LDR γ-rays ‘normalized’ some genes that were modified by acute irradiation.
Collapse
Affiliation(s)
- Jian Tian
- Department of Radiation Medicine, Radiation Research Laboratories and Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA.,Department of Pathological Anatomy, Nantong University, Nantong, China
| | - Sisi Tian
- Department of Otolaryngology, Loma Linda University Medical Center, Loma Linda, California, 92354, USA
| | - Daila S Gridley
- Department of Radiation Medicine, Radiation Research Laboratories and Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
418
|
|
419
|
Reuther S, Metzke E, Bonin M, Petersen C, Dikomey E, Raabe A. No Effect of the Transforming Growth Factor β1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity. Int J Radiat Oncol Biol Phys 2013; 85:460-5. [DOI: 10.1016/j.ijrobp.2012.01.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/12/2012] [Accepted: 01/31/2012] [Indexed: 12/14/2022]
|
420
|
Kim M, Choi SH, Jin YB, Lee HJ, Ji YH, Kim J, Lee YS, Lee YJ. The effect of oxidized low-density lipoprotein (ox-LDL) on radiation-induced endothelial-to-mesenchymal transition. Int J Radiat Biol 2013; 89:356-63. [PMID: 23289363 DOI: 10.3109/09553002.2013.763193] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Radiation-induced cardiovascular disease is a potentially severe side-effect of thoracic radiotherapy treatment. Clinically, this delayed side-effect presents as a form of accelerated atherosclerosis several years after irradiation. As general endothelial dysfunction is known to be an initiating event in radiation-induced vascular damage, we examined the effects of radiation on endothelial cells in radiation-induced atherosclerosis. MATERIALS AND METHODS The effects of radiation on human aortic endothelial cells (HAoEC) were assessed by immunoblotting and immunofluorescence assays. Radiation-induced phenotypic changes of endothelial cells (ECs) were examined using atherosclerotic tissues of irradiated apoprotein E null (ApoE(-/-)) mice. RESULTS Radiation induced the HAoEC to undergo phenotypic conversion to form fibroblast-like cells, called the endothelial-to-mesenchymal transition (EndMT), which leads to the upregulation of mesenchymal cell markers such as alpha-smooth muscle actin (α-SMA), fibroblast specific protein-1 (FSP-1), and vimentin, and downregulation of endothelial cell-specific markers such as CD31 and vascular endothelial (VE)-cadherin. Furthermore, compared with low-density lipoprotein (LDL), oxidized low-density lipoprotein (ox-LDL) significantly augmented radiation-induced EndMT in HAoEC. These fibrotic phenotypes of ECs were found in atherosclerotic tissues of irradiated ApoE(-/-) mice with increased levels of ox-LDL. CONCLUSIONS Taken together, these observations suggest that ox-LDL accelerates radiation-induced EndMT and subsequently contributes to radiation-induced atherosclerosis, providing a novel target for the prevention of radiation-induced atherosclerosis.
Collapse
Affiliation(s)
- Miseon Kim
- Division of Radiation Effects, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
421
|
Wang S, Hyun J, Youn B, Jung Y. Hedgehog Signaling Regulates the Repair Response in Mouse Liver Damaged by Irradiation. Radiat Res 2013; 179:69-75. [DOI: 10.1667/rr3091.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
422
|
Makinde AY, John-Aryankalayil M, Palayoor ST, Cerna D, Coleman CN. Radiation survivors: understanding and exploiting the phenotype following fractionated radiation therapy. Mol Cancer Res 2013; 11:5-12. [PMID: 23175523 PMCID: PMC3552079 DOI: 10.1158/1541-7786.mcr-12-0492] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiation oncology modalities such as intensity-modulated and image-guided radiation therapy can reduce the high dose to normal tissue and deliver a heterogeneous dose to tumors, focusing on areas deemed at highest risk for tumor persistence. Clinical radiation oncology produces daily doses ranging from 1 to 20 Gy, with tissues being exposed to 30 or more daily fractions. Hypothesizing the cells that survive fractionated radiation therapy have a substantially different phenotype than the untreated cells, which might be exploitable for targeting with molecular therapeutics or immunotherapy, three prostate cancer cell lines (PC3, DU145, and LNCaP) and normal endothelial cells were studied to understand the biology of differential effects of multifraction (MF) radiation of 0.5, 1, and/or 2 Gy fraction to 10 Gy total dose, and a single dose of 5 and 10 Gy. The resulting changes in mRNA, miRNA, and phosphoproteome were analyzed. Significant differences were observed in the MF radiation exposures including those from the 0.5 Gy MF that produces little cell killing. As expected, p53 function played a major role in response. Pathways modified by MF include immune response, DNA damage, cell-cycle arrest, TGF-β, survival, and apoptotic signal transduction. The radiation-induced stress response will set forth a unique platform for exploiting the effects of radiation therapy as "focused biology" for cancer treatment in conjunction with molecular targeted or immunologically directed therapy. Given that more normal tissue is treated, albeit to lower doses with these newer techniques, the response of the normal tissue may also influence long-term treatment outcome.
Collapse
Affiliation(s)
- Adeola Y Makinde
- National Institutes of Health/National Cancer Institute, 9000 Rockville Pike, Bldg 10, B3B406, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
423
|
Ingrosso G, Fantini M, Nardi A, Benvenuto M, Sacchetti P, Masuelli L, Ponti E, Frajese GV, Lista F, Schillaci O, Santoni R, Modesti A, Bei R. Local radiotherapy increases the level of autoantibodies to ribosomal P0 protein but not to heat shock proteins, extracellular matrix molecules and EGFR/ErbB2 receptors in prostate cancer patients. Oncol Rep 2012; 29:1167-74. [PMID: 23254686 DOI: 10.3892/or.2012.2197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is a common cancer among men in developed countries. Although hormonotherapy and radiotherapy (RT) represent valid therapies for prostate cancer treatment, novel immunological approaches have been explored. The development of clinical trials employing cancer vaccines has indicated that immune response to tumor antigens can be boosted and that vaccine administration can improve patient survival. Immune response to tumor antigens could also be enhanced after standard therapies. In the present study, we determined the occurrence of antibodies to extracellular matrix (ECM) molecules, heat shock protein (HSP), ribosomal P0 protein, EGFR, ErbB2 and prostate-specific antigen (PSA) in 35 prostate cancer patients prior to and following local RT and hormonotherapy. We demonstrated that immunity to P0, ECM molecules [collagens (C) CI, CIII, CV, fibronectin (FN) and laminin (LM)] and to HSP90 was associated with malignancy in untreated patients. None of the patient sera showed antibodies to EGFR, while 2 and 1 patients showed reactivity to ErbB2 and PSA, respectively. We also demonstrated that 8 months after therapy the IgG serum levels to CI, CIII, FN and HSP90 significantly decreased. Conversely, the level of P0 autoantibodies increased after therapy in 10 patients. Five of the 10 patients with increased levels of P0 autoantibodies were treated with RT plus hormonotherapy. Treatment of patients did not change the levels of antibodies against EGFR, ErbB2 and PSA. Our results indicated that the modification of antibody level to self molecules after standard treatment of prostate cancer patients is influenced by the type of antigen. Ribosomal P0 protein appears to be a high immunogenic antigen and its immunogenicity increases following RT. In addition, 10 patients with increased levels of autoantibodies to P0 showed PSA mean levels lower than the remaining 25 patients at 18 months. This study may contribute to a better understanding of the immunobiological behavior of prostate cancer patients following standard treatment.
Collapse
Affiliation(s)
- Gianluca Ingrosso
- Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology and Radiotherapy, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
424
|
Artlett CM. Inflammasomes in wound healing and fibrosis. J Pathol 2012; 229:157-67. [DOI: 10.1002/path.4116] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology; Drexel University College of Medicine; Philadelphia PA USA
| |
Collapse
|
425
|
Hamama S, Gilbert-Sirieix M, Vozenin MC, Delanian S. Radiation-induced enteropathy: Molecular basis of pentoxifylline–vitamin E anti-fibrotic effect involved TGF-β1 cascade inhibition. Radiother Oncol 2012; 105:305-12. [DOI: 10.1016/j.radonc.2012.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/23/2012] [Accepted: 08/28/2012] [Indexed: 01/03/2023]
|
426
|
Westbury C, Yarnold J. Radiation Fibrosis — Current Clinical and Therapeutic Perspectives. Clin Oncol (R Coll Radiol) 2012; 24:657-72. [DOI: 10.1016/j.clon.2012.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 02/07/2012] [Accepted: 04/12/2012] [Indexed: 01/08/2023]
|
427
|
Horton JA, Chung EJ, Hudak KE, Sowers A, Thetford A, White AO, Mitchell JB, Citrin DE. Inhibition of radiation-induced skin fibrosis with imatinib. Int J Radiat Biol 2012; 89:162-70. [PMID: 23083077 DOI: 10.3109/09553002.2013.741281] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Dermal fibrosis is a disabling late toxicity of radiotherapy. Several lines of evidence suggest that overactive signaling via the Platelet-derived growth factor receptor-beta (PDGFR-β) and V-abl Abelson murine leukemia viral oncogene homolog 1 (cAbl) may be etiologic factors in the development of radiation-induced fibrosis. We tested the hypothesis that imatinib, a clinically available inhibitor of PDGFR-β, Mast/stem cell growth factor receptor (c-kit) and cAbl, would reduce the severity of dermal fibrosis in a murine model. MATERIALS AND METHODS The right hind legs of female C3H/HeN mice were exposed to 35 Gy of X-rays. Cohorts of mice were maintained on chow formulated with imatinib 0.5 mg/g or control chow for the duration of the experiment. Bilateral hind limb extension was measured serially to assess fibrotic contracture. Immunohistochemistry and biochemical assays were used to evaluate the levels of collagen and cytokines implicated in radiation-induced fibrosis. RESULTS Imatinib treatment significantly reduced hind limb contracture and dermal thickness after irradiation. Immunohistochemical studies demonstrated a substantial reduction in PDGFR-β phosphorylation. We also observed reduced Transforming Growth factor-β (TGF-β) and collagen expression in irradiated skin of imatinib-treated mice, suggesting that imatinib may suppress the fibrotic process by interrupting cross-talk between these pathways. CONCLUSIONS Taken together, these results support that imatinib may be a useful agent in the prevention and treatment of radiation-induced dermal fibrosis.
Collapse
Affiliation(s)
- Jason A Horton
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
428
|
Jang SS, Kim HG, Lee JS, Han JM, Park HJ, Huh GJ, Son CG. Melatonin reduces X-ray radiation-induced lung injury in mice by modulating oxidative stress and cytokine expression. Int J Radiat Biol 2012; 89:97-105. [PMID: 23046278 DOI: 10.3109/09553002.2013.734943] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The modification of radiation-induced lung injuries by melatonin was studied by measuring changes in oxidative stress, cytokine expression and histopathology in the lung tissue of mice following irradiation. MATERIALS AND METHODS The thoraces of C57BL/6 mice were exposed to a single X-ray radiation dose of 12 Gy with or without 200 mg/kg of melatonin pretreatment. The level and localization of transforming growth factor (TGF)-β1 protein were measured using an enzyme-linked immunosorbent assay (ELISA) method and immunohistochemical staining, respectively. Real-time quantitative polymerase chain reaction (PCR) was established to evaluate the relative mRNA expression levels of TGF-β1, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. RESULTS Malondialdehyde (MDA) levels increased after irradiation and then significantly reduced (1.9-fold) under melatonin treatment. Changes in superoxide dismutase (SOD) and catalase activities, as well as glutathione (GSH) levels, after irradiation were significantly reduced by melatonin, including a notable 5.4-fold difference in catalase activity. We observed increased expression of TGF-β1 and TNF-α after irradiation and a significant reduction in the elevation of their expression by melatonin treatment. Furthermore, irradiation-induced histopathologic alterations were obviously abated in the melatonin-pretreated mice. CONCLUSIONS The present results suggest that melatonin reduces radiation-induced lung injury via a significant reduction of oxidative stress and of the production of cytokines, such as TGF-β1 and TNF-α, the production of which increased following lung irradiation.
Collapse
Affiliation(s)
- Seong Soon Jang
- Department of Radiation Oncology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
429
|
Booth C, Tudor G, Tonge N, Shea-Donohue T, MacVittie TJ. Evidence of delayed gastrointestinal syndrome in high-dose irradiated mice. HEALTH PHYSICS 2012; 103:400-10. [PMID: 23091877 PMCID: PMC3551349 DOI: 10.1097/hp.0b013e31826530e2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The acute effects of irradiation on the gastrointestinal (GI) system are well documented, but the longer-term effects are less well known. Increased incidence of adenocarcinoma has been noted, but apart from descriptions of fibrosis, the development of other pathologies specific to survivors of acute radiation is poorly understood. Samples were taken from C57BL/6 mice irradiated with partial-body irradiation where the thorax, head, and forelimbs were shielded (i.e., sparing 40% of the bone marrow). Tissue from age-matched controls was also collected. There were clear pathological changes in the intestine associated with DEARE (Delayed Effects of Acute Radiation Exposure) at doses greater than 12 Gy, with a dose-related increase in observed pathologies. Mice maintained on the synthetic antibiotic ciprofloxacin during the acute phase (days 4 to 20), however, had a lower or delayed incidence of symptoms. After 20 d, mice developed structures similar to early adenomas. Abnormally high levels of apoptotic and mitotic cells were present in some crypts, along with the early adenomas, suggesting tissue regeneration and areas of deregulated cell turnover. Over time, there was inhibited crypt cell proliferation in animals with advanced symptoms, a blunting of the crypts and villi, and an enlargement of villus girth, with an increasingly acellular and fibrotic extracellular matrix (a characteristic that has been demonstrated previously in aging mice). Together these changes may lead to a reduced functional surface area and less motile intestine. These observations are similar to those seen in geriatric animals, suggesting a premature aging of the GI tract.
Collapse
|
430
|
Rieder F, Kessler S, Sans M, Fiocchi C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol 2012; 303:G786-801. [PMID: 22878121 PMCID: PMC4073977 DOI: 10.1152/ajpgi.00059.2012] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis is a serious condition complicating chronic inflammatory processes affecting the intestinal tract. Advances in this field that rely on human studies have been slow and seriously restricted by practical and logistic reasons. As a consequence, well-characterized animal models of intestinal fibrosis have emerged as logical and essential systems to better define and understand the pathophysiology of fibrosis. In point of fact, animal models allow the execution of mechanistic studies as well as the implementation of clinical trials with novel, pathophysiology-based therapeutic approaches. This review provides an overview of the currently available animal models of intestinal fibrosis, taking into consideration the methods of induction, key characteristics of each model, and underlying mechanisms. Currently available models will be classified into seven categories: spontaneous, gene-targeted, chemical-, immune-, bacteria-, and radiation-induced as well as postoperative fibrosis. Each model will be discussed in regard to its potential to create research opportunities to gain insights into the mechanisms of intestinal fibrosis and stricture formation and assist in the development of effective and specific antifibrotic therapies.
Collapse
Affiliation(s)
- Florian Rieder
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ,2Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Sean Kessler
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio;
| | - Miquel Sans
- 3Service of Gastroenterology, Centro Medico Teknon, Barcelona, Spain
| | - Claudio Fiocchi
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ,2Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
431
|
Doré M, Hennequin C. Séquelles esthétiques de la radiothérapie adjuvante dans le traitement conservateur du cancer du sein localisé. Cancer Radiother 2012; 16:462-9. [DOI: 10.1016/j.canrad.2012.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/23/2012] [Indexed: 01/07/2023]
|
432
|
Seth R, Khan AA, Pencavel T, Harrington KJ, Harris PA. Targeted gene delivery by free-tissue transfer in oncoplastic reconstruction. Lancet Oncol 2012; 13:e392-402. [DOI: 10.1016/s1470-2045(12)70235-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
433
|
Ghazali N, Shaw RJ, Rogers SN, Risk JM. Genomic determinants of normal tissue toxicity after radiotherapy for head and neck malignancy: a systematic review. Oral Oncol 2012; 48:1090-100. [PMID: 22939215 DOI: 10.1016/j.oraloncology.2012.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 01/06/2023]
Abstract
Interindividual variations in radiotoxicity responses exist despite uniform treatment protocols. It is speculated that normal genetic variants, particularly single nucleotide polymorphisms (SNPs) may influence normal head and neck (HN) tissue radiotoxicity. This first-ever systematic review was undertaken to evaluate the association of SNPs with normal HN tissues radiotoxicity. Multiple databases (1950-February 2012) were reviewed using a combination of related keywords and MeSH terms. All published HN radiotoxicity studies with sufficient relevant data for extraction were included. The outcomes evaluated were acute and late radiotoxicity endpoints. Methodological quality assessment based on the STrengthening the REporting of Genetic Association (STREGA) statement was performed. Seven articles from 692 articles searched fulfilled the eligibility criteria. Recruited sample sizes were small (range, 32-140). There were 5/7 case-control studies. All studies used multimodality treatment with heterogeneous radiation parameters. Candidate gene approach was used in all studies. Fourteen SNPs from 9 genes were evaluated from the following pathways: DNA damage response, radiation fibrogenesis and oxidative/xenobiotic metabolism. Acute radiotoxicity events were associated with SNPs of DNA repair genes (OR, 3.01-4.08). SNPs of TGFβ1 were associated with osteoradionecrosis (OR, 4.2) and subcutaneous fibrosis. Genetic association studies in HN radiotoxicity currently provide hypothesis-generating findings that require validation in larger studies. Future studies must incorporate critical methodological issues and technological improvements, including using a genome-wide approach. Headway is possible through case-pooling of existing clinical trial data which could create a larger sample size of well-characterized treatment and endpoints. Also, on-going HN cancer clinical trials should consider extending their toxicity evaluation to include genetic association studies.
Collapse
Affiliation(s)
- Naseem Ghazali
- Regional Maxillofacial Unit, University Hospital Aintree, Lower Lane, Liverpool L9 7AL, UK.
| | | | | | | |
Collapse
|
434
|
Cihoric N, Crowe S, Eychmüller S, Aebersold DM, Ghadjar P. Clinically significant bleeding in incurable cancer patients: effectiveness of hemostatic radiotherapy. Radiat Oncol 2012; 7:132. [PMID: 22863072 PMCID: PMC3441238 DOI: 10.1186/1748-717x-7-132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/27/2012] [Indexed: 12/03/2022] Open
Abstract
Background This study was performed to evaluate the outcome after hemostatic radiotherapy (RT) of significant bleeding in incurable cancer patients. Methods Patients treated by hemostatic RT between November 2006 and February 2010 were retrospectively analyzed. Bleeding was assessed according to the World Health Organization (WHO) scale (grade 0 = no bleeding, 1 = petechial bleeding, 2 = clinically significant bleeding, 3 = bleeding requiring transfusion, 4 = bleeding associated with fatality). The primary endpoint was bleeding at the end of RT. Key secondary endpoints included overall survival (OS) and acute toxicity. The bleeding score before and after RT were compared using the Wilcoxon signed rank test. Time to event endpoints were estimated using the Kaplan Meier method. Results Overall 62 patients were analyzed including 1 patient whose benign cause of bleeding was pseudomyxoma peritonei. Median age was 66 (range, 37–93) years. Before RT, bleeding was graded as 2 and 3 in 24 (39%) and 38 (61%) patients, respectively. A median dose of 20 (range, 5–45) Gy of hemostatic RT was applied to the bleeding site. At the end of RT, there was a statistically significant difference in bleeding (p < 0.001); it was graded as 0 ( n = 39), 1 ( n = 12), 2 ( n = 6), 3 ( n = 4) and 4 (n = 1). With a median follow-up of 19.3 (range, 0.3-19.3) months, the 6-month OS rate was 43%. Forty patients died (65%); 5 due to bleeding. No grade 3 or above acute toxicity was observed. Conclusions Hemostatic RT seems to be a safe and effective treatment for clinically and statistically significantly reducing bleeding in incurable cancer patients.
Collapse
Affiliation(s)
- Nikola Cihoric
- Department of Radiation Oncology, Bern University Hospital, and University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
435
|
Tian L, He LS, Soni B, Shang HT. Myofibroblasts and their resistance to apoptosis: a possible mechanism of osteoradionecrosis. Clin Cosmet Investig Dent 2012; 4:21-7. [PMID: 23674922 PMCID: PMC3652366 DOI: 10.2147/cciden.s33722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Osteoradionecrosis (ORN) in the head and neck area is the most devastating long-term complication of radiotherapy, with slow progression and inability to heal spontaneously. ORN can lead to intolerable pain, fractures, and sequestration of devitalized bone and fistulae, making oral feeding impossible and causing facial deformation. In spite of its notorious reputation over at least 90 years, the precise pathogenesis of ORN has not been fully clarified, which has led to obstacles in the management of the disease. Several theories about its pathogenesis have been formulated, and radiation-induced fibrosis is the newest one. According to this theory, ORN is essentially a type of fibrosis induced by radiotherapy, and antifibrosis therapy has been shown to be effective in its treatment. We assumed that ORN, like fibrosis in other organs, is the result of a process of fibrogenesis in which myofibroblasts are the key effector cells. The uninterrupted accumulation of myofibroblasts and consequent persistent excess production of collagenous extracellular matrix and tensile force result in loss of normal function and ultimately radiation-induced fibrosis. During this process, myofibroblasts may be protected from apoptosis by acquiring an immune-privileged capacity, which allows continuous matrix synthesis. If this hypothesis proves to be correct, it would enable better understanding of the cellular and molecular mechanisms underlying the pathogenesis and progression of ORN, and would help improve our ability to prevent occurrence of ORN, give an earlier diagnosis, and treat it more effectively.
Collapse
Affiliation(s)
- Lei Tian
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, China
| | | | | | | |
Collapse
|
436
|
Ambati J, Lopez AM, Cochran D, Wattamwar P, Bean K, Dziubla TD, Rankin SE. Engineered silica nanocarriers as a high-payload delivery vehicle for antioxidant enzymes. Acta Biomater 2012; 8:2096-103. [PMID: 22366223 DOI: 10.1016/j.actbio.2012.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 12/13/2022]
Abstract
Antioxidant enzymes for the treatment of oxidative stress-related diseases remain a highly promising therapeutic approach. As poor localization and stability have been the greatest challenges to their clinical translation, a variety of nanocarrier systems have been developed to directly address these limitations. In most cases, there has been a trade-off between the delivered mass of enzyme loaded and the carrier's ability to protect the enzyme from proteolytic degradation. One potential method of overcoming this limitation is the use of ordered mesoporous silica materials as potential antioxidant enzyme nanocarriers. The present study compared the loading, activity and retention activity of an anti-oxidant enzyme, catalase, on four engineered mesoporous silica types: non-porous silica particles, spherical silica particles with radially oriented pores and hollow spherical silica particles with pores oriented either parallel to the hollow core or expanded, interconnected bimodal pores. All these silica types, except non-porous silica, displayed potential for effective catalase loading and protection against the proteolytic enzyme, pronase. Hollow particles with interconnected pores exhibit protein loading of up to 50 wt.% carrier mass, while still maintaining significant protection against proteolysis.
Collapse
Affiliation(s)
- J Ambati
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | |
Collapse
|
437
|
Hohlweg-Majert B, Ristow O, Gust K, Kehl V, Wolff KD, Pigorsch S. Impact of radiotherapy on microsurgical reconstruction of the head and neck. J Cancer Res Clin Oncol 2012; 138:1799-811. [PMID: 22714589 DOI: 10.1007/s00432-012-1263-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/04/2012] [Indexed: 12/18/2022]
Abstract
PURPOSE To examine tissue oxygenation and perfusion of free microvascular grafts after primary reconstruction, regarding outcome for patients received adjuvant radiotherapy and different types of grafts. PATIENTS AND METHODS Free microvascular grafts (n = 48) after primary reconstruction of the head and neck were examined for tissue oxygenation and perfusion over a period of 6 months. 28 patients received adjuvant radiotherapy. Using a laser doppler flowmetry combined with tissue spectroscopy of the Oxygen-to-see(®)--equipment (LEA Medizintechnik, Giessen), we were able to determine oxygen saturation, hemoglobin concentration, blood flow and blood flow velocity in the graft in each of two tissue depths (2, 8 mm). Different types of graft were compared. RESULT Comparison of irradiated and non-irradiated grafts showed significant differences in tissue perfusion and oxygenation. Results for all radiated radial and fibula flaps showed no significant (p > 0.05) differences for all reviewed parameters. However, it showed no dose-volume effect with impaired functionality was found for irradiated grafts. CONCLUSION Mircovascular free tissue grafts show an increased perfusion and oxygenation after radiation compared to non-irradiated grafts.
Collapse
Affiliation(s)
- Bettina Hohlweg-Majert
- Clinic for Oral, Maxillofacial and Plastical Surgery, Medicine & Aesthetics, Lenbachplatz 2a, 80333 Munich, Germany
| | | | | | | | | | | |
Collapse
|
438
|
Zhou GZ, Wu QQ. Role of preoperative chemoradiotherapy in the comprehensive treatment of esophageal cancer. Shijie Huaren Xiaohua Zazhi 2012; 20:1526-1530. [DOI: 10.11569/wcjd.v20.i17.1526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preoperative chemoradiotherapy plays an important role in the comprehensive treatment of patients with esophageal cancer. Concurrent administration of radiation and chemotherapy can produce additive or even synergistic effects, improve local control rate, help kill tumor cells in metastatic lesions located outside the target area, raise resection rate, reduce recurrence, and improve prognosis. However, preoperative chemoradiotherapy is also associated with many side effects, such as hematologic toxicity, cardiac toxicity, and radioactive lung damage, and often causes surgical difficulties, such as difficulty in intraoperative tumor manipulation and increased risk of complications. This paper focuses on the theoretical basis and possible mechanisms of preoperative chemoradiotherapy and discusses its role in reducing esophageal cancer stage and improving resection rate, pathologic response rate, and survival rate. We also briefly discuss the pathogenesis and prevention of adverse reactions associated with preoperative chemoradiotherapy.
Collapse
|
439
|
Bourgier C, Levy A, Vozenin MC, Deutsch E. Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metastasis Rev 2012; 31:699-712. [DOI: 10.1007/s10555-012-9381-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
440
|
Artlett CM. The Role of the NLRP3 Inflammasome in Fibrosis. Open Rheumatol J 2012; 6:80-6. [PMID: 22802905 PMCID: PMC3395884 DOI: 10.2174/1874312901206010080] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 12/24/2022] Open
Abstract
Fibrosis leads to the deposition of collagens in organs and tissues. The resulting pathology induces a loss of function in the organ it is manifested in and this loss of function modulates the morbidity and mortality in that individual. Indeed, approximately 45% of all deaths in the Western world can be attributed to fibrosis and there are no FDA approved drugs for the treatment of fibrosis. The recent discovery of the inflammasome has led to a plethora of studies investigating this inflammatory signaling pathway in a wide variety of pathogen associated diseases. Many studies have focused on the NLRP3 inflammasome and this inflammasome is activated by a wide variety of cellular alarm signals. Once activated, caspase-1 is cleaved, inducing the secretion of IL-1β and IL-18 that signal to aid in the clearance of invading organisms. However, as the knowledge of the inflammasome has expanded, it was found that it can directly control collagen synthesis, leading to the increased deposition of collagens in the tissues such as the lung, liver, heart, and skin. Mice lacking the inflammasome adaptor protein, ASC, failed to become fibrotic when exposed to bleomycin. Inhibition of caspase-1 activity in fibroblasts from patients with the fibrotic disease systemic sclerosis, decreased collagen synthesis and reduced α-smooth muscle actin expression in myofibroblasts. Taken together, these observations suggest that the inflammasome can drive the fibrotic response and paves the way for novel therapeutics to be identified.
Collapse
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia PA 19129, USA
| |
Collapse
|
441
|
Wang W, Lang J. Strategies to optimize radiotherapy based on biological responses of tumor and normal tissue. Exp Ther Med 2012; 4:175-180. [PMID: 22970024 DOI: 10.3892/etm.2012.593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/02/2012] [Indexed: 01/23/2023] Open
Abstract
Rapid developments in radiation oncology are currently taking place. Radiation-induced responses are being increasingly used for radiotherapy modification based on advancements in radiobiology. In the process of radiation treatment, radiobiological responses of tumor and normal tissue in patients are monitored non-invasively by a variety of techniques including imaging, biological methods and biochemical assays. Information collected using these methods and data on responses are further incorporated into radiotherapy optimization approaches, which not only include the optimization of radiation treatment planning, such as dose distributions in targets and treatment delivery, but also include radiation sensitivity modification and gene radiotherapy of the tumor and normal tissue. Hence, the highest tumor control rate is obtained with the utmost protection being afforded to normal tissue under this treatment modality.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, P.R. China
| | | |
Collapse
|
442
|
Niemantsverdriet M, van Goethem MJ, Bron R, Hogewerf W, Brandenburg S, Langendijk JA, van Luijk P, Coppes RP. High and low LET radiation differentially induce normal tissue damage signals. Int J Radiat Oncol Biol Phys 2012; 83:1291-7. [PMID: 22245200 DOI: 10.1016/j.ijrobp.2011.09.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/13/2011] [Accepted: 09/29/2011] [Indexed: 02/05/2023]
Abstract
PURPOSE Radiotherapy using high linear energy transfer (LET) radiation is aimed at efficiently killing tumor cells while minimizing dose (biological effective) to normal tissues to prevent toxicity. It is well established that high LET radiation results in lower cell survival per absorbed dose than low LET radiation. However, whether various mechanisms involved in the development of normal tissue damage may be regulated differentially is not known. Therefore the aim of this study was to investigate whether two actions related to normal tissue toxicity, p53-induced apoptosis and expression of the profibrotic gene PAI-1 (plasminogen activator inhibitor 1), are differentially induced by high and low LET radiation. METHODS AND MATERIALS Cells were irradiated with high LET carbon ions or low LET photons. Cell survival assays were performed, profibrotic PAI-1 expression was monitored by quantitative polymerase chain reaction, and apoptosis was assayed by annexin V staining. Activation of p53 by phosphorylation at serine 315 and serine 37 was monitored by Western blotting. Transfections of plasmids expressing p53 mutated at serines 315 and 37 were used to test the requirement of these residues for apoptosis and expression of PAI-1. RESULTS As expected, cell survival was lower and induction of apoptosis was higher in high -LET irradiated cells. Interestingly, induction of the profibrotic PAI-1 gene was similar with high and low LET radiation. In agreement with this finding, phosphorylation of p53 at serine 315 involved in PAI-1 expression was similar with high and low LET radiation, whereas phosphorylation of p53 at serine 37, involved in apoptosis induction, was much higher after high LET irradiation. CONCLUSIONS Our results indicate that diverse mechanisms involved in the development of normal tissue damage may be differentially affected by high and low LET radiation. This may have consequences for the development and manifestation of normal tissue damage.
Collapse
Affiliation(s)
- Maarten Niemantsverdriet
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
443
|
Adesse D, Goldenberg RC, Fortes FS, Jasmin, Iacobas DA, Iacobas S, Campos de Carvalho AC, de Narareth Meirelles M, Huang H, Soares MB, Tanowitz HB, Garzoni LR, Spray DC. Gap junctions and chagas disease. ADVANCES IN PARASITOLOGY 2011; 76:63-81. [PMID: 21884887 DOI: 10.1016/b978-0-12-385895-5.00003-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gap junction channels provide intercellular communication between cells. In the heart, these channels coordinate impulse propagation along the conduction system and through the contractile musculature, thereby providing synchronous and optimal cardiac output. As in other arrhythmogenic cardiac diseases, chagasic cardiomyopathy is associated with decreased expression of the gap junction protein connexin43 (Cx43) and its gene. Our studies of cardiac myocytes infected with Trypanosoma cruzi have revealed that synchronous contraction is greatly impaired and gap junction immunoreactivity is lost in infected cells. Such changes are not seen for molecules forming tight junctions, another component of the intercalated disc in cardiac myocytes. Transcriptomic studies of hearts from mouse models of Chagas disease and from acutely infected cardiac myocytes in vitro indicate profound remodelling of gene expression patterns involving heart rhythm determinant genes, suggesting underlying mechanisms of the functional pathology. One curious feature of the altered expression of Cx43 and its gene expression is that it is limited in both extent and location, suggesting that the more global deterioration in cardiac function may result in part from spread of damage signals from more seriously compromised cells to healthier ones.
Collapse
Affiliation(s)
- Daniel Adesse
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Levy A, Chargari C. Pentoxifylline to avoid radiation-induced cardiotoxicity: from NF-κB to beyond--a reply to M. Halle and P. Hall and P. Tornvall. J Intern Med 2011; 270:487-8. [PMID: 21848916 DOI: 10.1111/j.1365-2796.2011.02440.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
445
|
Rodemann HP, Wouters BG. Frontiers in molecular radiation biology/oncology. Radiother Oncol 2011; 101:1-6. [DOI: 10.1016/j.radonc.2011.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 12/15/2022]
|
446
|
Hakim SG, Ribbat J, Berndt A, Richter P, Kosmehl H, Benedek GA, Jacobsen HC, Trenkle T, Sieg P, Rades D. Expression of Wnt-1, TGF-β and related cell-cell adhesion components following radiotherapy in salivary glands of patients with manifested radiogenic xerostomia. Radiother Oncol 2011; 101:93-9. [PMID: 21885141 DOI: 10.1016/j.radonc.2011.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND Radiation-induced xerostomia still represents a common symptom following radiotherapy of head and neck malignancies, which significantly impairs the patient's quality of life. In this cross-sectional study, human salivary glands were investigated to assess the role of Wnt/β-catenin and TGF-β pathways in the pathogenic process of radiogenic impairment of salivary function. METHODS Irradiated human salivary glands were investigated in patients with manifested xerostomia. Alteration of Wnt-1 and cell-cell adhesion was evaluated immunohistologically as well as changes in the expression of TGF-β were assessed in salivary gland tissue. RESULTS We assessed two alteration patterns in which Wnt-1 expression represents one change along with up-regulation of β-catenin and E-cadherin in irradiated but viable acinar cells. Increased expression of tenascin-C was observed in sites of epithelial-mesenchymal interaction and loss of cell-cell adhesion was assessed in translocated epithelial cells in the stroma. CONCLUSION Increased transdifferentiation and remodeling of acinar structures was associated with decrease of viable acinar structures. The role of Wnt and TGF signaling may provide a potential therapeutic approach to prevent radiation-induced damage to salivary glands during radiotherapy for head and neck cancer.
Collapse
Affiliation(s)
- Samer George Hakim
- Department of Oral and Cranio-Maxillofacial Surgery, University of Luebeck, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
447
|
Hill RP, Zaidi A, Mahmood J, Jelveh S. Investigations into the role of inflammation in normal tissue response to irradiation. Radiother Oncol 2011; 101:73-9. [PMID: 21726914 DOI: 10.1016/j.radonc.2011.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE Radiation-induced inflammation and production of reactive oxygen species (ROS) play a critical role in normal tissue response. In this study we have examined some aspects of these effects in lung and skin. METHODS The superoxide dismutase (SOD) catalase mimetic, EUK-207, and genistein, an isoflavone with anti-inflammatory properties, were given post-irradiation and micronuclei (MN) formation was determined in cells derived from irradiated lung and skin. Changes in breathing rate were measured using a plethysmograph following irradiation of C57Bl6 mice knocked out for tumor necrosis factor (TNF)-alpha or its receptors, TNFR1/2, or treated with endotoxin (lipopolysaccharide - LPS). RESULTS Both EUK-207 and genistein given after irradiation caused a large reduction in MN levels observed in lung cells during 14 weeks post-irradiation but ceasing treatment resulted in a rebound in MN levels at 28 weeks post-irradiation. In contrast, treatment with EUK-207 was largely ineffective in reducing MN observed in skin cells post-irradiation. Knock-out of TNF-alpha resulted in a reduced increase in breathing rate (peak at 12 weeks post-irradiation) relative to wild-type and TNFR1/2 knock-out. Treatment with LPS 1 h post-irradiation also reduced the increase in breathing rate. CONCLUSIONS The increase in MN in lung cells after treatment with EUK-207 or genistein was stopped suggests that continuing ROS production contributes to DNA damage in lung cells over prolonged periods. That this effect was not seen in skin suggests this mechanism is less prominent in this tissue. The reduced level of radiation pneumonitis (as monitored by breathing rate changes) in animals knocked out for TNF-alpha suggests that this cytokine plays a significant role in inducing inflammation in lung following irradiation. The similar effect observed following LPS given post-irradiation suggests the possibility that such treatment modifies the long-term cyclic inflammatory response following irradiation in lungs.
Collapse
|
448
|
Overgaard J. Advancing radiation oncology through scientific publication – 100 volumes of Radiotherapy and Oncology. Radiother Oncol 2011; 100:1-6. [DOI: 10.1016/j.radonc.2011.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
449
|
Chua MLK, Somaiah N, A'Hern R, Davies S, Gothard L, Yarnold J, Rothkamm K. Residual DNA and chromosomal damage in ex vivo irradiated blood lymphocytes correlated with late normal tissue response to breast radiotherapy. Radiother Oncol 2011; 99:362-6. [PMID: 21704405 DOI: 10.1016/j.radonc.2011.05.071] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 12/24/2022]
Abstract
PURPOSE To test the association of DNA double-strand break (DSB) repair and chromosomal radiosensitivity in ex vivo irradiated blood lymphocytes with late-onset normal tissue responses following breast radiotherapy. METHODS Breast cancer patients with minimal (controls) or marked late radiotherapy changes (cases) were retrospectively selected. DSB were quantified by γH2AX/53BP1 immunofluorescence microscopy 0.5 and 24 h after exposure of unstimulated blood lymphocytes to 0.5 and 4 Gy X-rays, respectively. Chromosomal aberrations were scored in blood lymphocyte metaphases after 6 Gy X-rays. RESULTS Despite similar foci levels at 0.5 h in cases (n=7) and controls (n=7), foci levels 24 h after 4 Gy irradiation differed significantly between them (foci per cell were 12.8 in cases versus 10.2 in controls, p=0.004). Increased chromosomal radiosensitivity was also observed in cases (aberrations per cell were 5.84 in cases versus 3.79 in controls, p=0.001) with exchange and deletion type aberrations contributing equally to the difference between cases and controls. Residual foci correlated with formation of deletions (Spearman's R=0.589, p=0.027) but not exchanges (R=0.367, p=0.197) in blood lymphocytes from the same patients. CONCLUSIONS Higher levels of exchange type aberrations observed among radiosensitive breast cancer patients suggest a role for DSB misrepair, in addition to residual damage, as determinants of late normal tissue damage. Correlation of residual foci levels with deletion type aberration yields in the same cohort confirms their mechanistic linkage.
Collapse
|
450
|
E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol 2011; 99:392-397. [PMID: 21680037 DOI: 10.1016/j.radonc.2011.05.044] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Hypoxia is a hallmark of solid cancers and associated with metastases and treatment failure. During tumor progression epithelial cells often acquire mesenchymal features, a phenomenon known as epithelial-to-mesenchymal transition (EMT). Intratumoral hypoxia has been linked to EMT induction. We hypothesized that signals from the tumor microenvironment such as growth factors and tumor oxygenation collaborate to promote EMT and thereby contribute to radioresistance. MATERIALS AND METHODS Gene expression changes under hypoxia were analyzed using microarray and validated by qRT-PCR. Conversion of epithelial phenotype upon hypoxic exposure, TGFβ addition or oncogene activation was investigated by Western blot and immunofluorescence. Cell survival following ionizing radiation was assayed using clonogenic survival. RESULTS Upon hypoxia, TGFβ addition or EGFRvIII expression, MCF7, A549 and NMuMG epithelial cells acquired a spindle shape and lost cell-cell contacts. Expression of epithelial markers such as E-cadherin decreased, whereas mesenchymal markers such as vimentin and N-cadherin increased. Combining hypoxia with TGFβ or EGFRvIII expression, lead to more rapid and pronounced EMT-like phenotype. Interestingly, E-cadherin expression and the mesenchymal appearance were reversible upon reoxygenation. Mesenchymal conversion and E-cadherin loss were associated with radioresistance. CONCLUSIONS Our findings describe a mechanism by which the tumor microenvironment may contribute to tumor radioresistance via E-cadherin loss and EMT.
Collapse
|