401
|
Marzi A, Möller P, Hanna SL, Harrer T, Eisemann J, Steinkasserer A, Becker S, Baribaud F, Pöhlmann S. Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR. J Infect Dis 2008; 196 Suppl 2:S237-46. [PMID: 17940955 PMCID: PMC7110133 DOI: 10.1086/520607] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) augments Ebola virus (EBOV) infection. However, it its unclear whether DC-SIGN promotes only EBOV attachment (attachment factor function, nonessential) or actively facilitates EBOV entry (receptor function, essential). METHODS We investigated whether DC-SIGN on B cell lines and dendritic cells acts as an EBOV attachment factor or receptor. RESULTS Engineered DC-SIGN expression rendered some B cell lines susceptible to EBOV glycoprotein (EBOV GP)-driven infection, whereas others remained refractory, suggesting that cellular factors other than DC-SIGN are also required for susceptibility to EBOV infection. Augmentation of entry was independent of efficient DC-SIGN internalization and might not involve lectin-mediated endocytic uptake of virions. Therefore, DC-SIGN is unlikely to function as an EBOV receptor on B cell lines; instead, it might concentrate virions onto cells, thereby allowing entry into cell lines expressing low levels of endogenous receptor(s). Indeed, artificial concentration of virions onto cells mirrored DC-SIGN expression, confirming that optimization of viral attachment is sufficient for EBOV GP-driven entry into some B cell lines. Finally, EBOV infection of dendritic cells was only partially dependent on mannose-specific lectins, such as DC-SIGN, suggesting an important contribution of other factors. CONCLUSIONS Our results indicate that DC-SIGN is not an EBOV receptor but, rather, is an attachment-promoting factor that boosts entry into B cell lines susceptible to low levels of EBOV GP-mediated infection.
Collapse
Affiliation(s)
- Andrea Marzi
- Institute of Virology, Nikolaus-Fiebiger-Center for Molecular Medicine, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Sanchez A. Analysis of filovirus entry into vero e6 cells, using inhibitors of endocytosis, endosomal acidification, structural integrity, and cathepsin (B and L) activity. J Infect Dis 2008; 196 Suppl 2:S251-8. [PMID: 17940957 DOI: 10.1086/520597] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ebola and Marburg viruses are believed to enter host cells by receptor-mediated endocytosis. The process has been studied through the use of inhibitors that affect host cell properties and recombinant pseudotyping systems in which filovirus structural glycoproteins mediate entry of foreign virus particles. The aim of the present study was to determine the effects of such treatments on the entry of wild-type filoviruses. Vero E6 cells were exposed to various inhibitors before, during, and after infection with filoviruses. Infected cultures were harvested early (18-24 h) and late (72 h) after infection, and effects of treatment on entry were measured by fluorescent antibody staining of cells or by antigen capture immunoassays, respectively. These prelimary results suggest that filoviruses enter host cells through receptor-mediated endocytosis via clathrin-coated pits and caveolae, that actin filaments and microtubules are important in the entry process, and that proteolytic digestion of glycoprotein 1 by endosomal proteases facilitates entry. These observations obtained using wild-type viruses confirm the results of studies utilizing recombinant systems and offer additional insights into filovirus entry.
Collapse
Affiliation(s)
- Anthony Sanchez
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
403
|
Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:460-7. [PMID: 18216185 DOI: 10.1128/cvi.00431-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Filoviruses (Ebola and Marburg viruses) are among the deadliest viruses known to mankind, with mortality rates nearing 90%. These pathogens are highly infectious through contact with infected body fluids and can be easily aerosolized. Additionally, there are currently no licensed vaccines available to prevent filovirus outbreaks. Their high mortality rates and infectious capabilities when aerosolized and the lack of licensed vaccines available to prevent such infectious make Ebola and Marburg viruses serious bioterrorism threats, placing them both on the category A list of bioterrorism agents. Here we describe a panfilovirus vaccine based on a complex adenovirus (CAdVax) technology that expresses multiple antigens from five different filoviruses de novo. Vaccination of nonhuman primates demonstrated 100% protection against infection by two species of Ebola virus and three Marburg virus subtypes, each administered at 1,000 times the lethal dose. This study indicates the feasibility of vaccination against all current filovirus threats in the event of natural hemorrhagic fever outbreak or biological attack.
Collapse
|
404
|
Abstract
Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus–infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.
Collapse
|
405
|
Ebola vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
406
|
Hutchinson K, Rollin P. Cytokine and Chemokine Expression in Humans Infected with Sudan Ebola Virus. J Infect Dis 2007; 196 Suppl 2:S357-63. [DOI: 10.1086/520611] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
407
|
Böckeler M, Ströher U, Seebach J, Afanasieva T, Suttorp N, Feldmann H, Schnittler H. Breakdown of Paraendothelial Barrier Function during Marburg Virus Infection Is Associated with Early Tyrosine Phosphorylation of Platelet Endothelial Cell Adhesion Molecule–1. J Infect Dis 2007; 196 Suppl 2:S337-46. [DOI: 10.1086/520606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
408
|
Larsen T, Stevens E, Davis K, Geisbert J, Daddario‐DiCaprio K, Jahrling P, Hensley L, Geisbert T. Pathologic Findings Associated with Delayed Death in Nonhuman Primates Experimentally Infected with Zaire Ebola Virus. J Infect Dis 2007; 196 Suppl 2:S323-8. [DOI: 10.1086/520589] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
409
|
Rollin P, Bausch D, Sanchez A. Blood Chemistry Measurements andd‐Dimer Levels Associated with Fatal and Nonfatal Outcomes in Humans Infected with Sudan Ebola Virus. J Infect Dis 2007; 196 Suppl 2:S364-71. [DOI: 10.1086/520613] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
410
|
Bradfute S, Braun D, Shamblin J, Geisbert J, Paragas J, Garrison A, Hensley L, Geisbert T. Lymphocyte Death in a Mouse Model of Ebola Virus Infection. J Infect Dis 2007; 196 Suppl 2:S296-304. [DOI: 10.1086/520602] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
411
|
Gowen BB, Holbrook MR. Animal models of highly pathogenic RNA viral infections: hemorrhagic fever viruses. Antiviral Res 2007; 78:79-90. [PMID: 18036672 DOI: 10.1016/j.antiviral.2007.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 02/08/2023]
Abstract
A diverse group of highly pathogenic RNA viruses cause a severe multisystemic illness in humans commonly referred to as viral hemorrhagic fever (VHF). Although they can vary widely in clinical presentation, all VHFs share certain features that include intense fever, malaise, bleeding and shock. Effective antiviral therapies for most of the VHFs are lacking. Complicating development of intervention strategies is the relative infrequency and unpredictability of VHF outbreaks making human clinical trials extremely challenging or unfeasible. Therefore, animal models that can recapitulate human disease are essential to the development of effective antivirals and vaccines. In general, a good animal model of VHF will demonstrate systemic dispersion of the virus through infection of mononuclear phagocytes and dendritic cells, which induces the release of inflammatory mediators that increase vascular permeability and facilitate coagulation. The culmination of this process leads to significant loss of plasma volume and terminal hypovolemic shock. Although it is clear that nonhuman primate models are the most faithful to human disease, the more accessible and less costly rodent models, including those based on infection with related surrogate viruses, can reproduce certain components of VHF and can serve as suitable preclinical models for initial development of effective countermeasures. Such models are sufficient for testing of drugs that directly block viral replication, but may be inadequate for evaluating therapies that depend for their success on the activation or inhibition of host responses.
Collapse
Affiliation(s)
- Brian B Gowen
- Institute for Antiviral Research and Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322-5600, USA.
| | | |
Collapse
|
412
|
Abstract
Ebola virus causes lethal hemorrhagic fever in human and nonhuman primates. Effective prophylaxis and treatment for this disease are not yet available. Antisera and monoclonal antibodies specific to Ebola virus proteins have been tested for passive immunization in experimental animal models and clinical cases, and shown to be effective in mice and guinea pigs, whereas the evidence of protective efficacy in primates, including humans, remains elusive. In this review, we focus on research relevant to prophylaxis and treatment by passive immunization, and discuss the potential use of antibody therapy for Ebola virus infection. Nevertheless, there is no doubt that a comprehensive understanding of Ebola virus pathogenesis will aid in the development of therapeutic strategies against Ebola hemorrhagic fever.
Collapse
Affiliation(s)
- Keita Matsuno
- Hokkaido University Research Center for Zoonosis Control, Department of Global Epidemiology, Sapporo 001-0020, Japan
| | - Ayato Takada
- Hokkaido University Research Center for Zoonosis Control, Department of Global Epidemiology, Sapporo 001-0020, Japan
| |
Collapse
|
413
|
Warfield KL, Alves DA, Bradfute SB, Reed DK, VanTongeren S, Kalina WV, Olinger GG, Bavari S. Development of a model for marburgvirus based on severe-combined immunodeficiency mice. Virol J 2007; 4:108. [PMID: 17961252 PMCID: PMC2164958 DOI: 10.1186/1743-422x-4-108] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/25/2007] [Indexed: 11/10/2022] Open
Abstract
The filoviruses, Ebola (EBOV) and Marburg (MARV), cause a lethal hemorrhagic fever. Human isolates of MARV are not lethal to immmunocompetent adult mice and, to date, there are no reports of a mouse-adapted MARV model. Previously, a uniformly lethal EBOV-Zaire mouse-adapted virus was developed by performing 9 sequential passages in progressively older mice (suckling to adult). Evaluation of this model identified many similarities between infection in mice and nonhuman primates, including viral tropism for antigen-presenting cells, high viral titers in the spleen and liver, and an equivalent mean time to death. Existence of the EBOV mouse model has increased our understanding of host responses to filovirus infections and likely has accelerated the development of countermeasures, as it is one of the only hemorrhagic fever viruses that has multiple candidate vaccines and therapeutics. Here, we demonstrate that serially passaging liver homogenates from MARV-infected severe combined immunodeficient (scid) mice was highly successful in reducing the time to death in scid mice from 50-70 days to 7-10 days after MARV-Ci67, -Musoke, or -Ravn challenge. We performed serial sampling studies to characterize the pathology of these scid mouse-adapted MARV strains. These scid mouse-adapted MARV models appear to have many similar properties as the MARV models previously developed in guinea pigs and nonhuman primates. Also, as shown here, the scid-adapted MARV mouse models can be used to evaluate the efficacy of candidate antiviral therapeutic molecules, such as phosphorodiamidate morpholino oligomers or antibodies.
Collapse
Affiliation(s)
- Kelly L Warfield
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
414
|
Mohamadzadeh M, Chen L, Schmaljohn AL. How Ebola and Marburg viruses battle the immune system. Nat Rev Immunol 2007; 7:556-67. [PMID: 17589545 DOI: 10.1038/nri2098] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The filoviruses Ebola and Marburg have emerged in the past decade from relative obscurity to serve now as archetypes for some of the more intriguing and daunting challenges posed by such agents. Public imagination is captured by deadly outbreaks of these viruses and reinforced by the specter of bioterrorism. As research on these agents has accelerated, it has been found increasingly that filoviruses use a combination of familiar and apparently new ways to baffle and battle the immune system. Filoviruses have provided thereby a new lens through which to examine the immune system itself.
Collapse
Affiliation(s)
- Mansour Mohamadzadeh
- US Army Medical Research Institute for Infectious Diseases, Frederick, Maryland, USA.
| | | | | |
Collapse
|
415
|
Martinez O, Valmas C, Basler CF. Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology 2007; 364:342-54. [PMID: 17434557 PMCID: PMC2034500 DOI: 10.1016/j.virol.2007.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/05/2007] [Accepted: 03/09/2007] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs), important early targets of Ebola virus (EBOV) infection in vivo, are activated by Ebola virus-like particles (VLPs). To better understand this phenomenon, we have systematically assessed the response of DCs to VLPs of different compositions. VLPs containing the viral matrix protein (VP40) and the viral glycoprotein (GP), were found to induce a proinflammatory response highly similar to a prototypical DC activator, LPS. This response included the production of several proinflammatory cytokines, activation of numerous transcription factors including NF-kappaB, the functional importance of which was demonstrated by employing inhibitors of NF-kappaB activation, and activation of ERK1/2 MAP kinase. In contrast, VLPs constituted with a mutant GP lacking the heavily glycosylated mucin domain showed impaired NF-kappaB and Erk activation and induced less DC cytokine production. We conclude that the GP mucin domain is required for VLPs to stimulate human dendritic cells through NF-kappaB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Osvaldo Martinez
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
416
|
Fuller CL, Ruthel G, Warfield KL, Swenson DL, Bosio CM, Aman MJ, Bavari S. NKp30-dependent cytolysis of filovirus-infected human dendritic cells. Cell Microbiol 2007; 9:962-76. [PMID: 17381429 DOI: 10.1111/j.1462-5822.2006.00844.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how protective innate immune responses are generated is crucial to defeating highly lethal emerging pathogens. Accumulating evidence suggests that potent innate immune responses are tightly linked to control of Ebola and Marburg filoviral infections. Here, we report that unlike authentic or inactivated Ebola and Marburg, filovirus-derived virus-like particles directly activated human natural killer (NK) cells in vitro, evidenced by pro-inflammatory cytokine production and enhanced cytolysis of permissive target cells. Further, we observed perforin- and CD95L-mediated cytolysis of filovirus-infected human dendritic cells (DCs), primary targets of filovirus infection, by autologous NK cells. Gene expression knock-down studies directly linked NK cell lysis of infected DCs to upregulation of the natural cytotoxicity receptor, NKp30. These results are the first to propose a role for NK cells in the clearance of infected DCs and the potential involvement of NKp30-mediated cytolysis in control of viral infection in vivo. Further elucidation of the biology of NK cell activation, specifically natural cytotoxicity receptors like NKp30 and NKp46, promises to aid our understanding of microbial pathology.
Collapse
Affiliation(s)
- Claudette L Fuller
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
417
|
Reid SP, Leung LW, Hartman AL, Martinez O, Shaw ML, Carbonnelle C, Volchkov VE, Nichol ST, Basler CF. Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 2007; 80:5156-67. [PMID: 16698996 PMCID: PMC1472181 DOI: 10.1128/jvi.02349-05] [Citation(s) in RCA: 368] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) infection blocks cellular production of alpha/beta interferon (IFN-alpha/beta) and the ability of cells to respond to IFN-alpha/beta or IFN-gamma. The EBOV VP35 protein has previously been identified as an EBOV-encoded inhibitor of IFN-alpha/beta production. However, the mechanism by which EBOV infection inhibits responses to IFNs has not previously been defined. Here we demonstrate that the EBOV VP24 protein functions as an inhibitor of IFN-alpha/beta and IFN-gamma signaling. Expression of VP24 results in an inhibition of IFN-induced gene expression and an inability of IFNs to induce an antiviral state. The VP24-mediated inhibition of cellular responses to IFNs correlates with the impaired nuclear accumulation of tyrosine-phosphorylated STAT1 (PY-STAT1), a key step in both IFN-alpha/beta and IFN-gamma signaling. Consistent with this proposed function for VP24, infection of cells with EBOV also confers a block to the IFN-induced nuclear accumulation of PY-STAT1. Further, VP24 is found to specifically interact with karyopherin alpha1, the nuclear localization signal receptor for PY-STAT1, but not with karyopherin alpha2, alpha3, or alpha4. Overexpression of VP24 results in a loss of karyopherin alpha1-PY-STAT1 interaction, indicating that the VP24-karyopherin alpha1 interaction contributes to the block to IFN signaling. These data suggest that VP24 is likely to be an important virulence determinant that allows EBOV to evade the antiviral effects of IFNs.
Collapse
Affiliation(s)
- St Patrick Reid
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Bosio CM, Bielefeldt-Ohmann H, Belisle JT. Active suppression of the pulmonary immune response by Francisella tularensis Schu4. THE JOURNAL OF IMMUNOLOGY 2007; 178:4538-47. [PMID: 17372012 DOI: 10.4049/jimmunol.178.7.4538] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Francisella tularensis is an obligate, intracellular bacterium that causes acute, lethal disease following inhalation. As an intracellular pathogen F. tularensis must invade cells, replicate, and disseminate while evading host immune responses. The mechanisms by which virulent type A strains of Francisella tularensis accomplish this evasion are not understood. Francisella tularensis has been shown to target multiple cell types in the lung following aerosol infection, including dendritic cells (DC) and macrophages. We demonstrate here that one mechanism used by a virulent type A strain of F. tularensis (Schu4) to evade early detection is by the induction of overwhelming immunosuppression at the site of infection, the lung. Following infection and replication in multiple pulmonary cell types, Schu4 failed to induce the production of proinflammatory cytokines or increase the expression of MHCII or CD86 on the surface of resident DC within the first few days of disease. However, Schu4 did induce early and transient production of TGF-beta, a potent immunosuppressive cytokine. The absence of DC activation following infection could not be attributed to the apoptosis of pulmonary cells, because there were minimal differences in either annexin or cleaved caspase-3 staining in infected mice compared with that in uninfected controls. Rather, we demonstrate that Schu4 actively suppressed in vivo responses to secondary stimuli (LPS), e.g., failure to recruit granulocytes/monocytes and stimulate resident DC. Thus, unlike attenuated strains of F. tularensis, Schu4 induced broad immunosuppression within the first few days after aerosol infection. This difference may explain the increased virulence of type A strains compared with their more attenuated counterparts.
Collapse
Affiliation(s)
- Catharine M Bosio
- Department of Microbiology, Immunology and Pathology, Colorado State University, Ft. Collins, CO 80523, USA.
| | | | | |
Collapse
|
419
|
Feldmann H, Jones SM, Daddario-DiCaprio KM, Geisbert JB, Ströher U, Grolla A, Bray M, Fritz EA, Fernando L, Feldmann F, Hensley LE, Geisbert TW. Effective post-exposure treatment of Ebola infection. PLoS Pathog 2007; 3:e2. [PMID: 17238284 PMCID: PMC1779298 DOI: 10.1371/journal.ppat.0030002] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 11/13/2006] [Indexed: 11/19/2022] Open
Abstract
Ebola viruses are highly lethal human pathogens that have received considerable attention in recent years due to an increasing re-emergence in Central Africa and a potential for use as a biological weapon. There is no vaccine or treatment licensed for human use. In the past, however, important advances have been made in developing preventive vaccines that are protective in animal models. In this regard, we showed that a single injection of a live-attenuated recombinant vesicular stomatitis virus vector expressing the Ebola virus glycoprotein completely protected rodents and nonhuman primates from lethal Ebola challenge. In contrast, progress in developing therapeutic interventions against Ebola virus infections has been much slower and there is clearly an urgent need to develop effective post-exposure strategies to respond to future outbreaks and acts of bioterrorism, as well as to treat laboratory exposures. Here we tested the efficacy of the vesicular stomatitis virus-based Ebola vaccine vector in post-exposure treatment in three relevant animal models. In the guinea pig and mouse models it was possible to protect 50% and 100% of the animals, respectively, following treatment as late as 24 h after lethal challenge. More important, four out of eight rhesus macaques were protected if treated 20 to 30 min following an otherwise uniformly lethal infection. Currently, this approach provides the most effective post-exposure treatment strategy for Ebola infections and is particularly suited for use in accidentally exposed individuals and in the control of secondary transmission during naturally occurring outbreaks or deliberate release. Being highly pathogenic for humans and monkeys and the subject of former weapons programs makes Ebola virus one of the most feared pathogens worldwide today. Due to a lack of licensed pre- and post-exposure intervention, our current response depends on rapid diagnostics, proper isolation procedures, and supportive care of case patients. Consequently, the development of more specific countermeasures is of high priority for the preparedness of many nations. In this study, we investigated an attenuated vesicular stomatitis virus expressing the Ebola virus surface glycoprotein, which had previously demonstrated convincing efficacy as a vaccine against Ebola infections in rodents and monkeys, for its potential use in the treatment of an Ebola virus infection. Surprisingly, treatment of guinea pigs and mice as late as 24 h after lethal Ebola virus infection resulted in 50% and 100% survival, respectively. More important, 50% of rhesus macaques (4/8) were protected if treated 20 to 30 min after Ebola virus infection. Currently, this approach provides the most effective treatment strategy for Ebola infections and seems particularly suited for the use in accidental exposures and the control of human-to-human transmission during outbreaks.
Collapse
Affiliation(s)
- Heinz Feldmann
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * To whom correspondence should be addressed. E-mail: (HF); (SMJ)
| | - Steven M Jones
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- * To whom correspondence should be addressed. E-mail: (HF); (SMJ)
| | - Kathleen M Daddario-DiCaprio
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Joan B Geisbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Ute Ströher
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Allen Grolla
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Mike Bray
- Biodefense Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth A Fritz
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Lisa Fernando
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Friederike Feldmann
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lisa E Hensley
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Thomas W Geisbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
420
|
Falzarano D, Krokhin O, Wahl-Jensen V, Seebach J, Wolf K, Schnittler HJ, Feldmann H. Structure-function analysis of the soluble glycoprotein, sGP, of Ebola virus. Chembiochem 2007; 7:1605-11. [PMID: 16977667 DOI: 10.1002/cbic.200600223] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In addition to the transmembrane protein, GP(1,2), the Ebola virus glycoprotein gene encodes the soluble glycoproteins sGP and Delta-peptide. Two more soluble proteins, GP(1) and GP(1,2DeltaTM), are generated from GP(1,2) as a result of disulfide-bond instability and proteolytic cleavage, respectively, and are shed from the surface of infected cells. The sGP glycoprotein is secreted as a disulfide-linked homodimer, but there have been conflicting reports on whether it is arranged in a parallel or antiparallel orientation. Off-line HPLC-MALDI-TOF MS (MS/MS) was used to identify the arrangement of all disulfide bonds and simultaneously determine site-specific information regarding N-glycosylation. Our data prove that sGP is a parallel homodimer that contains C53-C53' and C306-C306' disulfide bonds, and although there are six predicted N-linked carbohydrate sites, only five are consistently glycosylated. The disulfide bond arrangement was confirmed by using cysteine to glycine mutations at amino acid positions 53 and 306. The mutants had a reduced ability to rescue the barrier function of TNF-alpha-treated endothelial cells--a function previously reported for sGP. This indicates that these disulfide bonds are critical for the proposed anti-inflammatory function of sGP.
Collapse
Affiliation(s)
- Darryl Falzarano
- Department of Medical Microbiology, University of Manitoba Winnipeg, Manitoba R3E 0W3, Canada
| | | | | | | | | | | | | |
Collapse
|
421
|
Walsh PD, Breuer T, Sanz C, Morgan D, Doran-Sheehy D. Potential for Ebola transmission between gorilla and chimpanzee social groups. Am Nat 2007; 169:684-9. [PMID: 17427138 DOI: 10.1086/513494] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Accepted: 10/17/2006] [Indexed: 11/03/2022]
Abstract
Over the past decade Ebola hemorrhagic fever has emerged repeatedly in Gabon and Congo, causing numerous human outbreaks and massive die-offs of gorillas and chimpanzees. Why Ebola has emerged so explosively remains poorly understood. Previous studies have tended to focus on exogenous factors such as habitat disturbance and climate change as drivers of Ebola emergence while downplaying the contribution of transmission between gorilla or chimpanzee social groups. Here we report recent observations on behaviors that pose a risk of transmission among gorilla groups and between gorillas and chimpanzees. These observations support a reassessment of ape-to-ape transmission as an amplifier of Ebola outbreaks.
Collapse
Affiliation(s)
- Peter D Walsh
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
422
|
Neumann G, Geisbert TW, Ebihara H, Geisbert JB, Daddario-DiCaprio KM, Feldmann H, Kawaoka Y. Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates. J Virol 2007; 81:2995-8. [PMID: 17229700 PMCID: PMC1866002 DOI: 10.1128/jvi.02486-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enveloped viruses often require cleavage of a surface glycoprotein by a cellular endoprotease such as furin for infectivity and virulence. Previously, we showed that Ebola virus glycoprotein does not require the furin cleavage motif for virus replication in cell culture. Here, we show that there are no appreciable differences in disease progression, hematology, serum biochemistry, virus titers, or lethality in nonhuman primates infected with an Ebola virus lacking the furin recognition sequence compared to those infected with wild-type virus. We conclude that glycoprotein cleavage by subtilisin-like endoproteases is not critical for Ebola virus infectivity and virulence in nonhuman primates.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
423
|
Connolly-Andersen AM, Magnusson KE, Mirazimi A. Basolateral entry and release of Crimean-Congo hemorrhagic fever virus in polarized MDCK-1 cells. J Virol 2006; 81:2158-64. [PMID: 17166898 PMCID: PMC1865934 DOI: 10.1128/jvi.02070-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is an etiological agent of a disease with mortality rates in patients averaging 30%. The disease is characterized by fever, myalgia, and hemorrhage. Mechanisms underlying the hemorrhage have to our knowledge not been elucidated for CCHFV. Possibly, a direct or indirect viral effect on tight junctions (TJ) could cause the hemorrhage observed in patients, as TJ play a crucial role in vascular homeostasis and can cause leakage upon deregulation. Moreover, there is no knowledge regarding the site of entry and release of CCHFV in polarized epithelial cells. Such cells represent a barrier to virus dissemination within the host, and as a site of viral entry and release, they could play a key role in further spread. For the first time, we have shown preferential basolateral entry of CCHFV in Madin-Darby canine kidney 1 (MDCK-1) epithelial cells. Furthermore, we demonstrated basolateral release of CCHFV in polarized epithelial cells. Interestingly, by measuring transepithelial electrical resistance, we found no effect of CCHFV replication on the function of TJ in this study. Neither did we observe any difference in the localization of the TJ proteins ZO-1 and occludin in CCHFV-infected cells compared to mock-infected cells.
Collapse
Affiliation(s)
- Anne-Marie Connolly-Andersen
- Swedish Institute for Infectious Disease Control, Centre for Microbiological Preparedness, SE-171 82 Solna, Sweden
| | | | | |
Collapse
|
424
|
Mohamadzadeh M, Chen L, Olinger GG, Pratt WD, Schmaljohn AL. Filoviruses and the Balance of Innate, Adaptive, and Inflammatory Responses. Viral Immunol 2006; 19:602-12. [PMID: 17201655 DOI: 10.1089/vim.2006.19.602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Filoviruses Marburg virus and Ebola virus are among the deadliest of human pathogens, causing fulminant hemorrhagic fevers typified by overmatched specific immune responses and profuse inflammatory responses. Keys to both vaccination and treatment may reside, first, in the understanding of immune dysfunctions that parallel Filoviral disease and, second, in devising ways to redirect and restore normal immune function as well as to mitigate inflammation. Here, we describe how Filoviral infections may subvert innate immune responses through perturbances of dendritic cells and neutrophils, with particular emphasis on the downstream effects on adaptive immunity and inflammation. We suggest that pivotal events may be subject to therapeutic intervention as Filoviruses encounter immune processes.
Collapse
Affiliation(s)
- Mansour Mohamadzadeh
- US Army Medical Research Institute for Infectious Diseases, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
425
|
Abstract
A taxonomically diverse set of single-stranded ribonucleic acid(ssRNA) viruses from four diverse viral families Arenaviridae,Bunyaviridae, Filoviridae, and Flaviviridae cause an acute systemic febrile syndrome called viral hemorrhagic fever (VHF). The syndrome produces combinations of prostration, malaise, increased vascular permeability, and coagulation maladies. In severe illness,VHF may include generalized bleeding but the bleeding does not typically constitute a life-threatening loss of blood volume. To a certain extent, it is a sign of damage to the vascular endothelium and is an indicator of disease severity in specific target organs. Although the viruses that cause hemorrhagic fever (HF) can productively replicate in endothelial cells, much of the disease pathology including impairment to the vascular system is thought to result primarily from the release of a variety of mediators from virus-infected cells, such as monocytes and macrophages that subsequently alter vascular function and trigger the coagulation disorders that epitomize these infections. While significant progress has been made over the last several years in dissecting out the molecular biology and pathogenesis of the HF viruses, there are currently no vaccines or drugs licensed available for most of the VHFs.
Collapse
Affiliation(s)
- Aileen M Marty
- Battelle Memorial Institute, Suite 601, 1550 Crystal Drive, Arlington, VA 22202-4172, USA.
| | | | | |
Collapse
|
426
|
Yaddanapudi K, Palacios G, Towner JS, Chen I, Sariol CA, Nichol ST, Lipkin WI. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J 2006; 20:2519-30. [PMID: 17023517 DOI: 10.1096/fj.06-6151com] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ebola and Marburg viruses can cause hemorrhagic fever (HF) outbreaks with high mortality in primates. Whereas Marburg (MARV), Ebola Zaire (ZEBOV), and Ebola Sudan (SEBOV) viruses are pathogenic in humans, apes, and monkeys, Ebola Reston (REBOV) is pathogenic only in monkeys. Early immunosuppression may contribute to pathogenesis by facilitating viral replication. Lymphocyte depletion, intravascular apoptosis, and cytokine dysregulation are prominent in fatal cases. Here we functionally characterize a 17 amino acid domain in filoviral glycoproteins that resembles an immunosuppressive motif in retroviral envelope proteins. Activated human or rhesus peripheral blood mononuclear cells (PBMC) were exposed to inactivated ZEBOV or a panel of 17mer peptides representing all sequenced strains of filoviruses, then analyzed for CD4+ and CD8+ T cell activation, apoptosis, and cytokine expression. Exposure of human and rhesus PBMC to ZEBOV, SEBOV, or MARV peptides or inactivated ZEBOV resulted in decreased expression of activation markers on CD4 and CD8 cells; CD4 and CD8 cell apoptosis as early as 12 h postexposure; inhibition of CD4 and CD8 cell cycle progression; decreased interleukin (IL)-2, IFN-gamma, and IL12-p40 expression; and increased IL-10 expression. In contrast, only rhesus T cells were sensitive to REBOV peptides. These findings are consistent with the observation that REBOV is not pathogenic in humans and have implications for understanding the pathogenesis of filoviral HF.
Collapse
Affiliation(s)
- Kavitha Yaddanapudi
- Jerome L. and Dawn Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, 722 West 168th St., New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
427
|
Rajalingam K, Sharma M, Paland N, Hurwitz R, Thieck O, Oswald M, Machuy N, Rudel T. IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathog 2006; 2:e114. [PMID: 17069460 PMCID: PMC1626104 DOI: 10.1371/journal.ppat.0020114] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 09/19/2006] [Indexed: 11/19/2022] Open
Abstract
Host cells infected with obligate intracellular bacteria Chlamydia trachomatis are profoundly resistant to diverse apoptotic stimuli. The molecular mechanisms underlying the block in apoptotic signaling of infected cells is not well understood. Here we investigated the molecular mechanism by which apoptosis induced via the tumor necrosis factor (TNF) receptor is prevented in infected epithelial cells. Infection with C. trachomatis leads to the up-regulation of cellular inhibitor of apoptosis (cIAP)-2, and interfering with cIAP-2 up-regulation sensitized infected cells for TNF-induced apoptosis. Interestingly, besides cIAP-2, cIAP-1 and X-linked IAP, although not differentially regulated by infection, are required to maintain apoptosis resistance in infected cells. We detected that IAPs are constitutively organized in heteromeric complexes and small interfering RNA-mediated silencing of one of these IAPs affects the stability of another IAP. In particular, the stability of cIAP-2 is modulated by the presence of X-linked IAP and their interaction is stabilized in infected cells. Our observations suggest that IAPs are functional and stable as heteromers, a thus far undiscovered mechanism of IAP regulation and its role in modulation of apoptosis.
Collapse
Affiliation(s)
- Krishnaraj Rajalingam
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Manu Sharma
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nicole Paland
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robert Hurwitz
- Biochemistry/Protein Purification Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Oliver Thieck
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Monique Oswald
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nikolaus Machuy
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas Rudel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
428
|
Ebihara H, Takada A, Kobasa D, Jones S, Neumann G, Theriault S, Bray M, Feldmann H, Kawaoka Y. Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2006; 2:e73. [PMID: 16848640 PMCID: PMC1513261 DOI: 10.1371/journal.ppat.0020073] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 06/02/2006] [Indexed: 02/06/2023] Open
Abstract
Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection. Zaire ebolavirus causes severe hemorrhagic fever in humans with up to 90% case-fatality rates. Currently, there are no vaccines or specific therapeutic interventions available for this devastating viral disease due, at least in part, to a lack of knowledge regarding the molecular basis of virulence for this extremely pathogenic agent. While adult mice resist wild-type Zaire ebolavirus infection, the virus has recently been adapted to cause lethal infection in mice. In order to understand the pathogenesis underlying Zaire ebolavirus infection, the authors identified the mutations responsible for the acquisition of virulence in mice, using reverse genetics technology, which allows the generation of genetically altered mutant viruses from cloned cDNA. By testing the virulence of mutant viruses, two viral proteins, viral protein 24 and the nucleoprotein, were found to be primarily responsible for the acquisition of virulence in mice. Moreover, the role of these proteins in virulence correlated with their ability to confer resistance to interferon-stimulated antiviral responses in mouse cells. These findings suggest a critical role of these proteins in overcoming the interferon-induced antiviral state in the pathogenicity of Zaire ebolavirus and offer new insights into the pathogenesis of Zaire ebolavirus infection.
Collapse
Affiliation(s)
- Hideki Ebihara
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ayato Takada
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Darwyn Kobasa
- Respiratory Viruses, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Steven Jones
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Steven Theriault
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mike Bray
- Biodefense Clinical Research, Office of Clinical Research, Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heinz Feldmann
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yoshihiro Kawaoka
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- International Research Center for Infectious Diseases, Tokyo, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
429
|
Towner JS, Khristova ML, Sealy TK, Vincent MJ, Erickson BR, Bawiec DA, Hartman AL, Comer JA, Zaki SR, Ströher U, Gomes da Silva F, del Castillo F, Rollin PE, Ksiazek TG, Nichol ST. Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J Virol 2006; 80:6497-516. [PMID: 16775337 PMCID: PMC1488971 DOI: 10.1128/jvi.00069-06] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In March 2005, the Centers for Disease Control and Prevention (CDC) investigated a large hemorrhagic fever (HF) outbreak in Uige Province in northern Angola, West Africa. In total, 15 initial specimens were sent to CDC, Atlanta, Ga., for testing for viruses associated with viral HFs known to be present in West Africa, including ebolavirus. Marburgvirus was also included despite the fact that the origins of all earlier outbreaks were linked directly to East Africa. Surprisingly, marburgvirus was confirmed (12 of 15 specimens) as the cause of the outbreak. The outbreak likely began in October 2004 and ended in July 2005, and it included 252 cases and 227 (90%) fatalities (report from the Ministry of Health, Republic of Angola, 2005), making it the largest Marburg HF outbreak on record. A real-time quantitative reverse transcription-PCR assay utilized and adapted during the outbreak proved to be highly sensitive and sufficiently robust for field use. Partial marburgvirus RNA sequence analysis revealed up to 21% nucleotide divergence among the previously characterized East African strains, with the most distinct being Ravn from Kenya (1987). The Angolan strain was less different ( approximately 7%) from the main group of East African marburgviruses than one might expect given the large geographic separation. To more precisely analyze the virus genetic differences between outbreaks and among viruses within the Angola outbreak itself, a total of 16 complete virus genomes were determined, including those of the virus isolates Ravn (Kenya, 1987) and 05DRC, 07DRC, and 09DRC (Democratic Republic of Congo, 1998) and the reference Angolan virus isolate (Ang1379v). In addition, complete genome sequences were obtained from RNAs extracted from 10 clinical specimens reflecting various stages of the disease and locations within the Angolan outbreak. While the marburgviruses exhibit high overall genetic diversity (up to 22%), only 6.8% nucleotide difference was found between the West African Angolan viruses and the majority of East African viruses, suggesting that the virus reservoir species in these regions are not substantially distinct. Remarkably few nucleotide differences were found among the Angolan clinical specimens (0 to 0.07%), consistent with an outbreak scenario in which a single (or rare) introduction of virus from the reservoir species into the human population was followed by person-to-person transmission with little accumulation of mutations. This is in contrast to the 1998 to 2000 marburgvirus outbreak, where evidence of several virus genetic lineages (with up to 21% divergence) and multiple virus introductions into the human population was found.
Collapse
Affiliation(s)
- Jonathan S Towner
- Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G14, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Hartman AL, Dover JE, Towner JS, Nichol ST. Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication. J Virol 2006; 80:6430-40. [PMID: 16775331 PMCID: PMC1488969 DOI: 10.1128/jvi.00044-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The VP35 protein of Zaire Ebola virus is an essential component of the viral RNA polymerase complex and also functions to antagonize the cellular type I interferon (IFN) response by blocking activation of the transcription factor IRF-3. We previously mapped the IRF-3 inhibitory domain within the C terminus of VP35. In the present study, we show that mutations that disrupt the IRF-3 inhibitory function of VP35 do not disrupt viral transcription/replication, suggesting that the two functions of VP35 are separable. Second, using reverse genetics, we successfully recovered recombinant Ebola viruses containing mutations within the IRF-3 inhibitory domain. Importantly, we show that the recombinant viruses were attenuated for growth in cell culture and that they activated IRF-3 and IRF-3-inducible gene expression at levels higher than that for Ebola virus containing wild-type VP35. In the context of Ebola virus pathogenesis, VP35 may function to limit early IFN-beta production and other antiviral signals generated from cells at the primary site of infection, thereby slowing down the host's ability to curb virus replication and induce adaptive immunity.
Collapse
Affiliation(s)
- Amy L Hartman
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|
431
|
Marzi A, Akhavan A, Simmons G, Gramberg T, Hofmann H, Bates P, Lingappa VR, Pöhlmann S. The signal peptide of the ebolavirus glycoprotein influences interaction with the cellular lectins DC-SIGN and DC-SIGNR. J Virol 2006; 80:6305-17. [PMID: 16775318 PMCID: PMC1488929 DOI: 10.1128/jvi.02545-05] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The C-type lectins DC-SIGN and DC-SIGNR (collectively referred to as DC-SIGN/R) bind to the ebolavirus glycoprotein (EBOV-GP) and augment viral infectivity. DC-SIGN/R strongly enhance infection driven by the GP of EBOV subspecies. Zaire (ZEBOV) but have a much less pronounced effect on infection mediated by the GP of EBOV subspecies. Sudan (SEBOV). For this study, we analyzed the determinants of the differential DC-SIGN/R interactions with ZEBOV- and SEBOV-GP. The efficiency of DC-SIGN engagement by ZEBOV-GP was dependent on the rate of GP incorporation into lentiviral particles, while appreciable virion incorporation of SEBOV-GP did not allow robust DC-SIGN/R usage. Forced incorporation of high-mannose carbohydrates into SEBOV-GP augmented the engagement of DC-SIGN/R to the levels observed with ZEBOV-GP, indicating that appropriate glycosylation of SEBOV-GP is sufficient for efficient DC-SIGN/R usage. However, neither signals for N-linked glycosylation unique to SEBOV- or ZEBOV-GP nor the highly variable and heavily glycosylated mucin-like domain modulated the interaction with DC-SIGN/R. In contrast, analysis of chimeric GPs identified the signal peptide as a determinant of DC-SIGN/R engagement. Thus, ZEBOV- but not SEBOV-GP was shown to harbor high-mannose carbohydrates, and GP modification with these glycans was controlled by the signal peptide. These results suggest that the signal peptide governs EBOV-GP interactions with DC-SIGN/R by modulating the incorporation of high-mannose carbohydrates into EBOV-GP. In summary, we identified the level of GP incorporation into virions and signal peptide-controlled glycosylation of GP as determinants of attachment factor engagement.
Collapse
Affiliation(s)
- Andrea Marzi
- Institute for Clinical and Molecular Virology and Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
432
|
Mohamadzadeh M, Coberley SS, Olinger GG, Kalina WV, Ruthel G, Fuller CL, Swenson DL, Pratt WD, Kuhns DB, Schmaljohn AL. Activation of triggering receptor expressed on myeloid cells-1 on human neutrophils by marburg and ebola viruses. J Virol 2006; 80:7235-44. [PMID: 16809329 PMCID: PMC1489070 DOI: 10.1128/jvi.00543-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 04/21/2006] [Indexed: 01/03/2023] Open
Abstract
Marburg virus (MARV) and Ebola virus (EBOV), members of the viral family Filoviridae, cause fatal hemorrhagic fevers in humans and nonhuman primates. High viral burden is coincident with inadequate adaptive immune responses and robust inflammatory responses, and virus-mediated dysregulation of early host defenses has been proposed. Recently, a novel class of innate receptors called the triggering receptors expressed in myeloid cells (TREM) has been discovered and shown to play an important role in innate inflammatory responses and sepsis. Here, we report that MARV and EBOV activate TREM-1 on human neutrophils, resulting in DAP12 phosphorylation, TREM-1 shedding, mobilization of intracellular calcium, secretion of proinflammatory cytokines, and phenotypic changes. A peptide specific to TREM-1 diminished the release of tumor necrosis factor alpha by filovirus-activated human neutrophils in vitro, and a soluble recombinant TREM-1 competitively inhibited the loss of cell surface TREM-1 that otherwise occurred on neutrophils exposed to filoviruses. These data imply direct activation of TREM-1 by filoviruses and also indicate that neutrophils may play a prominent role in the immune and inflammatory responses to filovirus infections.
Collapse
Affiliation(s)
- Mansour Mohamadzadeh
- U.S. Army Medical Research Institute for Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
433
|
Borges AA, Campos GM, Moreli ML, Souza RLM, Aquino VH, Saggioro FP, Figueiredo LTM. Hantavirus cardiopulmonary syndrome: immune response and pathogenesis. Microbes Infect 2006; 8:2324-30. [PMID: 16793309 DOI: 10.1016/j.micinf.2006.04.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/28/2006] [Accepted: 04/12/2006] [Indexed: 01/30/2023]
Abstract
Hantaviruses are emerging viruses in the Americas that cause cardiopulmonary syndrome with high lethality. The intense cellular immune response to hantavirus alters normal endothelial cell barrier functions and seems to be harmful to the host. On the other hand, the humoral immune response seems to be essential for recovery from infection.
Collapse
Affiliation(s)
- Alessandra A Borges
- Virology Research Center, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
434
|
Sullivan NJ, Geisbert TW, Geisbert JB, Shedlock DJ, Xu L, Lamoreaux L, Custers JHHV, Popernack PM, Yang ZY, Pau MG, Roederer M, Koup RA, Goudsmit J, Jahrling PB, Nabel GJ. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs. PLoS Med 2006; 3:e177. [PMID: 16683867 PMCID: PMC1459482 DOI: 10.1371/journal.pmed.0030177] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 02/14/2006] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. METHODS AND FINDINGS To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 10(10) particles, two logs lower than that used previously. CONCLUSIONS Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 10(10) rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate.
Collapse
Affiliation(s)
- Nancy J Sullivan
- 1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas W Geisbert
- 2United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Joan B Geisbert
- 2United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Devon J Shedlock
- 1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ling Xu
- 1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laurie Lamoreaux
- 1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Paul M Popernack
- 1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhi-Yong Yang
- 1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Mario Roederer
- 1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard A Koup
- 1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Peter B Jahrling
- 4Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gary J Nabel
- 1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
435
|
Griffiths PD. Towards treatment of viral pathogenesis. Rev Med Virol 2006; 16:135-8. [PMID: 16710835 PMCID: PMC7169225 DOI: 10.1002/rmv.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
436
|
Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, Daddario-DiCaprio K, Fritz EA, Jahrling PB, McClintock K, Phelps JR, Lee ACH, Judge A, Jeffs LB, MacLachlan I. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 2006; 193:1650-7. [PMID: 16703508 PMCID: PMC7110204 DOI: 10.1086/504267] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 01/06/2006] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ebola virus (EBOV) infection causes a frequently fatal hemorrhagic fever (HF) that is refractory to treatment with currently available antiviral therapeutics. RNA interference represents a powerful, naturally occurring biological strategy for the inhibition of gene expression and has demonstrated utility in the inhibition of viral replication. Here, we describe the development of a potential therapy for EBOV infection that is based on small interfering RNAs (siRNAs). METHODS Four siRNAs targeting the polymerase (L) gene of the Zaire species of EBOV (ZEBOV) were either complexed with polyethylenimine (PEI) or formulated in stable nucleic acid-lipid particles (SNALPs). Guinea pigs were treated with these siRNAs either before or after lethal ZEBOV challenge. RESULTS Treatment of guinea pigs with a pool of the L gene-specific siRNAs delivered by PEI polyplexes reduced plasma viremia levels and partially protected the animals from death when administered shortly before the ZEBOV challenge. Evaluation of the same pool of siRNAs delivered using SNALPs proved that this system was more efficacious, as it completely protected guinea pigs against viremia and death when administered shortly after the ZEBOV challenge. Additional experiments showed that 1 of the 4 siRNAs alone could completely protect guinea pigs from a lethal ZEBOV challenge. CONCLUSIONS Further development of this technology has the potential to yield effective treatments for EBOV HF as well as for diseases caused by other agents that are considered to be biological threats.
Collapse
Affiliation(s)
- Thomas W Geisbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702-5011, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Hoenen T, Groseth A, Falzarano D, Feldmann H. Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends Mol Med 2006; 12:206-15. [PMID: 16616875 DOI: 10.1016/j.molmed.2006.03.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/24/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Ebola virus (EBOV) causes severe haemorrhagic fever leading to up to 90% lethality. Increasingly frequent outbreaks and the placement of EBOV in the category A list of potential biothreat agents have boosted interest in this virus. Furthermore, development of new technologies (e.g. reverse genetics systems) and extensive studies on Ebola haemorrhagic fever (EHF) in animal models have substantially expanded the knowledge on the pathogenic mechanisms that underlie this disease. Two major factors in EBOV pathogenesis are the impairment of the immune response and vascular dysfunction. Here, we attempt to summarize the current knowledge on EBOV pathogenesis focusing on these two factors and on recent progress in the development of vaccines and potential therapeutics.
Collapse
Affiliation(s)
- Thomas Hoenen
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | | | | | | |
Collapse
|
438
|
Gramberg T, Zhu T, Chaipan C, Marzi A, Liu H, Wegele A, Andrus T, Hofmann H, Pöhlmann S. Impact of polymorphisms in the DC-SIGNR neck domain on the interaction with pathogens. Virology 2006; 347:354-63. [PMID: 16413044 PMCID: PMC7111803 DOI: 10.1016/j.virol.2005.11.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/19/2005] [Accepted: 11/23/2005] [Indexed: 11/28/2022]
Abstract
The lectins DC-SIGN and DC-SIGNR augment infection by human immunodeficiency virus (HIV), Ebolavirus (EBOV) and other pathogens. The neck domain of these proteins drives multimerization, which is believed to be required for efficient recognition of multivalent ligands. The neck domain of DC-SIGN consists of seven sequence repeats with rare variations. In contrast, the DC-SIGNR neck domain is polymorphic and, in addition to the wild type (wt) allele with seven repeat units, allelic forms with five and six sequence repeats are frequently found. A potential association of the DC-SIGNR genotype and risk of HIV-1 infection is currently under debate. Therefore, we investigated if DC-SIGNR alleles with five and six repeat units exhibit defects in pathogen capture. Here, we show that wt DC-SIGNR and patient derived alleles with five and six repeats bind viral glycoproteins, augment viral infection and tetramerize with comparable efficiency. Moreover, coexpression of wt DC-SIGNR and alleles with five repeats did not decrease the interaction with pathogens compared to expression of each allele alone, suggesting that potential formation of hetero-oligomers does not appreciably reduce pathogen binding, at least under conditions of high expression. Thus, our results do not provide evidence for diminished pathogen capture by DC-SIGNR alleles with five and six repeat units. Albeit, we cannot exclude that subtle, but in vivo relevant differences remained undetected, our analysis suggests that indirect mechanisms could account for the association of polymorphisms in the DC-SIGNR neck region with reduced risk of HIV-1 infection.
Collapse
MESH Headings
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/physiology
- Cell Culture Techniques
- HIV Infections/metabolism
- HIV-1/metabolism
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Polymorphism, Genetic
- Protein Structure, Tertiary/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid/genetics
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Thomas Gramberg
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tuofu Zhu
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA
- Microbiology, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Chawaree Chaipan
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andrea Marzi
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Huanliang Liu
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Anja Wegele
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Andrus
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Heike Hofmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Medical Microbiology and Virology, University of Kiel, 24105 Kiel, Germany
| | - Stefan Pöhlmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
439
|
Bukreyev A, Yang L, Zaki SR, Shieh WJ, Rollin PE, Murphy BR, Collins PL, Sanchez A. A single intranasal inoculation with a paramyxovirus-vectored vaccine protects guinea pigs against a lethal-dose Ebola virus challenge. J Virol 2006; 80:2267-79. [PMID: 16474134 PMCID: PMC1395378 DOI: 10.1128/jvi.80.5.2267-2279.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether intranasal inoculation with a paramyxovirus-vectored vaccine can induce protective immunity against Ebola virus (EV), recombinant human parainfluenza virus type 3 (HPIV3) was modified to express either the EV structural glycoprotein (GP) by itself (HPIV3/EboGP) or together with the EV nucleoprotein (NP) (HPIV3/EboGP-NP). Expression of EV GP by these recombinant viruses resulted in its efficient incorporation into virus particles and increased cytopathic effect in Vero cells. HPIV3/EboGP was 100-fold more efficiently neutralized by antibodies to EV than by antibodies to HPIV3. Guinea pigs infected with a single intranasal inoculation of 10(5.3) PFU of HPIV3/EboGP or HPIV3/EboGP-NP showed no apparent signs of disease yet developed a strong humoral response specific to the EV proteins. When these animals were challenged with an intraperitoneal injection of 10(3) PFU of EV, there were no outward signs of disease, no viremia or detectable EV antigen in the blood, and no evidence of infection in the spleen, liver, and lungs. In contrast, all of the control animals died or developed severe EV disease following challenge. The highly effective immunity achieved with a single vaccine dose suggests that intranasal immunization with live vectored vaccines based on recombinant respiratory viruses may be an advantageous approach to inducing protective responses against severe systemic infections, such as those caused by hemorrhagic fever agents.
Collapse
Affiliation(s)
- Alexander Bukreyev
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
440
|
Warfield KL, Swenson DL, Olinger GG, Nichols DK, Pratt WD, Blouch R, Stein DA, Aman MJ, Iversen PL, Bavari S. Gene-specific countermeasures against Ebola virus based on antisense phosphorodiamidate morpholino oligomers. PLoS Pathog 2006; 2:e1. [PMID: 16415982 PMCID: PMC1326218 DOI: 10.1371/journal.ppat.0020001] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 12/09/2005] [Indexed: 11/23/2022] Open
Abstract
The filoviruses Marburg virus and Ebola virus (EBOV) quickly outpace host immune responses and cause hemorrhagic fever, resulting in case fatality rates as high as 90% in humans and nearly 100% in nonhuman primates. The development of an effective therapeutic for EBOV is a daunting public health challenge and is hampered by a paucity of knowledge regarding filovirus pathogenesis. This report describes a successful strategy for interfering with EBOV infection using antisense phosphorodiamidate morpholino oligomers (PMOs). A combination of EBOV-specific PMOs targeting sequences of viral mRNAs for the viral proteins (VPs) VP24, VP35, and RNA polymerase L protected rodents in both pre- and post-exposure therapeutic regimens. In a prophylactic proof-of-principal trial, the PMOs also protected 75% of rhesus macaques from lethal EBOV infection. The work described here may contribute to development of designer, “druggable” countermeasures for filoviruses and other microbial pathogens. Ebola virus (EBOV) causes a highly lethal hemorrhagic fever that results in up to 50%–90% mortality in humans. There are currently no available vaccines or therapeutics to treat EBOV infection. To date, multiple pre- and post-exposure therapeutic strategies, primarily focused on bolstering the host immune response or inhibiting viral replication, have been undertaken with limited success. Here, Bavari and colleagues report the development of a successful therapeutic regimen for EBOV infection based on antisense phosphorodiamidate morpholino oligomers (PMOs). PMOs are a subclass of chemically modified antisense oligonucleotides that interfere with the translation of viral mRNA, thus inhibiting viral amplification. Using a cell-free translation system, a cell-based assay, and survival studies in rodents, we identified several efficacious EBOV-specific PMOs. Further, prophylactic administration of a combination of three EBOV-specific PMOs specifically targeting VP24, VP35, and the viral polymerase L protected rhesus macaques from lethal EBOV infection. This is the first successful antiviral intervention against filoviruses in nonhuman primates. These findings may serve as the basis for a new strategy to quickly develop virus-specific therapies in defense against known, emerging, and genetically engineered bioterrorism threats.
Collapse
Affiliation(s)
- Kelly L Warfield
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Dana L Swenson
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Gene G Olinger
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Donald K Nichols
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - William D Pratt
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Robert Blouch
- AVI BioPharma, Corvallis, Oregon, United States of America
| | - David A Stein
- AVI BioPharma, Corvallis, Oregon, United States of America
| | - M. Javad Aman
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | | | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
441
|
Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska JT, Gonzalez JP, Swanepoel R. Fruit bats as reservoirs of Ebola virus. Nature 2005; 438:575-6. [PMID: 16319873 DOI: 10.1038/438575a] [Citation(s) in RCA: 1012] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first recorded human outbreak of Ebola virus was in 1976, but the wild reservoir of this virus is still unknown. Here we test for Ebola in more than a thousand small vertebrates that were collected during Ebola outbreaks in humans and great apes between 2001 and 2003 in Gabon and the Republic of the Congo. We find evidence of asymptomatic infection by Ebola virus in three species of fruit bat, indicating that these animals may be acting as a reservoir for this deadly virus.
Collapse
Affiliation(s)
- Eric M Leroy
- Centre International de Recherches Médicales de Franceville, BP 769 Franceville, Gabon.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Abstract
This article reviews the epidemiology, pathophysiology, and clinical management of patients with suspected or confirmed viral hemorrhagic fever infection. The focus is on clinical management based on case series from naturally occuring outbreaks of viral hemorrhagic fever infection as well as imported cases of viral hemorrhagic fever encountered in industrialized nations. The potential risk of bioterrorism involving these agents is discussed as well as emergency department and critical care management of isolated cases or larger outbreaks. Important aspects of management, including recognition of infected patients, isolation and decontamination procedures, as well as available vaccines and therapies are emphasized.
Collapse
Affiliation(s)
- David C Pigott
- Department of Emergency Medicine, The University of Alabama at Birmingham, 619 South 19th Street, Birmingham, AL 35249-7013, USA.
| |
Collapse
|
443
|
Gramberg T, Hofmann H, Möller P, Lalor PF, Marzi A, Geier M, Krumbiegel M, Winkler T, Kirchhoff F, Adams DH, Becker S, Münch J, Pöhlmann S. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 2005; 340:224-36. [PMID: 16051304 PMCID: PMC7111772 DOI: 10.1016/j.virol.2005.06.026] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 05/10/2005] [Accepted: 06/13/2005] [Indexed: 11/23/2022]
Abstract
Cellular attachment factors like the C-type lectins DC-SIGN and DC-SIGNR (collectively referred to as DC-SIGN/R) can augment viral infection and might promote viral dissemination in and between hosts. The lectin LSECtin is encoded in the same chromosomal locus as DC-SIGN/R and is coexpressed with DC-SIGNR on sinusoidal endothelial cells in liver and lymphnodes. Here, we show that LSECtin enhances infection driven by filovirus glycoproteins (GP) and the S protein of SARS coronavirus, but does not interact with human immunodeficiency virus type-1 and hepatitis C virus envelope proteins. Ligand binding to LSECtin was inhibited by EGTA but not by mannan, suggesting that LSECtin unlike DC-SIGN/R does not recognize high-mannose glycans on viral GPs. Finally, we demonstrate that LSECtin is N-linked glycosylated and that glycosylation is required for cell surface expression. In summary, we identified LSECtin as an attachment factor that in conjunction with DC-SIGNR might concentrate viral pathogens in liver and lymph nodes.
Collapse
Affiliation(s)
- Thomas Gramberg
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heike Hofmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Peggy Möller
- Institute for Virology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Patricia F. Lalor
- Liver Research Group, Institute for Biomedical Science, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
- MRC Centre for Immune Regulation, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
| | - Andrea Marzi
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martina Geier
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mandy Krumbiegel
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Winkler
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Chair of Genetics, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Frank Kirchhoff
- Department of Virology, Universitätsklinikum Ulm, 89081 Ulm, Germany
| | - David H. Adams
- Liver Research Group, Institute for Biomedical Science, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
- MRC Centre for Immune Regulation, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
| | - Stephan Becker
- Institute for Virology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Jan Münch
- Department of Virology, Universitätsklinikum Ulm, 89081 Ulm, Germany
| | - Stefan Pöhlmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Corresponding author. Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany. Fax: +49 9131 8529111.
| |
Collapse
|
444
|
Bray M. Pathogenesis of viral hemorrhagic fever. Curr Opin Immunol 2005; 17:399-403. [PMID: 15955687 DOI: 10.1016/j.coi.2005.05.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 05/24/2005] [Indexed: 11/16/2022]
Abstract
Single-stranded RNA viruses from four different families cause a syndrome of fever and malaise, 'capillary leak' with loss of plasma volume, and coagulation defects which can lead to bleeding. Although direct cytopathic effects can contribute to disease severity, most features of illness are caused by innate immune responses, as the systemic spread of virus to macrophages and dendritic cells leads to the release of mediators that modify vascular function and have procoagulant activity. The synthesis of tissue factor by infected cells can also trigger coagulation. Failure of adaptive immunity through impaired dendritic cell function and lymphocyte apoptosis can have a crucial role in fatal infection.
Collapse
Affiliation(s)
- Mike Bray
- Biodefense Clinical Research Branch, Office of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
445
|
Pollara G, Kwan A, Newton PJ, Handley ME, Chain BM, Katz DR. Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol 2005; 86:187-204. [PMID: 16045541 PMCID: PMC2517433 DOI: 10.1111/j.0959-9673.2005.00440.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) are potent antigen-presenting cells that are critical in the initiation of immune responses to control and/or eliminate viral infections. Recent studies have investigated the effects of virus infection on the biology of DC. This review summarizes these changes, focusing on both the DC parameters affected and the viral factors involved. In addition, the central role of DC biology in the pathogenesis of several viral families, including herpesviruses, paramyxoviruses and retroviruses, is explored. The field of pathogen recognition by DC is addressed, focusing on its role in protecting the host from viral infection, as well as the ability of viruses to exploit such host receptor ligation and signalling to their replicative advantage. The hypothesis is proposed that virus and host have evolved a symbiotic relationship to ensure both viral transmission and host survival.
Collapse
Affiliation(s)
- Gabriele Pollara
- Department of Immunology and Molecular Pathology, University College London, Windeyer Institute of Medical Sciences, London W1T 4JF, UK.
| | | | | | | | | | | |
Collapse
|
446
|
Ji X, Olinger GG, Aris S, Chen Y, Gewurz H, Spear GT. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J Gen Virol 2005; 86:2535-2542. [PMID: 16099912 DOI: 10.1099/vir.0.81199-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.
Collapse
Affiliation(s)
- Xin Ji
- Rush St Luke's Medical Center, Department of Immunology and Microbiology, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| | - Gene G Olinger
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702-5011, USA
| | - Sheena Aris
- Rush St Luke's Medical Center, Department of Immunology and Microbiology, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| | - Ying Chen
- Rush St Luke's Medical Center, Department of Immunology and Microbiology, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| | - Henry Gewurz
- Rush St Luke's Medical Center, Department of Immunology and Microbiology, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| | - Gregory T Spear
- Rush St Luke's Medical Center, Department of Immunology and Microbiology, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| |
Collapse
|
447
|
Wahl-Jensen VM, Afanasieva TA, Seebach J, Ströher U, Feldmann H, Schnittler HJ. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 2005; 79:10442-50. [PMID: 16051836 PMCID: PMC1182673 DOI: 10.1128/jvi.79.16.10442-10450.2005] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus causes severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. Vascular instability and dysregulation are disease-decisive symptoms during severe infection. While the transmembrane glycoprotein GP(1,2) has been shown to cause endothelial cell destruction, the role of the soluble glycoproteins in pathogenesis is largely unknown; however, they are hypothesized to be of biological relevance in terms of target cell activation and/or increase of endothelial permeability. Here we show that virus-like particles (VLPs) consisting of the Ebola virus matrix protein VP40 and GP(1,2) were able to activate endothelial cells and induce a decrease in barrier function as determined by impedance spectroscopy and hydraulic conductivity measurements. In contrast, the soluble glycoproteins sGP and delta-peptide did not activate endothelial cells or change the endothelial barrier function. The VLP-induced decrease in barrier function was further enhanced by the cytokine tumor necrosis factor alpha (TNF-alpha), which is known to induce a long-lasting decrease in endothelial cell barrier function and is hypothesized to play a key role in Ebola virus pathogenesis. Surprisingly, sGP, but not delta-peptide, induced a recovery of endothelial barrier function following treatment with TNF-alpha. Our results demonstrate that Ebola virus GP(1,2) in its particle-associated form mediates endothelial cell activation and a decrease in endothelial cell barrier function. Furthermore, sGP, the major soluble glycoprotein of Ebola virus, seems to possess an anti-inflammatory role by protecting the endothelial cell barrier function.
Collapse
Affiliation(s)
- Victoria M Wahl-Jensen
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | | | | | | | | | | |
Collapse
|
448
|
Mavilio D, Benjamin J, Kim D, Lombardo G, Daucher M, Kinter A, Nies-Kraske E, Marcenaro E, Moretta A, Fauci AS. Identification of NKG2A and NKp80 as specific natural killer cell markers in rhesus and pigtailed monkeys. Blood 2005; 106:1718-25. [PMID: 15899917 PMCID: PMC1895226 DOI: 10.1182/blood-2004-12-4762] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 05/02/2005] [Indexed: 02/03/2023] Open
Abstract
Investigations of natural killer (NK) cells in simian models of disease have been hampered by a lack of appropriate phenotypic markers and by an inadequate understanding of the regulation of NK cell activities. In the present study, a panel of monoclonal antibodies (mAbs) specific for various human NK receptors was screened for cross-reactivity with NK cells from rhesus macaques and pigtailed macaques. Flow cytometric analyses using anti-human NKG2A and anti-human NKp80 mAbs individually, and particularly in combination with anti-CD16 mAb, allowed for the identification of the entire NK cell population in both species. NK cells in monkeys were generally identified by negative selection of peripheral blood mononuclear cells (PBMCs) for the absence of T-cell, B-cell, and monocyte markers. mAb-mediated ligation of NKp80 induced NK cell cytotoxicity, while in the case of NKG2A it displayed a clear capability to inhibit the lysis of target cells by NK cells from macaques, as well as from humans. This new phenotypic and functional characterization of NKG2A and NKp80 in rhesus and pigtailed macaque NK cells provides a new approach in the analysis of their innate immune system.
Collapse
Affiliation(s)
- Domenico Mavilio
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Dr, Bldg 10, Rm 6A08A, MSC 1576, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
449
|
Wahl-Jensen V, Kurz SK, Hazelton PR, Schnittler HJ, Ströher U, Burton DR, Feldmann H. Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J Virol 2005; 79:2413-9. [PMID: 15681442 PMCID: PMC546544 DOI: 10.1128/jvi.79.4.2413-2419.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus, a member of the family Filoviridae, causes one of the most severe forms of viral hemorrhagic fever. In the terminal stages of disease, symptoms progress to hypotension, coagulation disorders, and hemorrhages, and there is prominent involvement of the mononuclear phagocytic and reticuloendothelial systems. Cells of the mononuclear phagocytic system are primary target cells and producers of inflammatory mediators. Ebola virus efficiently produces four soluble glycoproteins during infection: sGP, delta peptide (Delta-peptide), GP(1), and GP(1,2Delta). While the presence of these glycoproteins has been confirmed in blood (sGP) and in vitro systems, it is hypothesized that they are of biological relevance in pathogenesis, particularly target cell activation. To gain insight into their function, we expressed the four soluble glycoproteins in mammalian cells and purified and characterized them. The role of the transmembrane glycoprotein in the context of virus-like particles was also investigated. Primary human macrophages were treated with glycoproteins and virus-like particles and subsequently tested for activation by detection of several critical proinflammatory cytokines (tumor necrosis factor alpha, interleukin-6 [IL-6], and IL-1 beta) and the chemokine IL-8. The presentation of the glycoprotein was determined to be critical since virus-like particles, but not soluble glycoproteins, induced high levels of activation. We propose that the presentation of GP(1,2) in the rigid form such as that observed on the surface of particles is critical for initiating a sufficient signal for the activation of primary target cells. The secreted glycoproteins do not appear to play any role in exogenous activation of these cells during Ebola virus infection.
Collapse
Affiliation(s)
- Victoria Wahl-Jensen
- Special Pathogens Program, National Microbiology Laboratory, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
450
|
Li K, Thomasson D, Ketai L, Contag C, Pomper M, Wright M, Bray M. Potential applications of conventional and molecular imaging to biodefense research. Clin Infect Dis 2005; 40:1471-80. [PMID: 15844070 DOI: 10.1086/429723] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 01/20/2005] [Indexed: 11/03/2022] Open
Abstract
Imaging methods that visualize the structure and function of the living body are widely used in patient care and biomedical research, but their full potential has not yet been applied to the study and treatment of the severe illnesses caused by pathogens of biodefense concern. "Conventional" imaging techniques (e.g., radiography, computed tomography, ultrasound, or magnetic resonance imaging) delineate anatomic changes in tissues, whereas "molecular" methods employ magnetic resonance, positron emission tomography, single-photon emission computed tomography, or optical (fluorescence or bioluminescence) imaging to detect biochemical reactions that accompany pathogen replication or host responses. We review the basic principles of these methods, describe the diseases caused by 6 pathogens classified as category A or B bioterror agents (anthrax, plague, tularemia, filoviral hemorrhagic fever, smallpox, and aerosolized equine encephalitis virus infection), and discuss how imaging could be used to study their pathogenesis in laboratory animals and to diagnose and monitor infection in humans.
Collapse
Affiliation(s)
- King Li
- Department of Radiology, Clinical Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|