401
|
Majewska A, Tashiro A, Yuste R. Regulation of spine calcium dynamics by rapid spine motility. J Neurosci 2000; 20:8262-8. [PMID: 11069932 PMCID: PMC6773195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Dendritic spines receive most excitatory inputs in the CNS and compartmentalize calcium. Spines also undergo rapid morphological changes, although the function of this motility is still unclear. We have investigated the effect of spine movement on spine calcium dynamics with two-photon photobleaching of enhanced green fluorescent protein and calcium imaging of action potential-elicited transients in spines from layer 2/3 pyramidal neurons in mouse visual cortex slices. The elongation or retraction of the spine neck during spine motility alters the diffusional coupling between spine and dendrite and significantly changes calcium decay kinetics in spines. Our results demonstrate that the spine's ability to compartmentalize calcium is constantly changing.
Collapse
Affiliation(s)
- A Majewska
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | | | |
Collapse
|
402
|
Köhler RH, Schwille P, Webb WW, Hanson MR. Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy. J Cell Sci 2000; 113 ( Pt 22):3921-30. [PMID: 11058079 DOI: 10.1242/jcs.113.22.3921] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic tubular projections emanate from plastids in certain cells of vascular plants and are especially prevalent in non-photosynthetic cells. Tubules sometimes connect two or more different plastids and can extend over long distances within a cell, observations that suggest that the tubules may function in distribution of molecules within, to and from plastids. In a new application of two-photon excitation (2PE) fluorescence correlation spectroscopy (FCS), we separated diffusion of fluorescent molecules from active transport in vivo. We quantified the velocities of diffusion versus active transport of green fluorescent protein (GFP) within plastid tubules and in the cytosol in vivo. GFP moves by 3-dimensional (3-D) diffusion both in the cytosol and plastid tubules, but diffusion in tubules is about 50 times and 100 times slower than in the cytosol and an aqueous solution, respectively. Unexpectedly larger GFP units within plastid tubules exhibited active transport with a velocity of about 0.12 microm/second. Active transport might play an important role in the long-distance distribution of large numbers of molecules within the highly viscous stroma of plastid tubules.
Collapse
Affiliation(s)
- R H Köhler
- Department of Molecular Biology and Genetics and School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
403
|
Papadopoulos S, Jürgens KD, Gros G. Protein diffusion in living skeletal muscle fibers: dependence on protein size, fiber type, and contraction. Biophys J 2000; 79:2084-94. [PMID: 11023912 PMCID: PMC1301098 DOI: 10.1016/s0006-3495(00)76456-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sarcoplasmic protein diffusion was studied under different conditions, using microinjection in combination with microspectrophotometry. Six globular proteins with molecular masses between 12 and 3700 kDa, with diameters from 3 to 30 nm, were used for the experiments. Proteins were injected into single, intact skeletal muscle fibers taken from either soleus or extensor digitorum longus (edl) muscle of adult rats. No correlation was found between sarcomere spacing and the sarcoplasmic diffusion coefficient (D) for all proteins studied. D of the smaller proteins cytochrome c (diameter 3.1 nm), myoglobin (diameter 3.5 nm), and hemoglobin (diameter 5.5 nm) amounted to only approximately 1/10 of their value in water and was not increased by auxotonic fiber contractions. D for cytochrome c and myoglobin was significantly higher in fibers from edl (mainly type II fibers) compared to fibers from soleus (mainly type I fibers). Measurements of D for myoglobin at 37 degrees C in addition to 22 degrees C led to a Q(10) of 1.46 for this temperature range. For the larger proteins catalase (diameter 10.5 nm) and ferritin (diameter 12.2 nm), a decrease in D to approximately 1/20 and approximately 1/50 of that in water was observed, whereas no diffusive flux at all of earthworm hemoglobin (diameter 30 nm) along the fiber axis could be detected. We conclude that 1) sarcoplasmic protein diffusion is strongly impaired by the presence of the myofilamental lattice, which also gives rise to differences in diffusivity between different fiber types; 2) contractions do not cause significant convection in sarcoplasm and do not lead to increased diffusional transport; and 3) in addition to the steric hindrance that slows down the diffusion of smaller proteins, diffusion of large proteins is further hindered when their dimensions approach the interfilament distances. This molecular sieve property progressively reduces intracellular diffusion of proteins when the molecular diameter increases to more than approximately 10 nm.
Collapse
Affiliation(s)
- S Papadopoulos
- Department of Physiology, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| | | | | |
Collapse
|
404
|
Blum R, Stephens DJ, Schulz I. Lumenal targeted GFP, used as a marker of soluble cargo, visualises rapid ERGIC to Golgi traffic by a tubulo-vesicular network. J Cell Sci 2000; 113 ( Pt 18):3151-9. [PMID: 10954414 DOI: 10.1242/jcs.113.18.3151] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which soluble proteins without sorting motifs are transported to the cell surface is not clear. Here we show that soluble green fluorescent protein (GFP) targeted to the lumen of the endoplasmic reticulum but lacking any known retrieval, retention or targeting motifs, was accumulated in the lumen of the ERGIC if cells were kept at reduced temperature. Upon activation of anterograde transport by rewarming of cells, lumenal GFP stained a microtubule-dependent, pre-Golgi tubulo-vesicular network that served as transport structure between peripheral ERGIC-elements and the perinuclear Golgi complex. Individual examples of these tubular elements up to 20 microm in length were observed. Time lapse imaging indicated rapid anterograde flow of soluble lumenal GFP through this network. Transport tubules, stained by lumenal GFP, segregated rapidly from COPI-positive membranes after transport activation. A transmembrane cargo marker, the temperature sensitive glycoprotein of the vesicular stomatitis virus, ts-045 G, is also not present in tubules which contained the soluble cargo marker lum-GFP. These results suggest a role for pre-Golgi vesicular tubular membranes in long distance anterograde transport of soluble cargo. http://www.biologists.com/JCS/movies/jcs1334.html
Collapse
Affiliation(s)
- R Blum
- Physiologisches Institut, Universität des Saarlandes, D-66421 Homburg Saar, Germany
| | | | | |
Collapse
|
405
|
Uskova MA, Borst JW, Hink MA, van Hoek A, Schots A, Klyachko NL, Visser AJ. Fluorescence dynamics of green fluorescent protein in AOT reversed micelles. Biophys Chem 2000; 87:73-84. [PMID: 11036971 DOI: 10.1016/s0301-4622(00)00184-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have used the enhanced green fluorescent protein (EGFP) to investigate the properties of surfactant-entrapped water pools in organic solvents (reversed micelles) with steady-state and time-resolved fluorescence methods. The surfactant used was sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and the organic solvents were isooctane and (the more viscous) dodecane, respectively. The water content of the water pools could be controlled through the parameter w0, which is the water-to-surfactant molar ratio. With steady-state fluorescence, it was observed that subtle fluorescence changes could be noted in reversed micelles of different water contents. EGFP can be used as a pH-indicator of the water droplets in reversed micelles. Time-resolved fluorescence methods also revealed subtle changes in fluorescence decay times when the results in bulk water were compared with those in reversed micelles. The average fluorescence lifetimes of EGFP scaled with the relative fluorescence intensities. Time-resolved fluorescence anisotropy of EGFP in aqueous solution and reversed micelles yielded single rotational correlation times. Geometrical considerations could assign the observed correlation times to dehydrated protein at low w0 and internal EGFP rotation within the droplet at the highest w0.
Collapse
Affiliation(s)
- M A Uskova
- MicroSpectroscopy Centre, Department of Biomolecular Sciences, Wageningen University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
406
|
van den Berg B, Wain R, Dobson CM, Ellis RJ. Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. EMBO J 2000; 19:3870-5. [PMID: 10921869 PMCID: PMC306593 DOI: 10.1093/emboj/19.15.3870] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have studied the effects of macromolecular crowding on protein folding kinetics by studying the oxidative refolding of hen lysozyme in the absence and presence of high concentrations of bovine serum albumin and Ficoll 70. The heterogeneity characteristic of the lysozyme refolding process is preserved under crowded conditions. This, together with the observation that the refolding intermediates that accumulate to significant levels are very similar in the absence and presence of Ficoll, suggests that crowding does not alter substantially the energetics of the protein folding reaction. However, the presence of high concentrations of macromolecules results in the acceleration of the fast track of the refolding process whereas the slow track is substantially retarded. The results can be explained by preferential excluded volume stabilization of compact states relative to more unfolded states, and suggest that, relative to dilute solutions, the rates of many protein folding processes are likely to be altered under conditions that more closely resemble the intracellular environment.
Collapse
Affiliation(s)
- B van den Berg
- Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QT, UK
| | | | | | | |
Collapse
|
407
|
Buehler C, Dong CY, So PT, French T, Gratton E. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy. Biophys J 2000; 79:536-49. [PMID: 10866979 PMCID: PMC1300957 DOI: 10.1016/s0006-3495(00)76315-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We report the application of pump-probe fluorescence microscopy in time-resolved polarization imaging. We derived the equations governing the pump-probe stimulated emission process and characterized the pump and probe laser power levels for signal saturation. Our emphasis is to use this novel methodology to image polarization properties of fluorophores across entire cells. As a feasibility study, we imaged a 15-microm orange latex sphere and found that there is depolarization that is possibly due to energy transfer among fluorescent molecules inside the sphere. We also imaged a mouse fibroblast labeled with CellTracker Orange CMTMR (5-(and-6)-(((4-chloromethyl)benzoyl)amino)tetramethyl-rhodamine). We observed that Orange CMTMR complexed with gluthathione rotates fast, indicating the relatively low fluid-phase viscosity of the cytoplasmic microenvironment as seen by Orange CMTMR. The measured rotational correlation time ranged from approximately 30 to approximately 150 ps. This work demonstrates the effectiveness of stimulated emission measurements in acquiring high-resolution, time-resolved polarization information across the entire cell.
Collapse
Affiliation(s)
- C Buehler
- Novartis Pharma AG, Pharma Research, CTA, LFU/NAT S-360.4.16, CH-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
408
|
Mullaney JM, Thompson RB, Gryczynski Z, Black LW. Green fluorescent protein as a probe of rotational mobility within bacteriophage T4. J Virol Methods 2000; 88:35-40. [PMID: 10921840 DOI: 10.1016/s0166-0934(00)00166-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Green fluorescent protein (GFP) was targeted into bacteriophage T4 heads and proheads as a probe of the internal environment. Targeting was accomplished with internal protein III (IPIII) fusion proteins or capsid targeting sequence (CTS)-tagged proteins, where CTS is the 10-amino acid residue CTS of IPIII. Recombinant phage T4[CTS/IPIII/GFP], T4[CTS/IPIII(T)GFP], and T4[CTS/GFP] packaged GFP fusion proteins and processed them at cleavage sites designated /. Steady-state and time-resolved fluorescence measurements suggest that packaged GFP is concentrated to a high density, that fusion protein IPIII(T)GFP occurs in a tightly clustered arrangement, and that the internal milieu of the phage head reduces rotational mobility of GFP. Phage, but not proheads, packaged with fusion protein IPIII(T)GFP gave an unexpectedly lower anisotropy than phage and proheads packaged with GFP, which suggests IPIII(T)GFP is bound to DNA in a manner that causes close associations between GFP molecules resulting in homotransfer between fluorophores within packaged phage. Targeting of reporter proteins into active virions is a promising approach for determining the structure of the condensed DNA, and properties of encapsidated viral enzymes.
Collapse
Affiliation(s)
- J M Mullaney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore 21201-1503, USA
| | | | | | | |
Collapse
|
409
|
Raïs B, Ortega F, Puigjaner J, Comin B, Orosz F, Ovádi J, Cascante M. Quantitative characterization of homo- and heteroassociations of muscle phosphofructokinase with aldolase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1479:303-14. [PMID: 11004548 DOI: 10.1016/s0167-4838(00)00047-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dissociation of purified phosphofructokinase accompanied with inactivation was analyzed in the absence and presence of aldolase and the data were compared with those obtained with muscle extract. The kinetics of the decrease in enzymatic activity was highly dependent on the dilution factor in both cases, but the inactivation appeared to be biphasic only with extract. The inactivation of the phosphofructokinase was impeded by addition of excess of aldolase. Time courses of kinase inactivation were fitted by alternative kinetic models to characterize the multiple equilibria of several homo- and hetero-oligomers of phosphofructokinase. The combination of modeling data obtained with purified and extract systems suggests that aldolase binds to an intermediate dimer of phosphofructokinase and within this heterocomplex the kinase is completely active. The intermediate dimer is stabilized by association with microtubules and the kinase activity decreased due to dilution can be recovered by addition of excess aldolase. In extract, the phosphofructokinase is of sigmoidal character (Hill coefficient of 2.3); the addition of excess exogenous aldolase to phosphofructokinase resulted in heterocomplex formation displaying Michaelian kinetics. The possible physiological relevance of heterocomplex formation of phosphofructokinase in muscle extract is discussed.
Collapse
Affiliation(s)
- B Raïs
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry,University of Barcelona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
410
|
Hink MA, Griep RA, Borst JW, van Hoek A, Eppink MH, Schots A, Visser AJ. Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein. J Biol Chem 2000; 275:17556-60. [PMID: 10748019 DOI: 10.1074/jbc.m001348200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural information on intracellular fusions of the green fluorescent protein (GFP) of the jellyfish Aequorea victoria with endogenous proteins is required as they are increasingly used in cell biology and biochemistry. We have investigated the dynamic properties of GFP alone and fused to a single chain antibody raised against lipopolysaccharide of the outer cell wall of gram-negative bacteria (abbreviated as scFv-GFP). The scFv moiety was functional as was proven in binding assays, which involved the use of both fluorescence correlation spectroscopy observing the binding of scFv-GFP to gram-negative bacteria and a surface plasmon resonance cell containing adsorbed lipopolysaccharide antigen. The rotational motion of scFv-GFP has been investigated with time-resolved fluorescence anisotropy. However, the rotational correlation time of scFv-GFP is too short to account for globular rotation of the whole protein. This result can only be explained by assuming a fast hinge motion between the two fused proteins. A modeled structure of scFv-GFP supports this observation.
Collapse
Affiliation(s)
- M A Hink
- MicroSpectroscopy Centre, Department of Biomolecular Sciences and the Laboratory for Monoclonal Antibodies, Wageningen University, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
411
|
Abstract
BACKGROUND The pulses of light scatter and fluorescence measured in flow cytometers exhibit varying degrees of polarization. Flow cytometers are heterogeneously sensitive to this polarization, depending on the light source(s), the optical layout, and the types of mirrors and filters used. Therefore, fluorescence polarization can affect apparent intensity ratios between particles and interfere with schemes for interlaboratory standardization. METHODS We investigate the degree to which polarization affects common flow cytometry measurements. Our technique for determining polarization differs from previous methods because complete distributions of intensity versus polarization angle are measured, rather than intensities at just two orthogonal polarization angles. Theoretical models for scatter and fluorescence are presented and verified by making polarization measurements of calibration beads. RESULTS Measurements of cells stained with a variety of dyes illustrate that fluorescence polarization occurs frequently in flow cytometry. CONCLUSIONS Consequences for quantitative cytometry are discussed, and the use of the "magic angle" to make a flow cytometer insensitive to fluorescence polarization is proposed.
Collapse
Affiliation(s)
- C L Asbury
- Department of Molecular Biotechnology, University of Washington, Seattle 98195-7730, USA
| | | | | |
Collapse
|
412
|
Wachsmuth M, Waldeck W, Langowski J. Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 2000; 298:677-89. [PMID: 10788329 DOI: 10.1006/jmbi.2000.3692] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated spatial variations of the diffusion behavior of the green fluorescent protein mutant EGFP (F64L/S65T) and of the EGFP-beta-galactosidase fusion protein in living cells with fluorescence correlation spectroscopy. Our fluorescence correlation spectroscopy device, in connection with a precision x-y translation stage, provides submicron spatial resolution and a detection volume smaller than a femtoliter. The fluorescence fluctuations in cell lines expressing EGFP are caused by molecular diffusion as well as a possible internal and a pH-dependent external protonation process of the EGFP chromophore. The latter processes result in two apparent nonfluorescent states that have to be taken into account when evaluating the fluorescence correlation spectroscopy data. The diffusional contribution deviates from ideal behavior and depends on the position in the cell. The fluorescence correlation spectroscopy data can either be evaluated as a two component model with one fraction of the molecules undergoing free Brownian motion with a diffusion coefficient approximately five times smaller than in aqueous solution, and another fraction diffusing one or two orders of magnitude slower. This latter component is especially noticeable in the nuclei. Alternatively, we can fit the data to an anomalous diffusion model where the time dependence of the diffusion serves as a measure for the degree of obstruction, which is large especially in nuclei. Possible mechanisms for this long tail behavior include corralling, immobile obstacles, and binding with a broad distribution of binding affinities. The results are consistent with recent numerical models of the chromosome territory structure in the cell nucleus.
Collapse
Affiliation(s)
- M Wachsmuth
- Division Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|
413
|
Oliver AE, Baker GA, Fugate RD, Tablin F, Crowe JH. Effects of temperature on calcium-sensitive fluorescent probes. Biophys J 2000; 78:2116-26. [PMID: 10733989 PMCID: PMC1300803 DOI: 10.1016/s0006-3495(00)76758-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The effect of temperature on the binding equilibria of calcium-sensing dyes has been extensively studied, but there are also important temperature-related changes in the photophysics of the dyes that have been largely ignored. We conducted a systematic study of thermal effects on five calcium-sensing dyes under calcium-saturated and calcium-free conditions. Quin-2, chlortetracycline, calcium green dextran, Indo-1, and Fura-2 all show temperature-dependent effects on fluorescence in all or part of the range tested (5-40 degrees C). Specifically, the intensity of the single-wavelength dyes increased at low temperature. The ratiometric dyes, because of variable effects at the two wavelengths, showed, in general, a reduction in the fluorescence ratio as temperature decreased. Changes in viscosity, pH, oxygen quenching, or fluorescence maxima could not fully explain the effects of temperature on fluorescence. The excited-state lifetimes of the dyes were determined, in both the presence and absence of calcium, using multifrequency phase-modulation fluorimetry. In most cases, low temperature led to prolonged fluorescence lifetimes. The increase in lifetimes at reduced temperature is probably largely responsible for the effects of temperature on the physical properties of the calcium-sensing dyes. Clearly, these temperature effects can influence reported calcium concentrations and must therefore be taken into consideration during any investigation involving variable temperatures.
Collapse
Affiliation(s)
- A E Oliver
- Section of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
414
|
Brasselet S, Peterman EJG, Miyawaki A, Moerner WE. Single-Molecule Fluorescence Resonant Energy Transfer in Calcium Concentration Dependent Cameleon. J Phys Chem B 2000. [DOI: 10.1021/jp993954o] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sophie Brasselet
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0340, Department of Chemistry, Stanford University, Stanford, California 94305-5080, Department of Pharmacology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0647, and Cell Function & Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Erwin J. G. Peterman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0340, Department of Chemistry, Stanford University, Stanford, California 94305-5080, Department of Pharmacology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0647, and Cell Function & Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0340, Department of Chemistry, Stanford University, Stanford, California 94305-5080, Department of Pharmacology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0647, and Cell Function & Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - W. E. Moerner
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0340, Department of Chemistry, Stanford University, Stanford, California 94305-5080, Department of Pharmacology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0647, and Cell Function & Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
415
|
Pralle A, Keller P, Florin EL, Simons K, Hörber J. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 2000; 148:997-1008. [PMID: 10704449 PMCID: PMC2174552 DOI: 10.1083/jcb.148.5.997] [Citation(s) in RCA: 733] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To probe the dynamics and size of lipid rafts in the membrane of living cells, the local diffusion of single membrane proteins was measured. A laser trap was used to confine the motion of a bead bound to a raft protein to a small area (diam < or = 100 nm) and to measure its local diffusion by high resolution single particle tracking. Using protein constructs with identical ectodomains and different membrane regions and vice versa, we demonstrate that this method provides the viscous damping of the membrane domain in the lipid bilayer. When glycosylphosphatidylinositol (GPI) -anchored and transmembrane proteins are raft-associated, their diffusion becomes independent of the type of membrane anchor and is significantly reduced compared with that of nonraft transmembrane proteins. Cholesterol depletion accelerates the diffusion of raft-associated proteins for transmembrane raft proteins to the level of transmembrane nonraft proteins and for GPI-anchored proteins even further. Raft-associated GPI-anchored proteins were never observed to dissociate from the raft within the measurement intervals of up to 10 min. The measurements agree with lipid rafts being cholesterol-stabilized complexes of 26 +/- 13 nm in size diffusing as one entity for minutes.
Collapse
Affiliation(s)
- A. Pralle
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - P. Keller
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - E.-L. Florin
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - K. Simons
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - J.K.H. Hörber
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| |
Collapse
|
416
|
Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS. Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 2000; 275:6047-50. [PMID: 10692389 DOI: 10.1074/jbc.275.9.6047] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the application of a targetable green fluorescent protein-based cellular halide indicator. Fluorescence titrations of the purified recombinant yellow fluorescent protein YFP-H148Q indicated a pK(a) of 7.14 in the absence of Cl(-), which increased to 7.86 at 150 mM Cl(-). At pH 7.5, YFP-H148Q fluorescence decreased maximally by approximately 2-fold with a K(D) of 100 mM Cl(-). YFP-H148Q had a fluorescence lifetime of 3.1 ns that was independent of pH and [Cl(-)]. Circular dichroism and absorption spectroscopy revealed distinct Cl(-)-dependent spectral changes indicating Cl(-)/YFP binding. Stopped-flow kinetic analysis showed a biexponential time course of YFP-H148Q fluorescence (time constants <100 ms) in response to changes in pH or [Cl(-)], establishing a 1:1 YFP-H148Q/Cl(-) binding mechanism. Photobleaching analysis revealed a millisecond triplet state relaxation process that was insensitive to anions and aqueous-phase quenchers. The anion selectivity sequence for YFP-H148Q quenching (ClO(4)(-) approximately I(-) > SCN(-) > NO(3)(-) > Cl(-) > Br(-) > formate > acetate) indicated strong binding of weakly hydrated chaotropic ions. The biophysical data suggest that YFP-H148Q anion sensitivity involves ground state anion binding to a site close to the tri-amino acid chromophore. YFP-H148Q transfected mammalian cells were brightly fluorescent with cytoplasmic/nuclear staining. Ionophore calibrations indicated similar YFP-H148Q pH and anion sensitivities in cells and aqueous solutions. Cyclic AMP-regulated Cl(-) transport through plasma membrane cystic fibrosis transmembrane conductance regulator Cl(-) channels was assayed with excellent sensitivity from the time course of YFP-H148Q fluorescence in response to extracellular Cl(-)/I(-) exchange. The green fluorescent protein-based halide sensor described here should have numerous applications, such as anion channel cloning by screening of mammalian expression libraries and discovery of compounds that correct the cystic fibrosis phenotype by screening of combinatorial libraries.
Collapse
Affiliation(s)
- S Jayaraman
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco California 94143, USA
| | | | | | | | | |
Collapse
|
417
|
Volkmer A, Subramaniam V, Birch DJ, Jovin TM. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys J 2000; 78:1589-98. [PMID: 10692343 PMCID: PMC1300756 DOI: 10.1016/s0006-3495(00)76711-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We have used one- (OPE) and two-photon (TPE) excitation with time-correlated single-photon counting techniques to determine time-resolved fluorescence intensity and anisotropy decays of the wild-type Green Fluorescent Protein (GFP) and two red-shifted mutants, S65T-GFP and RSGFP. WT-GFP and S65T-GFP exhibited a predominant approximately 3 ns monoexponential fluorescence decay, whereas for RSGFP the main lifetimes were approximately 1.1 ns (main component) and approximately 3.3 ns. The anisotropy decay of WT-GFP and S65T-GFP was also monoexponential (global rotational correlation time of 16 +/- 1 ns). The approximately 1.1 ns lifetime of RSGFP was associated with a faster rotational depolarization, evaluated as an additional approximately 13 ns component. This feature we attribute tentatively to a greater rotational freedom of the anionic chromophore. With OPE, the initial anisotropy was close to the theoretical limit of 0.4; with TPE it was higher, approaching the TPE theoretical limit of 0.57 for the colinear case. The measured power dependence of the fluorescence signals provided direct evidence for TPE. The general independence of fluorescence decay times, rotation correlation times, and steady-state emission spectra on the excitation mode indicates that the fluorescence originated from the same distinct excited singlet states (A*, I*, B*). However, we observed a relative enhancement of blue fluorescence peaked at approximately 440 nm for TPE compared to OPE, indicating different relative excitation efficiencies. We infer that the two lifetimes of RSGFP represent the deactivation of two substates of the deprotonated intermediate (I*), distinguished by their origin (i.e., from A* or B*) and by nonradiative decay rates reflecting different internal environments of the excited-state chromophore.
Collapse
Affiliation(s)
- A Volkmer
- Photophysics Research Group, Department of Physics and Applied Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 ONG, Scotland, United Kingdom
| | | | | | | |
Collapse
|
418
|
Umenishi F, Verbavatz JM, Verkman AS. cAMP regulated membrane diffusion of a green fluorescent protein-aquaporin 2 chimera. Biophys J 2000; 78:1024-35. [PMID: 10653816 PMCID: PMC1300706 DOI: 10.1016/s0006-3495(00)76661-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To study the membrane mobility of aquaporin water channels, clones of stably transfected LLC-PK1 cells were isolated with plasma membrane expression of GFP-AQP1 and GFP-AQP2, in which the green fluorescent protein (GFP) was fused upstream and in-frame to each aquaporin (AQP). The GFP fusion did not affect AQP tetrameric association or water transport function. GFP-AQP lateral mobility was measured by irreversibly bleaching a spot (diameter 0.8 microm) on the membrane with an Argon laser beam (488 nm) and following the fluorescence recovery into the bleached area resulting from GFP translational diffusion. In cells expressing GFP-AQP1, fluorescence recovered to >96% of its initial level with t(1/2) of 38 +/- 2 s (23 degrees C) and 21 +/- 1 s (37 degrees C), giving diffusion coefficients (D) of 5.3 and 9.3 x 10(-11) cm(2)/s. GFP-AQP1 diffusion was abolished by paraformaldehyde fixation, slowed >50-fold by the cholesterol-binding agent filipin, but not affected by cAMP agonists. In cells expressing GFP-AQP2, fluorescence recovered to >98% with D of 5.7 and 9.0 x 10(-11) cm(2)/s at 23 degrees C and 37 degrees C. In contrast to results for GFP-AQP1, the cAMP agonist forskolin slowed GFP-AQP2 mobility by up to tenfold. The cAMP slowing was blocked by actin filament disruption with cytochalasin D, by K(+)-depletion in combination with hypotonic shock, and by mutation of the protein kinase A phosphorylation consensus site (S256A) at the AQP2 C-terminus. These results indicate unregulated diffusion of AQP1 in membranes, but regulated AQP2 diffusion that was dependent on phosphorylation at serine 256, and an intact actin cytoskeleton and clathrin coated pit. The cAMP-induced immobilization of phosphorylated AQP2 provides evidence for AQP2-protein interactions that may be important for retention of AQP2 in specialized membrane domains for efficient membrane recycling.
Collapse
Affiliation(s)
- F Umenishi
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco 94143-0521, USA
| | | | | |
Collapse
|
419
|
Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS. Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 2000; 275:1625-9. [PMID: 10636854 DOI: 10.1074/jbc.275.3.1625] [Citation(s) in RCA: 503] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The diffusion of DNA in cytoplasm is thought to be an important determinant of the efficacy of gene delivery and antisense therapy. We have measured the translational diffusion of fluorescein-labeled double-stranded DNA fragments (in base pairs (bp): 21, 100, 250, 500, 1000, 2000, 3000, 6000) after microinjection into cytoplasm and nucleus of HeLa cells. Diffusion was measured by spot photobleaching using a focused argon laser spot (488 nm). In aqueous solutions, diffusion coefficients of the DNA fragments in water (D(w)) decreased from 53 x 10(-8) to 0.81 x 10(-8) cm(2)/s for sizes of 21-6000 bp; D(w) was related empirically to DNA size: D(w) = 4.9 x 10(-6) cm(2)/s.[bp size](-0.72). DNA diffusion coefficients in cytoplasm (D(cyto)) were lower than D(w) and depended strongly on DNA size. D(cyto)/D(w) decreased from 0.19 for a 100-bp DNA fragment to 0.06 for a 250-bp DNA fragment and was <0.01 for >2000 bp. Diffusion of microinjected fluorescein isothiocyanate (FITC) dextrans was faster than that of comparably sized DNA fragments of 250 bp and greater. In nucleus, all DNA fragments were nearly immobile, whereas FITC dextrans of molecular size up to 580 kDa were fully mobile. These results suggest that the highly restricted diffusion of DNA fragments in nucleoplasm results from extensive binding to immobile obstacles and that the decreased lateral mobility of DNAs >250 bp in cytoplasm is because of molecular crowding. The diffusion of DNA in cytoplasm may thus be an important rate-limiting barrier in gene delivery utilizing non-viral vectors.
Collapse
Affiliation(s)
- G L Lukacs
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0521, USA
| | | | | | | | | | | |
Collapse
|
420
|
Luby-Phelps K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 192:189-221. [PMID: 10553280 DOI: 10.1016/s0074-7696(08)60527-6] [Citation(s) in RCA: 722] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Classical biochemistry is founded on several assumptions valid in dilute aqueous solutions that are often extended without question to the interior milieu of intact cells. In the first section of this chapter, we present these assumptions and briefly examine the ways in which the cell interior may depart from the conditions of an ideal solution. In the second section, we summarize experimental evidence regarding the physical properties of the cell cytoplasm and their effect on the diffusion and binding of macromolecules and vesicles. While many details remain to be worked out, it is clear that the aqueous phase of the cytoplasm is crowded rather than dilute, and that the diffusion and partitioning of macromolecules and vesicles in cytoplasm is highly restricted by steric hindrance as well as by unexpected binding interactions. Furthermore, the enzymes of several metabolic pathways are now known to be organized into structural and functional units with specific localizations in the solid phase, and as much as half the cellular protein content may also be in the solid phase.
Collapse
Affiliation(s)
- K Luby-Phelps
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235-9040, USA
| |
Collapse
|
421
|
Widengren J, Mets Ü, Rigler R. Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem Phys 1999. [DOI: 10.1016/s0301-0104(99)00255-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
422
|
Peterman EJG, Brasselet S, Moerner WE. The Fluorescence Dynamics of Single Molecules of Green Fluorescent Protein. J Phys Chem A 1999. [DOI: 10.1021/jp991968o] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
423
|
Brown EB, Wu ES, Zipfel W, Webb WW. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys J 1999; 77:2837-49. [PMID: 10545381 PMCID: PMC1300555 DOI: 10.1016/s0006-3495(99)77115-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Multiphoton fluorescence photobleaching recovery (MP-FPR) is a technique for measuring the three-dimensional (3D) mobility of fluorescent molecules with 3D spatial resolution of a few microns. A brief, intense flash of mode-locked laser light pulses excites fluorescent molecules via multiphoton excitation in an ellipsoidal focal volume and photobleaches a fraction. Because multiphoton excitation of fluorophores is intrinsically confined to the high-intensity focal volume of the illuminating beam, the bleached region is restricted to a known, three-dimensionally defined volume. Fluorescence in this focal volume is measured with multiphoton excitation, using the attenuated laser beam to measure fluorescence recovery as fresh unbleached dye diffuses in. The time course of the fluorescence recovery signal after photobleaching can be analyzed to determine the diffusion coefficient of the fluorescent species. The mathematical formulas used to fit MP-FPR recovery curves and the techniques needed to properly utilize them to acquire the diffusion coefficients of fluorescently labeled molecules within cells are presented here. MP-FPR is demonstrated on calcein in RBL-2H3 cells, using an anomalous subdiffusion model, as well as in aqueous solutions of wild-type green fluorescent protein, yielding a diffusion coefficient of 8.7 x 10(-7) cm(2)s(-1) in excellent agreement with the results of other techniques.
Collapse
Affiliation(s)
- E B Brown
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
424
|
Schwille P, Haupts U, Maiti S, Webb WW. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 1999; 77:2251-65. [PMID: 10512844 PMCID: PMC1300505 DOI: 10.1016/s0006-3495(99)77065-7] [Citation(s) in RCA: 458] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Multiphoton excitation (MPE) of fluorescent probes has become an attractive alternative in biological applications of laser scanning microscopy because many problems encountered in spectroscopic measurements of living tissue such as light scattering, autofluorescence, and photodamage can be reduced. The present study investigates the characteristics of two-photon excitation (2PE) in comparison with confocal one-photon excitation (1PE) for intracellular applications of fluorescence correlation spectroscopy (FCS). FCS is an attractive method of measuring molecular concentrations, mobility parameters, chemical kinetics, and fluorescence photophysics. Several FCS applications in mammalian and plant cells are outlined, to illustrate the capabilities of both 1PE and 2PE. Photophysical properties of fluorophores required for quantitative FCS in tissues are analyzed. Measurements in live cells and on cell membranes are feasible with reasonable signal-to-noise ratios, even with fluorophore concentrations as low as the single-molecule level in the sampling volume. Molecular mobilities can be measured over a wide range of characteristic time constants from approximately 10(-3) to 10(3) ms. While both excitation alternatives work well for intracellular FCS in thin preparations, 2PE can substantially improve signal quality in turbid preparations like plant cells and deep cell layers in tissue. At comparable signal levels, 2PE minimizes photobleaching in spatially restrictive cellular compartments, thereby preserving long-term signal acquisition.
Collapse
Affiliation(s)
- P Schwille
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 USA.
| | | | | | | |
Collapse
|
425
|
Striker G, Subramaniam V, Seidel CAM, Volkmer A. Photochromicity and Fluorescence Lifetimes of Green Fluorescent Protein. J Phys Chem B 1999. [DOI: 10.1021/jp991425e] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
426
|
Brock R, Vàmosi G, Vereb G, Jovin TM. Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc Natl Acad Sci U S A 1999; 96:10123-8. [PMID: 10468573 PMCID: PMC17853 DOI: 10.1073/pnas.96.18.10123] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence correlation microscopy (FCM) was applied to characterize fusion proteins of the green fluorescent protein (GFP) on the cellular as well as molecular level within seconds in an integrated instrument. FCM combines the inherent sensitivity and high spatial resolution of fluorescence correlation spectroscopy with fluorescence imaging and micropositioning, thereby providing a spectrum of molecular information in the cellular context. Signatures of characteristic parameters derived from the autocorrelation functions served to distinguish a GFP fusion protein of the epidermal growth factor receptor from GFP fluorescence in the endoplasmic reticulum and cytoplasm. Diffusion constants measured for free transiently expressed GFP reproduced values reported previously with other techniques. The accessible concentration range extends from millions to only a few thousand molecules per cell, with single molecule detectability in the femtoliter detection volume. The detailed molecular characterization offered by FCM is fully compatible with automation in sample identification and detection, offering new possibilities for highly integrated high-throughput screening.
Collapse
Affiliation(s)
- R Brock
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
427
|
Meyvis TK, De Smedt SC, Van Oostveldt P, Demeester J. Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research. Pharm Res 1999; 16:1153-62. [PMID: 10468014 DOI: 10.1023/a:1011924909138] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review introduces the basics of fluorescence recovery after photobleaching (FRAP) from a theoretical and an instrumentational approach. The most interesting and innovative applications with a pharmaceutical point of view are briefly discussed and possible future applications are suggested. These future applications include research on the mobility of macromolecular drugs in macro- or microscopic pharmaceutical dosage forms, mobility, and binding of antitumor drugs in tumor tissue, intracellular trafficking of gene complexes and mobility of drugs in membranes prior to transmembrane penetration. The paper is also intended to be an introductory guideline to those who would like to get involved in FRAP related experimental techniques. Therefore, comprehensive details on different setups and data analysis are given, as well as a brief outline of the problems that may be encountered when performing FRAP. Overall, this review shows the great potential of FRAP in pharmaceutical research. This is complemented by our own results illustrating the possibility of performing FRAP in microscopic dosage forms (microspheres) using a high resolution variant of FRAP.
Collapse
Affiliation(s)
- T K Meyvis
- Laboratory of General Biochemistry and Physical Pharmacy, University of Gent, Belgium.
| | | | | | | |
Collapse
|
428
|
Hołyst R, Plewczyński D, Aksimentiev A, Burdzy K. Diffusion on curved, periodic surfaces. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1999; 60:302-7. [PMID: 11969764 DOI: 10.1103/physreve.60.302] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/1999] [Indexed: 11/07/2022]
Abstract
We present a simulation algorithm for a diffusion on a curved surface given by the equation phi(r)=0. The algorithm is tested against analytical results known for diffusion on a cylinder and a sphere, and applied to the diffusion on the P, D, and G periodic nodal surfaces. It should find application in an interpretation of two-dimensional exchange NMR spectroscopy data of diffusion on biological membranes.
Collapse
Affiliation(s)
- R Hołyst
- Department III, Institute of Physical Chemistry, PAS and College of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | | | | |
Collapse
|
429
|
Houtsmuller AB, Rademakers S, Nigg AL, Hoogstraten D, Hoeijmakers JH, Vermeulen W. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 1999; 284:958-61. [PMID: 10320375 DOI: 10.1126/science.284.5416.958] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To study the nuclear organization and dynamics of nucleotide excision repair (NER), the endonuclease ERCC1/XPF (for excision repair cross complementation group 1/xeroderma pigmentosum group F) was tagged with green fluorescent protein and its mobility was monitored in living Chinese hamster ovary cells. In the absence of DNA damage, the complex moved freely through the nucleus, with a diffusion coefficient (15 +/- 5 square micrometers per second) consistent with its molecular size. Ultraviolet light-induced DNA damage caused a transient dose-dependent immobilization of ERCC1/XPF, likely due to engagement of the complex in a single repair event. After 4 minutes, the complex regained mobility. These results suggest (i) that NER operates by assembly of individual NER factors at sites of DNA damage rather than by preassembly of holocomplexes and (ii) that ERCC1/XPF participates in repair of DNA damage in a distributive fashion rather than by processive scanning of large genome segments.
Collapse
Affiliation(s)
- A B Houtsmuller
- Department of Pathology (Josephine Nefkens Institute, Erasmus University, Post Office Box 1738, 3000 DR Rotterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
430
|
Lavalette D, Tétreau C, Tourbez M, Blouquit Y. Microscopic viscosity and rotational diffusion of proteins in a macromolecular environment. Biophys J 1999; 76:2744-51. [PMID: 10233089 PMCID: PMC1300244 DOI: 10.1016/s0006-3495(99)77427-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Stokes-Einstein-Debye equation is currently used to obtain information on protein size or on local viscosity from the measurement of the rotational correlation time. However, the implicit assumptions of a continuous and homogeneous solvent do not hold either in vivo, because of the high density of macromolecules, or in vitro, where viscosity is adjusted by adding viscous cosolvents of various size. To quantify the consequence of nonhomogeneity, we have measured the rotational Brownian motion of three globular proteins with molecular mass from 66 to 4000 kD in presence of 1.5 to 2000 kD dextrans as viscous cosolvents. Our results indicate that the linear viscosity dependence of the Stokes-Einstein relation must be replaced by a power law to describe the rotational Brownian motion of proteins in a macromolecular environment. The exponent of the power law expresses the fact that the protein experiences only a fraction of the hydrodynamic interactions of macromolecular cosolvents. An explicit expression of the exponent in terms of protein size and cosolvent's mass is obtained, permitting definition of a microscopic viscosity. Experimental data suggest that a similar effective microviscosity should be introduced in Kramers' equation describing protein reaction rates.
Collapse
Affiliation(s)
- D Lavalette
- Institut Curie-Recherche (INSERM U350), Bâtiment 112, Centre Universitaire, 91405 Orsay, France.
| | | | | | | |
Collapse
|
431
|
Dayel MJ, Hom EF, Verkman AS. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys J 1999; 76:2843-51. [PMID: 10233100 PMCID: PMC1300255 DOI: 10.1016/s0006-3495(99)77438-2] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the major compartment for the processing and quality control of newly synthesized proteins. Green fluorescent protein (GFP) was used as a noninvasive probe to determine the viscous properties of the aqueous lumen of the ER. GFP was targeted to the ER lumen of CHO cells by transient transfection with cDNA encoding GFP (S65T/F64L mutant) with a C-terminus KDEL retention sequence and upstream prolactin secretory sequence. Repeated laser illumination of a fixed 2-micrometers diameter spot resulted in complete bleaching of ER-associated GFP throughout the cell, indicating a continuous ER lumen. A residual amount (<1%) of GFP-KDEL was perinuclear and noncontiguous with the ER, presumably within a pre- or cis-Golgi compartment involved in KDEL-substrate retention. Quantitative spot photobleaching with a single brief bleach pulse indicated that GFP was fully mobile with a t1/2 for fluorescence recovery of 88 +/- 5 ms (SE; 60x lens) and 143 +/- 8 ms (40x). Fluorescence recovery was abolished by paraformaldehyde except for a small component of reversible photobleaching with t1/2 of 3 ms. For comparison, the t1/2 for photobleaching of GFP in cytoplasm was 14 +/- 2 ms (60x) and 24 +/- 1 ms (40x). Utilizing a mathematical model that accounted for ER reticular geometry, a GFP diffusion coefficient of 0.5-1 x 10(-7) cm2/s was computed, 9-18-fold less than that in water and 3-6-fold less than that in cytoplasm. By frequency-domain microfluorimetry, the GFP rotational correlation time was measured to be 39 +/- 8 ns, approximately 2-fold greater than that in water but comparable to that in the cytoplasm. Fluorescence recovery after photobleaching using a 40x lens was measured (at 23 degrees C unless otherwise indicated) for several potential effectors of ER structure and/or lumen environment: t1/2 values (in ms) were 143 +/- 8 (control), 100 +/- 13 (37 degrees C), 53 +/- 13 (brefeldin A), and 139 +/- 6 (dithiothreitol). These results indicate moderately slowed GFP diffusion in a continuous ER lumen.
Collapse
Affiliation(s)
- M J Dayel
- Departments of Medicine and Physiology, Cardiovascular Research Institute, San Francisco, California 94143-0521, USA
| | | | | |
Collapse
|
432
|
Abstract
The enzymes of the tricarboxylic acid cycle in the mitochondrial matrix are proposed to form a multienzyme complex, in which there is channeling of substrates between enzyme active sites. However no direct evidence has been obtained in vivo for the involvement of these enzymes in such a complex. We have labeled the tricarboxylic acid cycle enzyme, citrate synthase 1, in the yeast Saccharomyces cerevisiae, by biosynthetic incorporation of 5-fluorotryptophan. Comparison of the 19F NMR resonance intensities from the labeled enzyme in the intact cell and in cell-free lysates indicated that the enzyme is motionally restricted in vivo, consistent with its participation in a multienzyme complex.
Collapse
Affiliation(s)
- P M Haggie
- University of Cambridge, Department of Biochemistry, Old Addenbrooke's Site, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | |
Collapse
|
433
|
Cubitt AB, Woollenweber LA, Heim R. Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol 1999; 58:19-30. [PMID: 9891372 DOI: 10.1016/s0091-679x(08)61946-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- A B Cubitt
- Aurora Biosciences Corporation, San Diego, California 92121, USA
| | | | | |
Collapse
|
434
|
Almholt K, Arkhammar PO, Thastrup O, Tullin S. Simultaneous visualization of the translocation of protein kinase Calpha-green fluorescent protein hybrids and intracellular calcium concentrations. Biochem J 1999; 337 ( Pt 2):211-8. [PMID: 9882617 PMCID: PMC1219954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The alpha isoform of protein kinase C (PKCalpha) is a ubiquitous protein kinase, which, upon activation, translocates rapidly from the cytoplasm to the plasma membrane. To follow this translocation, PKCalpha was tagged with a highly fluorescent derivative of green fluorescent protein and stably expressed in baby hamster kidney cells overexpressing the muscarinic type 1 receptor. Addition of the agonist carbamylcholine triggered the onset of translocation within 1 s. Half-maximal and maximal translocation occurred after about 3 and 15 s respectively. Plasma membrane association of the fusion protein was transient and the protein returned to the cytoplasm within about 45 s. A high-resolution study showed an almost homogeneous cytoplasmic distribution of tagged PKCalpha in unstimulated cells and virtually complete translocation to the plasma membrane in response to the phorbol ester, PMA. Simultaneous visualization of intracellular calcium concentration ([Ca2+]i) and PKCalpha translocation in single cells showed a good correlation between these parameters at intermediate and high concentrations of agonist. At low agonist concentration, a small increase in [Ca2+]i was observed, without detectable translocation of PKCalpha. In contrast, PMA induced translocation of PKCalpha without any increase in [Ca2+]i. Neither cytochalasin D nor colcemid influenced the distribution or calcium-dependent translocation of tagged PKCalpha, indicating that PKCalpha translocation may be independent of both actin filaments and microtubules. The time course of PKCalpha translocation is compatible with diffusion of the protein from its cytoplasmic localization to the plasma membrane.
Collapse
Affiliation(s)
- K Almholt
- BioImage, Novo Nordisk A/S, 28 Morkhoj Bygade, DK-2860 Soborg, Denmark
| | | | | | | |
Collapse
|
435
|
Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S. Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 1999; 181:197-203. [PMID: 9864330 PMCID: PMC103549 DOI: 10.1128/jb.181.1.197-203.1999] [Citation(s) in RCA: 439] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rate of protein diffusion in bacterial cytoplasm may constrain a variety of cellular functions and limit the rates of many biochemical reactions in vivo. In this paper, we report noninvasive measurements of the apparent diffusion coefficient of green fluorescent protein (GFP) in the cytoplasm of Escherichia coli. These measurements were made in two ways: by photobleaching of GFP fluorescence and by photoactivation of a red-emitting fluorescent state of GFP (M. B. Elowitz, M. G. Surette, P. E. Wolf, J. Stock, and S. Leibler, Curr. Biol. 7:809-812, 1997). The apparent diffusion coefficient, Da, of GFP in E. coli DH5alpha was found to be 7.7 +/- 2.5 microm2/s. A 72-kDa fusion protein composed of GFP and a cytoplasmically localized maltose binding protein domain moves more slowly, with Da of 2.5 +/- 0.6 microm2/s. In addition, GFP mobility can depend strongly on at least two factors: first, Da is reduced to 3.6 +/- 0.7 microm2/s at high levels of GFP expression; second, the addition to GFP of a small tag consisting of six histidine residues reduces Da to 4.0 +/- 2.0 microm2/s. Thus, a single effective cytoplasmic viscosity cannot explain all values of Da reported here. These measurements have implications for the understanding of intracellular biochemical networks.
Collapse
Affiliation(s)
- M B Elowitz
- Departments of Physics, Princeton University, Princeton, New Jersey 08544,
| | | | | | | | | |
Collapse
|
436
|
Bardeen CJ, Yakovlev VV, Squier JA, Wilson KR. Quantum Control of Population Transfer in Green Fluorescent Protein by Using Chirped Femtosecond Pulses. J Am Chem Soc 1998. [DOI: 10.1021/ja9824627] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher J. Bardeen
- Contribution from the Department of Chemistry and Biochemistry and Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 93093-0339
| | - Vladislav V. Yakovlev
- Contribution from the Department of Chemistry and Biochemistry and Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 93093-0339
| | - Jeff A. Squier
- Contribution from the Department of Chemistry and Biochemistry and Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 93093-0339
| | - Kent R. Wilson
- Contribution from the Department of Chemistry and Biochemistry and Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 93093-0339
| |
Collapse
|
437
|
Li Y, Smith T, Grabski S, DeWitt DL. The membrane association sequences of the prostaglandin endoperoxide synthases-1 and -2 isozymes. J Biol Chem 1998; 273:29830-7. [PMID: 9792699 DOI: 10.1074/jbc.273.45.29830] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Based on the crystal structures of the prostaglandin endoperoxide H synthases-1 and -2 (PGHS-1 and PGHS-2), four short amphipathic helices near the amino termini of these proteins have been proposed to act as membrane binding domains. We constructed a series of plasmids coding for amino-terminal sequences of the PGHS-1 and PGHS-2 joined to the green fluorescent protein from Aequorea victoria, and we examined the subcellular distribution of the fusion proteins expressed from these plasmids using confocal microscopy of intact cells and Western blot analysis. DNA sequences coding for amino acids 1-139 and 1-136 of PGHS-1 and PGHS-2, respectively, which include the signal peptides, epidermal growth factor homology domains, glycosylation sites, and the putative membrane-binding helices of these two isozymes, were required for targeting the PGHS-green fluorescent protein fusion proteins to the endoplasmic reticulum and nuclear membranes when expressed in NIH 3T3 cells. Chimeric proteins that did not contain the putative membrane binding domains are targeted to the endoplasmic reticulum, but are not associated with membrane structures, and are present only in soluble cell fractions. These are the first experiments to directly confirm that the amphipathic helices present near the amino terminus of the PGHS-1 and PGHS-2 isozymes act as membrane anchors.
Collapse
Affiliation(s)
- Y Li
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
438
|
Abstract
In just three years, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology. Its amazing ability to generate a highly visible, efficiently emitting internal fluorophore is both intrinsically fascinating and tremendously valuable. High-resolution crystal structures of GFP offer unprecedented opportunities to understand and manipulate the relation between protein structure and spectroscopic function. GFP has become well established as a marker of gene expression and protein targeting in intact cells and organisms. Mutagenesis and engineering of GFP into chimeric proteins are opening new vistas in physiological indicators, biosensors, and photochemical memories.
Collapse
Affiliation(s)
- R Y Tsien
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla 92093-0647, USA
| |
Collapse
|
439
|
Olveczky BP, Verkman AS. Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles. Biophys J 1998; 74:2722-30. [PMID: 9591696 PMCID: PMC1299612 DOI: 10.1016/s0006-3495(98)77978-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Molecular transport in the aqueous lumen of organelles involves diffusion in a confined compartment with complex geometry. Monte Carlo simulations of particle diffusion in three dimensions were carried out to evaluate the influence of organelle structure on diffusive transport and to relate experimental photobleaching data to intrinsic diffusion coefficients. Two organelle structures were modeled: a mitochondria-like long closed cylinder containing fixed luminal obstructions of variable number and size, and an endoplasmic reticulum-like network of interconnected cylinders of variable diameter and density. Trajectories were computed in each simulation for >10(5) particles, generally for >10(5) time steps. Computed time-dependent concentration profiles agreed quantitatively with analytical solutions of the diffusion equation for simple geometries. For mitochondria-like cylinders, significant slowing of diffusion required large or wide single obstacles, or multiple obstacles. In simulated spot photobleaching experiments, a approximately 25% decrease in apparent diffusive transport rate (defined by the time to 75% fluorescence recovery) was found for a single thin transverse obstacle occluding 93% of lumen area, a single 53%-occluding obstacle of width 16 lattice points (8% of cylinder length), 10 equally spaced 53% obstacles alternately occluding opposite halves of the cylinder lumen, or particle binding to walls (with mean residence time = 10 time steps). Recovery curve shape with obstacles showed long tails indicating anomalous diffusion. Simulations also demonstrated the utility of measurement of fluorescence depletion at a spot distant from the bleach zone. For a reticulum-like network, particle diffusive transport was mildly reduced from that in unobstructed three-dimensional space. In simulated photobleaching experiments, apparent diffusive transport was decreased by 39-60% in reticular structures in which 90-97% of space was occluded. These computations provide an approach to analyzing photobleaching data in terms of microscopic diffusive properties and support the paradigm that organellar barriers must be quite severe to seriously impede solute diffusion.
Collapse
Affiliation(s)
- B P Olveczky
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco 94143, USA
| | | |
Collapse
|
440
|
Lo W, Molloy R, Hughes TE. Ionotropic glutamate receptors in the retina: moving from molecules to circuits. Vision Res 1998; 38:1399-410. [PMID: 9667007 DOI: 10.1016/s0042-6989(98)00008-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cloning of the glutamate-gated ion channels of the brain revealed an unexpected level of complexity: there are many different genes that encode distinct subunits of the receptor/channel complex and an even larger number of possible receptor subunit combinations. Many--nearly all--of these gene products are expressed in the retina, and the questions that we face today are: how are they used and why are there so many? Answers to these questions will be found at several levels. At the level of transcription, we have learned that different sets of subunits are expressed by different retinal neurons. Little is known about the transcriptional control of these genes, so it remains to be determined whether these patterns of expression reflect the need for different gene products in different retinal neurons or whether these patterns of expression reflect the functional constraints of gene expression. Another level of complexity is caused by alternative splicing, and here we report that at least four and possibly all eight of the different NMDAR1 transcripts are present in the mouse retina. The consequences of this alternative splicing are poorly understood, but antibodies directed against the two different possible C-termini of NMDAR1 label many of the same cell types. It is possible that these different splice variants are combined to generate the channels. While immunohistochemistry provides us with a glimpse of the subunit proteins, much remains to be learned about their half-life within a retinal cell, their intracellular trafficking, their regulation at the synapse, and the proteins associated with their cytoplasmic domains. An approach we have taken towards studying the dynamic properties of receptor subunits has been to fuse them to the cDNA encoding the jellyfish Green Fluorescent Protein. This makes it possible to follow functional subunits in transfected cells over time and to begin to measure the mobility of the protein.
Collapse
Affiliation(s)
- W Lo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
441
|
Kneen M, Farinas J, Li Y, Verkman AS. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 1998; 74:1591-9. [PMID: 9512054 PMCID: PMC1299504 DOI: 10.1016/s0006-3495(98)77870-1] [Citation(s) in RCA: 535] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It was found that the absorbance and fluorescence of green fluorescent protein (GFP) mutants are strongly pH dependent in aqueous solutions and intracellular compartments in living cells. pH titrations of purified recombinant GFP mutants indicated >10-fold reversible changes in absorbance and fluorescence with pKa values of 6.0 (GFP-F64L/S65T), 5.9 (S65T), 6.1 (Y66H), and 4.8 (T203I) with apparent Hill coefficients of 0.7 for Y66H and approximately 1 for the other proteins. For GFP-S65T in aqueous solution in the pH range 5-8, the fluorescence spectral shape, lifetime (2.8 ns), and circular dichroic spectra were pH independent, and fluorescence responded reversibly to a pH change in <1 ms. At lower pH, the fluorescence response was slowed and not completely reversed. These findings suggest that GFP pH sensitivity involves simple protonation events at a pH of >5, but both protonation and conformational changes at lower pH. To evaluate GFP as an intracellular pH indicator, CHO and LLC-PK1 cells were transfected with cDNAs that targeted GFP-F64L/S65T to cytoplasm, mitochondria, Golgi, and endoplasmic reticulum. Calibration procedures were developed to determine the pH dependence of intracellular GFP fluorescence utilizing ionophore combinations (nigericin and CCCP) or digitonin. The pH sensitivity of GFP-F64L/S65T in cytoplasm and organelles was similar to that of purified GFP-F64L/S65T in saline. NH4Cl pulse experiments indicated that intracellular GFP fluorescence responds very rapidly to a pH change. Applications of intracellular GFP were demonstrated, including cytoplasmic and organellar pH measurement, pH regulation, and response of mitochondrial pH to protonophores. The results establish the application of GFP as a targetable, noninvasive indicator of intracellular pH.
Collapse
Affiliation(s)
- M Kneen
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco 94143-0521, USA
| | | | | | | |
Collapse
|
442
|
Partikian A, Olveczky B, Swaminathan R, Li Y, Verkman AS. Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol 1998; 140:821-9. [PMID: 9472034 PMCID: PMC2141758 DOI: 10.1083/jcb.140.4.821] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is thought that the high protein density in the mitochondrial matrix results in severely restricted solute diffusion and metabolite channeling from one enzyme to another without free aqueous-phase diffusion. To test this hypothesis, we measured the diffusion of green fluorescent protein (GFP) expressed in the mitochondrial matrix of fibroblast, liver, skeletal muscle, and epithelial cell lines. Spot photobleaching of GFP with a 100x objective (0.8-micron spot diam) gave half-times for fluorescence recovery of 15-19 ms with >90% of the GFP mobile. As predicted for aqueous-phase diffusion in a confined compartment, fluorescence recovery was slowed or abolished by increased laser spot size or bleach time, and by paraformaldehyde fixation. Quantitative analysis of bleach data using a mathematical model of matrix diffusion gave GFP diffusion coefficients of 2-3 x 10(-7) cm2/s, only three to fourfold less than that for GFP diffusion in water. In contrast, little recovery was found for bleaching of GFP in fusion with subunits of the fatty acid beta-oxidation multienzyme complex that are normally present in the matrix. Measurement of the rotation of unconjugated GFP by time-resolved anisotropy gave a rotational correlation time of 23.3 +/- 1 ns, similar to that of 20 ns for GFP rotation in water. A rapid rotational correlation time of 325 ps was also found for a small fluorescent probe (BCECF, approximately 0.5 kD) in the matrix of isolated liver mitochondria. The rapid and unrestricted diffusion of solutes in the mitochondrial matrix suggests that metabolite channeling may not be required to overcome diffusive barriers. We propose that the clustering of matrix enzymes in membrane-associated complexes might serve to establish a relatively uncrowded aqueous space in which solutes can freely diffuse.
Collapse
Affiliation(s)
- A Partikian
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, 94143-0521, USA
| | | | | | | | | |
Collapse
|
443
|
Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Biophys Biochem Cytol 1997; 139:1281-92. [PMID: 9382873 PMCID: PMC2140220 DOI: 10.1083/jcb.139.5.1281] [Citation(s) in RCA: 1424] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bax, a member of the Bcl-2 protein family, accelerates apoptosis by an unknown mechanism. Bax has been recently reported to be an integral membrane protein associated with organelles or bound to organelles by Bcl-2 or a soluble protein found in the cytosol. To explore Bcl-2 family member localization in living cells, the green fluorescent protein (GFP) was fused to the NH2 termini of Bax, Bcl-2, and Bcl-XL. Confocal microscopy performed on living Cos-7 kidney epithelial cells and L929 fibroblasts revealed that GFP-Bcl-2 and GFP-Bcl-XL had a punctate distribution and colocalized with a mitochondrial marker, whereas GFP-Bax was found diffusely throughout the cytosol. Photobleaching analysis confirmed that GFP-Bax is a soluble protein, in contrast to organelle-bound GFP-Bcl-2. The diffuse localization of GFP-Bax did not change with coexpression of high levels of Bcl-2 or Bcl-XL. However, upon induction of apoptosis, GFP-Bax moved intracellularly to a punctate distribution that partially colocalized with mitochondria. Once initiated, this Bax movement was complete within 30 min, before cellular shrinkage or nuclear condensation. Removal of a COOH-terminal hydrophobic domain from GFP-Bax inhibited redistribution during apoptosis and inhibited the death-promoting activity of both Bax and GFP-Bax. These results demonstrate that in cells undergoing apoptosis, an early, dramatic change occurs in the intracellular localization of Bax, and this redistribution of soluble Bax to organelles appears important for Bax to promote cell death.
Collapse
Affiliation(s)
- K G Wolter
- Biochemistry Section, Surgical Neurology Branch, Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
444
|
Burke NV, Han W, Li D, Takimoto K, Watkins SC, Levitan ES. Neuronal peptide release is limited by secretory granule mobility. Neuron 1997; 19:1095-102. [PMID: 9390522 DOI: 10.1016/s0896-6273(00)80400-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuropeptides are slowly released from a limited pool of secretory granules. To visualize this process, GFP-tagged preproatrial natriuretic factor (ANF) was expressed in nerve growth factor-treated PC12 cells. Biochemical and microfluorimetric experiments demonstrate that proANF-EGFP is packaged in granules that accumulate at neurite endings and is released in a Ca2+-dependent manner by secretagogs. Confocal microscopy shows that secretion is associated with depletion of granules distributed throughout the terminal. Fluorescence recovery after photobleaching and time-lapse particle tracking reveal that only a subpopulation of cytoplasmic secretory granules, similar in size to the releasable pool, can move quickly enough (D = 6 x 10(-11) cm2/s) to support release. Therefore, sustained secretory responses are limited by the number of mobile granules and their slow rate of diffusion.
Collapse
Affiliation(s)
- N V Burke
- Department of Pharmacology, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
445
|
Abstract
In the few years since its gene was first cloned, the Aequorea victoria green fluorescent protein (GFP) has become a powerful tool in cell biology, functioning as a marker for gene expression, protein localization and protein dynamics in living cells. GFP variants with improved fluorescence intensity and altered spectral characteristics have been identified, but additional GFP variants are still desirable for multiple labeling experiments, protein interaction studies and improved visibility in some organisms. In particular, long-wavelength (red) fluorescence has remained elusive. Here we describe a red-emitting, green-absorbing fluorescent state of GFP that is generated by photoactivation with blue light. GFP can be switched to its red-emitting state easily with a laser or fluorescence microscope lamp under conditions of low oxygen concentration. This previously unnoticed ability enables regional, non-invasive marking of proteins in vivo. In particular, we report here the use of GFP photoactivation to make the first direct measurements of protein diffusion in the cytoplasm of living bacteria.
Collapse
Affiliation(s)
- M B Elowitz
- Department of Physics, Princeton University, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
446
|
Seksek O, Biwersi J, Verkman AS. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 1997; 138:131-42. [PMID: 9214387 PMCID: PMC2139942 DOI: 10.1083/jcb.138.1.131] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1997] [Revised: 05/12/1997] [Indexed: 02/04/2023] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) was used to quantify the translational diffusion of microinjected FITC-dextrans and Ficolls in the cytoplasm and nucleus of MDCK epithelial cells and Swiss 3T3 fibroblasts. Absolute diffusion coefficients (D) were measured using a microsecond-resolution FRAP apparatus and solution standards. In aqueous media (viscosity 1 cP), D for the FITC-dextrans decreased from 75 to 8.4 x 10(-7) cm2/s with increasing dextran size (4-2,000 kD). D in cytoplasm relative to that in water (D/Do) was 0.26 +/- 0.01 (MDCK) and 0.27 +/- 0.01 (fibroblasts), and independent of FITC-dextran and Ficoll size (gyration radii [RG] 40-300 A). The fraction of mobile FITC-dextran molecules (fmob), determined by the extent of fluorescence recovery after spot photobleaching, was >>0.75 for RG << 200 A, but decreased to <<0.5 for RG >> 300 A. The independence of D/Do on FITC-dextran and Ficoll size does not support the concept of solute "sieving" (size-dependent diffusion) in cytoplasm. Photobleaching measurements using different spot diameters (1.5-4 micron) gave similar D/Do, indicating that microcompartments, if present, are of submicron size. Measurements of D/Do and fmob in concentrated dextran solutions, as well as in swollen and shrunken cells, suggested that the low fmob for very large macromolecules might be related to restrictions imposed by immobile obstacles (such as microcompartments) or to anomalous diffusion (such as percolation). In nucleus, D/Do was 0.25 +/- 0.02 (MDCK) and 0.27 +/- 0.03 (fibroblasts), and independent of solute size (RG 40-300 A). Our results indicate relatively free and rapid diffusion of macromolecule-sized solutes up to approximately 500 kD in cytoplasm and nucleus.
Collapse
Affiliation(s)
- O Seksek
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0521, USA
| | | | | |
Collapse
|