401
|
Lee JM, Niles JC, Wishnok JS, Tannenbaum SR. Peroxynitrite reacts with 8-nitropurines to yield 8-oxopurines. Chem Res Toxicol 2002; 15:7-14. [PMID: 11800591 DOI: 10.1021/tx010093d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxynitrite reacts with 2'-deoxyguanosine to yield several major products, including 8-oxo-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine (8-nitroGua). While the terminal products formed during the reaction of 8-oxodG with peroxynitrite have been previously characterized, those formed from 8-nitroGua have not. To identify these products, 9-ethyl-8-nitroxanthine was used as a model for 8-nitroGua, since the former could be easily synthesized in high yield, and facilitated reversed-phase HPLC separation of the resulting products. Using this model substrate, the products formed during the peroxynitrite reaction were identified as the ethyl derivatives of oxaluric acid, 5-iminoimidazolidin-2,4-dione, III, [N-nitro-N'-[2,4-dioxo-imidazolidine-5-ylidene]-urea, V, dehydroallantoin, parabanic acid, cyanuric acid, and uric acid. Upon the basis of the previous studies with 8-oxodG, these products were recognized as those expected to arise from peroxynitrite-mediated uric acid oxidation. Furthermore, the presence of uric acid in the reaction mixture led us to propose a model in which the 8-nitropurine is first converted to the 8-oxopurine which is further oxidized by peroxynitrite to give the observed final products. We have also provided evidence suggesting that the peroxynitrite anion, acting as a nucleophile, might be responsible for the initial conversion of the 8-nitropurine to the 8-oxopurine and that a hydroxyl radical or oxidative process is less likely to explain this conversion.
Collapse
Affiliation(s)
- Joseph M Lee
- Division of Bioengineering and Environmental Health and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
402
|
Aydogan B, Marshall DT, Swarts SG, Turner JE, Boone AJ, Richards NG, Bolch WE. Site-specific OH attack to the sugar moiety of DNA: a comparison of experimental data and computational simulation. Radiat Res 2002; 157:38-44. [PMID: 11754640 DOI: 10.1667/0033-7587(2002)157[0038:ssoatt]2.0.co;2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Little computational or experimental information is available on site-specific hydroxyl attack probabilities to DNA. In this study, an atomistic stochastic model of OH radical reactions with DNA was developed to compute relative OH attack probabilities at individual deoxyribose hydrogen atoms. A model of the self-complementary decamer duplex d(CCAACGTTGG) was created including Na(+) counter ions and the water molecules of the first hydration layer. Additionally, a method for accounting for steric hindrance from nonreacting atoms was implemented. The model was then used to calculate OH attack probabilities at the various C-H sites of the sugar moiety. Results from this computational model show that OH radicals exhibit preferential attack at different deoxyribose hydrogens, as suggested by their corresponding percentage solvent-accessible surface areas. The percentage OH attack probabilities for the deoxyribose hydrogens [1H(5')+2H(5'), H(4'), H(3'), 1H(2')+2H(2'), H(1')] were calculated as approximately 54.6%, 20.6%, 15.0%, 8.5% and 1.3%, respectively, averaged across the sequence. These results are in good agreement with the latest experimental site-specific DNA strand break data of Balasubramanian et al. [Proc. Natl. Acad. Sci. USA 95, 9738-9742 (1998)]. The data from this stochastic model suggest that steric hindrance from nonreacting atoms significantly influences site-specific hydroxyl radical attack probabilities in DNA. A number of previous DNA damage models have been based on the assumption that C(4') is the preferred site, or perhaps the only site, for OH-mediated DNA damage. However, the results of the present study are in good agreement the experimental results of Balasubramanian et al. in which OH radicals exhibit preferential initial attack at sugar hydrogen atoms in the order 1H(5')+2H(5') > H(4') > H(3') > 1H(2')+2H(2') > H(1').
Collapse
Affiliation(s)
- Bulent Aydogan
- Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
403
|
Kuraoka I, Robins P, Masutani C, Hanaoka F, Gasparutto D, Cadet J, Wood RD, Lindahl T. Oxygen free radical damage to DNA. Translesion synthesis by human DNA polymerase eta and resistance to exonuclease action at cyclopurine deoxynucleoside residues. J Biol Chem 2001; 276:49283-8. [PMID: 11677235 DOI: 10.1074/jbc.m107779200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclopurine deoxynucleosides are common DNA lesions generated by exposure to reactive oxygen species under hypoxic conditions. The S and R diastereoisomers of cyclodeoxyadenosine on DNA were investigated separately for their ability to block 3' to 5' exonucleases. The mammalian DNA-editing enzyme DNase III (TREX1) was blocked by both diastereoisomers, whereas only the S diastereoisomer was highly efficient in preventing digestion by the exonuclease function of T4 DNA polymerase. Digestion in both cases was frequently blocked one residue before the modified base. Oligodeoxyribonucleotides containing a cyclodeoxyadenosine residue were further employed as templates for synthesis by human DNA polymerase eta (pol eta). pol eta could catalyze translesion synthesis on the R diastereoisomer of cyclodeoxyadenosine. On the S diastereoisomer, pol eta could catalyze the incorporation of one nucleotide opposite the lesion but could not continue elongation. Although pol eta preferentially incorporated dAMP opposite the R diastereoisomer, elongation continued only when dTMP was incorporated, suggesting bypass of this lesion by pol eta with reasonable fidelity. With the S diastereoisomer, pol eta mainly incorporated dAMP or dTMP opposite the lesion but could not elongate even after incorporating a correct nucleotide. These data suggest that the S diastereoisomer may be a more cytotoxic DNA lesion than the R diastereoisomer.
Collapse
Affiliation(s)
- I Kuraoka
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
404
|
Strein TG, Morris D, Palmer J, Landers JP. Discontinuous electrophoretic stacking system for cholate-based electrokinetic chromatographic separation of 8-hydroxy-2'-deoxyguanosine from unmodified deoxynucleosides. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 763:71-8. [PMID: 11710585 DOI: 10.1016/s0378-4347(01)00367-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stacking and baseline-resolved separation of the oxidative damage marker, 8-hydroxy-2'-deoxyguanosine (8-OHdG), from unmodified deoxynucleosides in under 4 min is reported. Separations of 8-OHdG from 2'-deoxyadenosine, 2'-deoxycytosine, 2'-deoxyguanosine, and thymidine are accomplished using micellar electrokinetic capillary chromatography with sodium cholate. Importantly, the use of sulfate, intentionally added to the sample matrix, results in effective stacking of 8-OHdG and other analytes. This work extends electrokinetic stacking injection of neutral analytes to include deoxynucleosides. The procedure works well with either electrokinetic or hydrodynamic injection. The separation buffer and sample matrix composition were optimized to effect stacking conditions with an uncoated 50 microm fused-silica capillary. The lower limit of detection for the analytes is in the nanomolar range, and is more than an order of magnitude lower than without stacking. With 30 s (5.7 cm) electrokinetic injections, stacking and baseline separation of 8-hydroxy-2'-deoxyguanosine from the unmodified nucleosides is accomplished, even in the presence of a 400-fold excess of unmodified deoxynucleosides.
Collapse
Affiliation(s)
- T G Strein
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| | | | | | | |
Collapse
|
405
|
|
406
|
Luo W, Muller JG, Burrows CJ. The pH-dependent role of superoxide in riboflavin-catalyzed photooxidation of 8-oxo-7,8-dihydroguanosine. Org Lett 2001; 3:2801-4. [PMID: 11529760 DOI: 10.1021/ol0161763] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text]. The riboflavin-catalyzed photooxidation of 2',3',5'-tri-O-acetyl-8-oxo-7,8-dihydroguanosine generates a radical intermediate that is competitively trapped by H(2)O, O2(-)(*), or O(2). The products of H(2)O trapping have been previously described as the spiroiminodihydantoin (pH >or= 7) and iminoallantoin/guanidinohydantoin (pH < 7) nucleosides. Trapping by O2(-)(*) leads to the oxaluric acid (pH <or= 7) and imidazolone (pH >or= 8.6) pathways (R' ', R' ' = H or 2,3,5-tri-O-Ac-ribofuranosyl). The pH-dependent role of superoxide was probed using Mn-SOD and compared to guanosine and 8-methoxyguanosine photooxidation.
Collapse
Affiliation(s)
- W Luo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | |
Collapse
|
407
|
Zhang LK, Rempel D, Gross ML. Matrix-assisted laser desorption/ionization mass spectrometry for locating abasic sites and determining the rates of enzymatic hydrolysis of model oligodeoxynucleotides. Anal Chem 2001; 73:3263-73. [PMID: 11476224 DOI: 10.1021/ac010042l] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method using a combination of exonuclease enzymatic digestion and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was developed to locate model abasic sites in a series of model 21-base oligodeoxynucleotides in which a nucleobase was replaced by a hydrogen atom. The exonuclease digestion rate, with either snake venom phosphodiesterase (SVP) or bovine spleen phosphodiesterase (BSP), clearly slows as the digestion approaches the abasic sites and stops as it reaches it. An oligodeoxynucleotide containing an abasic site in which OH replaces the nucleobase shows similar results. MALDI mass spectra taken at appropriate times during the course of hydrolysis are the basis for rate measurements, and the kinetics also reveal the location of the abasic site. A mathematical treatment of the time-dependent MALDI data was implemented to obtain rate curves and rate constants for the enzymatic digestion of both modified and unmodified oligodeoxynucleotides.
Collapse
Affiliation(s)
- L K Zhang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
408
|
Shafirovich V, Dourandin A, Huang W, Geacintov NE. The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides. J Biol Chem 2001; 276:24621-6. [PMID: 11320091 DOI: 10.1074/jbc.m101131200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The carbonate radical anion (CO(3)) is believed to be an important intermediate oxidant derived from the oxidation of bicarbonate anions and nitrosoperoxocarboxylate anions (formed in the reaction of CO(2) with ONOO(-)) in cellular environments. Employing nanosecond laser flash photolysis methods, we show that the CO(3) anion can selectively oxidize guanines in the self-complementary oligonucleotide duplex d(AACGCGAATTCGCGTT) dissolved in air-equilibrated aqueous buffer solution (pH 7.5). In these time-resolved transient absorbance experiments, the CO(3) radicals are generated by one-electron oxidation of the bicarbonate anions (HCO(3)(-)) with sulfate radical anions (SO(4)) that, in turn, are derived from the photodissociation of persulfate anions (S(2)O(8)(2-)) initiated by 308-nm XeCl excimer laser pulse excitation. The kinetics of the CO(3) anion and neutral guanine radicals, G(-H)( small middle dot), arising from the rapid deprotonation of the guanine radical cation, are monitored via their transient absorption spectra (characteristic maxima at 600 and 315 nm, respectively) on time scales of microseconds to seconds. The bimolecular rate constant of oxidation of guanine in this oligonucleotide duplex by CO(3) is (1.9 +/- 0.2) x 10(7) m(-1) s(-1). The decay of the CO(3) anions and the formation of G(-H)( small middle dot) radicals are correlated with one another on the millisecond time scale, whereas the neutral guanine radicals decay on time scales of seconds. Alkali-labile guanine lesions are produced and are revealed by treatment of the irradiated oligonucleotides in hot piperidine solution. The DNA fragments thus formed are identified by a standard polyacrylamide gel electrophoresis assay, showing that strand cleavage occurs at the guanine sites only. The biological implications of these oxidative processes are discussed.
Collapse
Affiliation(s)
- V Shafirovich
- Chemistry Department, Radiation and Solid State Laboratory, 31 Washington Place, New York University, New York, NY 10003-5180, USA.
| | | | | | | |
Collapse
|
409
|
Geller HM, Cheng KY, Goldsmith NK, Romero AA, Zhang AL, Morris EJ, Grandison L. Oxidative stress mediates neuronal DNA damage and apoptosis in response to cytosine arabinoside. J Neurochem 2001; 78:265-75. [PMID: 11461962 DOI: 10.1046/j.1471-4159.2001.00395.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytosine arabinoside (AraC) is a nucleoside analog that produces significant neurotoxicity in cancer patients. The mechanism by which AraC causes neuronal death is a matter of some debate because the conventional understanding of AraC toxicity requires incorporation into newly synthesized DNA. Here we demonstrate that AraC-induced apoptosis of cultured cerebral cortical neurons is mediated by oxidative stress. AraC-induced cell death was reduced by treatment with several different free-radical scavengers (N-acetyl-L-cysteine, dipyridamole, uric acid, and vitamin E) and was increased following depletion of cellular glutathione stores. AraC induced the formation of reactive oxygen species in neurons as measured by an increase in the fluorescence of the dye 5-(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate. AraC produced DNA single-strand breaks as measured by single-cell gel electrophoresis and the level of DNA strand breakage was reduced by treatment with the free radical scavengers. These data support a model in which AraC induces neuronal apoptosis by provoking the generation of reactive oxygen species, causing oxidative DNA damage and initiating the p53-dependent apoptotic program. These observations suggest the use of antioxidant therapies to reduce neurotoxicity in AraC chemotherapeutic regimens.
Collapse
Affiliation(s)
- H M Geller
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
410
|
Luo W, Muller JG, Rachlin EM, Burrows CJ. Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model. Chem Res Toxicol 2001; 14:927-38. [PMID: 11453741 DOI: 10.1021/tx010072j] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Use of one-electron oxidants such as Na(2)IrCl(6) to oxidize 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) residues in oligodeoxynucleotides was previously shown to lead to predominant formation of a base lesion of mass M - 10 compared to starting material [Duarte et al. (1999) Nucleic Acids Res. 27, 596-502]. To thoroughly characterize the structure of this lesion, the oxidation of the nucleoside 9-N-(2',3',5'-tri-O-acetyl-beta-D-erythro-pentanosyl)-8-oxo-7,8-dihydroguanine with one-electron oxidants at pH 2-4 was used as a model for duplex DNA oxidation of OG residues. (1)H NMR and H,H COSY NMR studies in CD(3)OD along with LC-ESI-MS/MS fragmentation analysis are consistent with the assignment of the M - 10 species as a mixture of two pH-dependent equilibrating isomers, a guanidinohydantoin (Gh) and an iminoallantoin (Ia) nucleoside, both present as mixtures of epimers at the C5 position of the hydantoin ring, i.e., four total isomers are formed. The Gh/Ia mixture is formed from hydration and decarboxylation of the initially formed intermediate 5-hydroxy-8-oxo-7,8-dihydroguanosine, a species that is also produced by four-electron oxidation (e.g., singlet oxygen) of guanosine. The product mixture can be further oxidized to a species designated Ia(ox), a hydrolytically unstable material at pH 7 that has been characterized by ESI-MS and (1)H NMR. Competition studies with 8-oxo-7,8-dihydroadenosine placed the redox potential of Gh/Ia at about 1.0 V vs NHE. These studies provide important information concerning the structures of lesions obtained when OG, a "hot spot" for oxidative damage, serves as a "hole trap" in long-range electron-transfer studies.
Collapse
Affiliation(s)
- W Luo
- Contribution from the Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | |
Collapse
|
411
|
Bellon S, Gasparutto D, Romieu A, Cadet J. 5-(phenylthiomethyl)-2'-deoxyuridine as an efficient photoreactive precursor to generate single and multiple lesions within DNA fragments. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:967-71. [PMID: 11563156 DOI: 10.1081/ncn-100002470] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
5-(Phenylthiomethyl)-2'-deoxyuridine was successfully incorporated into DNA oligomers by automated DNA synthesis using phosphoramidite chemistry. UV exposure of the latter thionucleoside containing oligonucleotides under anaerobic and aerobic conditions gives rise to specific base lesions. The photoproducts have been isolated and further characterized on the basis of NMR and mass spectrometric analyses.
Collapse
Affiliation(s)
- S Bellon
- Laboratoire des Lésions des Acides Nucléiques Service de Chimie Inorganique et Biologique, UMR 5046, Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble F-38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
412
|
Abdoul-Carime H, Cloutier P, Sanche L. Low-energy (5-40 eV) electron-stimulated desorption of anions from physisorbed DNA bases. Radiat Res 2001; 155:625-33. [PMID: 11260665 DOI: 10.1667/0033-7587(2001)155[0625:leeesd]2.0.co;2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We present the results of experiments on anion desorption from the physisorbed DNA bases adenine, thymine, guanine and cytosine induced by the impact of low-energy (5-40 eV) electrons. Electron bombardment of DNA base films induces ring fragmentation and desorption of H(-), O(-), OH(-), CN(-), OCN(- ) and CH(2)(-) anions through either single or complex multibond dissociation. We designate the variation of the yield of an anion with electron energy as the yield function. Below 15 eV incident electron energy, bond cleavage is controlled mainly by dissociative electron attachment. Above 15 eV, the portion of a yield function that increases linearly is attributed to nonresonant processes, such as dipolar dissociation. A resonant structure is superimposed on this signal around 20 eV in the anion yield functions. This structure implicates dissociative electron attachment and/or resonant decay of the transient anion into the dipolar dissociation channel, with a minimal contribution from multiple inelastic electron scattering. The yields of all desorbing anions clearly show that electron resonances contribute to the damage of all DNA bases bombarded with 5-40 eV electrons. Comparison of the ion yields indicates that adenine is the least sensitive base to slow electron attack. Electron-irradiated guanine films exhibit the largest yields of desorbed anions.
Collapse
Affiliation(s)
- H Abdoul-Carime
- Group of the Canadian Institutes of Health Research in the Radiation Sciences, Faculté de Médecine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | |
Collapse
|
413
|
Zhang QM. Role of the Escherichia coli and human DNA glycosylases that remove 5-formyluracil from DNA in the prevention of mutations. JOURNAL OF RADIATION RESEARCH 2001; 42:11-19. [PMID: 11393886 DOI: 10.1269/jrr.42.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ionizing radiation induces a wide variety of modifications to purine and pyrimidine residues. The exocyclic methyl group of thymine does not escape oxidative damage. Any 5-hydroperoxymethyluracil produced is spontaneously decomposed to form 5-formyluracil (5-foU) and 5-hydroxymethyluracil. The yield of 5-foU by ionizing radiation is roughly the same as that of 8-oxoguanine. 5-foU is a potential mutagenic damage in vitro and in vivo. Mammalian cells have an activity that removes 5-foU from X-irradiated DNA. Furthermore, the Nth, Nei and MutM proteins of E. coli have DNA glycosylase/AP lyase activities that recognize and remove 5-foU in DNA. The mutation frequency of 5-foU-containing plasmid increases when replicated in E. coli nthneimutMalkA. Single mutations in the nth, nei or mutM gene do not affect the mutation frequency. Therefore, these gene products are likely backup enzymes used to repair 5-foU in DNA. Furthermore, the human hNTH1 enzyme, a homologue of E. coli Nth, is found to have similar DNA glycosylase activity to that of the Nth protein.
Collapse
Affiliation(s)
- Q M Zhang
- Laboratory of Radiation Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
414
|
Copin JC, Gasche Y, Li Y, Chan PH. Prolonged hypoxia during cell development protects mature manganese superoxide dismutase-deficient astrocytes from damage by oxidative stress. FASEB J 2001; 15:525-34. [PMID: 11156968 DOI: 10.1096/fj.00-0330com] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mouse astrocytes deficient in the mitochondrial form of superoxide dismutase do not grow in culture under 20% atmospheric O2 levels. By flow cytometry, immunocytochemistry, and enzymatic analysis we have shown that the oxygen block of cell division is due to a decrease in the number of cells entering the S phase of the cell cycle and is concomitant with higher DNA oxidation and impairment of mitochondrial functions. Seeding the cells under 5% O2 until the cultures become confluent can circumvent this problem. An initial hypoxic environment increases the resistance of manganese superoxide dismutase-deficient astrocytes to superoxide radicals artificially produced by paraquat treatment, preserves respiratory activity, and allows normoxic division during a subsequent passage. DNA oxidation is then not higher than in wild-type control cells. However, the adaptation of the cells is not due to compensation by other enzymes of the antioxidant defense system and is specific to cells totally lacking manganese superoxide dismutase. Alteration of the phenotype by prior hypoxia exposure in the SOD2-deficient mutant provide a unique model to study adaptative mechanisms of cellular resistance to oxygen toxicity.
Collapse
Affiliation(s)
- J C Copin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487 USA
| | | | | | | |
Collapse
|
415
|
Adam W, Arnold MA, Saha-Möller CR. Photooxidative damage of guanine in DG and DNA by the radicals derived from the alpha cleavage of the electronically excited carbonyl products generated in the thermolysis of alkoxymethyl-substituted dioxetanes and the photolysis of alkoxyacetones. J Org Chem 2001; 66:597-604. [PMID: 11429836 DOI: 10.1021/jo0056491] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On thermolysis of the methoxy (MeO-TMD), tert-butoxy (tBuO-TMD), and hydroxy (HO-TMD) derivatives of 3,3,4,4-tetramethyl-1,2-dioxetane (TMD) in the presence of dG and calf-thymus DNA, the guanine is oxidized considerably more efficiently than the parent TMD. The same trend in the oxidative reactivity is observed for the photolysis of the corresponding oxy-substituted ketones versus acetone. The oxidative reactivity order in the dioxetane thermolysis, as well as in the ketone photolysis, parallels the ability of the excited ketones to release radicals (determined by spin trapping with DMPO and EPR spectroscopy) upon alpha cleavage (Norrish-type-I reaction). In the presence of molecular oxygen, the carbon-centered radicals are scavenged to produce peroxyl radicals, which are proposed as the reactive species in the oxidation of the guanine in dG and calf-thymus DNA.
Collapse
Affiliation(s)
- W Adam
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | |
Collapse
|
416
|
Chmiel NH, Golinelli MP, Francis AW, David SS. Efficient recognition of substrates and substrate analogs by the adenine glycosylase MutY requires the C-terminal domain. Nucleic Acids Res 2001; 29:553-64. [PMID: 11139626 PMCID: PMC29658 DOI: 10.1093/nar/29.2.553] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2000] [Revised: 11/03/2000] [Accepted: 11/03/2000] [Indexed: 12/12/2022] Open
Abstract
The Escherichia coli DNA repair enzyme MutY plays an important role in the prevention of DNA mutations by removing misincorporated adenine residues from 7, 8-dihydro-8-oxo-2'-deoxyguanosine:2'-deoxyadenosine (OG:A) mispairs. The N-terminal domain of MutY (Stop 225, Met1-Lys225) has a sequence and structure that is characteristic of a superfamily of base excision repair glycosylases; however, MutY and its homologs contain a unique C-terminal domain. Previous studies have shown that the C-terminal domain confers specificity for OG:A substrates over G:A substrates and exhibits homology to the d(OG)TPase MutT, suggesting a role in OG recognition. In order to provide additional information on the importance of the C-terminal domain in damage recognition, we have investigated the kinetic properties of a form lacking this domain (Stop 225) under multiple- and single-turnover conditions. In addition, the interaction of Stop 225 with a series of non-cleavable substrate and product analogs was evaluated using gel retardation assays and footprinting experiments. Under multiple-turnover conditions Stop 225 exhibits biphasic kinetic behavior with both OG:A and G:A substrates, likely due to rate-limiting DNA product release. However, the rate of turnover of Stop 225 was increased 2-fold with OG:A substrates compared to the wild-type enzyme. In contrast, the intrinsic rate for adenine removal by Stop 225 from both G:A and OG:A substrates is significantly reduced (10- to 25-fold) compared to the wild-type. The affinity of Stop 225 for substrate analogs was dramatically reduced, as was the ability to discriminate between substrate analogs paired with OG over G. Interestingly, similar hydroxyl radical and DMS footprinting patterns are observed for Stop 225 and wild-type MutY bound to DNA duplexes containing OG opposite an abasic site mimic or a non-hydrogen bonding A analog, suggesting that similar regions of the DNA are contacted by both enzyme forms. Importantly, Stop 225 has a reduced ability to prevent DNA mutations in vivo. This implies that the reduced adenine glycosylase activity translates to a reduced capacity of Stop 225 to prevent DNA mutations in vivo.
Collapse
Affiliation(s)
- N H Chmiel
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA
| | | | | | | |
Collapse
|
417
|
Hua Y, Wainhaus SB, Yang Y, Shen L, Xiong Y, Xu X, Zhang F, Bolton JL, van Breemen RB. Comparison of negative and positive ion electrospray tandem mass spectrometry for the liquid chromatography tandem mass spectrometry analysis of oxidized deoxynucleosides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2001; 12:80-87. [PMID: 11142363 DOI: 10.1016/s1044-0305(00)00191-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxidized deoxynucleosides are widely used as biomarkers for DNA oxidation and oxidative stress assessment. Although gas chromatography mass spectrometry is widely used for the measurement of multiple DNA lesions, this approach requires complex sample preparation contributing to possible artifactual oxidation. To address these issues, a high performance liquid chromatography (HPLC)-tandem mass spectrometric (LC-MS/MS) method was developed to measure 8-hydroxy-2'-deoxyguanosine (8-OH-dG), 8-hydroxy-2'-deoxyadenosine (8-OH-dA), 2-hydroxy-2'-deoxyadenosine (2-OH-dA), thymidine glycol (TG), and 5-hydroxy-methyl-2'-deoxyuridine (HMDU) in DNA samples with fast sample preparation. In order to selectively monitor the product ions of these precursors with optimum sensitivity for use during quantitative LC-MS/MS analysis, unique and abundant fragment ions had to be identified during MS/MS with collision-induced dissociation (CID). Positive and negative ion electrospray tandem mass spectra with CID were compared for the analysis of these five oxidized deoxynucleosides. The most abundant fragment ions were usually formed by cleavage of the glycosidic bond in both positive and negative ion modes. However, in the negative ion electrospray tandem mass spectra of 8-OH-dG, 2-OH-dA, and 8-OH-dA, cleavage of two bonds within the sugar ring produced abundant S1 type ions with loss of a neutral molecule weighing 90 u, [M - H - 90]-. The signal-to-noise ratio was similar for negative and positive ion electrospray MS/MS except in the case of thymidine glycol where the signal-to-noise was 100 times greater in negative ionization mode. Therefore, negative ion electrospray tandem mass spectrometry with CID would be preferred to positive ion mode for the analysis of sets of oxidized deoxynucleosides that include thymidine glycol. Investigation of the fragmentation pathways indicated some new general rules for the fragmentation of negatively charged oxidized nucleosides. When purine nucleosides contain a hydroxyl group in the C8 position, an S1 type product ion will dominate the product ions due to a six-membered ring hydrogen transfer process. Finally, a new type of fragment ion formed by elimination of a neutral molecule weighing 48 (CO2H4) from the sugar moiety was observed for all three oxidized purine nucleosides.
Collapse
Affiliation(s)
- Y Hua
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 60612-7231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
418
|
DeMarini DM, Shelton ML, Kohan MJ, Hudgens EE, Kleindienst TE, Ball LM, Walsh D, de Boer JG, Lewis-Bevan L, Rabinowitz JR, Claxton LD, Lewtas J. Mutagenicity in lung of big Blue((R)) mice and induction of tandem-base substitutions in Salmonella by the air pollutant peroxyacetyl nitrate (PAN): predicted formation of intrastrand cross-links. Mutat Res 2000; 457:41-55. [PMID: 11106797 DOI: 10.1016/s0027-5107(00)00121-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peroxyacetyl nitrate (PAN) is a ubiquitous air pollutant formed from NO(2) reacting with acetoxy radicals generated from ambient aldehydes in the presence of sunlight and ozone. It contributes to eye irritation associated with photochemical smog and is present in most urban air. PAN was generated in a chamber containing open petri dishes of Salmonella TA100 (gas-phase exposure). After subtraction of the background mutation spectrum, the spectrum of PAN-induced mutants selected at 3.1-fold above the background mutant yield was 59% GC-->TA, 29% GC-->AT, 2% GC-->CG, and 10% multiple mutations - primarily GG-->TT tandem-base substitutions. Using computational molecular modeling methods, a mechanism was developed for producing this unusual tandem-base substitution. The mechanism depends on the protonation of PAN near the polyanionic DNA to release NO(2)(+) resulting in intrastrand dimer formation. Insertion of AA opposite the dimerized GG would account for the tandem GG-->TT transversions. Nose-only exposure of Big Blue((R)) mice to PAN at 78ppm (near the MTD) was mutagenic at the lacI gene in the lung (mutant frequency +/-S.E. of 6.16+/-0.58/10(5) for controls versus 8.24+/-0.30/10(5) for PAN, P=0.016). No tandem-base mutations were detected among the 40 lacI mutants sequenced. Dosimetry with 3H-PAN showed that 24h after exposure, 3.9% of the radiolabel was in the nasal tissue, and only 0.3% was in the lung. However, based on the molecular modeling considerations, the labeled portion of the molecule would not have been expected to have been bound covalently to DNA. Our results indicate that PAN is weakly mutagenic in the lungs of mice and in Salmonella and that PAN produces a unique signature mutation (a tandem GG-->TT transversion) in Salmonella that is likely due to a GG intrastrand cross-link. Thus, PAN may pose a mutagenic and possible carcinogenic risk to humans, especially at the high concentrations at which it is present in some urban environments.
Collapse
Affiliation(s)
- D M DeMarini
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, 27711, Research Triangle Park, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
419
|
Leipold MD, Muller JG, Burrows CJ, David SS. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG. Biochemistry 2000; 39:14984-92. [PMID: 11101315 DOI: 10.1021/bi0017982] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intriguing feature of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) is that it is highly reactive toward further oxidation. Indeed, OG has been shown to be a "hot spot" for oxidative damage and susceptible to oxidation by a variety of cellular oxidants. Recent work has identified two new DNA lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), resulting from one-electron oxidation of OG. The presence of Gh and Sp lesions in DNA templates has been shown to result in misinsertion of G and A by DNA polymerases, and therefore, both are potentially mutagenic DNA lesions. The base excision repair (BER) glycosylases Fpg and MutY serve to prevent mutations associated with OG in Escherichia coli, and therefore, we have investigated the ability of these two enzymes to process DNA duplex substrates containing the further oxidized OG lesions, Gh and Sp. The Fpg protein, which removes OG and a variety of other oxidized purine base lesions, was found to remove Gh and Sp efficiently opposite all four of the natural DNA bases. The intrinsic rate of damaged base excision by Fpg was measured under single-turnover conditions and was found to be highly dependent upon the identity of the base opposite the OG, Gh, or Sp lesion; as expected, OG is removed more readily from an OG:C- than an OG:A-containing substrate. However, when adenine is paired with Gh or Sp, the rate of removal of these damaged lesions by Fpg was significantly increased relative to the rate of removal of OG from an OG:A mismatch. The adenine glycosylase MutY, which removes misincorporated A residues from OG:A mismatches, is unable to remove A paired with Gh or Sp. Thus, the activity of Fpg on Gh and Sp lesions may dramatically influence their mutagenic potential. This work suggests that, in addition to OG, oxidative products resulting from further oxidation of OG should be considered when evaluating oxidative DNA damage and its associated effects on DNA mutagenesis.
Collapse
Affiliation(s)
- M D Leipold
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | |
Collapse
|
420
|
Zhang QM, Miyabe I, Matsumoto Y, Kino K, Sugiyama H, Yonei S. Identification of repair enzymes for 5-formyluracil in DNA. Nth, Nei, and MutM proteins of Escherichia coli. J Biol Chem 2000; 275:35471-7. [PMID: 10956660 DOI: 10.1074/jbc.m006125200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
5-Formyluracil (5-foU) is a potentially mutagenic lesion of thymine produced in DNA by ionizing radiation and various chemical oxidants. Although 5-foU has been reported to be removed from DNA by Escherichia coli AlkA protein in vitro, its repair mechanisms are not fully understood. In this study, we used the borohydride trapping assay to detect and characterize repair activities for 5-foU in E. coli extracts with site-specifically designed oligonucleotides containing a 5-foU at defined sites. The trapping assay revealed that there are three kinds of proteins that form covalent complexes with the 5-foU-containing oligonucleotides. Extracts from strains defective in the nth, nei, or mutM gene lacked one of the proteins. All of the trapped complexes were completely lost in extracts from the nth nei mutM triple mutant. The introduction of a plasmid carrying the nth, nei, or mutM gene into the E. coli triple mutant restored the formation of the corresponding protein-DNA complex. Purified Nth, Nei, and MutM proteins were trapped by the 5-foU-containing oligonucleotide to form the complex in the presence of NaBH(4). Furthermore, the purified Nth, Nei, and MutM proteins efficiently cleaved the oligonucleotide at the 5-foU site. In addition, 5-foU was site-specifically incorporated into plasmid pSVK3, and the resulting plasmid was replicated in E. coli. The mutation frequency of the plasmid was significantly increased in the E. coli nth nei mutM alkA mutant, compared with the wild-type and alkA strains. From these results it is concluded that the Nth, Nei, and MutM proteins are involved in the repair pathways for 5-foU that serve to avoid mutations in E. coli.
Collapse
Affiliation(s)
- Q M Zhang
- Laboratory of Radiation Biology, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
421
|
Podmore ID, Cooper D, Evans MD, Wood M, Lunec J. Simultaneous measurement of 8-oxo-2'-deoxyguanosine and 8-oxo-2'-deoxyadenosine by HPLC-MS/MS. Biochem Biophys Res Commun 2000; 277:764-70. [PMID: 11062026 DOI: 10.1006/bbrc.2000.3752] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An assay with high selectivity and sensitivity has been developed which, for the first time, allows quantitative, simultaneous measurement in DNA of both 8-oxo-2'-deoxyguanosine (8-oxodG) and 8-oxo-2'-deoxyadenosine (8-oxodA)-important biomarkers of oxidative DNA damage in vivo. Using reversed-phase HPLC coupled to electrospray tandem mass spectrometry (HPLC-MS/MS) in multiple reaction monitoring (MRM) mode it was possible to detect background levels of these lesions in commercially available calf thymus DNA (85 +/- 3 and 7.1 +/- 0.2 per 10(6) DNA bases for 8-oxodG and 8-oxodA respectively; n = 3). Levels of 8-oxodG determined by HPLC coupled to an electrochemical detection system (HPLC-EC) were found to be similar (75 +/- 6 per 10(6) DNA bases; n = 3) to those obtained using tandem mass spectrometry.
Collapse
Affiliation(s)
- I D Podmore
- Oxidative Stress Group, Division of Chemical Pathology, Leicester, LE2 7LX, United Kingdom.
| | | | | | | | | |
Collapse
|
422
|
Cadet J, Douki T, Pouget JP, Ravanat JL. Singlet oxygen DNA damage products: formation and measurement. Methods Enzymol 2000; 319:143-53. [PMID: 10907507 DOI: 10.1016/s0076-6879(00)19016-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J Cadet
- Laboratoire Lésions des Acides Nucléiques, Département de Recherche Fondamentale sur la Matière Condensée, Grenoble, France
| | | | | | | |
Collapse
|
423
|
Karbownik M, Reiter RJ. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000. [PMID: 10998194 DOI: 10.1046/j.1525-1373.2000.22502.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ionizing radiation is classified as a potent carcinogen, and its injury to living cells is, to a large extent, due to oxidative stress. The molecule most often reported to be damaged by ionizing radiation is DNA. Hydroxyl radicals (*OH), considered the most damaging of all free radicals generated in organisms, are often responsible for DNA damage caused by ionizing radiation. Melatonin, N-acetyl-5-methoxytryptamine, is a well-known antioxidant that protects DNA, lipids, and proteins from free-radical damage. The indoleamine manifests its antioxidative properties by stimulating the activities of antioxidant enzymes and scavenging free radicals directly or indirectly. Among known antioxidants, melatonin is a highly effective scavenger of *OH. Melatonin is distributed ubiquitously in organisms and, as far as is known, in all cellular compartments, and it quickly passes through all biological membranes. The protective effects of melatonin against oxidative stress caused by ionizing radiation have been documented in in vitro and in vivo studies in different species and in in vitro experiments that used human tissues, as well as when melatonin was given to humans and then tissues collected and subjected to ionizing radiation. The radioprotective effects of melatonin against cellular damage caused by oxidative stress and its low toxicity make this molecule a potential supplement in the treatment or co-treatment in situations where the effects of ionizing radiation are to be minimized.
Collapse
Affiliation(s)
- M Karbownik
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
424
|
Díaz-Llera S, Podlutsky A, Osterholm AM, Hou SM, Lambert B. Hydrogen peroxide induced mutations at the HPRT locus in primary human T-lymphocytes. Mutat Res 2000; 469:51-61. [PMID: 10946242 DOI: 10.1016/s1383-5718(00)00058-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) produced by intracellular metabolism are believed to contribute to spontaneous mutagenesis in somatic cells. Hydrogen peroxide (H(2)O(2)) has been shown to induce a variety of genetic alterations, probably by the generation of hydroxyl radicals via the Fenton reaction. The kinds of DNA sequence alterations caused by H(2)O(2) in prokaryotic cells have been studied extensively, whereas relatively little is known about the mutational spectrum induced by H(2)O(2) in mammalian genes. We have used the T-cell cloning assay to study the ability of H(2)O(2) to induce mutations at the hypoxanthine guanine phosphoribosyltransferase (HPRT) locus in primary human lymphocytes. Treatment of cells for 1 h with 0.34-1.35 mM of H(2)O(2) caused a dose dependent decrease of cell survival and increase of the HPRT mutant frequency (MF). After 8 days of expression time, the highest dose of H(2)O(2) caused a 5-fold increase of MF compared to the untreated control cells. Mutant clones were collected and the genomic rearrangements at the T-cell receptor (TCR) gamma-locus were studied to identify independent mutations. RT-PCR and DNA sequencing was used to identify mutations in the HPRT coding region. Due to a relatively high frequency of sibling clones, only six independent mutations were obtained among the controls, and 20 among the H(2)O(2) treated cells. In both sets, single base pair substitutions were the most common type of mutation (5/6 and 13/20, respectively), with a predominance of transitions at GC base pairs, which is also the most common type of HPRT mutation in T-cells in vivo. Among the single base pair substitutions, five were new mutations not previously reported in the human HPRT mutation database. Overall, the kinds of mutation occurring in T-cells in vivo and H(2)O(2) treated cells were similar, albeit the number of mutants was too small to allow a meaningful statistical comparison. These results demonstrate that H(2)O(2) is mutagenic to primary human T-lymphocytes in vitro and induces mutations of the same kind that is observed in the background spectrum of HPRT mutation in T-cells in vivo.
Collapse
Affiliation(s)
- S Díaz-Llera
- The Karolinska Institut, Department of Biosciences, CNT/Novum, SE-141 57, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
425
|
Garcia MX, Foote C, van Es S, Devreotes PN, Alexander S, Alexander H. Differential developmental expression and cell type specificity of Dictyostelium catalases and their response to oxidative stress and UV-light. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:295-310. [PMID: 11004503 DOI: 10.1016/s0167-4781(00)00063-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cells of Dictyostelium discoideum are highly resistant to DNA damaging agents such as UV-light, gamma-radiation and chemicals. The genes encoding nucleotide excision repair (NER) and base excision repair (BER) enzymes are rapidly upregulated in response to UV-irradiation and DNA-damaging chemicals, suggesting that this is at least partially responsible for the resistance of this organism to these agents. Although Dictyostelium is also unusually resistant to high concentrations of H(2)O(2), little is known about the response of this organism to oxidative stress. To determine if transcriptional upregulation is a common mechanism for responding to DNA-damaging agents, we have studied the Dictyostelium catalase and Cu/Zn superoxide dismutase antioxidant enzymes. We show that there are two catalase genes and that each is differentially regulated both temporally and spatially during multicellular development. The catA gene is expressed throughout growth and development and its corresponding enzyme is maintained at a steady level. In contrast, the catB gene encodes a larger protein and is only expressed during the final stages of morphogenesis. Cell type fractionation showed that the CatB enzyme is exclusively localized to the prespore cells and the CatA enzyme is found exclusively in the prestalk cells. Each enzyme has a different subcellular localization. The unique developmental timing and cell type distribution suggest that the role for catB in cell differentiation is to protect the dormant spores from oxidative damage. We found that exposure to H(2)O(2) does not result in the induction of the catalase, superoxide dismutase, NER or BER mRNAs. A mutant with greatly reduced levels of catA mRNA and enzyme has greatly increased sensitivity to H(2)O(2) but normal sensitivity to UV. These results indicate that the natural resistance to oxidative stress is not due to an ability to rapidly raise the level of antioxidant or DNA repair enzymes and that the response to UV-light is independent from the response to reactive oxygen compounds.
Collapse
Affiliation(s)
- M X Garcia
- Division of Biological Sciences, University of Missouri, Columbia 65211-7400, USA
| | | | | | | | | | | |
Collapse
|
426
|
Pouget JP, Douki T, Richard MJ, Cadet J. DNA damage induced in cells by gamma and UVA radiation as measured by HPLC/GC-MS and HPLC-EC and Comet assay. Chem Res Toxicol 2000; 13:541-9. [PMID: 10898585 DOI: 10.1021/tx000020e] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the work was to measure DNA damage induced within tumoral human monocytes by gamma rays, UVA radiation, and exogenous photosensitizers. The accurate HPLC-EC assay was used to determine the level of 8-oxodGuo. The formation of FapyGua and FapyAde was monitored by HPLC/GC-MS analyses after formic acid hydrolysis at room temperature. For this purpose, cells were exposed to relatively high doses of gamma rays and UVA radiation. The extent of formation of FapyGua in the DNA of cells exposed to gamma rays was estimated to be more than 2-fold higher than that of 8-oxodGuo, i.e., about 0. 027 lesion per 10(6) bases per Gy. The yield of FapyAde was estimated to be 1 order of magnitude lower. The latter results were used to calibrate the alkaline comet assay associated with DNA N-glycosylases. The latter approach allowed the determination of the background level (0.11-0.16 Fpg-sensitive site/10(6) bases) and the yields of strand breaks and DNA base damage upon low irradiation doses. Insights into the mechanism of radiation-induced DNA damage were gained from these measurements. A major involvement of (1)O(2) with respect to hydroxyl radicals and type I photosensitization was thus observed within cells exposed to UVA radiation.
Collapse
Affiliation(s)
- J P Pouget
- Département de Recherche Fondamentale sur la Matière Condensée, SCIB/Laboratoire "Lésions des Acides Nucléiques", CEA/Grenoble, France
| | | | | | | |
Collapse
|
427
|
Kim H, Lee TH, Park ES, Suh JM, Park SJ, Chung HK, Kwon OY, Kim YK, Ro HK, Shong M. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells. J Biol Chem 2000; 275:18266-70. [PMID: 10849441 DOI: 10.1074/jbc.275.24.18266] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxins (Prxs) play an important role in regulating cellular differentiation and proliferation in several types of mammalian cells. One mechanism for this action involves modulation of hydrogen peroxide (H(2)O(2))-mediated cellular responses. This report examines the expression of Prx I and Prx II in thyroid cells and their roles in eliminating H(2)O(2) produced in response to thyrotropin (TSH). Prx I and Prx II are constitutively expressed in FRTL-5 thyroid cells. Prx I expression, but not Prx II expression, is stimulated by exposure to TSH and H(2)O(2). In addition, methimazole induces a high level of Prx I mRNA and protein in these cells. Overexpression of Prx I and Prx II enhances the elimination of H(2)O(2) produced by TSH in FRTL-5 cells. Treatment with 500 micrometer H(2)O(2) causes apoptosis in FRTL-5 cells as evidenced by standard assays of apoptosis (i.e. terminal deoxynucleotidyl transferase deoxyuridine triphosphate-biotin nick end labeling, BAX expression, and poly(ADP-ribose) polymerase cleavage. Overexpression of Prx I and Prx II reduces the amount of H(2)O(2)-induced apoptosis measured by these assays. These results suggest that Prx I and Prx II are involved in the removal of H(2)O(2) in thyroid cells and can protect these cells from undergoing apoptosis. These proteins are likely to be involved in the normal physiological response to TSH-induced production of H(2)O(2) in thyroid cells.
Collapse
Affiliation(s)
- H Kim
- Departments of Internal Medicine and Anatomy, Chungnam National University, 640 Daesadong Chungku Taejon 301-721, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Sánchez-Alcázar JA, Schneider E, Martínez MA, Carmona P, Hernández-Muñoz I, Siles E, De La Torre P, Ruiz-Cabello J, García I, Solis-Herruzo JA. Tumor necrosis factor-alpha increases the steady-state reduction of cytochrome b of the mitochondrial respiratory chain in metabolically inhibited L929 cells. J Biol Chem 2000; 275:13353-61. [PMID: 10788444 DOI: 10.1074/jbc.275.18.13353] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mechanism of tumor necrosis factor alpha (TNFalpha)-induced cytotoxicity in metabolically inhibited cells is unclear, although some studies have suggested that mitochondrial dysfunction and generation of reactive oxygen species may be involved. Here we studied the effect of TNFalpha on the redox state of mitochondrial cytochromes and its involvement in the generation of reactive oxygen species in metabolically inhibited L929 cells. Treatment with TNFalpha and cycloheximide (TNFalpha/CHX) induced mitochondrial cytochrome c release, increased the steady-state reduction of cytochrome b, and decreased the steady-state reduction of cytochromes cc(1) and aa(3). TNFalpha/CHX treatment also induced lipid peroxidation, intracellular generation of reactive oxygen species, and cell death. Furthermore, as the cells died mitochondrial morphology changed from an orthodox to a hyperdense and condensed and finally to a swollen conformation. Antimycin A, a mitochondrial respiratory chain complex III inhibitor that binds to cytochrome b, blocked the formation of reactive oxygen species, suggesting that the free radicals are generated at the level of cytochrome b. Moreover, antimycin A, when added after 3 h of TNFalpha/CHX treatment, arrested the further release of cytochrome c and the cytotoxic response. We propose that the reduced cytochrome b promotes the formation of reactive oxygen species, lipid peroxidation of the cell membrane, and cell death.
Collapse
Affiliation(s)
- J A Sánchez-Alcázar
- Centro de Investigación and Departamento de Anatomia Patológica, Hospital Universitario "12 de Octubre," Madrid 28041, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
429
|
Romieu A, Bellon S, Gasparutto D, Cadet J. Synthesis and UV photolysis of oligodeoxynucleotides that contain 5-(phenylthiomethyl)-2'-deoxyuridine: a specific photolabile precursor of 5-(2'-deoxyuridilyl)methyl radical. Org Lett 2000; 2:1085-8. [PMID: 10804560 DOI: 10.1021/ol005643y] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[formula: see text] The title exocyclic radical (2) is generated via photochemical cleavage of 5-(phenylthiomethyl)-2'-deoxyuridine (8). The latter thionucleoside (8) was successfully incorporated into DNA oligomers by automated DNA synthesis using phosphoramidite chemistry. UV exposure of 8 containing oligonucleotides under (an)aerobic conditions gives rise to specific base lesions. The photoproducts have been isolated and further characterized on the basis of detailed NMR and mass spectrometric analyses.
Collapse
Affiliation(s)
- A Romieu
- Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble, France
| | | | | | | |
Collapse
|
430
|
Cadet J, Bourdat AG, D'Ham C, Duarte V, Gasparutto D, Romieu A, Ravanat JL. Oxidative base damage to DNA: specificity of base excision repair enzymes. Mutat Res 2000; 462:121-8. [PMID: 10767623 DOI: 10.1016/s1383-5742(00)00022-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Base excision repair (BER) is likely to be the main mechanism involved in the enzymatic restoration of oxidative base lesions within the DNA of both prokaryotic and eukaryotic cells. Emphasis was placed in early studies on the determination of the ability of several bacterial DNA N-glycosylases, including Escherichia coli endonuclease III (endo III) and formamidopyrimidine DNA N-glycosylase (Fpg), to recognize and excise several oxidized pyrimidine and purine bases. More recently, the availability of related DNA repair enzymes from yeast and human has provided new insights into the enzymatic removal of several.OH-mediated modified DNA bases. However, it should be noted that most of the earlier studies have involved globally modified DNA as the substrates. This explains, at least partly, why there is a paucity of accurate kinetic data on the excision rate of most of the modified bases. Interestingly, several oxidized pyrimidine and purine nucleosides have been recently inserted into defined sequence oligonucleotides. The use of the latter substrates, together with overexpressed DNA N-glycosylases, allows detailed studies on the efficiency of the enzymatic release of the modified bases. This was facilitated by the development of accurate chromatographic and mass spectrometric methods aimed at measuring oxidized bases and nucleosides. As one of the main conclusions, it appears that the specificity of both endo III and Fpg proteins is much broader than expected a few years ago.
Collapse
Affiliation(s)
- J Cadet
- Département de Recherche Fondamentale sur la Matière Condensée, SCIB/Laboratoire "Lésions des Acides Nucléiques", CEA/Grenoble, 17 Avenue des Martyrs, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
431
|
Abstract
A major development of carcinogenesis research in the past 20 years has been the discovery of significant levels of DNA damage arising from endogenous cellular sources. Dramatic improvements in analytical chemistry have provided sensitive and specific methodology for identification and quantitation of DNA adducts. Application of these techniques to the analysis of nuclear DNA from human tissues has debunked the notion that the human genome is pristine in the absence of exposure to environmental carcinogens. Much endogenous DNA damage arises from intermediates of oxygen reduction that either attack the bases or the deoxyribosyl backbone of DNA. Alternatively, oxygen radicals can attack other cellular components such as lipids to generate reactive intermediates that couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations that are commonly observed in mutated oncogenes and tumor suppressor genes. Their mutagenicity is mitigated by repair via base excision and nucleotide excision pathways. The levels of oxidative DNA damage reported in many human tissues or in animal models of carcinogenesis exceed the levels of lesions induced by exposure to exogenous carcinogenic compounds. Thus, it seems likely that oxidative DNA damage is important in the etiology of many human cancers. This review highlights some of the major accomplishments in the study of oxidative DNA damage and its role in carcinogenesis. It also identifies controversies that need to be resolved. Unraveling the contributions to tumorigenesis of DNA damage from endogenous and exogenous sources represents a major challenge for the future.
Collapse
Affiliation(s)
- L J Marnett
- A.B. Hancock Jr Memorial Laboratory for Cancer Research, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Departments of Biochemistry and Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
432
|
Steenken S, Jovanovic SV, Bietti M, Bernhard K. The Trap Depth (in DNA) of 8-Oxo-7,8-dihydro-2‘deoxyguanosine as Derived from Electron-Transfer Equilibria in Aqueous Solution. J Am Chem Soc 2000. [DOI: 10.1021/ja993508e] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steen Steenken
- Max-Planck-Institut für Strahlenchemie D-45413 Mülheim, Germany
| | | | - Massimo Bietti
- Max-Planck-Institut für Strahlenchemie D-45413 Mülheim, Germany
| | - Klaus Bernhard
- Max-Planck-Institut für Strahlenchemie D-45413 Mülheim, Germany
| |
Collapse
|
433
|
Nakamura J, La DK, Swenberg JA. 5'-nicked apurinic/apyrimidinic sites are resistant to beta-elimination by beta-polymerase and are persistent in human cultured cells after oxidative stress. J Biol Chem 2000; 275:5323-8. [PMID: 10681505 DOI: 10.1074/jbc.275.8.5323] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomic DNA is continuously exposed to oxidative stress. Whereas reactive oxygen species (ROS) preferentially react with bases in DNA, free radicals also abstract hydrogen atoms from deoxyribose, resulting in the formation of apurinic/apyrimidinic (AP) sites and strand breaks. We recently reported high steady-state levels of AP sites in rat tissues and human liver DNA (Nakamura, J., and Swenberg, J. A. (1999) Cancer Res. 59, 2522-2526). These AP sites were predominantly cleaved 5' to the lesion. We hypothesized that these endogenous AP sites were derived from oxidative stress. In this investigation, AP sites induced by ROS were quantitated and characterized. A combination of H(2)O(2) and FeSO(4) induced significant numbers of AP sites in calf thymus DNA, which were predominantly cleaved 5' to the AP sites (75% of total aldehydic AP sites). An increase in the number of 5'-AP sites was also detected in human cultured cells exposed to H(2)O(2), and these 5'-AP sites were persistent during the post-exposure period. beta-Elimination by DNA beta-polymerase efficiently excised 5'-regular AP sites, but not 5'-AP sites, in DNA from cells exposed to H(2)O(2). These results suggest that 5'-oxidized AP sites induced by ROS are not efficiently repaired by the mammalian short patch base excision repair pathway.
Collapse
Affiliation(s)
- J Nakamura
- Department of Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
434
|
Zhou G, Hernandez NS, Randerath E, Randerath K. Effects of different diets and dietary restriction on perinatal endogenous DNA adducts. Time dependence of oxidative and presumptive nonoxidative lesions. Mutat Res 2000; 447:137-47. [PMID: 10751597 DOI: 10.1016/s0027-5107(99)00211-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Type II I-compounds (indigenous DNA adducts) denote a class of bulky oxidative DNA lesions that are detectable by 32P-postlabeling and represent useful biomarkers of DNA damage induced by oxidative stress. Their levels are increased in tissue DNA under pro-oxidant conditions, for example, as previously shown, in newborn rat organs. Here we have investigated whether the maternal diet affects perinatal type II I-compound levels. Pregnant F344 rats were fed Purina-5001 natural-ingredient or AIN-93G purified diet from day 11 of gestation. Type II I-compounds were measured in liver DNA at three different developmental stages, i.e., fetus, and 24 h and 9 days postnatally. Higher adduct levels were detected in the Purina-5001 group at each stage. In a second experiment, pregnant F344 rats were subjected to dietary restriction (DR) (by 40%; Purina-5001) from day 12 of gestation. At 24 h postpartum hepatic type II I-compound levels were decreased compared to parallel ad libitum (AL) fed controls. As an unrelated observation, fetal lung, but not liver, kidney, and skin DNA contained a different pattern of nonpolar, apparently nonoxidative adducts, which were not diet-dependent. These spots were not detectable 24 h after birth and were observed at much reduced levels and only in a few samples at 9 days. The main results show for the first time that the maternal nutrition modulated levels of oxidative lesions in fetal and neonatal DNA, but the underlying mechanisms (e.g., differences in metal or caloric content of the diets) still need to be determined. The dietary effects were apparently transmitted through both placenta and the mother's milk.
Collapse
Affiliation(s)
- G Zhou
- Division of Toxicology, Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
435
|
Visvardis E, Haveles KS, Pataryas TA, Margaritis LH, Sophianopoulou V, Sideris EG. Diversity of peripheral blood mononuclear cells as revealed by a novel multiple microgel "comet assay". ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000; 36:32-39. [PMID: 10918357 DOI: 10.1002/1098-2280(2000)36:1<32::aid-em5>3.0.co;2-o] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multiple microgel comet assay (MMCA) is a metho-dological adaptation of the single-cell gel electrophoresis assay in which we have introduced the use of standard agarose plug molds in an attempt to improve and expand the applications of the assay. We focused on the study of the heterogeneity of peripheral blood mononuclear cells (PBMC) at the level of the basal single-strand breakage and the DNA damage induction caused by ionizing radiation. Differences among subpopulations were also investigated at the level of chromatin organization and methylation after NotI digestion of microgel-embedded cells. In parallel experiments, the NotI-digested nucleoids were also analyzed with the use of pulsed-field gel electrophoresis (PFGE) and the DNA migration patterns were compared with the corresponding patterns from the MMCA. Significant heterogeneity in the distribution of the oxidative DNA damage, as well as intracellular variations in the NotI digestion patterns were observed in the cell population of PBMC. The combined use of both the comet assay and PFGE provides a useful model for analysis of variation in DNA damage in individual cells as well as information on size of DNA fragments.
Collapse
Affiliation(s)
- E Visvardis
- Institute of Biology, NCSR "Demokritos," Athens, Greece
| | | | | | | | | | | |
Collapse
|