401
|
Stearns T. Motoring to the finish: kinesin and dynein work together to orient the yeast mitotic spindle. J Biophys Biochem Cytol 1997; 138:957-60. [PMID: 9281575 PMCID: PMC2136760 DOI: 10.1083/jcb.138.5.957] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- T Stearns
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| |
Collapse
|
402
|
Cottingham FR, Hoyt MA. Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 1997; 138:1041-53. [PMID: 9281582 PMCID: PMC2136752 DOI: 10.1083/jcb.138.5.1041] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proper positioning of the mitotic spindle is often essential for cell division and differentiation processes. The asymmetric cell division characteristic of budding yeast, Saccharomyces cerevisiae, requires that the spindle be positioned at the mother-bud neck and oriented along the mother-bud axis. The single dynein motor encoded by the S. cerevisiae genome performs an important but nonessential spindle-positioning role. We demonstrate that kinesin-related Kip3p makes a major contribution to spindle positioning in the absence of dynein. The elimination of Kip3p function in dyn1Delta cells severely compromised spindle movement to the mother-bud neck. In dyn1Delta cells that had completed positioning, elimination of Kip3p function caused spindles to mislocalize to distal positions in mother cell bodies. We also demonstrate that the spindle-positioning defects exhibited by dyn1 kip3 cells are caused, to a large extent, by the actions of kinesin- related Kip2p. Microtubules in kip2Delta cells were shorter and more sensitive to benomyl than wild-type, in contrast to the longer and benomyl-resistant microtubules found in dyn1Delta and kip3Delta cells. Most significantly, the deletion of KIP2 greatly suppressed the spindle localization defect and slow growth exhibited by dyn1 kip3 cells. Likewise, induced expression of KIP2 caused spindles to mislocalize in cells deficient for dynein and Kip3p. Our findings indicate that Kip2p participates in normal spindle positioning but antagonizes a positioning mechanism acting in dyn1 kip3 cells. The observation that deletion of KIP2 could also suppress the inviability of dyn1Delta kar3Delta cells suggests that kinesin-related Kar3p also contributes to spindle positioning.
Collapse
Affiliation(s)
- F R Cottingham
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
403
|
Case RB, Pierce DW, Hom-Booher N, Hart CL, Vale RD. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 1997; 90:959-66. [PMID: 9298907 DOI: 10.1016/s0092-8674(00)80360-8] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Members of the kinesin superfamily share a similar motor catalytic domain yet move either toward the plus end (e.g., conventional kinesin) or the minus end (e.g., Ncd) of microtubules. The structural features that determine the polarity of movement have remained enigmatic. Here, we show that kinesin's catalytic domain (316 residues) in a dimeric construct (560 residues) can be replaced with the catalytic domain of Ncd and that the resultant motor moves in the kinesin direction. We also demonstrate that this chimera does not move processively over many tubulin subunits, which is similar to Ncd but differs from the highly processive motion of conventional kinesin. These findings reveal that the catalytic domain contributes to motor processivity but does not control the polarity of movement. We propose that a region adjacent to the catalytic domain serves as a mechanical transducer that determines directionality.
Collapse
Affiliation(s)
- R B Case
- Department of Pharmacology, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
404
|
Carminati JL, Stearns T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Biophys Biochem Cytol 1997; 138:629-41. [PMID: 9245791 PMCID: PMC2141630 DOI: 10.1083/jcb.138.3.629] [Citation(s) in RCA: 379] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Proper orientation of the mitotic spindle is critical for successful cell division in budding yeast. To investigate the mechanism of spindle orientation, we used a green fluorescent protein (GFP)-tubulin fusion protein to observe microtubules in living yeast cells. GFP-tubulin is incorporated into microtubules, allowing visualization of both cytoplasmic and spindle microtubules, and does not interfere with normal microtubule function. Microtubules in yeast cells exhibit dynamic instability, although they grow and shrink more slowly than microtubules in animal cells. The dynamic properties of yeast microtubules are modulated during the cell cycle. The behavior of cytoplasmic microtubules revealed distinct interactions with the cell cortex that result in associated spindle movement and orientation. Dynein-mutant cells had defects in these cortical interactions, resulting in misoriented spindles. In addition, microtubule dynamics were altered in the absence of dynein. These results indicate that microtubules and dynein interact to produce dynamic cortical interactions, and that these interactions result in the force driving spindle orientation.
Collapse
Affiliation(s)
- J L Carminati
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | |
Collapse
|
405
|
Morfini G, Quiroga S, Rosa A, Kosik K, Cáceres A. Suppression of KIF2 in PC12 cells alters the distribution of a growth cone nonsynaptic membrane receptor and inhibits neurite extension. J Cell Biol 1997; 138:657-69. [PMID: 9245793 PMCID: PMC2141628 DOI: 10.1083/jcb.138.3.657] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the present study, we present evidence about the cellular functions of KIF2, a kinesin-like superfamily member having a unique structure in that its motor domain is localized at the center of the molecule (Noda Y., Y. Sato-Yoshitake, S. Kondo, M. Nangaku, and N. Hirokawa. 1995. J. Cell Biol. 129:157-167.). Using subcellular fractionation techniques, isopicnic sucrose density centrifugation of microsomal fractions from developing rat cerebral cortex, and immunoisolation with KIF2 antibodies, we have now identified a type of nonsynaptic vesicle that associates with KIF2. This type of organelle lacks synaptic vesicle markers (synapsin, synaptophysin), amyloid precursor protein, GAP-43, or N-cadherin. On the other hand, it contains betagc, which is a novel variant of the beta subunit of the IGF-1 receptor, which is highly enriched in growth cone membranes. Both betagc and KIF2 are upregulated by NGF in PC12 cells and highly concentrated in growth cones of developing neurons. We have also analyzed the consequences of KIF2 suppression by antisense oligonucleotide treatment on nerve cell morphogenesis and the distribution of synaptic and nonsynaptic vesicle markers. KIF2 suppression results in a dramatic accumulation of betagc within the cell body and in its complete disappearance from growth cones; no alterations in the distribution of synapsin, synaptophysin, GAP-43, or amyloid percursor protein are detected in KIF2-suppressed neurons. Instead, all of them remained highly enriched at nerve terminals. KIF2 suppression also produces a dramatic inhibition of neurite outgrowth; this phenomenon occurs after betagc has disappeared from growth cones. Taken collectively, our results suggest an important role for KIF2 in neurite extension, a phenomenon that may be related with the anterograde transport of a type of nonsynaptic vesicle that contains as one of its components a growth cone membrane receptor for IGF-1, a growth factor implicated in nerve cell development.
Collapse
Affiliation(s)
- G Morfini
- Instituto Investigación Médica Mercedes y Martín Ferreyra, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
406
|
Alphey L, Parker L, Hawcroft G, Guo Y, Kaiser K, Morgan G. KLP38B: a mitotic kinesin-related protein that binds PP1. J Cell Biol 1997; 138:395-409. [PMID: 9230081 PMCID: PMC2138191 DOI: 10.1083/jcb.138.2.395] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1996] [Revised: 04/14/1997] [Indexed: 02/04/2023] Open
Abstract
We have identified a new member of the kinesin superfamily in Drosophila, KLP38B (kinesin-like protein at 38B). KLP38B was isolated through its two-hybrid interaction with the catalytic subunit of type 1 serine/threonine phosphoprotein phosphatase (PP1). We demonstrate that recombinant KLP38B and PP1 associate in vitro. This is the first demonstration of direct binding of a kinesin-related protein to a regulatory enzyme. Though most closely related to the Unc-104 subfamily of kinesin-related proteins, KLP38B is expressed only in proliferating cells. KLP38B mutants show cell proliferation defects in many tissues. KLP38B is required for normal chromatin condensation as embryos from KLP38B mutant mothers have undercondensed chromatin at metaphase and anaphase. This is the first time that a kinesin-related protein has been shown to have such a role. Incomplete lethality of a strong KLP38B allele suggests partial redundancy with one or more additional kinesin-related proteins.
Collapse
Affiliation(s)
- L Alphey
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
407
|
Abstract
Although it is generally believed that microtubules have minus ends bound to the centrosome and free plus ends that exhibit dynamic instability, recent observations show that the minus ends can be free and that modulation of dynamic instability at both ends can result in treadmilling and flux in interphase cells.
Collapse
Affiliation(s)
- C M Waterman-Storer
- Department of Biology, CB# 3280, 607 Fordham Hall, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
408
|
Vasquez RJ, Howell B, Yvon AM, Wadsworth P, Cassimeris L. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol Biol Cell 1997; 8:973-85. [PMID: 9201709 PMCID: PMC305707 DOI: 10.1091/mbc.8.6.973] [Citation(s) in RCA: 354] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.
Collapse
Affiliation(s)
- R J Vasquez
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | | | | | |
Collapse
|
409
|
Geiser JR, Schott EJ, Kingsbury TJ, Cole NB, Totis LJ, Bhattacharyya G, He L, Hoyt MA. Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol Biol Cell 1997; 8:1035-50. [PMID: 9201714 PMCID: PMC305712 DOI: 10.1091/mbc.8.6.1035] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Kinesin-related Cin8p is the most important spindle-pole-separating motor in Saccharomyces cerevisiae but is not essential for cell viability. We identified 20 genes whose products are specifically required by cell deficient for Cin8p. All are associated with mitotic roles and represent at least four different functional pathways. These include genes whose products act in two spindle motor pathways that overlap in function with Cin8p, the kinesin-related Kip1p pathway and the cytoplasmic dynein pathway. In addition, genes required for mitotic spindle checkpoint function and for normal microtubule stability were recovered. Mutant alleles of eight genes caused phenotypes similar to dyn1 (encodes the dynein heavy chain), including a spindle-positioning defect. We provide evidence that the products of these genes function in concept with dynein. Among the dynein pathway gene products, we found homologues of the cytoplasmic dynein intermediate chain, the p150Glued subunit of the dynactin complex, and human LIS-1, required for normal brain development. These findings illustrate the complex cellular interactions exhibited by Cin8p, a member of a conserved spindle motor family.
Collapse
Affiliation(s)
- J R Geiser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
410
|
Hirano T, Kobayashi R, Hirano M. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 1997; 89:511-21. [PMID: 9160743 DOI: 10.1016/s0092-8674(00)80233-0] [Citation(s) in RCA: 424] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report here purification and characterization of chromosome condensation protein complexes (termed condensins) containing XCAP-C and XCAP-E, two Xenopus members of the SMC family. Sucrose density gradient centrifugation reveals two major forms of condensins. The 8S form is a heterodimer of XCAP-C and XCAP-E, whereas the 13S form contains three additional subunits. One of them is identified as a homolog of the Drosophila Barren protein whose mutation shows a defect in chromosome segregation. Chromosomal targeting of condensins is mitosis-specific and is independent of topoisomerase IIalpha. 13S condensin is required for condensation, as demonstrated by immunodepletion and rescue experiments. Our results suggest that the condensin complexes represent the most abundant structural components of mitotic chromosomes and play a central role in driving chromosome condensation.
Collapse
Affiliation(s)
- T Hirano
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | |
Collapse
|
411
|
Debernardi S, Fontanella E, De Gregorio L, Pierotti MA, Delia D. Identification of a novel human kinesin-related gene (HK2) by the cDNA differential display technique. Genomics 1997; 42:67-73. [PMID: 9177777 DOI: 10.1006/geno.1997.4720] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used the cDNA differential display technique to isolate genes regulated by the synthetic retinoid N-(4-hydroxyphenyl)-all-trans-retinamide (HPR), a cancer chemopreventive agent in vivo and a powerful inducer of apoptotic cell death in vitro. Here we report the identification of a novel gene, the expression of which is markedly up-regulated in tumor cells after treatment for 30-60 min with HPR. The full-length cDNA of this gene, determined by screening of a human placenta cDNA, is 3.5 kb long and contains an open reading frame of 2037 nt. The gene is > 90% homologous to the mouse KIF2, a gene belonging to the family of kinesin-related motor proteins, and we therefore named it HK2 (human kinesin 2). A shorter form of the HK2 mRNA (HK2s), containing a 57-nt deletion in the open reading frame, has also been detected. Northern analysis revealed that HK2 is widely expressed among hemopoietic and nonhemopoietic cell lines and tissues. By the use of radiation hybrids, HK2 has been localized to chromosome 5q12-q13. Kinesins constitute a superfamily of motor proteins that use energy liberated from ATP hydrolysis to move cargo along microtubules and are implicated in mechanisms of mitosis or meiosis. The role of HK2 in the growth-inhibitory and apoptotic responses elicited by HPR remains to be established.
Collapse
Affiliation(s)
- S Debernardi
- Division of Experimental Oncology A, National Cancer Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
412
|
Saunders W, Hornack D, Lengyel V, Deng C. The Saccharomyces cerevisiae kinesin-related motor Kar3p acts at preanaphase spindle poles to limit the number and length of cytoplasmic microtubules. J Cell Biol 1997; 137:417-31. [PMID: 9128252 PMCID: PMC2139775 DOI: 10.1083/jcb.137.2.417] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Saccharomyces cerevisiae kinesin-related motor Kar3p, though known to be required for karyogamy, plays a poorly defined, nonessential role during vegetative growth. We have found evidence suggesting that Kar3p functions to limit the number and length of cytoplasmic microtubules in a cell cycle-specific manner. Deletion of KAR3 leads to a dramatic increase in cytoplasmic microtubules, a phenotype which is most pronounced from START through the onset of anaphase but less so during late anaphase in synchronized cultures. We have immunolocalized HA-tagged Kar3p to the spindle pole body region, and fittingly, Kar3p was not detected by late anaphase. A microtubule depolymerizing activity may be the major vegetative role for Kar3p. Addition of the microtubule polymerization inhibitors nocodazol or benomyl to the medium or deletion of the nonessential alpha-tubulin TUB3 gene can mostly correct the abnormal microtubule arrays and other growth defects of kar3 mutants, suggesting that these phenotypes result from excessive microtubule polymerization. Microtubule depolymerization may also be the mechanism by which Kar3p acts in opposition to the anaphase B motors Cin8p and Kip1p. A preanaphase spindle collapse phenotype of cin8 kip1 mutants, previously shown to involve Kar3p, is markedly delayed when microtubule depolymerization is inhibited by the tub2-150 mutation. These results suggest that the Kar3p motor may act to regulate the length and number of microtubules in the preanaphase spindle.
Collapse
Affiliation(s)
- W Saunders
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | |
Collapse
|
413
|
Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 1997; 89:297-308. [PMID: 9108484 DOI: 10.1016/s0092-8674(00)80208-1] [Citation(s) in RCA: 675] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
MARK phosphorylates the microtubule-associated proteins tau, MAP2, and MAP4 on their microtubule-binding domain, causing their dissociation from microtubules and increased microtubule dynamics. We describe the molecular cloning, distribution, activation mechanism, and overexpression of two MARK proteins from rat that arise from distinct genes. They encode Ser/Thr kinases of 88 and 81 kDa, respectively, and show similarity to the yeast kin1+ and C. elegans par-1 genes that are involved in the establishment of cell polarity. Expression of both isoforms is ubiquitous, and homologous genes are present in humans. Catalytic activity depends on phosphorylation of two residues in subdomain VIII. Overexpression of MARK in cells leads to hyperphosphorylation of MAPs on KXGS motifs and to disruption of the microtubule array, resulting in morphological changes and cell death.
Collapse
Affiliation(s)
- G Drewes
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
414
|
Walczak CE, Verma S, Mitchison TJ. XCTK2: a kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J Cell Biol 1997; 136:859-70. [PMID: 9049251 PMCID: PMC2132492 DOI: 10.1083/jcb.136.4.859] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/1996] [Revised: 12/23/1996] [Indexed: 02/03/2023] Open
Abstract
We used a peptide antibody to a conserved sequence in the motor domain of kinesins to screen a Xenopus ovary cDNA expression library. Among the clones isolated were two that encoded a protein we named XCTK2 for Xenopus COOH-terminal kinesin 2. XCTK2 contains an NH2-terminal globular domain, a central alpha-helical stalk, and a COOH-terminal motor domain. XCTK2 is similar to CTKs in other organisms and is most homologous to CHO2. Antibodies raised against XCTK2 recognize a 75-kD protein in Xenopus egg extracts that cosediments with microtubules. In Xenopus tissue culture cells, the anti-XCTK2 antibodies stain mitotic spindles as well as a subset of interphase nuclei. To probe the function of XCTK2, we have used an in vitro assay for spindle assembly in Xenopus egg extracts. Addition of antibodies to cytostatic factor-arrested extracts causes a 70% reduction in the percentage of bipolar spindles formed. XCTK2 is not required for maintenance of bipolar spindles, as antibody addition to preformed spindles has no effect. To further evaluate the function of XCTK2, we expressed XCTK2 in insect Sf-9 cells using the baculovirus expression system. When purified (recombinant XCTK2 is added to Xenopus egg extracts at a fivefold excess over endogenous levels) there is a stimulation in both the rate and extent of bipolar spindle formation. XCTK2 exists in a large complex in extracts and can be coimmunoprecipitated with two other proteins from extracts. XCTK2 likely plays an important role in the establishment and structural integrity of mitotic spindles.
Collapse
Affiliation(s)
- C E Walczak
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco 94143-0450, USA.
| | | | | |
Collapse
|
415
|
Abstract
Cell duplication is characteristic of life. The coordination of cell growth with cell duplication and, specifically, the ordered steps necessary for this process are termed the cell cycle. Central to this process is the faithful replication and segregation of the chromosomes. The cycle consists of four phases: G1, where the decision to enter the cell cycle, which is known as Start, is made; S phase, during which the DNA is replicated; G2, during which controls assuring the completion of S phase operate; and M, or the mitotic phase, which is characterized by chromosome segregation, nuclear division, and cytokinesis. The budding yeast Saccharomyces cerevisiae has been developed into a model genetic system for the study of the cell division cycle (Hartwell et al. ["73] Genetics, 74:267-286). Here I review the basic processes by which chromosomes are segregated, with an emphasis on the physical structures fundamental to this process.
Collapse
Affiliation(s)
- S G Sobel
- Department of Cell Biology, Yale University, New Haven, Connecticut 06536-0812, USA
| |
Collapse
|
416
|
Abstract
Crude cytoplasmic extracts made from Xenopus eggs have proven to be uniquely useful in the studies of the mechanism of spindle microtubule assembly dynamics and chromosome movement during progression through the cell cycle. We examined microtubule dynamic instability in the Xenopus system using video-enhanced differential interference contrast microscopy (VE-DIC), which required high-speed centrifugation in order to clarify crude Xenopus extracts of refractile particles. Surprisingly, the resultant clarified, undiluted extracts exhibited virtually no microtubule catastrophe, even in the presence of high MPF (cyclin B/p34cdc2 kinase) activity and mitogen-activated protein (MAP) kinase activity, a down-stream kinase also implicated in regulating microtubule dynamics. Microtubule elongation occurred at plus ends, and interphase microtubules grew at 17-30 microns/min while metaphase [meiotic, myelin basic protein kinase activity which is diagnostic for cytostatic factor (CSF)-arrested] microtubules grew at about 10 microns/min. Plus-end shortening rates for both interphase and metaphase extracts were > 50 microns/min. Addition of okadaic acid, a protein phosphatase inhibitor known to activate MAP kinase activity and cause an increase in microtubule turnover in extracts made from sea urchin eggs, had no effect on microtubule catastrophe in either interphase or metaphase Xenopus extracts. In addition, the microtubules assembled in interphase extracts were less sensitive to dilution than those in metaphase. This study is the first to describe the dynamic instability of microtubules in Xenopus extracts without the addition of exogenous tubulins or other buffer contaminants.
Collapse
Affiliation(s)
- S F Parsons
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | |
Collapse
|
417
|
Abstract
Much of our understanding of the molecular basis of mitotic spindle function has been achieved within the past decade. Studies utilizing genetically tractable organisms have made important contributions to this field and these studies form the basis of this review. We focus upon three areas of spindle research: spindle poles, centromeres, and spindle motors. The structure and duplication mechanisms of spindle poles are considered as well as their roles in organizing spindle microtubules. Centromeres vary considerably in their size and complexity. We describe recent progress in our understanding of the relatively simple centromeres of the yeast Saccharomyces cerevisiae and the complex centromeres that are more typical of eukaryotic cells. Microtubule-based motor proteins that generate the characteristic spindle movements have been identified in recent years and can be grouped into families defined by conserved primary sequence and mitotic function.
Collapse
Affiliation(s)
- M A Hoyt
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
418
|
Brisch E, Daggett MA, Suprenant KA. Cell cycle-dependent phosphorylation of the 77 kDa echinoderm microtubule-associated protein (EMAP) in vivo and association with the p34cdc2 kinase. J Cell Sci 1996; 109 ( Pt 12):2885-93. [PMID: 9013336 DOI: 10.1242/jcs.109.12.2885] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most abundant microtubule-associated protein in sea urchin eggs and embryos is the 77 kDa echinoderm microtubule-associated protein (EMAP). EMAP localizes to the mitotic spindle as well as the interphase microtubule array and is a likely target for a cell cycle-activated kinase. To determine if EMAP is phosphorylated in vivo, sea urchin eggs and embryos were metabolically labeled with 32PO4 and a monospecific antiserum was used to immunoprecipitate EMAP from 32P-labeled eggs and embryos. In this study, we demonstrate that the 77 kDa EMAP is phosphorylated in vivo by two distinct mechanisms. In the unfertilized egg, EMAP is constitutively phosphorylated on at least five serine residues. During the first cleavage division following fertilization, EMAP is phosphorylated with a cell cycle-dependent time course. As the embryo enters mitosis, EMAP phosphorylation increases, and as the embryo exits mitosis, phosphorylation decreases. During mitosis, EMAP is phosphorylated on 10 serine residues and two-dimensional phosphopeptide mapping reveals a mitosis-specific site of phosphorylation. At all stages of the cell cycle, a 33 kDa polypeptide copurifies with the 77 kDa EMAP, regardless of phosphorylation state. Antibodies against the cdc2 kinase were used to demonstrate that the 33 kDa polypeptide is the p34cdc2 kinase. The p34cdc2 kinase copurifies with the mitotic apparatus and immunostaining indicates that the p34cdc2 kinase is concentrated at the spindle poles. Models for the interaction of the p34cdc2 kinase and the 77 kDa EMAP are presented.
Collapse
Affiliation(s)
- E Brisch
- Department of Physiology and Cell Biology, University of Kansas, Lawrence 66045, USA
| | | | | |
Collapse
|
419
|
Merdes A, Ramyar K, Vechio JD, Cleveland DW. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 1996; 87:447-58. [PMID: 8898198 DOI: 10.1016/s0092-8674(00)81365-3] [Citation(s) in RCA: 454] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
NuMA is a nuclear protein during interphase but redistributes to the spindle poles early in mitosis. To investigate its role during spindle formation, we tested spindle assembly in frog egg extracts from which NuMA was immunodepleted. Immunodepletion revealed that NuMA forms a complex with cytoplasmic dynein and dynactin. The depleted extracts failed to assemble normal mitotic spindles, producing, instead, chromatin-associated irregular arrays of microtubules lacking characteristic spindle poles. A subdomain of the NuMA tail was shown to induce microtubule aster formation by mediating microtubule bundling. Our findings suggest that NuMA forms bifunctional complexes with cytoplasmic dynein and dynactin that can tether microtubules at the spindle poles and that are essential for mitotic spindle pole assembly and stabilization.
Collapse
Affiliation(s)
- A Merdes
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla 92093-0660, USA
| | | | | | | |
Collapse
|
420
|
Flyvbjerg H, Holy TE, Leibler S. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1996; 54:5538-5560. [PMID: 9965740 DOI: 10.1103/physreve.54.5538] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
421
|
Affiliation(s)
- W Z Cande
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| | | |
Collapse
|
422
|
Khodjakov A, Rieder CL. Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome. J Biophys Biochem Cytol 1996; 135:315-27. [PMID: 8896591 PMCID: PMC2121052 DOI: 10.1083/jcb.135.2.315] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We used video-light microscopy and laser microsurgery to test the hypothesis that as a bioriented prometaphase chromosome changes position in PtK1 cells, the kinetochore moving away from its associated pole (AP) exerts a pushing force on the centromere. When we rapidly severed congressing chromosomes near the spindle equator between the sister kinetochores, the kinetochore that was originally "leading" the motion towards a pole (P) always (17/17 cells) continued moving P whereas the "trailing" kinetochore moving AP always stopped moving as soon as the operation was completed. This trailing kinetochore then initiated motion towards the pole it was originally moving away from up to 50 s later. The same result was observed (15/15 cells) when we selectively destroyed the leading (P moving) kinetochore on a congressing chromosome positioned > or = 3 microns from the pole it was moving away from. When we conducted this experiment on congressing chromosomes positioned within 3 microns of the pole, the centromere region either stopped moving, before switching into motion towards the near pole (2/4 cells), or it continued to move AP for 30-44 s (2/4 cells) before switching into P motion. Finally, kinetochore-free chromosome fragments, generated in the polar regions of PtK1 spindles, were ejected AP and often towards the spindle equator at approximately 2 microns/min. From these data we conclude that the kinetochore moving AP on a moving chromosome does not exert a significant pushing force on the chromosome. Instead, our results reveal that, when not generating a P force, kinetochores are in a "neutral" state that allows them to remain stationary or to coast AP in response to external forces sufficient to allow their K-fiber to elongate.
Collapse
Affiliation(s)
- A Khodjakov
- Wadsworth Center, Laboratory of Cell Regulation, New York State Department of Health, Albany 12201-0509, USA
| | | |
Collapse
|
423
|
Endow SA, Komma DJ. Centrosome and spindle function of the Drosophila Ncd microtubule motor visualized in live embryos using Ncd-GFP fusion proteins. J Cell Sci 1996; 109 ( Pt 10):2429-42. [PMID: 8923204 DOI: 10.1242/jcs.109.10.2429] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ncd microtubule motor protein is required for meiotic and early mitotic chromosome distribution in Drosophila. Null mutant females expressing the Ncd motor fused to the Aequorea victoria green fluorescent protein (GFP), regulated by the wild-type ncd promoter, are rescued for chromosome segregation and embryo viability. Analysis of mitosis in live embryos shows cell cycle-dependent localization of Ncd-GFP to centrosomes and spindles. The distribution of Ncd-GFP in spindles during metaphase differs strikingly from that of tubulin: the tubulin staining is excluded by the chromosomes at the metaphase plate; in contrast, Ncd-GFP forms filaments along the spindle microtubules that extend across the chromosomes. The existence of Ncd-GFP fibers that cross the metaphase plate suggests that Ncd interacts functionally with chromosomes in metaphase. Differences are no longer observed in anaphase when the chromosomes have moved off the metaphase plate. A mutant form of Ncd fused to GFP also localizes to spindles in live embryos. Mutant embryos show frequent centrosome and spindle abnormalities, including free centrosomes that dissociate from interphase nuclei, precociously split centrosomes, and spindles with microtubule spurs or bridges to nearby spindles. The precociously split and free centrosomes indicate that the Ncd motor acts in cleavage stage embryos to maintain centrosome integrity and attachment to nuclei. The frequent spindle spurs of mutant embryos are associated with mis-segregating chromosomes that partially detach from the spindle in metaphase, but can be recaptured in early anaphase. This implies that the Ncd motor functions to prevent chromosome loss by maintaining chromosome attachment to the spindle in metaphase, consistent with the Ncd-GFP fibers that across the metaphase plate.
Collapse
Affiliation(s)
- S A Endow
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
424
|
Pidoux AL, LeDizet M, Cande WZ. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function. Mol Biol Cell 1996; 7:1639-55. [PMID: 8898367 PMCID: PMC276011 DOI: 10.1091/mbc.7.10.1639] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle.
Collapse
Affiliation(s)
- A L Pidoux
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| | | | | |
Collapse
|
425
|
|
426
|
Abstract
Kinetochores are essential for accurate chromosome segregation. Recent studies reveal that vertebrate kinetochores are sophisticated propulsion systems composed of not only force generators but also "navigation' and "fail-safe' mechanisms. Advances toward the understanding of the biochemical composition and activities of the components of the kinetochore have come from the molecular characterization of key proteins of the kinetochore complex.
Collapse
Affiliation(s)
- T J Yen
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
427
|
Abstract
The 'plus' ends of microtubules exhibit dynamic instability, switching stochastically from growth to shortening phases. The first endogenous regulator of such 'catastrophes' has been identified, and is a kinesin-related microtubule motor protein.
Collapse
Affiliation(s)
- J C Waters
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | |
Collapse
|
428
|
Belmont LD, Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 1996; 84:623-31. [PMID: 8598048 DOI: 10.1016/s0092-8674(00)81037-5] [Citation(s) in RCA: 563] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using a polymerization inhibition assay, we have purified a small, heat stable protein that physically interacts with tubulin dimers and increases the catastrophe rate of microtubules. Sequence analysis identified this protein as oncoprotein 18 (Op18)/stathmin, a conserved phosphoprotein that is highly expressed in leukemia cells. Immunodepletion experiments in Xenopus egg extracts showed that Op18/stathmin is involved in physiological regulation of mitotic microtubule dynamics. Op18/stathmin is a microtubule regulator that preferentially interacts with unpolymerized subunits. It is a candidate for increasing the microtubule catastrophe rate in mitosis and might also regulate microtubule dynamics in response to external signals.
Collapse
Affiliation(s)
- L D Belmont
- Department of Biochemistry, University of California, San Francisco, 94143-0448, USA
| | | |
Collapse
|
429
|
Abstract
Microtubule dynamics change dramatically during the cell cycle, but the mechanisms by which these changes occur are unknown. Recent progress has been made in four areas: firstly, in the determination of changes in microtubule turnover and net tubulin polymer levels in vivo; secondly, in the elucidation of mechanisms of regulation of microtubule dynamics by microtubule-associated protein 4; thirdly, in the determination of the mechanisms by which Xenopus microtubule-associated protein regulates microtubule dynamics; and fourthly, in the elucidation of the structural basis of microtubule nucleation by gamma tubulin.
Collapse
Affiliation(s)
- F J McNally
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA.
| |
Collapse
|
430
|
Wadsworth P, Bottaro DP. Microtubule dynamic turnover is suppressed during polarization and stimulated in hepatocyte growth factor scattered Madin-Darby canine kidney epithelial cells. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:225-36. [PMID: 8913643 DOI: 10.1002/(sici)1097-0169(1996)35:3<225::aid-cm5>3.0.co;2-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The dynamic behavior of microtubules has been measured in non-polarized, polarized, and hepatocyte growth factor treated Madin-Darby canine kidney epithelial cells. In a nocodazole disassembly assay, microtubules in polarized cells were more resistant to depolymerization than microtubules in non-polarized cells; microtubules in scattered cells were nearly completely disassembled. Analysis of fluorescent microtubules in living cells further revealed that individual microtubules in polarized cells were kinetically stabilized and microtubules in scattered cells were highly dynamic. Individual microtubule behavior in polarized cells was characterized by a suppression of the average rate of shortening, an increase in the average duration of pause, a decrease in the frequency of catastrophe transitions, and an increase in the frequency of rescue transitions, when compared with microtubules in non-polarized cells. In contrast, microtubule behavior in epithelial cells treated with hepatocyte growth factor was characterized by increase in the average rates of microtubule growth and shortening, a decrease in the frequency of rescue transitions, and an increase in the frequency of catastrophe transitions, when compared with polarized cells. Dynamicity, a measure of the gain and loss of subunits from microtubule plus ends, was 2.7 microns/min in polarized cells and 11.1 microns/min in scattered cells. These results demonstrate that individual microtubule dynamic behavior is markedly suppressed in polarized epithelial cells. Our results further demonstrate that in addition to its previously characterized effects on cell locomotion, hepatocyte growth factor stimulates microtubule dynamic turnover in lamellar regions of living cells.
Collapse
Affiliation(s)
- P Wadsworth
- Department of Biology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
431
|
Shelden E, Wadsworth P. Stimulation of microtubule dynamic turnover in living cells treated with okadaic acid. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:24-34. [PMID: 8874963 DOI: 10.1002/(sici)1097-0169(1996)35:1<24::aid-cm2>3.0.co;2-i] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have examined the effects of okadaic acid, an inhibitor of protein phosphatases type 1 and 2A, on the dynamic instability behavior of individual microtubules in living cells. Addition of 1 microM okadaic acid to PtK1 epithelial cells induced ruffling of lamellar regions; after 50 min in okadaic acid, many cells were observed to round up. Confocal microscopy of okadaic acid-treated cells stained with an antibody to tubulin showed that microtubules were more densely packed near the periphery of the rounded cells, and in many cells, a reduction in the density of microtubules near the microtubule-organizing center was observed. The dynamic behavior of individual microtubules in cells previously injected with rhodamine-labeled tubulin was quantified by tracking individual microtubules from image sequences. Microtubule dynamic turnover was markedly stimulated in cells treated with 1 microM okadaic acid for 50-60 min: The average rates of both microtubule growing and shortening increased, and the average duration of pause, or attenuation, a phase in which neither growth nor shortening could be detected, was significantly decreased. Further, okadaic acid induced an approximately twofold increase in the frequency of catastrophe transitions and a threefold decrease in the frequency of rescue transitions. Dynamicity, a measure of the net gain and loss of polymer at microtubule plus ends, increased nearly threefold in okadaic acid-treated cells. These results demonstrate that microtubule turnover is stimulated in okadaic acid-treated cells and suggest that phosphorylation of molecules which interact with microtubules may result in increased microtubule dynamic turnover in vivo.
Collapse
Affiliation(s)
- E Shelden
- Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor, USA
| | | |
Collapse
|