401
|
Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SSW, Demougin P, Gattiker A, Moore J, Patard JJ, Wolgemuth DJ, Jégou B, Primig M. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci U S A 2007; 104:8346-51. [PMID: 17483452 PMCID: PMC1864911 DOI: 10.1073/pnas.0701883104] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We report a cross-species expression profiling analysis of the human, mouse, and rat male meiotic transcriptional program, using enriched germ cell populations, whole gonads, and high-density oligonucleotide microarrays (GeneChips). Among 35% of the protein-coding genes present in rodent and human genomes that were found to be differentially expressed between germ cells and somatic controls, a key group of 357 conserved core loci was identified that displays highly similar meiotic and postmeiotic patterns of transcriptional induction across all three species. Genes known to be important for sexual reproduction are significantly enriched among differentially expressed core loci and a smaller group of conserved genes not detected in 17 nontesticular somatic tissues, correlating transcriptional activation and essential function in the male germ line. Some genes implicated in the etiology of cancer are found to be strongly transcribed in testis, suggesting that these genes may play unexpected roles in sexual reproduction. Expression profiling data further identified numerous conserved genes of biological and clinical interest previously unassociated with the mammalian male germ line.
Collapse
Affiliation(s)
- Frédéric Chalmel
- *Biozentrum and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Antoine D. Rolland
- Institut National de la Santé et de la Recherche Médicale U625, Group d'Etude de la Reproduction chez l'Homme et les Mammifères, Institut Fédératif de Recherche 140; Université de Rennes I, Campus de Beaulieu, F-35042 Rennes, France
| | | | - Sanny S. W. Chung
- Columbia University Medical Center, Black Building 1613, 630 West 168th Street, New York, NY 10032; and
| | - Philippe Demougin
- *Biozentrum and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Alexandre Gattiker
- *Biozentrum and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - James Moore
- *Biozentrum and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Jean-Jacques Patard
- Centre Hospitalier Universitaire Régional Pontchaillou, Service d'Urologie, F-35000 Rennes, France
| | - Debra J. Wolgemuth
- Columbia University Medical Center, Black Building 1613, 630 West 168th Street, New York, NY 10032; and
| | - Bernard Jégou
- Institut National de la Santé et de la Recherche Médicale U625, Group d'Etude de la Reproduction chez l'Homme et les Mammifères, Institut Fédératif de Recherche 140; Université de Rennes I, Campus de Beaulieu, F-35042 Rennes, France
| | - Michael Primig
- *Biozentrum and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
402
|
Hope JC, Cruzata LD, Duvshani A, Mitsumoto J, Maftahi M, Freyer GA. Mus81-Eme1-dependent and -independent crossovers form in mitotic cells during double-strand break repair in Schizosaccharomyces pombe. Mol Cell Biol 2007; 27:3828-38. [PMID: 17353272 PMCID: PMC1900003 DOI: 10.1128/mcb.01596-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 09/18/2006] [Accepted: 03/02/2007] [Indexed: 11/20/2022] Open
Abstract
During meiosis, double-strand breaks (DSBs) lead to crossovers, thought to arise from the resolution of double Holliday junctions (HJs) by an HJ resolvase. In Schizosaccharomyces pombe, meiotic crossovers are produced primarily through a mechanism requiring the Mus81-Eme1 endonuclease complex. Less is known about the processes that produces crossovers during the repair of DSBs in mitotic cells. We employed an inducible DSB system to determine the role of Rqh1-Top3 and Mus81-Eme1 in mitotic DSB repair and crossover formation in S. pombe. In agreement with the meiotic data, crossovers are suppressed in cells lacking Mus81-Eme1. And relative to the wild type, rqh1Delta cells show a fourfold increase in crossover frequency. This suppression of crossover formation by Rqh1 is dependent on its helicase activity. We found that the synthetic lethality of cells lacking both Rqh1 and Eme1 is suppressed by loss of swi5(+), which allowed us to show that the excess crossovers formed in an rqh1Delta background are independent of Mus81-Eme1. This result suggests that a second process for crossover formation exists in S. pombe and is consistent with our finding that deletion of swi5(+) restored meiotic crossovers in eme1Delta cells. Evidence suggesting that Rqh1 also acts downstream of Swi5 in crossover formation was uncovered in these studies. Our results suggest that during Rhp51-dependent repair of DSBs, Rqh1-Top3 suppresses crossovers in the Rhp57-dependent pathway while Mus81-Eme1 and possibly Rqh1 promote crossovers in the Swi5-dependent pathway.
Collapse
Affiliation(s)
- Justin C Hope
- Graduate Program in Anatomy and Cell Biology, Columbia University, 722 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
403
|
Chicheportiche A, Bernardino-Sgherri J, de Massy B, Dutrillaux B. Characterization of Spo11-dependent and independent phospho-H2AX foci during meiotic prophase I in the male mouse. J Cell Sci 2007; 120:1733-42. [PMID: 17456548 DOI: 10.1242/jcs.004945] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiotic DNA double strand breaks (DSBs) are indicated at leptotene by the phosphorylated form of histone H2AX (gamma-H2AX). In contrast to previous studies, we identified on both zygotene and pachytene chromosomes two distinct types of gamma-H2AX foci: multiple small (S) foci located along autosomal synaptonemal complexes (SCs) and larger signals on chromatin loops (L-foci). The S-foci number gradually declined throughout pachytene, in parallel with the repair of DSBs monitored by repair proteins suggesting that S-foci mark DSB repair events. We validated this interpretation by showing the absence of S-foci in Spo11(-/-) spermatocytes. By contrast, the L-foci number was very low through pachytene. Based on the analysis of gamma-H2AX labeling after irradiation of spermatocytes, the formation of DSBs clearly induced L-foci formation. Upon DSB repair, these foci appear to be processed and lead to the above mentioned S-foci. The presence of L-foci in wild-type pachytene and diplotene could therefore reflect delayed or unregulated DSB repair events. Interestingly, their distribution was different in Spo11(+/-) spermatocytes compared with Spo11(+/+) spermatocytes, where DSB repair might be differently regulated as a response to homeostatic control of crossing-over. The presence of these L-foci in Spo11(-/-) spermatocytes raises the interesting possibility of yet uncharacterized alterations in DNA or chromosome structure in Spo11(-/-) cells.
Collapse
Affiliation(s)
- Alexandra Chicheportiche
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Unité Mixte de Recherche-S 566, Commissariat à l'Energie Atomique DSV/IRCM/SEGG/LDRG, F-92265 Fontenay aux Roses, France.
| | | | | | | |
Collapse
|
404
|
Buard J, de Massy B. Playing hide and seek with mammalian meiotic crossover hotspots. Trends Genet 2007; 23:301-9. [PMID: 17434233 DOI: 10.1016/j.tig.2007.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 03/14/2007] [Accepted: 03/29/2007] [Indexed: 11/30/2022]
Abstract
Crossovers (COs) are essential for meiosis and contribute to genome diversity by promoting the reassociation of alleles, and thus improve the efficiency of selection. COs are not randomly distributed but are found at specific regions, or CO hotspots. Recent results have revealed the historical recombination rates and the distribution of hotspots across the human genome. Surprisingly, CO hotspots are highly dynamic, as shown by differences in activity between individuals, populations and closely related species. We propose a role for DNA methylation in preventing the formation of COs, a regulation that might explain, in part, the correlation between recombination rates and GC content in mammals.
Collapse
Affiliation(s)
- Jérôme Buard
- Institute of Human Genetics, UPR1142-CNRS, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France
| | | |
Collapse
|
405
|
Ploquin M, Petukhova GV, Morneau D, Déry U, Bransi A, Stasiak A, Camerini-Otero RD, Masson JY. Stimulation of fission yeast and mouse Hop2-Mnd1 of the Dmc1 and Rad51 recombinases. Nucleic Acids Res 2007; 35:2719-33. [PMID: 17426123 PMCID: PMC1885673 DOI: 10.1093/nar/gkm174] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetic analysis of fission yeast suggests a role for the spHop2-Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2-Mnd1 binds single-strand DNA ends of 3'-tailed DNA. Interestingly, spHop2-Mnd1 promotes the renaturation of complementary single-strand DNA and catalyses strand exchange reactions with short oligonucleotides. Importantly, we show that spHop2-Mnd1 stimulates spDmc1-dependent strand exchange and strand invasion. Ca(2+) alleviate the requirement for the order of addition of the proteins on DNA. We also demonstrate that while spHop2-Mnd1 affects spDmc1 specifically, mHop2 or mHop2-Mnd1 stimulates both the hRad51 and hDmc1 recombinases in strand exchange assays. Thus, our results suggest a crucial role for S. pombe and mouse Hop2-Mnd1 in homologous pairing and strand exchange and reveal evolutionary divergence in their specificity for the Dmc1 and Rad51 recombinases.
Collapse
Affiliation(s)
- Mickaël Ploquin
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Quebec city, QC, Canada G1R 2J6, Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, MD 20892, USA and Laboratory of Ultrastructural Analysis, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Galina V. Petukhova
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Quebec city, QC, Canada G1R 2J6, Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, MD 20892, USA and Laboratory of Ultrastructural Analysis, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Dany Morneau
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Quebec city, QC, Canada G1R 2J6, Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, MD 20892, USA and Laboratory of Ultrastructural Analysis, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ugo Déry
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Quebec city, QC, Canada G1R 2J6, Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, MD 20892, USA and Laboratory of Ultrastructural Analysis, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ali Bransi
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Quebec city, QC, Canada G1R 2J6, Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, MD 20892, USA and Laboratory of Ultrastructural Analysis, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andrzej Stasiak
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Quebec city, QC, Canada G1R 2J6, Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, MD 20892, USA and Laboratory of Ultrastructural Analysis, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - R. Daniel Camerini-Otero
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Quebec city, QC, Canada G1R 2J6, Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, MD 20892, USA and Laboratory of Ultrastructural Analysis, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Yves Masson
- Genome Stability Laboratory, Laval University Cancer Research Center, Hôtel-Dieu de Québec, 9 McMahon, Quebec city, QC, Canada G1R 2J6, Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, MD 20892, USA and Laboratory of Ultrastructural Analysis, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- *To whom correspondence should be addressed +1-418-525-4444+1-418-691-5439
| |
Collapse
|
406
|
Abstract
Spermatocytes normally sustain many meiotically induced double-strand DNA breaks (DSBs) early in meiotic prophase; in autosomal chromatin, these are repaired by initiation of meiotic homologous-recombination processes. Little is known about how spermatocytes respond to environmentally induced DNA damage after recombination-related DSBs have been repaired. The experiments described here tested the hypothesis that, even though actively completing meiotic recombination, pachytene spermatocytes cultured in the absence of testicular somatic cells initiate appropriate chromatin remodeling and cell-cycle responses to environmentally induced DNA damage. Two DNA-damaging agents were employed for in vitro treatment of pachytene spermatocytes: gamma-irradiation and etoposide, a topoisomerase II (TOP2) inhibitor that results in persistent unligated DSBs. Chromatin modifications associated with DSBs were monitored after exposure by labeling surface-spread chromatin with antibodies against RAD51 (which recognizes DSBs) and the phosphorylated variant of histone H2AFX (herein designated by its commonly used symbol, H2AX), gammaH2AX (which modifies chromatin associated with DSBs). Both gammaH2AX and RAD51 were rapidly recruited to irradiation- or etoposide-damaged chromatin. These chromatin modifications imply that spermatocytes recruit active DNA damage responses, even after recombination is substantially completed. Furthermore, irradiation-induced DNA damage inhibited okadaic acid-induced progression of spermatocytes from meiotic prophase to metaphase I (MI), implying efficacy of DNA damage checkpoint mechanisms. Apoptotic responses of spermatocytes with DNA damage differed, with an increase in frequency of early apoptotic spermatocytes after etoposide treatment, but not following irradiation. Taken together, these results demonstrate modification of pachytene spermatocyte chromatin and inhibition of meiotic progress after DNA damage by mechanisms that may ensure gametic genetic integrity.
Collapse
Affiliation(s)
- Shannon Matulis
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | | |
Collapse
|
407
|
Liu Y, Wu C, Lyu Q, Yang D, Albertini DF, Keefe DL, Liu L. Germline stem cells and neo-oogenesis in the adult human ovary. Dev Biol 2007; 306:112-20. [PMID: 17428461 DOI: 10.1016/j.ydbio.2007.03.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/04/2007] [Accepted: 03/06/2007] [Indexed: 11/23/2022]
Abstract
It remains unclear whether neo-oogenesis occurs in postnatal ovaries of mammals, based on studies in mice. We thought to test whether adult human ovaries contain germline stem cells (GSCs) and undergo neo-oogenesis. Rather than using genetic manipulation which is unethical in humans, we took the approach of analyzing the expression of meiotic marker genes and genes for germ cell proliferation, which are required for neo-oogenesis, in adult human ovaries covering an age range from 28 to 53 years old, compared to testis and fetal ovaries served as positive controls. We show that active meiosis, neo-oogenesis and GSCs are unlikely to exist in normal, adult, human ovaries. No early meiotic-specific or oogenesis-associated mRNAs for SPO11, PRDM9, SCP1, TERT and NOBOX were detectable in adult human ovaries using RT-PCR, compared to fetal ovary and adult testis controls. These findings are further corroborated by the absence of early meiocytes and proliferating germ cells in adult human ovarian cortex probed with markers for meiosis (SCP3), oogonium (OCT3/4, c-KIT), and cell cycle progression (Ki-67, PCNA), in contrast to fetal ovary controls. If postnatal oogenesis is confirmed in mice, then this species would represent an exception to the rule that neo-oogenesis does not occur in adults.
Collapse
Affiliation(s)
- Yifei Liu
- College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
408
|
Pepling ME. From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis 2007; 44:622-32. [PMID: 17146778 DOI: 10.1002/dvg.20258] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, the final number of oocytes available for reproduction of the next generation is defined at birth. Establishment of this oocyte pool is essential for fertility. Mammalian primordial germ cells form and migrate to the gonad during embryonic development. After arriving at the gonad, the germ cells are called oogonia and develop in clusters of cells called germ line cysts or oocyte nests. Subsequently, the oogonia enter meiosis and become oocytes. The oocyte nests break apart into individual cells and become packaged into primordial follicles. During this time, only a subset of oocytes ultimately survive and the remaining immature eggs die by programmed cell death. This phase of oocyte differentiation is poorly understood but molecules and mechanisms that regulate oocyte development are beginning to be identified. This review focuses on these early stages of female germ cell development.
Collapse
Affiliation(s)
- Melissa E Pepling
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA.
| |
Collapse
|
409
|
Abstract
The most-critical point of reproductive development in all sexually reproducing species is the transition from mitotic to meiotic cell cycle. Studies in unicellular fungi have indicated that the decision to enter meiosis must be made before the beginning of the premeiotic S phase. Recent data from the mouse suggest that this timing of meiosis initiation is a universal feature shared also by multicellular eukaryotes. In contrast, the signaling cascade that leads to meiosis initiation shows great diversity among species.
Collapse
Affiliation(s)
- Wojciech P Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
410
|
|
411
|
Wang PJ, Pan J. The role of spermatogonially expressed germ cell-specific genes in mammalian meiosis. Chromosome Res 2007; 15:623-32. [PMID: 17674150 DOI: 10.1007/s10577-007-1141-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Meiosis, a hallmark of sexual reproduction, reduces the chromatin complement by half to cope with genome doubling at fertilization and permits exchange of genetic material between parental genomes. Recent functional studies of novel proteins have greatly enhanced our understanding of the regulation of meiosis. The unique status of sex chromosomes in the male germ line may have shaped their content of germ line-intrinsic genes during evolution. Previously, a unique set of 36 spermatogonially expressed, mouse germ cell-specific genes was identified in one genomic screen. Thirteen of these genes have been disrupted in mice and two-thirds of these mouse mutants exhibit meiotic defects. Therefore, we hypothesize that the majority of uncharacterized germ cell-specific genes identified in the same screen, including 11 X-linked genes, might also play important roles in meiosis. In particular, we cite previously unpublished studies demonstrating that the NXF2 protein, an X-encoded factor, is present in early spermatocytes.
Collapse
Affiliation(s)
- P Jeremy Wang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
412
|
Abstract
DNA double-strand breaks (DSBs) are the most hazardous lesions arising in the genome of eukaryotic organisms, and yet occur normally during DNA replication, meiosis, and immune system development. The efficient repair of DSBs is crucial in maintaining genomic integrity, cellular viability, and the prevention of tumorigenesis. As a consequence, eukaryotic cells have evolved efficient mechanisms that sense and respond to DSBs and ultimately repair the break. The swiftness of the DNA DSB response has paved to the identification of sensors and transducers which allowed to generate a hierarchical signaling paradigm depicting the transduction of the damage signal to numerous downstream effectors (Fig. 1). The function of such effectors involve posttranslational modifications through phosphorylation, acetylation, and methylation of the substrates. This review will address the control of DSBs in damaged eukaryotic cells, the physiological processes that require the introduction of a DSB into the genome, and the maintenance of DSBs in non-damaged cells.
Collapse
Affiliation(s)
- Shaun P. Scott
- Washington University School of Medicine, St. Louis, Missouri 63108
| | - Tej K. Pandita
- Washington University School of Medicine, St. Louis, Missouri 63108
| |
Collapse
|
413
|
Smirnova NA, Romanienko PJ, Khil PP, Camerini-Otero RD. Gene expression profiles of Spo11-/- mouse testes with spermatocytes arrested in meiotic prophase I. Reproduction 2006; 132:67-77. [PMID: 16816334 DOI: 10.1530/rep.1.00997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spo11, a meiosis-specific protein, introduces double-strand breaks on chromosomal DNA and initiates meiotic recombination in a wide variety of organisms. Mouse null Spo11 spermatocytes fail to synapse chromosomes and progress beyond the zygotene stage of meiosis. We analyzed gene expression profiles in Spo11(-/ -)adult and juvenile wild-type testis to describe genes expressed before and after the meiotic arrest resulting from the knocking out of Spo11. These genes were characterized using the Gene Ontology data base. To focus on genes involved in meiosis, we performed comparative gene expression analysis of Spo11(-/ -)and wild-type testes from 15-day mice, when spermatocytes have just entered pachytene. We found that the knockout of Spo11 causes dramatic changes in the level of expression of genes that participate in meiotic recombination (Hop2, Brca2, Mnd1, FancG) and in the meiotic checkpoint (cyclin B2, Cks2), but does not affect genes encoding protein components of the synaptonemal complex. Finally, we discovered unknown genes that are affected by the disruption of the Spo11 gene and therefore may be specifically involved in meiosis and spermatogenesis.
Collapse
Affiliation(s)
- Natalya A Smirnova
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
414
|
Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, Page DC. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 2006; 38:1430-4. [PMID: 17115059 DOI: 10.1038/ng1919] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 10/06/2006] [Indexed: 12/28/2022]
Abstract
The transition from mitosis to meiosis is a defining juncture in the life cycle of sexually reproducing organisms. In yeast, the decision to enter meiosis is made before the single round of DNA replication that precedes the two meiotic divisions. We present genetic evidence of an analogous decision point in the germ line of a multicellular organism. The mouse Stra8 gene is expressed in germ cells of embryonic ovaries, where meiosis is initiated, but not in those of embryonic testes, where meiosis does not begin until after birth. Here we report that in female embryos lacking Stra8 gene function, the early, mitotic development of germ cells is normal, but these cells then fail to undergo premeiotic DNA replication, meiotic chromosome condensation, cohesion, synapsis and recombination. Combined with previous findings, these genetic data suggest that active differentiation of ovarian germ cells commences at a regulatory point upstream of premeiotic DNA replication.
Collapse
Affiliation(s)
- Andrew E Baltus
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | |
Collapse
|
415
|
Mori T, Kurahashi H, Shinka T, Nakahori Y, Taniguchi M, Toda T, Iwamoto T. Candidate genes for male factor infertility--validation. Fertil Steril 2006; 86:1553-4; author reply 1554. [PMID: 16926002 DOI: 10.1016/j.fertnstert.2006.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Indexed: 11/28/2022]
|
416
|
Koehler KE, Schrump SE, Cherry JP, Hassold TJ, Hunt PA. Near-human aneuploidy levels in female mice with homeologous chromosomes. Curr Biol 2006; 16:R579-80. [PMID: 16890511 DOI: 10.1016/j.cub.2006.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
417
|
Liebe B, Petukhova G, Barchi M, Bellani M, Braselmann H, Nakano T, Pandita TK, Jasin M, Fornace A, Meistrich ML, Baarends WM, Schimenti J, de Lange T, Keeney S, Camerini-Otero RD, Scherthan H. Mutations that affect meiosis in male mice influence the dynamics of the mid-preleptotene and bouquet stages. Exp Cell Res 2006; 312:3768-81. [PMID: 17010969 DOI: 10.1016/j.yexcr.2006.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/20/2006] [Accepted: 07/22/2006] [Indexed: 01/15/2023]
Abstract
Meiosis pairs and segregates homologous chromosomes and thereby forms haploid germ cells to compensate the genome doubling at fertilization. Homologue pairing in many eukaryotic species depends on formation of DNA double strand breaks (DSBs) during early prophase I when telomeres begin to cluster at the nuclear periphery (bouquet stage). By fluorescence in situ hybridization criteria, we observe that mid-preleptotene and bouquet stage frequencies are altered in male mice deficient for proteins required for recombination, ubiquitin conjugation and telomere length control. The generally low frequencies of mid-preleptotene spermatocytes were significantly increased in male mice lacking recombination proteins SPO11, MEI1, MLH1, KU80, ubiquitin conjugating enzyme HR6B, and in mice with only one copy of the telomere length regulator Terf1. The bouquet stage was significantly enriched in Atm(-/-), Spo11(-/-), Mei1(m1Jcs/m1Jcs), Mlh1(-/-), Terf1(+/-) and Hr6b(-/-) spermatogenesis, but not in mice lacking recombination proteins DMC1 and HOP2, the non-homologous end-joining DNA repair factor KU80 and the ATM downstream effector GADD45a. Mice defective in spermiogenesis (Tnp1(-/-), Gmcl1(-/-), Asm(-/-)) showed wild-type mid-preleptotene and bouquet frequencies. A low frequency of bouquet spermatocytes in Spo11(-/-)Atm(-/-) spermatogenesis suggests that DSBs contribute to the Atm(-/-)-correlated bouquet stage exit defect. Insignificant changes of bouquet frequencies in mice with defects in early stages of DSB repair (Dmc1(-/-), Hop2(-/-)) suggest that there is an ATM-specific influence on bouquet stage duration. Altogether, it appears that several pathways influence telomere dynamics in mammalian meiosis.
Collapse
Affiliation(s)
- B Liebe
- Max-Planck-Inst. for Molecular Genetics, Ihnestr. 73, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Jessop L, Rockmill B, Roeder GS, Lichten M. Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of sgs1. PLoS Genet 2006; 2:e155. [PMID: 17002499 PMCID: PMC1570379 DOI: 10.1371/journal.pgen.0020155] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 08/02/2006] [Indexed: 11/19/2022] Open
Abstract
Sgs1, the budding yeast homolog of the mammalian BLM helicase, has been implicated in preventing excess recombination during both vegetative growth and meiosis. Most meiotic crossover (CO) recombination requires full function of a set of yeast proteins (Zip1, Zip2, Zip3, Zip4/Spo22, Mer3, Msh4, and Msh5, termed the SIC or ZMM proteins) that are also required for homologous chromosome synapsis. We report here genetic and molecular assays showing that sgs1 single mutants display relatively modest increases in CO recombination (less than 1.6-fold relative to wild-type). In contrast, a much greater CO increase is seen when an sgs1 mutation is introduced into the CO- and synapsis-deficient zip1, zip2, zip3, mer3, or msh4 mutants (2- to 8-fold increase). Furthermore, close juxtaposition of the axes of homologous chromosomes is restored. CO restoration in the mutants is not accompanied by significant changes in noncrossover (NCO) recombinant frequencies. These findings show that Sgs1 has potent meiotic anti-CO activity, which is normally antagonized by SIC/ZMM proteins. Our data reinforce previous proposals for an early separation of meiotic processes that form CO and NCO recombinants. Most eukaryotic cells are diploid (two copies of each chromosome per cell), but gametes (in animals, sperm and eggs) are haploid (one chromosome copy). Gametes are produced from diploid cells during meiosis. The two copies of each chromosome are brought together in end-to-end alignment (synapsis), and then are connected by crossover recombination, which involves the joining of DNA from one chromosome copy to DNA of the other. Crossovers are critical for chromosome separation in the diploid-to-haploid transition, and also promote genetic diversity by shuffling parental genotypes. In contrast, during mitotic cell growth, crossovers create genome rearrangements and loss of heterozygosity, which are associated with cancer and other diseases. A DNA-unwinding enzyme, called BLM in mammals and Sgs1 in budding yeast, prevents mitotic crossover recombination by taking apart intermediates that would otherwise give rise to crossovers. This paper shows that yeast proteins that promote meiotic chromosome synapsis also protect recombination intermediates from Sgs1. If any of these proteins are absent, Sgs1 prevents both crossover formation and synapsis. These findings show how modulating the activity of a single critical enzyme can either prevent or promote crossover recombination, which threatens genome stability in mitosis but is essential for genome transmission in meiosis.
Collapse
Affiliation(s)
- Lea Jessop
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Beth Rockmill
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - G. Shirleen Roeder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Michael Lichten
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
419
|
Nag DK, Pata JD, Sironi M, Flood DR, Hart AM. Both conserved and non-conserved regions of Spo11 are essential for meiotic recombination initiation in yeast. Mol Genet Genomics 2006; 276:313-21. [PMID: 16816949 DOI: 10.1007/s00438-006-0143-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/05/2006] [Indexed: 12/01/2022]
Abstract
DNA double-strand breaks (DSBs) are the initiators of most meiotic recombination events. In Saccharomyces cerevisiae, at least ten genes are necessary for meiotic DSB formation. However, the molecular roles of these proteins are not clearly understood. The meiosis-specific Spo11 protein, which shows sequence similarity with a subunit of an archaeal topoisomerase, is believed to catalyze the meiotic DSB formation. Spo11 is also required for induction of meiotic DSBs at long inverted repeats and at large trinucleotide repeat tracts. Here we report the isolation and characterization of temperature-sensitive spo11-mutant alleles to better understand how Spo11 functions, and how meiotic DSBs are generated at various recombination hotspots. Analysis of mutation sites of isolated spo11-mutant alleles indicated that both N-terminal and C-terminal non-conserved residues of Spo11 are essential for the protein's function, possibly for interaction with other meiotic DSB enzymes. Several of the mutation sites within the conserved region are predicted to lie on the surface of the protein, suggesting that this region is required for activation of the meiotic initiation complex via protein-protein interaction. In addition to the conditional mutants, we isolated partially recombination-defective mutants; analysis of one of these mutants indicated that Ski8, as observed previously, interacts with Spo11 via the latter's C-terminal residues.
Collapse
Affiliation(s)
- Dilip K Nag
- Laboratory of Developmental Genetics, Wadsworth Center, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
420
|
Pezza RJ, Petukhova GV, Ghirlando R, Camerini-Otero RD. Molecular Activities of Meiosis-specific Proteins Hop2, Mnd1, and the Hop2-Mnd1 Complex. J Biol Chem 2006; 281:18426-34. [PMID: 16675459 DOI: 10.1074/jbc.m601073200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse Hop2 and Mnd1 proteins, which can form a stable heterodimeric complex, ensure the proper synapsis of homologous chromosomes in meiosis by acting in concert with Rad51 and Dmc1 to promote the strand invasion (D-loop formation) step of homologous recombination. Hop2 alone promotes D-loop formation, but Mnd1 and the Hop2-Mnd1 complex do not. Here we show that only the heterodimer complex, but not the individual proteins, can stimulate strand invasion by Dmc1. Furthermore, we demonstrate that the interaction with Mnd1 provokes changes in Hop2 that are responsible not only for abrogating the recombinase activity of Hop2 but also for generating a new molecular interface able to physically interact with and stimulate Dmc1. We also show that coiled-coil motifs in Hop2 and Mnd1 are essential for their interaction with each other and that a clearly delineated region near the COOH terminus of both proteins is necessary for both the DNA binding and single-strand annealing by the Hop-Mnd1 heterodimer. Finally, we describe a point mutation in Hop2 that dissociates its strand invasion activity from its ability to bind and anneal DNA.
Collapse
Affiliation(s)
- Roberto J Pezza
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
421
|
Usui T, Petrini JHJ, Morales M. Rad50S alleles of the Mre11 complex: questions answered and questions raised. Exp Cell Res 2006; 312:2694-9. [PMID: 16857186 DOI: 10.1016/j.yexcr.2006.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 06/14/2006] [Indexed: 01/19/2023]
Abstract
We find that Rad50S mutations in yeast and mammals exhibit constitutive PIKK (PI3-kinase like kinase)-dependent signaling [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-4354.]. The signaling depends on Mre11 complex functions, consistent with its role as a DNA damage sensor. Rad50S is distinct from hypomorphic mutations of Mre11 and Nbs1 in mammals [M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-3054.; J.P. Carney, R.S. Maser, H. Olivares, E.M. Davis, Le M. Beau, J.R. Yates, III, L. Hays, W.F. Morgan, J.H. Petrini, The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93 (1998) 477-486.; G.S. Stewart, R.S. Maser, T. Stankovic, D.A. Bressan, M.I. Kaplan, N.G. Jaspers, A. Raams, P.J. Byrd, J.H. Petrini, A.M. Taylor, The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99 (1999) 577-587.; B.R. Williams, O.K. Mirzoeva, W.F. Morgan, J. Lin, W. Dunnick, J.H. Petrini, A murine model of nijmegen breakage syndrome. Curr. Biol. 12 (2002) 648-653.; J.W. Theunissen, M.I. Kaplan, P.A. Hunt, B.R. Williams, D.O. Ferguson, F.W. Alt, J.H. Petrini, Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol. Cell 12 (2003) 1511-1523.] and the Mre11 complex deficiency in yeast [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; D'D. Amours, S.P. Jackson, The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15 (2001) 2238-49. ; M. Grenon, C. Gilbert, N.F. Lowndes, Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol. 3 (2001) 844-847. ] where the signaling is compromised. Herein, we describe evidence for chronic signaling by Rad50S and discuss possible mechanisms.
Collapse
Affiliation(s)
- Takehiko Usui
- Laboratory of Chromosome Biology, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, NY10021, USA
| | | | | |
Collapse
|
422
|
Bolor H, Wakasugi N, Zhao WD, Ishikawa A. Detection of quantitative trait loci causing abnormal spermatogenesis and reduced testis weight in the small testis (Smt) mutant mouse. Exp Anim 2006; 55:97-108. [PMID: 16651692 DOI: 10.1538/expanim.55.97] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The small testis (Smt) mutant mouse is characterized by a small testis of one third to one half the size of a normal testis, and its spermatogenesis is mostly arrested at early stages of meiosis, although a small number of spermatocytes at the late prophase of meiosis and a few spermatids can sometimes be seen. We performed quantitative trait locus (QTL) analysis of these spermatogenic traits and testis weight using 221 F2 males obtained from a cross between Smt and MOM (Mus musculus molossinus) mice. At the genome-wide 5% level, we detected two QTLs affecting meiosis on chromosomes 4 and 13, and two QTLs for paired testis weight as a percentage of body weight on chromosomes 4 and X. In addition, we found several QTLs for degenerated germ cells and multinuclear giant cells on chromosomes 4, 7 and 13. Interestingly, for cell degeneration, the QTL on chromosome 13 interacted epistatically with the QTL on chromosome 4. These results reveal polygenic participation in the abnormal spermatogenesis and small testis size in the Smt mutant.
Collapse
Affiliation(s)
- Hasbaira Bolor
- Division of Applied Genetics and Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
423
|
Bowring FJ, Yeadon PJ, Stainer RG, Catcheside DEA. Chromosome pairing and meiotic recombination in Neurospora crassa spo11 mutants. Curr Genet 2006; 50:115-23. [PMID: 16758206 DOI: 10.1007/s00294-006-0066-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Some organisms, such as mammals, green plants and fungi, require double-strand breaks in DNA (DSBs) for synapsis of homologous chromosomes at pachynema. Drosophila melanogaster and Caenorhabditis elegans are exceptions, achieving synapsis independently of DSB. SPO11 is responsible for generating DSBs and perhaps for the initiation of recombination in all organisms. Although it was previously suggested that Neurospora may not require DSBs for synapsis, we report here that mutation of Neurospora spo11 disrupts meiosis, abolishing synapsis of homologous chromosomes during pachynema and resulting in ascospores that are frequently aneuploid and rarely viable. Alignment of homologues is partially restored after exposure of spo11 perithecia to ionising radiation. Crossing over in a spo11 mutant is reduced in two regions of the Neurospora genome as expected, but is unaffected in a third.
Collapse
|
424
|
Cohen PE, Pollack SE, Pollard JW. Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr Rev 2006; 27:398-426. [PMID: 16543383 DOI: 10.1210/er.2005-0017] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Meiosis is a double-division process that is preceded by only one DNA replication event to produce haploid gametes. The defining event in meiosis is prophase I, during which chromosome pairs locate each other, become physically connected, and exchange genetic information. Although many aspects of this process have been elucidated in lower organisms, there has been scant information available until now about the process in mammals. Recent advances in genetic analysis, especially in mice and humans, have revealed many genes that play essential roles in meiosis in mammals. These include cell cycle-regulatory proteins that couple the exit from the premeiotic DNA synthesis to the progression through prophase I, the chromosome structural proteins involved in synapsis, and the repair and recombination proteins that process the recombination events. Failure to adequately repair the DNA damage caused by recombination triggers meiotic checkpoints that result in ablation of the germ cells by apoptosis. These analyses have revealed surprising sexual dimorphism in the requirements of different gene products and a much less stringent checkpoint regulation in females. This may provide an explanation for the 10-fold increase in meiotic errors in females compared with males. This review provides a comprehensive analysis of the use of genetic manipulation, particularly in mice, but also of the analysis of mutations in humans, to elucidate the mechanisms that are required for traverse through prophase I.
Collapse
Affiliation(s)
- P E Cohen
- Department of Molecular Genetics, Center for the Study of Reproduction and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | |
Collapse
|
425
|
Sato H, Miyamoto T, Yogev L, Namiki M, Koh E, Hayashi H, Sasaki Y, Ishikawa M, Lamb DJ, Matsumoto N, Birk OS, Niikawa N, Sengoku K. Polymorphic alleles of the human MEI1 gene are associated with human azoospermia by meiotic arrest. J Hum Genet 2006; 51:533-540. [PMID: 16683055 DOI: 10.1007/s10038-006-0394-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 02/14/2006] [Indexed: 01/22/2023]
Abstract
Genetic mechanisms are implicated as a cause of some male infertility, yet are poorly understood. Mouse meiotic mutant mei1 (meiosis defective 1) was isolated by a screening of infertile mice. Male mei1 mice have azoospermia due to meiotic arrest, and the mouse Mei1 gene is responsible for the mei1 phenotype. To investigate whether human MEI1 gene defects are associated with azoospermia by meiotic arrest, we isolated the human MEI1 cDNA based on the mouse Mei1 amino acid sequence. MEI1 is expressed specifically in the testis. Mutational analysis by direct sequencing of all MEI1 coding regions was performed in 27 men (13 European Americans, 13 Israeli and 1 Japanese) having azoospermia due to complete early meiotic arrest. This identified four novel, coding single-nucleotide-polymorphisms (cSNPs), i.e., SNP1 (T909G), SNP2 (A1582G), SNP3 (C1791A) and SNP4 (C2397T) in exons 4, 8, 9 and 14, respectively. Using these cSNPs, an association study was carried out between 26 non-Japanese patients with azoospermia and two sets of normal control men (61 normal European Americans and 60 Israelis). Consequently, SNP3 and SNP4 were shown to be associated with azoospermia among European Americans (P =0.0289 and P =0.0299 for genotype and allele frequencies at both the polymorphic sites, respectively), although no such association was observed among Israelis (P >0.05). Haplotype estimation revealed that the frequencies of SNP3-SNP4 (C-T), SNP3-SNP4 (A-C) and SNP3-SNP4 (A-T) were higher in the European American patients, and the frequency of SNP3-SNP4 (A-T) was also higher than in both control groups. These results suggest that MEI1 may play a role in meiosis during spermatogenesis, especially in European Americans.
Collapse
Affiliation(s)
- Hisashi Sato
- Department of Obstetrics and Gynecology, Asahikawa Medical College, 2-1-1-1 Midorigaokahigashi, Asahikawa, 078-8510, Japan
| | - Toshinobu Miyamoto
- Department of Obstetrics and Gynecology, Asahikawa Medical College, 2-1-1-1 Midorigaokahigashi, Asahikawa, 078-8510, Japan.
| | - Leah Yogev
- Institute for the Study of Fertility, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mikio Namiki
- Department of Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Eitesu Koh
- Department of Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroaki Hayashi
- Department of Obstetrics and Gynecology, Asahikawa Medical College, 2-1-1-1 Midorigaokahigashi, Asahikawa, 078-8510, Japan
| | - Yoshihito Sasaki
- Department of Obstetrics and Gynecology, Asahikawa Medical College, 2-1-1-1 Midorigaokahigashi, Asahikawa, 078-8510, Japan
| | - Mutsuo Ishikawa
- Department of Obstetrics and Gynecology, Asahikawa Medical College, 2-1-1-1 Midorigaokahigashi, Asahikawa, 078-8510, Japan
| | - Dolores J Lamb
- Scott Department of Urology, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ohad S Birk
- Department of Molecular Developmental Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Norio Niikawa
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- SORST, JST, Kawaguchi, Japan
| | - Kazuo Sengoku
- Department of Obstetrics and Gynecology, Asahikawa Medical College, 2-1-1-1 Midorigaokahigashi, Asahikawa, 078-8510, Japan
| |
Collapse
|
426
|
Abstract
Faithful recombination and chromosome segregation in meiosis require regulated steps of homolog recognition and association which are monitored by meiotic checkpoints. A recent study in the nematode Caenorhabditis elegans has identified a checkpoint mechanism that monitors chromosome pairing during meiosis.
Collapse
Affiliation(s)
- Bettina Meier
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Scotland, UK
| | | |
Collapse
|
427
|
Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB, White JM, Walker LM, Carnes K, Hess RA, Sleckman BP. Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol 2006; 26:2999-3007. [PMID: 16581775 PMCID: PMC1446934 DOI: 10.1128/mcb.26.8.2999-3007.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/28/2006] [Accepted: 01/30/2006] [Indexed: 11/20/2022] Open
Abstract
The PA200 proteasome activator is a broadly expressed nuclear protein. Although how PA200 normally functions is not fully understood, it has been suggested to be involved in the repair of DNA double-strand breaks (DSBs). The PA200 gene (Psme4) is composed of 45 coding exons spanning 108 kb on mouse chromosome 11. We generated a PA200 null allele (PA200(Delta)) through Cre-loxP-mediated interchromosomal recombination after targeting loxP sites at either end of the locus. PA200(Delta/Delta) mice are viable and have no obvious developmental abnormalities. Both lymphocyte development and immunoglobulin class switching, which rely on the generation and repair of DNA DSBs, are unperturbed in PA200(Delta/Delta) mice. Additionally, PA200(Delta/Delta) embryonic stem cells do not exhibit increased sensitivity to either ionizing radiation or bleomycin. Thus, PA200 is not essential for the repair of DNA DSBs generated in these settings. Notably, loss of PA200 led to a marked reduction in male, but not female, fertility. This was due to defects in spermatogenesis observed in meiotic spermatocytes and during the maturation of postmeiotic haploid spermatids. Thus, PA200 serves an important nonredundant function during spermatogenesis, suggesting that the efficient generation of male gametes has distinct protein metabolic requirements.
Collapse
Affiliation(s)
- Bernard Khor
- Department of Pathology and Immunology, Campus Box 8118, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Zickler D. From early homologue recognition to synaptonemal complex formation. Chromosoma 2006; 115:158-74. [PMID: 16570189 DOI: 10.1007/s00412-006-0048-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 10/24/2022]
Abstract
This review focuses on various aspects of chromosome homology searching and their relationship to meiotic and vegetative pairing and to the silencing of unpaired copies of genes. Chromosome recognition and pairing is a prominent characteristic of meiosis; however, for some organisms, this association (complete or partial) is also a normal part of nuclear organization. The multiple mechanisms suggested to contribute to homologous pairing are analyzed. Recognition of DNA/DNA homology also plays an important role in detecting DNA segments that are present in inappropriate number of copies before and during meiosis. In this context, the mechanisms of methylation induced premeiotically, repeat-induced point mutation, meiotic silencing by unpaired DNA, and meiotic sex chromosome inactivation will be discussed. Homologue juxtaposition during meiotic prophase can be divided into three mechanistically distinct steps, namely, recognition, presynaptic alignment, and synapsis by the synaptonemal complex (SC). In most organisms, these three steps are distinguished by their dependence on DNA double-strand breaks (DSBs). The coupling of SC initiation to (and downstream effects of) DSB formation and the exceptions to this dependency are discussed. Finally, this review addresses the specific factors that appear to promote chromosome movement at various stages of meiotic prophase, most particularly at the bouquet stage, and on their significance for homologue pairing and/or achieving a final pachytene configuration.
Collapse
Affiliation(s)
- Denise Zickler
- Université Paris-Sud, Institut de Génétique et Microbiologie, 91405, Orsay, France.
| |
Collapse
|
429
|
Colaiácovo MP. The many facets of SC function during C. elegans meiosis. Chromosoma 2006; 115:195-211. [PMID: 16555015 DOI: 10.1007/s00412-006-0061-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 11/27/2022]
Abstract
Sexually reproducing organisms rely on meiosis for the formation of haploid gametes. This is achieved through two consecutive rounds of cell division (meiosis I and II) after one round of DNA replication. During the meiotic divisions, chromosomes face several challenges to ultimately ensure proper chromosome segregation. Unique events unfold during meiosis I to overcome these challenges. Homologous chromosomes pair, synapse, and recombine. A remarkable feature throughout this process is the formation of an evolutionarily conserved tripartite proteinaceous structure known as the synaptonemal complex (SC). It is comprised of two lateral elements, assembled along each axis of a pair of homologous chromosomes, and a central region consisting of transverse filaments bridging the gap between lateral elements. While the presence of the SC during meiosis has been appreciated now for 50 years (Moses, Biophys Biochem Cytol 2:215-218, 1956; Fawcett, J Biophys Biochem Cytol 2:403-406, 1956), its role(s) remain a matter of intense investigation. This review concentrates on studies performed in Caenorhabditis elegans, a powerful system for investigating meiosis. Studies in this organism are contributing to the unraveling of the various processes leading to the formation of the SC and the various facets of the functions it exerts throughout meiosis.
Collapse
|
430
|
de Boer E, Heyting C. The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 2006; 115:220-34. [PMID: 16523321 DOI: 10.1007/s00412-006-0057-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 01/30/2006] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
In most eukaryotes, homologous chromosomes (homologs) are closely apposed during the prophase of the first meiotic division by a ladderlike proteinaceous structure, the synaptonemal complex (SC) [Fawcett, J Biophys Biochem Cytol 2:403-406, 1956; Moses, J Biophys Biochem Cytol 2:215-218, 1956]. SCs consist of two proteinaceous axes, which each support the two sister chromatids of one homolog, and numerous transverse filaments (TFs), which connect the two axes. Organisms that assemble SCs perform meiotic recombination in the context of these structures. Although much information has accumulated about the composition of SCs and the pathways of meiotic crossing over, several questions remain about the role of SCs in meiosis, in particular, about the role of the TFs. In this review, we focus on possible role(s) of TFs. The interest in TF functions received new impulses from the recent characterization of TF-deficient mutants in a number of species. Intriguingly, the phenotypes of these mutants are very different, and a variety of TF functions appear to be hidden behind a façade of morphological conservation. However, in all TF-deficient mutants a specific class of crossovers that display interference is affected. TFs appear to create suitable preconditions for the formation of these crossovers in most species, but are most likely not directly involved in the interference process itself. Furthermore, TFs are important for full-length homolog alignment.
Collapse
Affiliation(s)
- Esther de Boer
- Botanical centre, Molecular genetics group, Wageningen University, Arboretumlaan 4, 6703 BD, Wageningen, The Netherlands
| | | |
Collapse
|
431
|
Zhang L, Tao J, Wang S, Chong K, Wang T. The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis. PLANT MOLECULAR BIOLOGY 2006; 60:533-54. [PMID: 16525890 DOI: 10.1007/s11103-005-4922-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 11/08/2005] [Indexed: 05/07/2023]
Abstract
In yeast, Rad21/Scc1 and its meiotic variant Rec8 are key players in the establishment and subsequent dissolution of sister chromatid cohesion for mitosis and meiosis, respectively, which are essential for chromosome segregation. Unlike yeast, our identification revealed that the rice genome has 4 RAD21-like genes that share lower than 21% identity at polypeptide levels, and each is present as a single copy in this genome. Here we describe our analysis of the function of OsRAD21-4 by RNAi. Western blot analyses indicated that the protein was most abundant in young flowers and less in leaves and buds but absent in roots. In flowers, the expression was further defined to premeiotic pollen mother cells (PMCs) and meiotic PMCs of anthers. Meiotic chromosome behaviors were monitored from male meiocytes of OsRAD21-4-deficient lines mediated by RNAi. The male meiocytes showed multiple aberrant events at meiotic prophase I, including over-condensation of chromosomes, precocious segregation of homologues and chromosome fragmentation. Fluorescence in situ hybridization experiments revealed that the deficient lines were defective in homologous pairing and cohesion at sister chromatid arms. These defects resulted in unequal chromosome segregation and aberrant spore generation. These observations suggest that OsRad21-4 is essential for efficient meiosis.
Collapse
Affiliation(s)
- Liangran Zhang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Research Center of Molecular & Developmental Biology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
432
|
Abstract
Numerous DNA double-strand breaks (DSBs) are introduced into the genome in the course of meiotic recombination. This poses a significant hazard to the genomic integrity of the cell. Studies in a number of organisms have unveiled the existence of surveillance mechanisms or checkpoints that couple the formation and repair of DSBs to cell cycle progression. Through these mechanisms, aberrant meiocytes are delayed in their meiotic progression, thereby facilitating repair of meiotic DSBs, or are culled through programmed cell death, thereby protecting the germline from aneuploidies that could lead to spontaneous abortions, birth defects and cancer predisposition in the offspring. Here we summarize recent progress in our understanding of these checkpoints. This review focuses on the surveillance mechanisms of the budding yeast S. cerevisiae, where the molecular details are best understood, but will frequently compare and contrast these mechanisms with observations in other organisms.
Collapse
Affiliation(s)
- Andreas Hochwagen
- Center for Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge Massachusetts 02139, USA
| | | |
Collapse
|
433
|
Sciurano RB, Rahn MI, Pigozzi MI, Olmedo SB, Solari AJ. An azoospermic man with a double-strand DNA break-processing deficiency in the spermatocyte nuclei: case report. Hum Reprod 2006; 21:1194-203. [PMID: 16495306 DOI: 10.1093/humrep/dei479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The mechanisms of meiotic arrest in human spermatogenesis are poorly known. METHODS AND RESULTS A testicular biopsy from an azoospermic male showed complete spermatogenesis arrest at the spermatocyte stage, asynapsis, lack of formation of the XY body, partial reversion to a mitotic-like division and cell degeneration both at the prophase and at the abnormal cell divisions. Synaptonemal complex analysis showed minor segments of synapsis and mainly single axes. Fluorescent immunolocalization of meiotic proteins showed normal SYCP3, scarcity of SYCP1, null MLH1 foci, about 10 patches of gamma-H2AX, abnormal presence of BRCA1 among autosomal axes, absence of RAD51 in early and advanced spermatocytes and permanence of gamma-H2AX labelling up to the abnormal spermatocyte divisions that are the most advanced stage reached. There are at least six dominions of evenly packed chromatin resembling that of the normal XY body, but no true XY body. CONCLUSIONS The protein phenotype and the fine structure of the nuclei are compatible with a deficiency of the processing of double-strand DNA breaks in the zygotene-like spermatocytes, but the features of this defect do not agree with Spo11, Sycp1, Atm and Dmc1 null mutations, which give absence of XY body, synapsis disturbances and spermatocyte apoptosis in mice.
Collapse
Affiliation(s)
- R B Sciurano
- Facultad de Medicina, Centro de Investigaciones en Reproducción (CIR), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
434
|
Codina-Pascual M, Campillo M, Kraus J, Speicher MR, Egozcue J, Navarro J, Benet J. Crossover frequency and synaptonemal complex length: their variability and effects on human male meiosis. Mol Hum Reprod 2006; 12:123-33. [PMID: 16449239 DOI: 10.1093/molehr/gal007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this study, immunocytogenetics has been used in combination with the subtelomere-specific multiplex-fluorescent in-situ hybridization (stM-FISH) assay to identify 4681 autosomal synaptonemal complexes (SCs) of two fertile men. Comparisons of crossover maps for each individual SC between two men with extremely different meiotic crossover frequencies show that a low crossover frequency results in (i) a higher frequency of XY pairs and of small SCs without MLH1 foci and (ii) lower frequency of crossovers in the proximity of centromeres. In both cases, the bivalents which most frequently lacked MLH1 foci were the XY pair and the SC21. Analysis of SC length showed that SC arms can be longer or shorter than the corresponding mitotic one. Moreover, for a given SC, the variation in length found in one arm was independent of the variation observed in the other one (e.g. SC1p arms are longer than SC1q arms). The results confirmed that reduction in the crossover frequency may increase the risk of achiasmate small bivalents and that interindividual differences in crossover frequency could explain the variability in the frequencies of aneuploidy in human sperm. How MLH1 foci are positioned within the SC is discussed based on detailed MLH1 foci distributions and interfoci distances. Finally, evidence that the variation of the SC arm length may reflect the abundance of open and of compact chromatin fibers in the arm is shown.
Collapse
Affiliation(s)
- M Codina-Pascual
- Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | | | | | | | | | | | | |
Collapse
|
435
|
Enomoto R, Kinebuchi T, Sato M, Yagi H, Kurumizaka H, Yokoyama S. Stimulation of DNA strand exchange by the human TBPIP/Hop2-Mnd1 complex. J Biol Chem 2006; 281:5575-81. [PMID: 16407260 DOI: 10.1074/jbc.m506506200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Saccharomyces cerevisiae, the Hop2 protein forms a complex with the Mnd1 protein and is required for the alignment of homologous chromosomes during meiosis, probably through extensive homology matching between them. The Rad51 and Dmc1 proteins, the eukaryotic RecA orthologs, promote strand exchange and may function in the extensive matching of homology within paired DNA molecules. In the present study, we purified the human TBPIP/Hop2-Mnd1 complex and found that it significantly stimulates the Dmc1- and Rad51-mediated strand exchange. The human Hop2-Mnd1 complex preferentially binds to a three-stranded DNA branch, which mimics the strand-exchange intermediate. These findings are consistent with genetic data, which showed that the Hop2 and Mnd1 proteins are required for homology matching between homologous chromosomes. Therefore, the human TBPIP/Hop2-Mnd1 complex may ensure proper pairing between homologous chromosomes through its stimulation of strand exchange during meiosis.
Collapse
Affiliation(s)
- Rima Enomoto
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
436
|
Guillon H, Baudat F, Grey C, Liskay RM, de Massy B. Crossover and noncrossover pathways in mouse meiosis. Mol Cell 2006; 20:563-73. [PMID: 16307920 DOI: 10.1016/j.molcel.2005.09.021] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/26/2005] [Accepted: 09/27/2005] [Indexed: 11/29/2022]
Abstract
During meiosis, recombination between homologous chromosomes generates crossover (CR) and noncrossover (NCR) products. CRs establish connections between homologs, whereas intermediates leading to NCRs have been proposed to participate in homologous pairing. How these events are differentiated and regulated remains to be determined. We have developed a strategy to detect, quantify, and map NCRs in parallel to CRs, at the Psmb9 meiotic recombination hot spot, in male and female mouse germ lines. Our results report direct molecular evidence for distinct CR and NCR pathways of DNA double-strand break (DSB) repair in mouse meiosis based on three observations: both CRs and NCRs require Spo11, NCR products have shorter conversion tracts than CRs, and only CRs require the MutL homolog Mlh1. We show that both products are formed from middle to late pachytene of meiotic prophase and provide evidence for an Mlh1-independent CR pathway, where mismatch repair does not require Mlh1.
Collapse
Affiliation(s)
- Hélène Guillon
- Institute of Human Genetics, Centre National de la Recherche Scientifique, UPR1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
437
|
Abstract
Meiosis is a unique form of cellular division by which a diploid cell produces genetically distinct haploid gametes. Initiation and regulation of mammalian meiosis differs between the sexes. In females, meiosis is initiated during embryo development and arrested shortly after birth during prophase I. In males, spermatogonial stem cells initiate meiosis at puberty and proceed through gametogenesis with no cell cycle arrest. Mouse genes required for early meiotic cell cycle events are being identified by comparative analysis with other eukaryotic systems, by virtue of gene knockout technology and by mouse mutagenesis screens for reproductive defects. This review focuses on mouse reproductive biology and describes the available mouse mutants with defects in the early meiotic cell cycle and prophase I regulatory events. These research tools will permit rapid advances in such medically relevant research areas as infertility, embryo lethality and developmental abnormalities.
Collapse
Affiliation(s)
- Changanamkandath Rajesh
- Department of Physiology and Cardiovascular Genomics, Medical University of Ohio, Toledo 43614, USA
| | | |
Collapse
|
438
|
Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 2005; 438:374-8. [PMID: 16292313 DOI: 10.1038/nature04112] [Citation(s) in RCA: 361] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 07/14/2005] [Indexed: 11/08/2022]
Abstract
Epigenetic modifications of histones regulate gene expression and chromatin structure. Here we show that Meisetz (meiosis-induced factor containing a PR/SET domain and zinc-finger motif) is a histone methyltransferase that is important for the progression of early meiotic prophase. Meisetz transcripts are detected only in germ cells entering meiotic prophase in female fetal gonads and in postnatal testis. Notably, Meisetz has catalytic activity for trimethylation, but not mono- or dimethylation, of lysine 4 of histone H3, and a transactivation activity that depends on its methylation activity. Mice in which the Meisetz gene is disrupted show sterility in both sexes due to severe impairment of the double-stranded break repair pathway, deficient pairing of homologous chromosomes and impaired sex body formation. In Meisetz-deficient testis, trimethylation of lysine 4 of histone H3 is attenuated and meiotic gene transcription is altered. These findings indicate that meiosis-specific epigenetic events in mammals are crucial for proper meiotic progression.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Molecular Embryology, Research Institute, Osaka Medical Center for Maternal and Child Health, Murodo-cho 840, Izumi, Osaka 594-1101, Japan
| | | | | |
Collapse
|
439
|
Bhalla N, Dernburg AF. A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science 2005; 310:1683-6. [PMID: 16339446 DOI: 10.1126/science.1117468] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report the discovery of a checkpoint that monitors synapsis between homologous chromosomes to ensure accurate meiotic segregation. Oocytes containing unsynapsed chromosomes selectively undergo apoptosis even if a germline DNA damage checkpoint is inactivated. This culling mechanism is specifically activated by unsynapsed pairing centers, cis-acting chromosome sites that are also required to promote synapsis in Caenorhabditis elegans. Apoptosis due to synaptic failure also requires the C. elegans homolog of PCH2, a budding yeast pachytene checkpoint gene, which suggests that this surveillance mechanism is widely conserved.
Collapse
Affiliation(s)
- Needhi Bhalla
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
440
|
Morelli MA, Cohen PE. Not all germ cells are created equal: Aspects of sexual dimorphism in mammalian meiosis. Reproduction 2005; 130:761-81. [PMID: 16322537 DOI: 10.1530/rep.1.00865] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The study of mammalian meiosis is complicated by the timing of meiotic events in females and by the intermingling of meiotic sub-stages with somatic cells in the gonad of both sexes. In addition, studies of mouse mutants for different meiotic regulators have revealed significant differences in the stringency of meiotic events in males versus females. This sexual dimorphism implies that the processes of recombination and homologous chromosome pairing, while being controlled by similar genetic pathways, are subject to different levels of checkpoint control in males and females. This review is focused on the emerging picture of sexual dimorphism exhibited by mammalian germ cells using evidence from the broad range of meiotic mutants now available in the mouse. Many of these mouse mutants display distinct differences in meiotic progression and/or dysfunction in males versus females, and their continued study will allow us to understand the molecular basis for the sex-specific differences observed during prophase I progression.
Collapse
Affiliation(s)
- Meisha A Morelli
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
441
|
Calvente A, Viera A, Page J, Parra MT, Gómez R, Suja JA, Rufas JS, Santos JL. DNA double-strand breaks and homology search: inferences from a species with incomplete pairing and synapsis. J Cell Sci 2005; 118:2957-63. [PMID: 15976453 DOI: 10.1242/jcs.02391] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The relationship between meiotic recombination events and different patterns of pairing and synapsis has been analysed in prophase I spermatocytes of the grasshopper Stethophyma grossum, which exhibit very unusual meiotic characteristics, namely (1) the three shortest bivalents achieve full synapsis and do not show chiasma localisation; (2) the remaining eight bivalents show restricted synapsis and proximal chiasma localisation, and (3) the X chromosome remains unsynapsed. We have studied by means of immunofluorescence the localisation of the phosphorylated histone H2AX (gamma-H2AX), which marks the sites of double-strand breaks; the SMC3 cohesin subunit, which is thought to have a close relationship to the development of the axial element (a synaptonemal complex component); and the recombinase RAD51. We observed a marked nuclear polarization of both the maturation of SMC3 cohesin axis and the ulterior appearance of gamma-H2AX and RAD51 foci, these being exclusively restricted to those chromosomal regions that first form cohesin axis stretches. This polarised distribution of recombination events is maintained throughout prophase I over those autosomal regions that are undergoing, or about to undergo, synapsis. We propose that the restricted distribution of recombination events along the chromosomal axes in the spermatocytes is responsible for the incomplete presynaptic homologous alignment and, hence, for the partial synaptonemal complex formation displayed by most bivalents.
Collapse
Affiliation(s)
- Adela Calvente
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
442
|
Abstract
The synaptonemal complex is a prominent, evolutionarily conserved feature of meiotic prophase. The assembly of this structure is closely linked to meiotic recombination. A recent study in budding yeast reveals an unexpected role in centromere pairing for a protein component of the synaptonemal complex, Zip1. These findings have implications for synaptonemal complex formation.
Collapse
Affiliation(s)
- Kiersten A Henderson
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
443
|
Pawlowski WP, Cande WZ. Coordinating the events of the meiotic prophase. Trends Cell Biol 2005; 15:674-81. [PMID: 16257210 DOI: 10.1016/j.tcb.2005.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 08/26/2005] [Accepted: 10/06/2005] [Indexed: 11/20/2022]
Abstract
Meiosis is a specialized type of cell division leading to the production of gametes. During meiotic prophase I, homologous chromosomes interact with each other and form bivalents (pairs of homologous chromosomes). Three major meiotic processes--chromosome pairing, synapsis and recombination--are involved in the formation of bivalents. Many recent reports have uncovered complex networks of interactions between these processes. Chromosome pairing is largely dependent on the initiation and progression of recombination in fungi, mammals and plants, but not in Caenorhabditis elegans or Drosophila. Synapsis and recombination are also tightly linked. Understanding the coordination between chromosome pairing, synapsis and recombination lends insight into many poorly explained aspects of meiosis, such as the nature of chromosome homology recognition.
Collapse
Affiliation(s)
- Wojciech P Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
444
|
Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FCH. The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 2005; 19:2488-500. [PMID: 16230536 PMCID: PMC1257403 DOI: 10.1101/gad.354705] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 08/02/2005] [Indexed: 11/24/2022]
Abstract
The duplicated Arabidopsis genes ZYP1a/ZYP1b encode closely related proteins with structural similarity to the synaptonemal complex (SC) transverse filament proteins from other species. Immunolocalization detects ZYP1 foci at late leptotene, which lengthen until at pachytene fluorescent signals extending the entire length of the fully synapsed homologs are observed. Analysis of zyp1a and zyp1b T-DNA insertion mutants indicates that the proteins are functionally redundant. The SC is not formed in the absence of ZYP1 and prophase I progression is significantly delayed suggesting the existence of an intraprophase I surveillance mechanism. Recombination is only slightly reduced in the absence of ZYP1 such that the chiasma frequency at metaphase I is approximately 80% of wild type. Moreover cytological analysis indicates that chiasma distribution within zyp1 bivalents is indistinguishable from wild type, providing evidence that the SC is not required for the imposition of interference. Importantly in the absence of ZYP1, recombination occurs between both homologous and nonhomologous chromosomes suggesting the protein is required to ensure the fidelity of meiotic chromosome associations.
Collapse
Affiliation(s)
- James D Higgins
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
445
|
Marcon E, Moens PB. The evolution of meiosis: recruitment and modification of somatic DNA-repair proteins. Bioessays 2005; 27:795-808. [PMID: 16015600 DOI: 10.1002/bies.20264] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several DNA-damage detection and repair mechanisms have evolved to repair double-strand breaks induced by mutagens. Later in evolutionary history, DNA single- and double-strand cuts made possible immune diversity by V(D)J recombination and recombination at meiosis. Such cuts are induced endogenously and are highly regulated and controlled. In meiosis, DNA cuts are essential for the initiation of homologous recombination, and for the formation of joint molecule and crossovers. Many proteins that function during somatic DNA-damage detection and repair are also active during homologous recombination. However, their meiotic functions may be altered from their somatic roles through localization, posttranslational modifications and/or interactions with meiosis-specific proteins. Presumably, somatic repair functions and meiotic recombination diverged during evolution, resulting in adaptations specific to sexual reproduction. (c) 2005 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Edyta Marcon
- Department of Biology, York University, Toronto, Canada
| | | |
Collapse
|
446
|
Barchi M, Mahadevaiah S, Di Giacomo M, Baudat F, de Rooij DG, Burgoyne PS, Jasin M, Keeney S. Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol Cell Biol 2005; 25:7203-15. [PMID: 16055729 PMCID: PMC1190256 DOI: 10.1128/mcb.25.16.7203-7215.2005] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fundamentally different recombination defects cause apoptosis of mouse spermatocytes at the same stage in development, stage IV of the seminiferous epithelium cycle, equivalent to mid-pachynema in normal males. To understand the cellular response(s) that triggers apoptosis, we examined markers of spermatocyte development in mice with different recombination defects. In Spo11(-)(/)(-) mutants, which lack the double-strand breaks (DSBs) that initiate recombination, spermatocytes express markers of early to mid-pachynema, forming chromatin domains that contain sex body-associated proteins but that rarely encompass the sex chromosomes. Dmc1(-)(/)(-) spermatocytes, impaired in DSB repair, appear to arrest at or about late zygonema. Epistasis analysis reveals that this earlier arrest is a response to unrepaired DSBs, and cytological analysis implicates the BRCT-containing checkpoint protein TOPBP1. Atm(-)(/)(-) spermatocytes show similarities to Dmc1(-)(/)(-) spermatocytes, suggesting that ATM promotes meiotic DSB repair. Msh5(-)(/)(-) mutants display a set of characteristics distinct from these other mutants. Thus, despite equivalent stages of spermatocyte elimination, different recombination-defective mutants manifest distinct responses, providing insight into surveillance mechanisms in male meiosis.
Collapse
Affiliation(s)
- Marco Barchi
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
447
|
Neale MJ, Pan J, Keeney S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 2005; 436:1053-7. [PMID: 16107854 PMCID: PMC1262668 DOI: 10.1038/nature03872] [Citation(s) in RCA: 465] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 06/03/2005] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks (DSBs) with protein covalently attached to 5' strand termini are formed by Spo11 to initiate meiotic recombination. The Spo11 protein must be removed for the DSB to be repaired, but the mechanism for removal is unclear. Here we show that meiotic DSBs in budding yeast are processed by endonucleolytic cleavage that releases Spo11 attached to an oligonucleotide with a free 3'-OH. Two discrete Spo11-oligonucleotide complexes were found in equal amounts, differing with respect to the length of the bound DNA. We propose that these forms arise from different spacings of strand cleavages flanking the DSB, with every DSB processed asymmetrically. Thus, the ends of a single DSB may be biochemically distinct at or before the initial processing step-much earlier than previously thought. SPO11-oligonucleotide complexes were identified in extracts of mouse testis, indicating that this mechanism is evolutionarily conserved. Oligonucleotide-topoisomerase II complexes were also present in extracts of vegetative yeast, although not subject to the same genetic control as for generating Spo11-oligonucleotide complexes. Our findings suggest a general mechanism for repair of protein-linked DSBs.
Collapse
Affiliation(s)
| | | | - Scott Keeney
- Correspondence and requests for materials should be addressed to S.K. (e-mail:
)
| |
Collapse
|
448
|
Christensen GL, Ivanov IP, Atkins JF, Mielnik A, Schlegel PN, Carrell DT. Screening the SPO11 and EIF5A2 genes in a population of infertile men. Fertil Steril 2005; 84:758-60. [PMID: 16169419 DOI: 10.1016/j.fertnstert.2005.03.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 03/17/2005] [Accepted: 03/17/2005] [Indexed: 11/30/2022]
Abstract
Populations of infertile and fertile men were screened for mutations in SPO11 and EIF5A2, two infertility candidate genes. Three heterozygous amino acid changes that might contribute to infertility were identified in the infertile group.
Collapse
|
449
|
Gerton JL, Hawley RS. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat Rev Genet 2005; 6:477-87. [PMID: 15931171 DOI: 10.1038/nrg1614] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proper chromosome segregation is crucial for preventing fertility problems, birth defects and cancer. During mitotic cell divisions, sister chromatids separate from each other to opposite poles, resulting in two daughter cells that each have a complete copy of the genome. Meiosis poses a special problem in which homologous chromosomes must first pair and then separate at the first meiotic division before sister chromatids separate at the second meiotic division. So, chromosome interactions between homologues are a unique feature of meiosis and are essential for proper chromosome segregation. Pairing and locking together of homologous chromosomes involves recombination interactions in some cases, but not in others. Although all organisms must match and lock homologous chromosomes to maintain genome integrity throughout meiosis, recent results indicate that the underlying mechanisms vary in different organisms.
Collapse
Affiliation(s)
- Jennifer L Gerton
- The Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
450
|
Xu H, Beasley MD, Warren WD, van der Horst GTJ, McKay MJ. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 2005; 8:949-61. [PMID: 15935783 DOI: 10.1016/j.devcel.2005.03.018] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 01/25/2005] [Accepted: 03/30/2005] [Indexed: 12/21/2022]
Abstract
REC8 is a key component of the meiotic cohesin complex. During meiosis, cohesin is required for the establishment and maintenance of sister-chromatid cohesion, for the formation of the synaptonemal complex, and for recombination between homologous chromosomes. We show that REC8 has an essential role in mammalian meiosis, in that Rec8 null mice of both sexes have germ cell failure and are sterile. In the absence of REC8, early chromosome pairing events appear normal, but synapsis occurs in a novel fashion: between sister chromatids. This implies that a major role for REC8 in mammalian meiosis is to limit synapsis to between homologous chromosomes. In all other eukaryotic species studied to date, REC8 phenotypes have been restricted to meiosis. Unexpectedly, Rec8 null mice are born in sub-Mendelian frequencies and fail to thrive. These findings illuminate hitherto unknown REC8 functions in chromosome dynamics during mammalian meiosis and possibly in somatic development.
Collapse
Affiliation(s)
- Huiling Xu
- Divisions of Radiation Oncology and Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia
| | | | | | | | | |
Collapse
|