401
|
Zhang Y, Maignien L, Zhao X, Wang F, Boon N. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol 2011; 11:137. [PMID: 21676272 PMCID: PMC3142483 DOI: 10.1186/1471-2180-11-137] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 06/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anaerobic oxidation of methane coupled to sulphate reduction (SR-AOM) prevents more than 90% of the oceanic methane emission to the atmosphere. In a previous study, we demonstrated that the high methane pressure (1, 4.5, and 8 MPa) stimulated in vitro SR-AOM activity. However, the information on the effect of high-pressure on the microbial community structure and architecture was still lacking. RESULTS In this study we analysed the long-term enrichment (286 days) of this microbial community, which was mediating SR-AOM in a continuous high-pressure bioreactor. 99.7% of the total biovolume represented cells in the form of small aggregates (diameter less then 15 μm). An increase of the total biovolume was observed (2.5 times). After 286 days, the ANME-2 (anaerobic methanotrophic archaea subgroup 2) and SRB (sulphate reducing bacteria) increased with a factor 12.5 and 8.4, respectively. CONCLUSION This paper reports a net biomass growth of communities involved in SR-AOM, incubated at high-pressure.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, P. R. China
| | | | | | | | | |
Collapse
|
402
|
Webster G, Sass H, Cragg BA, Gorra R, Knab NJ, Green CJ, Mathes F, Fry JC, Weightman AJ, Parkes RJ. Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions. FEMS Microbiol Ecol 2011; 77:248-63. [PMID: 21477007 DOI: 10.1111/j.1574-6941.2011.01109.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The prokaryotic activity, diversity and culturability of diffusion-controlled Aarhus Bay sediments, including the sulphate-methane transition zone (SMTZ), were determined using a combination of geochemical, molecular (16S rRNA and mcrA genes) and cultivation techniques. The SMTZ had elevated sulphate reduction and anaerobic oxidation of methane, and enhanced cell numbers, but no active methanogenesis. The prokaryotic population was similar to that in other SMTZs, with Deltaproteobacteria, Gammaproteobacteria, JS1, Planctomycetes, Chloroflexi, ANME-1, MBG-D and MCG. Many of these groups were maintained in a heterotrophic (10 mM glucose, acetate), sediment slurry with periodic low sulphate and acetate additions (~2 mM). Other prokaryotes were also enriched including methanogens, Firmicutes, Bacteroidetes, Synergistetes and TM6. This slurry was then inoculated into a matrix of substrate and sulphate concentrations for further selective enrichment. The results demonstrated that important SMTZ bacteria can be maintained in a long-term, anaerobic culture under specific conditions. For example, JS1 grew in a mixed culture with acetate or acetate/glucose plus sulphate. Chloroflexi occurred in a mixed culture, including in the presence of acetate, which had previously not been shown to be a Chloroflexi subphylum I substrate, and was more dominant in a medium with seawater salt concentrations. In contrast, archaeal diversity was reduced and limited to the orders Methanosarcinales and Methanomicrobiales. These results provide information about the physiology of a range of SMTZ prokaryotes and shows that many can be maintained and enriched under heterotrophic conditions, including those with few or no cultivated representatives.
Collapse
Affiliation(s)
- Gordon Webster
- School of Earth and Ocean Sciences, Cardiff University, Cardiff, Wales, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Basen M, Krüger M, Milucka J, Kuever J, Kahnt J, Grundmann O, Meyerdierks A, Widdel F, Shima S. Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. Environ Microbiol 2011; 13:1370-9. [DOI: 10.1111/j.1462-2920.2011.02443.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
404
|
McGinnis DF, Schmidt M, DelSontro T, Themann S, Rovelli L, Reitz A, Linke P. Discovery of a natural CO2seep in the German North Sea: Implications for shallow dissolved gas and seep detection. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jc006557] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
405
|
Elliott S, Maltrud M, Reagan M, Moridis G, Cameron-Smith P. Marine methane cycle simulations for the period of early global warming. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jg001300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
406
|
Abstract
Our knowledge of physical, chemical, geological and biological processes affecting methane in the ocean and in underlying sediments is expanding at a rapid pace. On first inspection, marine methane biogeochemistry appears simple: Methane distribution in sediment is set by the deposition pattern of organic material, and the balance of sources and sinks keeps its concentration low in most waters. However, recent research reveals that methane is affected by complex biogeochemical processes whose interactions are understood only at a superficial level. Such processes span the deep-subsurface, near subsurface, and ocean waters, and relate primarily to the production, consumption, and transport of methane. The purpose of this synthesis is to examine select processes within the framework of methane biogeochemistry, to formulate hypotheses on how they might operate and interact with one another, and to consider their controls.
Collapse
Affiliation(s)
- David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
407
|
Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S, Pack MA, Kessler JD, Reeburgh WS, Roberts JA, González L, Douglas Haffner G, Mucci A, Sundby B, Fowle DA. The methane cycle in ferruginous Lake Matano. GEOBIOLOGY 2011; 9:61-78. [PMID: 20854329 DOI: 10.1111/j.1472-4669.2010.00257.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In Lake Matano, Indonesia, the world's largest known ferruginous basin, more than 50% of authigenic organic matter is degraded through methanogenesis, despite high abundances of Fe (hydr)oxides in the lake sediments. Biogenic CH₄ accumulates to high concentrations (up to 1.4 mmol L⁻¹) in the anoxic bottom waters, which contain a total of 7.4 × 10⁵ tons of CH₄. Profiles of dissolved inorganic carbon (ΣCO₂) and carbon isotopes (δ¹³C) show that CH₄ is oxidized in the vicinity of the persistent pycnocline and that some of this CH₄ is likely oxidized anaerobically. The dearth of NO₃⁻ and SO₄²⁻ in Lake Matano waters suggests that anaerobic methane oxidation may be coupled to the reduction of Fe (and/or Mn) (hydr)oxides. Thermodynamic considerations reveal that CH₄ oxidation coupled to Fe(III) or Mn(III/IV) reduction would yield sufficient free energy to support microbial growth at the substrate levels present in Lake Matano. Flux calculations imply that Fe and Mn must be recycled several times directly within the water column to balance the upward flux of CH₄. 16S gene cloning identified methanogens in the anoxic water column, and these methanogens belong to groups capable of both acetoclastic and hydrogenotrophic methanogenesis. We find that methane is important in C cycling, even in this very Fe-rich environment. Such Fe-rich environments are rare on Earth today, but they are analogous to conditions in the ferruginous oceans thought to prevail during much of the Archean Eon. By analogy, methanogens and methanotrophs could have formed an important part of the Archean Ocean ecosystem.
Collapse
Affiliation(s)
- S A Crowe
- Earth and Planetary Sciences, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
408
|
Estrela S, Gudelj I. Evolution of cooperative cross-feeding could be less challenging than originally thought. PLoS One 2010; 5:e14121. [PMID: 21152428 PMCID: PMC2994712 DOI: 10.1371/journal.pone.0014121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 10/27/2010] [Indexed: 11/29/2022] Open
Abstract
The act of cross-feeding whereby unrelated species exchange nutrients is a common feature of microbial interactions and could be considered a form of reciprocal altruism or reciprocal cooperation. Past theoretical work suggests that the evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. Here we re-evaluate a mathematical model used previously to study persistence of cross-feeding and conclude that the maintenance of cross-feeding interactions could be favoured for a larger parameter ranges than formerly observed. Strikingly, we also find that large populations of cross-feeders are not necessarily vulnerable to extinction from an initially small number of cheats who receive the benefit of cross-feeding but do not reciprocate in this cooperative interaction. This could explain the widespread cooperative cross-feeding observed in natural populations.
Collapse
Affiliation(s)
- Sylvie Estrela
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Ivana Gudelj
- Department of Mathematics, Imperial College London, London, United Kingdom
| |
Collapse
|
409
|
Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du M, Chan EW, Garcia Tigreros F, Villanueva CJ. Propane respiration jump-starts microbial response to a deep oil spill. Science 2010; 330:208-11. [PMID: 20847236 DOI: 10.1126/science.1196830] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Deepwater Horizon event resulted in suspension of oil in the Gulf of Mexico water column because the leakage occurred at great depth. The distribution and fate of other abundant hydrocarbon constituents, such as natural gases, are also important in determining the impact of the leakage but are not yet well understood. From 11 to 21 June 2010, we investigated dissolved hydrocarbon gases at depth using chemical and isotopic surveys and on-site biodegradation studies. Propane and ethane were the primary drivers of microbial respiration, accounting for up to 70% of the observed oxygen depletion in fresh plumes. Propane and ethane trapped in the deep water may therefore promote rapid hydrocarbon respiration by low-diversity bacterial blooms, priming bacterial populations for degradation of other hydrocarbons in the aging plume.
Collapse
Affiliation(s)
- David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Shakhova N, Semiletov I, Leifer I, Salyuk A, Rekant P, Kosmach D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jc005602] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
411
|
Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl Environ Microbiol 2010; 76:6412-22. [PMID: 20675448 DOI: 10.1128/aem.00271-10] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.
Collapse
|
412
|
Affiliation(s)
- Marc Alperin
- Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tori Hoehler
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
413
|
The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 2010; 465:606-8. [PMID: 20520712 DOI: 10.1038/nature09015] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 03/17/2010] [Indexed: 11/08/2022]
Abstract
Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent V(max) (maximum rate) and K(m) (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate. This result supports the hypothesis of 'reverse methanogenesis' and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C-H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C-H activation, currently an area of great interest in chemistry.
Collapse
|
414
|
Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 2010; 12:2327-40. [PMID: 21966923 DOI: 10.1111/j.1462-2920.2010.02275.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor is mediated by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Whereas three clades of ANME have been repeatedly studied with respect to phylogeny, key genes and genomic capabilities, little is known about their sulfate-reducing partner. In order to identify the partner of anaerobic methanotrophs of the ANME-2 clade, bacterial 16S rRNA gene libraries were constructed from cultures highly enriched for ANME-2a and ANME-2c in consortia with Deltaproteobacteria of the Desulfosarcina/Desulfococcus group (DSS). Phylogenetic analysis of those and publicly available sequences from AOM sites supported the hypothesis by Knittel and colleagues that the DSS partner belongs to the diverse SEEP-SRB1 cluster. Six subclusters of SEEP-SRB1, SEEP-SRB1a to SEEP-SRB1f, were proposed and specific oligonucleotide probes were designed. Using fluorescence in situ hybridization on samples from six different AOM sites, SEEP-SRB1a was identified as sulfate-reducing partner in up to 95% of total ANME-2 consortia. SEEP-SRB1a cells exhibited a rod-shaped, vibrioid, or coccoid morphology and were found to be associated with subgroups ANME-2a and ANME-2c. Moreover, SEEP-SRB1a was also detected in 8% to 23% of ANME-3 consortia in Haakon Mosby Mud Volcano sediments, previously described to be predominantly associated with SRB of the Desulfobulbus group. SEEP-SRB1a contributed to only 0.3% to 0.7% of all single cells in almost all samples indicating that these bacteria are highly adapted to a symbiotic relationship with ANME-2.
Collapse
Affiliation(s)
- Lars Schreiber
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
415
|
Dang H, Luan XW, Chen R, Zhang X, Guo L, Klotz MG. Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea. FEMS Microbiol Ecol 2010; 72:370-85. [PMID: 20402778 DOI: 10.1111/j.1574-6941.2010.00870.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ecological characteristics of amoA-encoding archaea (AEA) in deep-sea sediments are largely unsolved. This paper aimed to study the diversity, structure, distribution and abundance of the archaeal community and especially its AEA components in the cold seep surface sediments of the Okhotsk Sea, a marginal sea harboring one of the largest methane hydrate reservoirs in the world. Diverse archaeal 16S rRNA gene sequences were identified, with the majority being related to sequences from other cold seep and methane-rich sediment environments. However, the AEA diversity and abundance were quite low as revealed by amoA gene analyses. Correlation analysis indicates that the abundance of the archaeal amoA genes was correlated with the sediment organic matter content. Thus, it is possible that the amoA-carrying archaea here might utilize organic matter for a living. The affiliation of certain archaeal amoA sequences to the GenBank sequences originally obtained from deep-sea hydrothermal vent environments indicated that the related AEA either have a wide range of temperature adaptation or they have a thermophilic evolutionary history in the modern cold deep-sea sediments of the Okhotsk Sea. The dominance of ammonia-oxidizing bacteria over AEA may indicate that bacteria play a significant role in nitrification in the Okhotsk Sea cold seep sediments.
Collapse
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China.
| | | | | | | | | | | |
Collapse
|
416
|
|
417
|
Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 2010; 327:1246-50. [PMID: 20203047 DOI: 10.1126/science.1182221] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Remobilization to the atmosphere of only a small fraction of the methane held in East Siberian Arctic Shelf (ESAS) sediments could trigger abrupt climate warming, yet it is believed that sub-sea permafrost acts as a lid to keep this shallow methane reservoir in place. Here, we show that more than 5000 at-sea observations of dissolved methane demonstrates that greater than 80% of ESAS bottom waters and greater than 50% of surface waters are supersaturated with methane regarding to the atmosphere. The current atmospheric venting flux, which is composed of a diffusive component and a gradual ebullition component, is on par with previous estimates of methane venting from the entire World Ocean. Leakage of methane through shallow ESAS waters needs to be considered in interactions between the biogeosphere and a warming Arctic climate.
Collapse
Affiliation(s)
- Natalia Shakhova
- International Arctic Research Centre, University of Alaska, Fairbanks, AK 99709, USA.
| | | | | | | | | | | |
Collapse
|
418
|
Deusner C, Meyer V, Ferdelman TG. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biotechnol Bioeng 2010; 105:524-33. [DOI: 10.1002/bit.22553] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
419
|
Boulart C, Connelly D, Mowlem M. Sensors and technologies for in situ dissolved methane measurements and their evaluation using Technology Readiness Levels. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2009.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
420
|
Alavi S, Udachin K, Ripmeester J. Effect of Guest-Host Hydrogen Bonding on the Structures and Properties of Clathrate Hydrates. Chemistry 2009; 16:1017-25. [DOI: 10.1002/chem.200902351] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
421
|
Abstract
Methane is the most abundant hydrocarbon in the atmosphere, and it is an important greenhouse gas, which has so far contributed an estimated 20% of postindustrial global warming. A great deal of biogeochemical research has focused on the causes and effects of the variation in global fluxes of methane throughout earth's history, but the underlying microbial processes and their key agents remain poorly understood. This is a disturbing knowledge gap because 85% of the annual global methane production and about 60% of its consumption are based on microbial processes. Only three key functional groups of microorganisms of limited diversity regulate the fluxes of methane on earth, namely the aerobic methanotrophic bacteria, the methanogenic archaea, and their close relatives, the anaerobic methanotrophic archaea (ANME). The ANME represent special lines of descent within the Euryarchaeota and appear to gain energy exclusively from the anaerobic oxidation of methane (AOM), with sulfate as the final electron acceptor according to the net reaction: CH(4) + SO(42-) ---> HCO(3-) + HS(-) + H(2)O. This review summarizes what is known and unknown about AOM on earth and its key catalysts, the ANME clades and their bacterial partners.
Collapse
Affiliation(s)
- Katrin Knittel
- Max Planck Institute for Marine Microbiology, Bremen 28359, Germany.
| | | |
Collapse
|
422
|
Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, Amann R. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 2009; 12:422-39. [PMID: 19878267 DOI: 10.1111/j.1462-2920.2009.02083.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial consortia mediating the anaerobic oxidation of methane with sulfate are composed of methanotrophic Archaea (ANME) and Bacteria related to sulfate-reducing Deltaproteobacteria. Cultured representatives are not available for any of the three ANME clades. Therefore, a metagenomic approach was applied to assess the genetic potential of ANME-1 archaea. In total, 3.4 Mbp sequence information was generated based on metagenomic fosmid libraries constructed directly from a methanotrophic microbial mat in the Black Sea. These sequence data represent, in 30 contigs, about 82-90% of a composite ANME-1 genome. The dataset supports the hypothesis of a reversal of the methanogenesis pathway. Indications for an assimilatory, but not for a dissimilatory sulfate reduction pathway in ANME-1, were found. Draft genome and expression analyses are consistent with acetate and formate as putative electron shuttles. Moreover, the dataset points towards downstream electron-accepting redox components different from the ones known from methanogenic archaea. Whereas catalytic subunits of [NiFe]-hydrogenases are lacking in the dataset, genes for an [FeFe]-hydrogenase homologue were identified, not yet described to be present in methanogenic archaea. Clustered genes annotated as secreted multiheme c-type cytochromes were identified, which have not yet been correlated with methanogenesis-related steps. The genes were shown to be expressed, suggesting direct electron transfer as an additional possible mode to shuttle electrons from ANME-1 to the bacterial sulfate-reducing partner.
Collapse
Affiliation(s)
- Anke Meyerdierks
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
423
|
Dekas AE, Poretsky RS, Orphan VJ. Deep-Sea Archaea Fix and Share Nitrogen in Methane-Consuming Microbial Consortia. Science 2009; 326:422-6. [DOI: 10.1126/science.1178223] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
424
|
Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:285-292. [PMID: 23765881 DOI: 10.1111/j.1758-2229.2009.00038.x] [Citation(s) in RCA: 419] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The global budget of atmospheric CH4 , which is on the order of 500-600 Tg CH4 per year, is mainly the result of environmental microbial processes, such as archaeal methanogenesis in wetlands, rice fields, ruminant and termite digestive systems and of microbial methane oxidation under anoxic and oxic conditions. This review highlights recent progress in the research of anaerobic CH4 oxidation, of CH4 production in the plant rhizosphere, of CH4 serving as substrate for the aquatic trophic food chain and the discovery of novel aerobic methanotrophs. It also emphasizes progress and deficiencies in our knowledge of microbial utilization of low atmospheric CH4 concentrations in soil, CH4 production in the plant canopy, intestinal methanogenesis and CH4 production in pelagic water.
Collapse
Affiliation(s)
- Ralf Conrad
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str.8, 35043 Marburg, Germany
| |
Collapse
|
425
|
Holler T, Wegener G, Knittel K, Boetius A, Brunner B, Kuypers MMM, Widdel F. Substantial (13) C/(12) C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:370-376. [PMID: 23765889 DOI: 10.1111/j.1758-2229.2009.00074.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The anaerobic oxidation of methane (AOM) by methanotrophic archaea and sulfate-reducing bacteria is the major sink of methane formed in marine sediments. The study of AOM as well as of methanogenesis in different habitats is essentially connected with the in situ analysis of stable isotope ((13) C/(12) C, D/H) signatures (δ-values). For their kinetic interpretation, experimental (cultivation-based) isotope fractionation factors (α-values) are richly available in the case of methanogenesis, but are scarce in the case of AOM. Here we used batch enrichment cultures with high AOM activity and without background methanogenesis from detrital remnants to determine (13) C/(12) C and D/H fractionation factors. The enrichment cultures which originated from three marine habitats (Hydrate Ridge, NE Pacific; Amon Mud Volcano, Mediterranean Sea; NW shelf, Black Sea) were dominated by archaeal phylotypes of anaerobic methanotrophs (ANME-2 clade). Isotope fractionation factors calculated from the isotope signatures as a function of the residual proportion of methane were 1.012-1.039 for (13) CH4 /(12) CH4 and 1.109-1.315 for CDH3 /CH4 . The present values from in vitro experiments were significantly higher than values previously estimated from isotope signature distributions in marine sediment porewater, in agreement with the overlap of other processes with AOM in the natural habitat.
Collapse
Affiliation(s)
- Thomas Holler
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany. Alfred Wegener Institute for Polar and Marine Research, 27515 Bremerhaven, Germany
| | | | | | | | | | | | | |
Collapse
|
426
|
Orphan VJ, Turk KA, Green AM, House CH. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS. Environ Microbiol 2009; 11:1777-91. [PMID: 19383036 DOI: 10.1111/j.1462-2920.2009.01903.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methane release from the oceans is controlled in large part by syntrophic interactions between anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (DSS), frequently found as organized consortia. An understanding of the specifics of this symbiotic relationship and the metabolic heterogeneity existing between and within individual methane-oxidizing aggregates is currently lacking. Here, we use the microanalytical method FISH-SIMS (fluorescence in situ hybridization-secondary ion mass spectrometry) to describe the physiological traits and anabolic activity of individual methanotrophic consortia, specifically tracking (15)N-labelled protein synthesis to examine the effects of organization and size on the metabolic activity of the syntrophic partners. Patterns of (15)N distribution within individual aggregates showed enhanced (15)N assimilation in ANME-2 cells relative to the co-associated DSS revealing a decoupling in anabolic activity between the partners. Protein synthesis in ANME-2 cells was sustained throughout the core of individual ANME-2/DSS consortia ranging in size range from 4 to 20 μm. This indicates that metabolic activity of the methane-oxidizing archaea is not limited to, or noticeably enhanced at the ANME-2/DSS boundary. Overall, the metabolic activity of both syntrophic partners within consortia was greater than activity measured in representatives of the ANME-2 and DSS observed alone, with smaller ANME-2/DSS aggregates displaying a tendency for greater (15)N uptake and doubling times ranging from 3 to 5 months. The combination of (15)N-labelling and FISH-SIMS provides an important perspective on the extent of heterogeneity within methanotrophic aggregates and may aid in constraining predictive models of activity and growth by these syntrophic consortia.
Collapse
Affiliation(s)
- Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | |
Collapse
|
427
|
Reid PC, Fischer AC, Lewis-Brown E, Meredith MP, Sparrow M, Andersson AJ, Antia A, Bates NR, Bathmann U, Beaugrand G, Brix H, Dye S, Edwards M, Furevik T, Gangstø R, Hátún H, Hopcroft RR, Kendall M, Kasten S, Keeling R, Le Quéré C, Mackenzie FT, Malin G, Mauritzen C, Olafsson J, Paull C, Rignot E, Shimada K, Vogt M, Wallace C, Wang Z, Washington R. Chapter 1. Impacts of the oceans on climate change. ADVANCES IN MARINE BIOLOGY 2009; 56:1-150. [PMID: 19895974 DOI: 10.1016/s0065-2881(09)56001-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.
Collapse
Affiliation(s)
- Philip C Reid
- Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Moore TS, Mullaugh KM, Holyoke RR, Madison AS, Yücel M, Luther GW. Marine chemical technology and sensors for marine waters: potentials and limits. ANNUAL REVIEW OF MARINE SCIENCE 2009; 1:91-115. [PMID: 21141031 DOI: 10.1146/annurev.marine.010908.163817] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A significant need exists for in situ sensors that can measure chemical species involved in the major processes of primary production (photosynthesis and chemosynthesis) and respiration. Some key chemical species are O2, nutrients (N and P), micronutrients (metals), pCO2, dissolved inorganic carbon (DIC), pH, and sulfide. Sensors need to have excellent detection limits, precision, selectivity, response time, a large dynamic concentration range, low power consumption, robustness, and less variation of instrument response with temperature and pressure, as well as be free from fouling problems (biological, physical, and chemical). Here we review the principles of operation of most sensors used in marine waters. We also show that some sensors can be used in several different oceanic environments to detect the target chemical species, whereas others are useful in only one environment because of various limitations. Several sensors can be used truly in situ, whereas many others involve water brought into a flow cell via tubing to the analyzer in the environment or aboard ship. Multi-element sensors that measure many chemical species in the same water mass should be targeted for further development.
Collapse
Affiliation(s)
- Tommy S Moore
- College of Marine and Earth Studies, University of Delaware, Lewes, Delaware 19958, USA.
| | | | | | | | | | | |
Collapse
|
429
|
Kessler JD, Reeburgh WS, Valentine DL, Kinnaman FS, Peltzer ET, Brewer PG, Southon J, Tyler SC. A survey of methane isotope abundance (14
C, 13
C, 2
H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jc004822] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. D. Kessler
- Department of Oceanography; Texas A&M University; College Station Texas USA
- Department of Earth System Science; University of California; Irvine California USA
| | - W. S. Reeburgh
- Department of Earth System Science; University of California; Irvine California USA
| | - D. L. Valentine
- Department of Earth Science and Marine Sciences Institute; University of California; Santa Barbara California USA
| | - F. S. Kinnaman
- Interdepartmental Graduate Program in Marine Sciences; University of California; Santa Barbara California USA
| | - E. T. Peltzer
- Monterey Bay Aquarium Research Institute; Moss Landing California USA
| | - P. G. Brewer
- Monterey Bay Aquarium Research Institute; Moss Landing California USA
| | - J. Southon
- Department of Earth System Science; University of California; Irvine California USA
| | - S. C. Tyler
- Department of Earth System Science; University of California; Irvine California USA
| |
Collapse
|
430
|
Jensen S, Neufeld JD, Birkeland NK, Hovland M, Murrell JC. Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway. FEMS Microbiol Ecol 2008; 66:320-30. [PMID: 18811651 DOI: 10.1111/j.1574-6941.2008.00575.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Deep-water coral reefs are seafloor environments with diverse biological communities surrounded by cold permanent darkness. Sources of energy and carbon for the nourishment of these reefs are presently unclear. We investigated one aspect of the food web using DNA stable-isotope probing (DNA-SIP). Sediment from beneath a Lophelia pertusa reef off the coast of Norway was incubated until assimilation of 5 micromol 13CH4 g(-1) wet weight occurred. Extracted DNA was separated into 'light' and 'heavy' fractions for analysis of labelling. Bacterial community fingerprinting of PCR-amplified 16S rRNA gene fragments revealed two predominant 13C-specific bands. Sequencing of these bands indicated that carbon from 13CH4 had been assimilated by a Methylomicrobium and an uncultivated member of the Gammaproteobacteria. Cloning and sequencing of 16S rRNA genes from the heavy DNA, in addition to genes encoding particulate methane monooxygenase and methanol dehydrogenase, all linked Methylomicrobium with methane metabolism. Putative cross-feeders were affiliated with Methylophaga (Gammaproteobacteria), Hyphomicrobium (Alphaproteobacteria) and previously unrecognized methylotrophs of the Gammaproteobacteria, Alphaproteobacteria, Deferribacteres and Bacteroidetes. This first marine methane SIP study provides evidence for the presence of methylotrophs that participate in sediment food webs associated with deep-water coral reefs.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Biology, University of Bergen, Bergen, Norway.
| | | | | | | | | |
Collapse
|
431
|
Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6791-6799. [PMID: 18853791 DOI: 10.1021/es800120b] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microbially mediated anaerobic oxidation of methane (AOM) moderates the input of methane, an important greenhouse gas, to the atmosphere by consuming methane produced in various marine, terrestrial, and subsurface environments. AOM coupled to sulfate reduction has been most extensively studied because of the abundance of sulfate in marine systems, but electron acceptors otherthan sulfate are more energetically favorable. Phylogenetic trees based on 16S rRNA gene clone libraries derived from microbial communities where AOM occurs show evidence of diverse, methanotrophic archaea (ANME) closely associated with sulfate-reducing bacteria, but these organisms have not yet been isolated as pure cultures. Several biochemical pathways for AOM have been proposed, including reverse methanogenesis, acetogenesis, and methylogenesis, and both culture-dependent and independent techniques have provided some clues to howthese communities function. Still, questions remain regarding the diversity, physiology, and metabolic restrictions of AOM-related organisms.
Collapse
Affiliation(s)
- Sara L Caldwell
- Department of Biology, Portland State University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
432
|
Boulart C, Mowlem MC, Connelly DP, Dutasta JP, German CR. A novel, low-cost, high performance dissolved methane sensor for aqueous environments. OPTICS EXPRESS 2008; 16:12607-12617. [PMID: 18711497 DOI: 10.1364/oe.16.012607] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A new method for in-situ detection and measurement of dissolved methane in aqueous media/environments with a limit of detection of 0.2 nM (3 sigma, and t90 approxiamtely 110s) and range (1-300 nM) is presented. The detection method is based on refractive index (RI) modulation of a modified PolyDiMethylSiloxane (PDMS) layer incorporating molecules of cryptophane-A [1] which have a selective and reversible affinity for methane [2]. The refractive index is accurately determined using surface plasmon resonance (SPR) [3]. A prototype sensor has been repeatedly tested, using a dissolved gas calibration system under a range of temperature and salinity regimes. Laboratory-based results show that the technique is specific, sensitive, and reversible. The method is suitable for miniaturization and incorporation into in situ sensor technology.
Collapse
Affiliation(s)
- Cédric Boulart
- National Oceanography Centre, Southampton, Waterfront Campus, European Way, SO14 3ZH Southampton, UK.
| | | | | | | | | |
Collapse
|
433
|
Malinverno A, Kastner M, Torres ME, Wortmann UG. Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling Program Expedition 311). ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jb005702] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. Malinverno
- Lamont-Doherty Earth Observatory; Columbia University; Palisades New York USA
| | - M. Kastner
- Scripps Institution of Oceanography; University of California San Diego; La Jolla California USA
| | - M. E. Torres
- College of Oceanic and Atmospheric Sciences; Oregon State University; Corvallis Oregon USA
| | - U. G. Wortmann
- Department of Geology; University of Toronto; Toronto, Ontario Canada
| |
Collapse
|
434
|
Mayr S, Latkoczy C, Krüger M, Günther D, Shima S, Thauer RK, Widdel F, Jaun B. Structure of an F430 Variant from Archaea Associated with Anaerobic Oxidation of Methane. J Am Chem Soc 2008; 130:10758-67. [DOI: 10.1021/ja802929z] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Mayr
- Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany, and Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | - Christopher Latkoczy
- Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany, and Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | - Martin Krüger
- Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany, and Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | - Detlef Günther
- Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany, and Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | - Seigo Shima
- Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany, and Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | - Rudolf K. Thauer
- Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany, and Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | - Friedrich Widdel
- Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany, and Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | - Bernhard Jaun
- Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Laboratory of Inorganic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany, and Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| |
Collapse
|
435
|
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008; 6:579-91. [PMID: 18587410 DOI: 10.1038/nrmicro1931] [Citation(s) in RCA: 1117] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most methanogenic archaea can reduce CO(2) with H(2) to methane, and it is generally assumed that the reactions and mechanisms of energy conservation that are involved are largely the same in all methanogens. However, this does not take into account the fact that methanogens with cytochromes have considerably higher growth yields and threshold concentrations for H(2) than methanogens without cytochromes. These and other differences can be explained by the proposal outlined in this Review that in methanogens with cytochromes, the first and last steps in methanogenesis from CO(2) are coupled chemiosmotically, whereas in methanogens without cytochromes, these steps are energetically coupled by a cytoplasmic enzyme complex that mediates flavin-based electron bifurcation.
Collapse
Affiliation(s)
- Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany.
| | | | | | | | | |
Collapse
|
436
|
Wegener G, Niemann H, Elvert M, Hinrichs KU, Boetius A. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol 2008; 10:2287-98. [PMID: 18498367 DOI: 10.1111/j.1462-2920.2008.01653.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anaerobic oxidation of methane (AOM) is a major sink for methane on Earth and is performed by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Here we present a comparative study using in vitro stable isotope probing to examine methane and carbon dioxide assimilation into microbial biomass. Three sediment types comprising different methane-oxidizing communities (ANME-1 and -2 mixture from the Black Sea, ANME-2a from Hydrate Ridge and ANME-2c from the Gullfaks oil field) were incubated in replicate flow-through systems with methane-enriched anaerobic seawater medium for 5-6 months amended with either (13)CH(4) or H(13)CO(3)(-). In all three sediment types methane was anaerobically oxidized in a 1:1 stoichiometric ratio compared with sulfate reduction. Similar amounts of (13)CH(4) or (13)CO(2) were assimilated into characteristic archaeal lipids, indicating a direct assimilation of both carbon sources into ANME biomass. Specific bacterial fatty acids assigned to the partner SRB were almost exclusively labelled by (13)CO(2), but only in the presence of methane as energy source and not during control incubations without methane. This indicates an autotrophic growth of the ANME-associated SRB and supports previous hypotheses of an electron shuttle between the consortium partners. Carbon assimilation efficiencies of the methanotrophic consortia were low, with only 0.25-1.3 mol% of the methane oxidized.
Collapse
Affiliation(s)
- Gunter Wegener
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany.
| | | | | | | | | |
Collapse
|
437
|
Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. Appl Environ Microbiol 2008; 74:3985-95. [PMID: 18487407 DOI: 10.1128/aem.00069-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methane vents are of significant geochemical and ecological importance. Notable progress has been made toward understanding anaerobic methane oxidation in marine sediments; however, the diversity and distribution of aerobic methanotrophs in the water column are poorly characterized. Both environments play an essential role in regulating methane release from the oceans to the atmosphere. In this study, the diversity of particulate methane monooxygenase (pmoA) and 16S rRNA genes from two methane vent environments along the California continental margin was characterized. The pmoA phylotypes recovered from methane-rich sediments and the overlying water column differed. Sediments harbored the greatest number of unique pmoA phylotypes broadly affiliated with the Methylococcaceae family, whereas planktonic pmoA phylotypes formed three clades that were distinct from the sediment-hosted methanotrophs and distantly related to established methanotrophic clades. Water column-associated phylotypes were highly similar between field sites, suggesting that planktonic methanotroph diversity is controlled primarily by environmental factors rather than geographical proximity. Analysis of 16S rRNA genes from methane-rich waters did not readily recover known methanotrophic lineages, with only a few phylotypes demonstrating distant relatedness to Methylococcus. The development of new pmo primers increased the recovery of monooxygenase genes from the water column and led to the discovery of a highly diverged monooxygenase sequence which is phylogenetically intermediate to Amo and pMMO. This sequence potentiates insight into the amo/pmo superfamily. Together, these findings lend perspective into the diversity and segregation of aerobic methanotrophs within different methane-rich habitats in the marine environment.
Collapse
|
438
|
Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 2008; 105:7052-7. [PMID: 18467493 DOI: 10.1073/pnas.0711303105] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microorganisms play a fundamental role in the cycling of nutrients and energy on our planet. A common strategy for many microorganisms mediating biogeochemical cycles in anoxic environments is syntrophy, frequently necessitating close spatial proximity between microbial partners. We are only now beginning to fully appreciate the diversity and pervasiveness of microbial partnerships in nature, the majority of which cannot be replicated in the laboratory. One notable example of such cooperation is the interspecies association between anaerobic methane oxidizing archaea (ANME) and sulfate-reducing bacteria. These consortia are globally distributed in the environment and provide a significant sink for methane by substantially reducing the export of this potent greenhouse gas into the atmosphere. The interdependence of these currently uncultured microbes renders them difficult to study, and our knowledge of their physiological capabilities in nature is limited. Here, we have developed a method to capture select microorganisms directly from the environment, using combined fluorescence in situ hybridization and immunomagnetic cell capture. We used this method to purify syntrophic anaerobic methane oxidizing ANME-2c archaea and physically associated microorganisms directly from deep-sea marine sediment. Metagenomics, PCR, and microscopy of these purified consortia revealed unexpected diversity of associated bacteria, including Betaproteobacteria and a second sulfate-reducing Deltaproteobacterial partner. The detection of nitrogenase genes within the metagenome and subsequent demonstration of (15)N(2) incorporation in the biomass of these methane-oxidizing consortia suggest a possible role in new nitrogen inputs by these syntrophic assemblages.
Collapse
|
439
|
Ding H, Valentine DL. Methanotrophic bacteria occupy benthic microbial mats in shallow marine hydrocarbon seeps, Coal Oil Point, California. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jg000537] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haibing Ding
- Department of Earth Science and Marine Science Institute; University of California; Santa Barbara California USA
| | - David L. Valentine
- Department of Earth Science and Marine Science Institute; University of California; Santa Barbara California USA
| |
Collapse
|
440
|
Ma S, Luther G, Keller J, Madison A, Metzger E, Emerson D, Megonigal J. Solid-State Au/Hg Microelectrode for the Investigation of Fe and Mn Cycling in a Freshwater Wetland: Implications for Methane Production. ELECTROANAL 2008. [DOI: 10.1002/elan.200704048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
441
|
Goldschleger IU, Kerenskaya G, Janda KC, Apkarian VA. Polymorphism in Br2 Clathrate Hydrates. J Phys Chem A 2008; 112:787-9. [DOI: 10.1021/jp077562q] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- I. U. Goldschleger
- Department of Chemistry, University of California Irvine, Irvine, California 92697
| | - G. Kerenskaya
- Department of Chemistry, University of California Irvine, Irvine, California 92697
| | - K. C. Janda
- Department of Chemistry, University of California Irvine, Irvine, California 92697
| | - V. A. Apkarian
- Department of Chemistry, University of California Irvine, Irvine, California 92697
| |
Collapse
|
442
|
Abstract
Methane has long been known to be used as a carbon and energy source by some aerobic alpha- and delta-proteobacteria. In these organisms the metabolism of methane starts with its oxidation with O(2) to methanol, a reaction catalyzed by a monooxygenase and therefore restricted to the aerobic world. Methane has recently been shown to also fuel the growth of anaerobic microorganisms. The oxidation of methane with sulfate and with nitrate have been reported, but the mechanisms of anaerobic methane oxidation still remains elusive. Sulfate-dependent methane oxidation is catalyzed by methanotrophic archaea, which are related to the Methanosarcinales and which grow in close association with sulfate-reducing delta-proteobacteria. There is evidence that anaerobic methane oxidation with sulfate proceeds at least in part via reversed methanogenesis involving the nickel enzyme methyl-coenzyme M reductase for methane activation, which under standard conditions is an endergonic reaction, and thus inherently slow. Methane oxidation coupled to denitrification is mediated by bacteria belonging to a novel phylum and does not involve methyl-coenzyme M reductase. The first step in methane oxidation is most likely the exergonic formation of 2-methylsuccinate from fumarate and methane catalyzed by a glycine-radical enzyme.
Collapse
Affiliation(s)
- Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany.
| | | |
Collapse
|
443
|
Affiliation(s)
- Edward F DeLong
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
444
|
Koh CA, Sloan ED. Natural gas hydrates: Recent advances and challenges in energy and environmental applications. AIChE J 2007. [DOI: 10.1002/aic.11219] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|