401
|
Merging Ecology and Genomics to Dissect Diversity in Wild Tomatoes and Their Relatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:273-98. [DOI: 10.1007/978-94-007-7347-9_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
402
|
Clayton DF, London SE. Advancing avian behavioral neuroendocrinology through genomics. Front Neuroendocrinol 2014; 35:58-71. [PMID: 24113222 DOI: 10.1016/j.yfrne.2013.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/14/2022]
Abstract
Genome technologies are transforming all areas of biology, including the study of hormones, brain and behavior. Annotated reference genome assemblies are rapidly being produced for many avian species. Here we briefly review the basic concepts and tools used in genomics. We then consider how these are informing the study of avian behavioral neuroendocrinology, focusing in particular on lessons from the study of songbirds. We discuss the impact of having a complete "parts list" for an organism; the transformational potential of studying large sets of genes at once instead one gene at a time; the growing recognition that environmental and behavioral signals trigger massive shifts in gene expression in the brain; and the prospects for using comparative genomics to uncover the genetic roots of behavioral variation. Throughout, we identify promising new directions for bolstering the application of genomic information to further advance the study of avian brain and behavior.
Collapse
Affiliation(s)
- David F Clayton
- Biological & Experimental Psychology Division, School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Sarah E London
- Department of Psychology, Institute for Mind and Biology, Committee on Neurobiology, University of Chicago, 940 E 57th Street, Chicago, IL, USA.
| |
Collapse
|
403
|
Integrated Genomics Approaches in Evolutionary and Ecological Endocrinology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:299-319. [DOI: 10.1007/978-94-007-7347-9_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
404
|
Gompert Z, Comeault AA, Farkas TE, Feder JL, Parchman TL, Buerkle CA, Nosil P. Experimental evidence for ecological selection on genome variation in the wild. Ecol Lett 2013; 17:369-79. [PMID: 24354456 PMCID: PMC4261992 DOI: 10.1111/ele.12238] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/09/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022]
Abstract
Understanding natural selection's effect on genetic variation is a major goal in biology, but the genome-scale consequences of contemporary selection are not well known. In a release and recapture field experiment we transplanted stick insects to native and novel host plants and directly measured allele frequency changes within a generation at 186 576 genetic loci. We observed substantial, genome-wide allele frequency changes during the experiment, most of which could be attributed to random mortality (genetic drift). However, we also documented that selection affected multiple genetic loci distributed across the genome, particularly in transplants to the novel host. Host-associated selection affecting the genome acted on both a known colour-pattern trait as well as other (unmeasured) phenotypes. We also found evidence that selection associated with elevation affected genome variation, although our experiment was not designed to test this. Our results illustrate how genomic data can identify previously underappreciated ecological sources and phenotypic targets of selection.
Collapse
|
405
|
Interspecific hybridization contributes to high genetic diversity and apparent effective population size in an endemic population of mottled ducks (Anas fulvigula maculosa). CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0557-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
406
|
Uebbing S, Künstner A, Mäkinen H, Ellegren H. Transcriptome sequencing reveals the character of incomplete dosage compensation across multiple tissues in flycatchers. Genome Biol Evol 2013; 5:1555-66. [PMID: 23925789 PMCID: PMC3762201 DOI: 10.1093/gbe/evt114] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sex chromosome divergence, which follows the cessation of recombination and degeneration of the sex-limited chromosome, can cause a reduction in expression level for sex-linked genes in the heterozygous sex, unless some mechanisms of dosage compensation develops to counter the reduction in gene dose. Because large-scale perturbations in expression levels arising from changes in gene dose might have strong deleterious effects, the evolutionary response should be strong. However, in birds and in at least some other female heterogametic organisms, wholesale sex chromosome dosage compensation does not seem to occur. Using RNA-seq of multiple tissues and individuals, we investigated male and female expression levels of Z-linked and autosomal genes in the collared flycatcher, a bird for which a draft genome sequence recently has been reported. We found that male expression of Z-linked genes was on average 50% higher than female expression, although there was considerable variation in the male-to-female ratio among genes. The ratio for individual genes was well correlated among tissues and there was also a correlation in the extent of compensation between flycatcher and chicken orthologs. The relative excess of male expression was positively correlated with expression breadth, expression level, and number of interacting proteins (protein connectivity), and negatively correlated with variance in expression. These observations lead to a model of compensation occurring on a gene-by-gene basis, supported by an absence of clustering of genes on the Z chromosome with respect to the extent of compensation. Equal mean expression level of autosomal and Z-linked genes in males, and 50% higher expression of autosomal than Z-linked genes in females, is compatible with that partial compensation is achieved by hypertranscription from females' single Z chromosome. A comparison with male-to-female expression ratios in orthologous Z-linked genes of ostriches, where Z-W recombination still occurs, suggests that male-biased expression of Z-linked genes is a derived trait after avian sex chromosome divergence.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
407
|
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden;
| |
Collapse
|
408
|
Feder JL, Flaxman SM, Egan SP, Comeault AA, Nosil P. Geographic Mode of Speciation and Genomic Divergence. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135825] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey L. Feder
- Department of Biological Sciences,
- Environmental Change Initiative, and
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Indiana 46556; ,
| | - Samuel M. Flaxman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309;
| | - Scott P. Egan
- Department of Biological Sciences,
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Indiana 46556; ,
| | - Aaron A. Comeault
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom; ,
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom; ,
| |
Collapse
|
409
|
Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A 2013; 110:19854-9. [PMID: 24248386 DOI: 10.1073/pnas.1316851110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The M and S forms of Anopheles gambiae have been the focus of intense study by malaria researchers and evolutionary biologists interested in ecological speciation. Divergence occurs at three discrete islands in genomes that are otherwise nearly identical. An "islands of speciation" model proposes that diverged regions contain genes that are maintained by selection in the face of gene flow. An alternative "incidental island" model maintains that gene flow between M and S is effectively zero and that divergence islands are unrelated to speciation. A "divergence island SNP" assay was used to explore the spatial and temporal distributions of hybrid genotypes. Results revealed that hybrid individuals occur at frequencies ranging between 5% and 97% in every population examined. A temporal analysis revealed that assortative mating is unstable and periodically breaks down, resulting in extensive hybridization. Results suggest that hybrids suffer a fitness disadvantage, but at least some hybrid genotypes are viable. Stable introgression of the 2L speciation island occurred at one site following a hybridization event.
Collapse
|
410
|
Nadachowska-Brzyska K, Burri R, Olason PI, Kawakami T, Smeds L, Ellegren H. Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data. PLoS Genet 2013; 9:e1003942. [PMID: 24244198 PMCID: PMC3820794 DOI: 10.1371/journal.pgen.1003942] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/23/2013] [Indexed: 01/05/2023] Open
Abstract
Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000-80,000) and census sizes (5-50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species.
Collapse
Affiliation(s)
| | - Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Pall I. Olason
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
411
|
Rellstab C, Zoller S, Tedder A, Gugerli F, Fischer MC. Validation of SNP allele frequencies determined by pooled next-generation sequencing in natural populations of a non-model plant species. PLoS One 2013; 8:e80422. [PMID: 24244686 PMCID: PMC3820589 DOI: 10.1371/journal.pone.0080422] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022] Open
Abstract
Sequencing of pooled samples (Pool-Seq) using next-generation sequencing technologies has become increasingly popular, because it represents a rapid and cost-effective method to determine allele frequencies for single nucleotide polymorphisms (SNPs) in population pools. Validation of allele frequencies determined by Pool-Seq has been attempted using an individual genotyping approach, but these studies tend to use samples from existing model organism databases or DNA stores, and do not validate a realistic setup for sampling natural populations. Here we used pyrosequencing to validate allele frequencies determined by Pool-Seq in three natural populations of Arabidopsis halleri (Brassicaceae). The allele frequency estimates of the pooled population samples (consisting of 20 individual plant DNA samples) were determined after mapping Illumina reads to (i) the publicly available, high-quality reference genome of a closely related species (Arabidopsis thaliana) and (ii) our own de novo draft genome assembly of A. halleri. We then pyrosequenced nine selected SNPs using the same individuals from each population, resulting in a total of 540 samples. Our results show a highly significant and accurate relationship between pooled and individually determined allele frequencies, irrespective of the reference genome used. Allele frequencies differed on average by less than 4%. There was no tendency that either the Pool-Seq or the individual-based approach resulted in higher or lower estimates of allele frequencies. Moreover, the rather high coverage in the mapping to the two reference genomes, ranging from 55 to 284x, had no significant effect on the accuracy of the Pool-Seq. A resampling analysis showed that only very low coverage values (below 10-20x) would substantially reduce the precision of the method. We therefore conclude that a pooled re-sequencing approach is well suited for analyses of genetic variation in natural populations.
Collapse
Affiliation(s)
- Christian Rellstab
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Stefan Zoller
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
| | - Andrew Tedder
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zürich, Zürich, Switzerland
| | - Felix Gugerli
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | |
Collapse
|
412
|
Kuhn K, Schwenk K, Both C, Canal D, Johansson US, van der Mije S, Töpfer T, Päckert M. Differentiation in neutral genes and a candidate gene in the pied flycatcher: using biological archives to track global climate change. Ecol Evol 2013; 3:4799-814. [PMID: 24363905 PMCID: PMC3867912 DOI: 10.1002/ece3.855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 11/11/2022] Open
Abstract
Global climate change is one of the major driving forces for adaptive shifts in migration and breeding phenology and possibly impacts demographic changes if a species fails to adapt sufficiently. In Western Europe, pied flycatchers (Ficedula hypoleuca) have insufficiently adapted their breeding phenology to the ongoing advance of food peaks within their breeding area and consequently suffered local population declines. We address the question whether this population decline led to a loss of genetic variation, using two neutral marker sets (mitochondrial control region and microsatellites), and one potentially selectively non-neutral marker (avian Clock gene). We report temporal changes in genetic diversity in extant populations and biological archives over more than a century, using samples from sites differing in the extent of climate change. Comparing genetic differentiation over this period revealed that only the recent Dutch population, which underwent population declines, showed slightly lower genetic variation than the historic Dutch population. As that loss of variation was only moderate and not observed in all markers, current gene flow across Western and Central European populations might have compensated local loss of variation over the last decades. A comparison of genetic differentiation in neutral loci versus the Clock gene locus provided evidence for stabilizing selection. Furthermore, in all genetic markers, we found a greater genetic differentiation in space than in time. This pattern suggests that local adaptation or historic processes might have a stronger effect on the population structure and genetic variation in the pied flycatcher than recent global climate changes.
Collapse
Affiliation(s)
- Kerstin Kuhn
- Biodiversity and Climate Research CentreSenckenberganlage 25, Frankfurt a. Main, D-60325, Germany
- Ecology and Evolution, Johann Wolfgang Goethe-UniversitätMax-von-Laue-Straße 13, Frankfurt am Main, D-60438, Germany
| | - Klaus Schwenk
- Biodiversity and Climate Research CentreSenckenberganlage 25, Frankfurt a. Main, D-60325, Germany
- Institute of Environmental Sciences, University of Koblenz-LandauFortstraße 7, Landau in der Pfalz, 76829, Germany
| | - Christiaan Both
- Centre for Ecological and Evolutionary Studies (CEES), University of GroningenPO Box 11103, Groningen, 9700 CC, The Netherlands
| | - David Canal
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSICAv. Américo Vespucio s/n, Sevilla, 41092, Spain
| | - Ulf S Johansson
- Department of Zoology, Swedish Museum of Natural HistoryPO Box 50007, Stockholm, SE 10405, Sweden
| | | | - Till Töpfer
- Biodiversity and Climate Research CentreSenckenberganlage 25, Frankfurt a. Main, D-60325, Germany
- Museum of Zoology, Senckenberg Natural History CollectionsKönigsbrücker Landstraße 159, Dresden, D-01109, Germany
| | - Martin Päckert
- Biodiversity and Climate Research CentreSenckenberganlage 25, Frankfurt a. Main, D-60325, Germany
- Museum of Zoology, Senckenberg Natural History CollectionsKönigsbrücker Landstraße 159, Dresden, D-01109, Germany
| |
Collapse
|
413
|
Kronforst MR, Hansen MEB, Crawford NG, Gallant JR, Zhang W, Kulathinal RJ, Kapan DD, Mullen SP. Hybridization reveals the evolving genomic architecture of speciation. Cell Rep 2013; 5:666-77. [PMID: 24183670 PMCID: PMC4388300 DOI: 10.1016/j.celrep.2013.09.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/09/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022] Open
Abstract
The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites.
Collapse
Affiliation(s)
- Marcus R Kronforst
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
414
|
The evolution of novelty in conserved genes; evidence of positive selection in the Drosophila fruitless gene is localised to alternatively spliced exons. Heredity (Edinb) 2013; 112:300-6. [PMID: 24149653 DOI: 10.1038/hdy.2013.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 08/30/2013] [Accepted: 09/24/2013] [Indexed: 11/08/2022] Open
Abstract
There has been much debate concerning whether cis-regulatory or coding changes are more likely to produce evolutionary innovation or adaptation in gene function, but an additional complication is that some genes can dramatically diverge through alternative splicing, increasing the diversity of gene function within a locus. The fruitless gene is a major transcription factor with a wide range of pleiotropic functions, including a fundamental conserved role in sexual differentiation, species-specific morphology and an important influence on male sexual behaviour. Here, we examine the structure of fruitless in multiple species of Drosophila, and determine the patterns of selective constraint acting across the coding region. We found that the pattern of selection, estimated from the ratio of non-synonymous to synonymous substitutions, varied considerably across the gene, with most regions of the gene evolutionarily conserved but with several regions showing evidence of divergence as a result of positive selection. The regions that showed evidence of positive selection were found to be localised to relatively consistent regions across multiple speciation events, and are associated with alternative splicing. Alternative splicing may thus provide a route to gene diversification in key regulatory loci.
Collapse
|
415
|
Abstract
The ratio of divergence at nonsynonymous and synonymous sites, dN/dS, is a widely used measure in evolutionary genetic studies to investigate the extent to which selection modulates gene sequence evolution. Originally tailored to codon sequences of distantly related lineages, dN/dS represents the ratio of fixed nonsynonymous to synonymous differences. The impact of ancestral and lineage-specific polymorphisms on dN/dS, which we here show to be substantial for closely related lineages, is generally neglected in estimation techniques of dN/dS. To address this issue, we formulate a codon model that is firmly anchored in population genetic theory, derive analytical expressions for the dN/dS measure by Poisson random field approximation in a Markovian framework and validate the derivations by simulations. In good agreement, simulations and analytical derivations demonstrate that dN/dS is biased by polymorphisms at short time scales and that it can take substantial time for the expected value to settle at its time limit where only fixed differences are considered. We further show that in any attempt to estimate the dN/dS ratio from empirical data the effect of the intrinsic fluctuations of a ratio of stochastic variables, can even under neutrality yield extreme values of dN/dS at short time scales or in regions of low mutation rate. Taken together, our results have significant implications for the interpretation of dN/dS estimates, the McDonald-Kreitman test and other related statistics, in particular for closely related lineages.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
416
|
Affiliation(s)
- K. Petren
- Department of Biological Sciences; University of Cincinnati; Cincinnati Ohio 45221
| |
Collapse
|
417
|
Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, Blaxter M, Manica A, Mallet J, Jiggins CD. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res 2013; 23:1817-28. [PMID: 24045163 PMCID: PMC3814882 DOI: 10.1101/gr.159426.113] [Citation(s) in RCA: 440] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole-genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno, and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100-kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time.
Collapse
Affiliation(s)
- Simon H Martin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Abstract
BACKGROUND While many bioinformatics tools currently exist for assembling and discovering variants from next-generation sequence data, there are very few tools available for performing evolutionary analyses from these data. Evolutionary and population genomics studies hold great promise for providing valuable insights into natural selection, the effect of mutations on phenotypes, and the origin of species. Thus, there is a need for an extensible and flexible computational tool that can function into a growing number of evolutionary bioinformatics pipelines. RESULTS This paper describes the POPBAM software, which is a comprehensive set of computational tools for evolutionary analysis of whole-genome alignments consisting of multiple individuals, from multiple populations or species. POPBAM works directly from BAM-formatted assembly files, calls variant sites, and calculates a variety of commonly used evolutionary sequence statistics. POPBAM is designed primarily to perform analyses in sliding windows across chromosomes or scaffolds. POPBAM accurately measures nucleotide diversity, population divergence, linkage disequilibrium, and the frequency spectrum of mutations from two or more populations. POPBAM can also produce phylogenetic trees of all samples in a BAM file. Finally, I demonstrate that the implementation of POPBAM is both fast and memory-efficient, and also can feasibly scale to the analysis of large BAM files with many individuals and populations. Software: The POPBAM program is written in C/C++ and is available from http://dgarriga.github.io/POPBAM. The program has few dependencies and can be built on a variety of Linux platforms. The program is open-source and users are encouraged to participate in the development of this resource.
Collapse
Affiliation(s)
- Daniel Garrigan
- Department of Biology, University of Rochester, Rochester, New York 14627 USA
| |
Collapse
|
419
|
Meisel RP, Connallon T. The faster-X effect: integrating theory and data. Trends Genet 2013; 29:537-44. [PMID: 23790324 PMCID: PMC3755111 DOI: 10.1016/j.tig.2013.05.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022]
Abstract
Population genetics theory predicts that X (or Z) chromosomes could play disproportionate roles in speciation and evolutionary divergence, and recent genome-wide analyses have identified situations in which X or Z-linked divergence exceeds that on the autosomes (the so-called 'faster-X effect'). Here, we summarize the current state of both the theory and data surrounding the study of faster-X evolution. Our survey indicates that the faster-X effect is pervasive across a taxonomically diverse array of evolutionary lineages. These patterns could be informative of the dominance or recessivity of beneficial mutations and the nature of genetic variation acted upon by natural selection. We also identify several aspects of disagreement between these empirical results and the population genetic models used to interpret them. However, there are clearly delineated aspects of the problem for which additional modeling and collection of genomic data will address these discrepancies and provide novel insights into the population genetics of adaptation.
Collapse
|
420
|
Segmenting the human genome based on states of neutral genetic divergence. Proc Natl Acad Sci U S A 2013; 110:14699-704. [PMID: 23959903 DOI: 10.1073/pnas.1221792110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.
Collapse
|
421
|
Chu JH, Wegmann D, Yeh CF, Lin RC, Yang XJ, Lei FM, Yao CT, Zou FS, Li SH. Inferring the geographic mode of speciation by contrasting autosomal and sex-linked genetic diversity. Mol Biol Evol 2013; 30:2519-30. [PMID: 23955517 DOI: 10.1093/molbev/mst140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
When geographic isolation drives speciation, concurrent termination of gene flow among genomic regions will occur immediately after the formation of the barrier between diverging populations. Alternatively, if speciation is driven by ecologically divergent selection, gene flow of selectively neutral genomic regions may go on between diverging populations until the completion of reproductive isolation. It may also lead to an unsynchronized termination of gene flow between genomic regions with different roles in the speciation process. Here, we developed a novel Approximate Bayesian Computation pipeline to infer the geographic mode of speciation by testing for a lack of postdivergence gene flow and a concurrent termination of gene flow in autosomal and sex-linked markers jointly. We applied this approach to infer the geographic mode of speciation for two allopatric highland rosefinches, the vinaceous rosefinch Carpodacus vinaceus and the Taiwan rosefinch C. formosanus from DNA polymorphisms of both autosomal and Z-linked loci. Our results suggest that the two rosefinch species diverged allopatrically approximately 0.5 Ma. Our approach allowed us further to infer that female effective population sizes are about five times larger than those of males, an estimate potentially useful when comparing the intensity of sexual selection across species.
Collapse
Affiliation(s)
- Jui-Hua Chu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Nosil P, Feder JL. GENOME EVOLUTION AND SPECIATION: TOWARD QUANTITATIVE DESCRIPTIONS OF PATTERN AND PROCESS. Evolution 2013; 67:2461-7. [DOI: 10.1111/evo.12191] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 05/30/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Patrik Nosil
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield; S10 2TN; United Kingdom
| | - Jeffrey L. Feder
- Department of Biological Sciences; 290C Galvin Life Sciences Building; University of Notre Dame; Notre Dame; Indiana; 46556
| |
Collapse
|
423
|
Lampa S, Dahlö M, Olason PI, Hagberg J, Spjuth O. Lessons learned from implementing a national infrastructure in Sweden for storage and analysis of next-generation sequencing data. Gigascience 2013; 2:9. [PMID: 23800020 PMCID: PMC3704847 DOI: 10.1186/2047-217x-2-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 06/01/2013] [Indexed: 12/29/2022] Open
Abstract
: Analyzing and storing data and results from next-generation sequencing (NGS) experiments is a challenging task, hampered by ever-increasing data volumes and frequent updates of analysis methods and tools. Storage and computation have grown beyond the capacity of personal computers and there is a need for suitable e-infrastructures for processing. Here we describe UPPNEX, an implementation of such an infrastructure, tailored to the needs of data storage and analysis of NGS data in Sweden serving various labs and multiple instruments from the major sequencing technology platforms. UPPNEX comprises resources for high-performance computing, large-scale and high-availability storage, an extensive bioinformatics software suite, up-to-date reference genomes and annotations, a support function with system and application experts as well as a web portal and support ticket system. UPPNEX applications are numerous and diverse, and include whole genome-, de novo- and exome sequencing, targeted resequencing, SNP discovery, RNASeq, and methylation analysis. There are over 300 projects that utilize UPPNEX and include large undertakings such as the sequencing of the flycatcher and Norwegian spruce. We describe the strategic decisions made when investing in hardware, setting up maintenance and support, allocating resources, and illustrate major challenges such as managing data growth. We conclude with summarizing our experiences and observations with UPPNEX to date, providing insights into the successful and less successful decisions made.
Collapse
Affiliation(s)
- Samuel Lampa
- SNIC-UPPMAX, Uppsala University, PO Box 337, SE-751 05, Uppsala, Sweden
| | - Martin Dahlö
- SNIC-UPPMAX, Uppsala University, PO Box 337, SE-751 05, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Husargatan 3, SE-751 23, Uppsala, Sweden
| | - Pall I Olason
- SNIC-UPPMAX, Uppsala University, PO Box 337, SE-751 05, Uppsala, Sweden
- Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Jonas Hagberg
- SNIC-UPPMAX, Uppsala University, PO Box 337, SE-751 05, Uppsala, Sweden
| | - Ola Spjuth
- SNIC-UPPMAX, Uppsala University, PO Box 337, SE-751 05, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Husargatan 3, SE-751 23, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden
| |
Collapse
|
424
|
Abstract
Complete genomes of hybridizing bird species demonstrate the importance of the sex chromosomes, telomeres and centromeres to the initial stages of speciation.
Collapse
|
425
|
Watt WB. Specific-gene studies of evolutionary mechanisms in an age of genome-wide surveying. Ann N Y Acad Sci 2013; 1289:1-17. [PMID: 23679204 DOI: 10.1111/nyas.12139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular tools of genomics have great power to reveal patterns of genetic difference within or among species, but must be complemented by the mechanistic study of the genetic variants found if these variants' evolutionary meaning is to be well understood. Central to this purpose is knowledge of the organisms' genotype-phenotype-environment interactions, which embody biological adaptation and constraint and thus drive natural selection. The history of this approach is briefly reviewed. Strategies embracing the complementarity of genomics and specific-gene studies in evolution are considered. Implementation of these strategies, and examples showing their feasibility and power, are discussed. Initial generalizations emphasize: (1) reproducibility of adaptive mechanisms; (2) evolutionary co-importance of variation in protein sequences and expression; (3) refinement of rudimentary molecular functions as an origin of evolutionary innovations; (4) identification of specific-gene mechanisms as underpinnings of genomic or quantitative genetic variation; and (5) multiple forms of adaptive or constraining epistasis among genes. Progress along these lines will advance understanding of evolution and support its use in addressing urgent medical and environmental applications.
Collapse
Affiliation(s)
- Ward B Watt
- Department of Biology, Stanford University, Stanford, California and Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.
| |
Collapse
|
426
|
Lundberg M, Boss J, Canbäck B, Liedvogel M, Larson KW, Grahn M, Åkesson S, Bensch S, Wright A. Characterisation of a transcriptome to find sequence differences between two differentially migrating subspecies of the willow warbler Phylloscopus trochilus. BMC Genomics 2013; 14:330. [PMID: 23672489 PMCID: PMC3660185 DOI: 10.1186/1471-2164-14-330] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 05/09/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Animal migration requires adaptations in morphological, physiological and behavioural traits. Several of these traits have been shown to possess a strong heritable component in birds, but little is known about their genetic architecture. Here we used 454 sequencing of brain-derived transcriptomes from two differentially migrating subspecies of the willow warbler Phylloscopus trochilus to detect genes potentially underlying traits associated with migration. RESULTS The transcriptome sequencing resulted in 1.8 million reads following filtering steps. Most of the reads (84%) were successfully mapped to the genome of the zebra finch Taeniopygia gutatta. The mapped reads were situated within at least 12,101 predicted zebra finch genes, with the greatest sequencing depth in exons. Reads that were mapped to intergenic regions were generally located close to predicted genes and possibly located in uncharacterized untranslated regions (UTRs). Out of 85,000 single nucleotide polymorphisms (SNPs) with a minimum sequencing depth of eight reads from each of two subspecies-specific pools, only 55 showed high differentiation, confirming previous studies showing that most of the genetic variation is shared between the subspecies. Validation of a subset of the most highly differentiated SNPs using Sanger sequencing demonstrated that several of them also were differentiated between an independent set of individuals of each subspecies. These SNPs were clustered in two chromosome regions that are likely to be influenced by divergent selection between the subspecies and that could potentially be associated with adaptations to their different migratory strategies. CONCLUSIONS Our study represents the first large-scale sequencing analysis aiming at detecting genes underlying migratory phenotypes in birds and provides new candidates for genes potentially involved in migration.
Collapse
Affiliation(s)
- Max Lundberg
- Department of Biology, Lund University, Ecology Building, Lund, SE 22362, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Sousa V, Hey J. Understanding the origin of species with genome-scale data: modelling gene flow. Nat Rev Genet 2013; 14:404-14. [PMID: 23657479 DOI: 10.1038/nrg3446] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As it becomes easier to sequence multiple genomes from closely related species, evolutionary biologists working on speciation are struggling to get the most out of very large population genomic data sets. Such data hold the potential to resolve long-standing questions in evolutionary biology about the role of gene exchange in species formation. In principle, the new population genomic data can be used to disentangle the conflicting roles of natural selection and gene flow during the divergence process. However, there are great challenges in taking full advantage of such data, especially with regard to including recombination in genetic models of the divergence process. Current data, models, methods and the potential pitfalls in using them will be considered here.
Collapse
Affiliation(s)
- Vitor Sousa
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
428
|
A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao). PLoS One 2013; 8:e62415. [PMID: 23667475 PMCID: PMC3648530 DOI: 10.1371/journal.pone.0062415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
Data deposition to NCBI Genomes: This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMXX00000000 (SMACv1.0, unscaffolded genome assembly). The version described in this paper is the first version (AMXX01000000). The scaffolded assembly (SMACv1.1) has been deposited at DDBJ/EMBL/GenBank under the accession AOUJ00000000, and is also the first version (AOUJ01000000). Strong biological interest in traits such as the acquisition and utilization of speech, cognitive abilities, and longevity catalyzed the utilization of two next-generation sequencing platforms to provide the first-draft de novo genome assembly for the large, new world parrot Ara macao (Scarlet Macaw). Despite the challenges associated with genome assembly for an outbred avian species, including 951,507 high-quality putative single nucleotide polymorphisms, the final genome assembly (>1.035 Gb) includes more than 997 Mb of unambiguous sequence data (excluding N's). Cytogenetic analyses including ZooFISH revealed complex rearrangements associated with two scarlet macaw macrochromosomes (AMA6, AMA7), which supports the hypothesis that translocations, fusions, and intragenomic rearrangements are key factors associated with karyotype evolution among parrots. In silico annotation of the scarlet macaw genome provided robust evidence for 14,405 nuclear gene annotation models, their predicted transcripts and proteins, and a complete mitochondrial genome. Comparative analyses involving the scarlet macaw, chicken, and zebra finch genomes revealed high levels of nucleotide-based conservation as well as evidence for overall genome stability among the three highly divergent species. Application of a new whole-genome analysis of divergence involving all three species yielded prioritized candidate genes and noncoding regions for parrot traits of interest (i.e., speech, intelligence, longevity) which were independently supported by the results of previous human GWAS studies. We also observed evidence for genes and noncoding loci that displayed extreme conservation across the three avian lineages, thereby reflecting their likely biological and developmental importance among birds.
Collapse
|
429
|
Wolf JBW. Principles of transcriptome analysis and gene expression quantification: an
RNA
‐seq tutorial. Mol Ecol Resour 2013; 13:559-72. [DOI: 10.1111/1755-0998.12109] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Jochen B. W. Wolf
- Department of Evolutionary Biology Uppsala University Uppsala Sweden
- Science of Life Laboratory Uppsala Sweden
| |
Collapse
|
430
|
Andrew RL, Bernatchez L, Bonin A, Buerkle CA, Carstens BC, Emerson BC, Garant D, Giraud T, Kane NC, Rogers SM, Slate J, Smith H, Sork VL, Stone GN, Vines TH, Waits L, Widmer A, Rieseberg LH. A road map for molecular ecology. Mol Ecol 2013; 22:2605-26. [DOI: 10.1111/mec.12319] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rose L. Andrew
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Louis Bernatchez
- DInstitut de Biologie Intégrative et des Systémes; Département de Biologie; 1030, Avenue de la Médecine Université Laval; Québec QC G1V 0A6 Canada
| | - Aurélie Bonin
- Laboratoire d'Ecologie Alpine; CNRS UMR 5553 Université Joseph Fourier; BP 53, 38041 Grenoble Cedex 9 France
| | - C. Alex. Buerkle
- Department of Botany; University of Wyoming; 1000 E. University Ave. Laramie WY 82071 USA
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology; 318 W. 12th Ave. The Ohio State University; Columbus OH 43210 USA
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) C/Astrofísico Francisco Sánchez 3 La Laguna Tenerife; Canary Islands 38206 Spain
| | - Dany Garant
- Département de Biologie; Université de Sherbrooke; Sherbrooke QC J1K 2R1 Canada
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution; UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360 Univ. Paris Sud; 91405 Orsay cedex France
| | - Nolan C. Kane
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive N.W., Calgary AB T2N 1N4 Canada
| | - Jon Slate
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Harry Smith
- 79 Melton Road Burton-on-the-Wolds Loughborough LE12 5TQ UK
| | - Victoria L. Sork
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; 4139 Terasaki Life Sciences Building, 610 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; The King's Buildings, West Mains Road, Edinburgh EH9 3JT UK
| | - Timothy H. Vines
- Molecular Ecology Editorial Office; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Lisette Waits
- Department of Fish and Wildlife Sciences; University of Idaho; 875 Perimeter Drive MS 1136 Moscow ID 83844 USA
| | - Alex Widmer
- ETH Zurich; Institute of Integrative Biology; Universitätstrasse 16 Zurich 8092 Switzerland
| | - Loren H. Rieseberg
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
- Department of Biology; Indiana University; 1001 E. 3 St., Bloomington IN 47405 USA
| |
Collapse
|
431
|
Alund M, Immler S, Rice AM, Qvarnström A. Low fertility of wild hybrid male flycatchers despite recent divergence. Biol Lett 2013; 9:20130169. [PMID: 23576780 DOI: 10.1098/rsbl.2013.0169] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Postzygotic isolation may be important for maintaining species boundaries, particularly when premating barriers are incomplete. Little is known about the course of events leading from minor environmental mismatches affecting hybrid fitness to severe genetic incompatibilities causing sterility or inviability. We investigated whether reduced reproductive success of hybrid males was caused by suboptimal sperm traits or by more severe genetic incompatibilities in a hybrid zone of pied (Ficedula hypoleuca) and collared flycatchers (F. albicollis) on the island of Öland, Sweden. About 4 per cent hybridization is observed in this population and all female hybrids are sterile. We found no sperm in the ejaculates of most sampled hybrid males, and sperm with abnormal morphology in two hybrids. Furthermore, none of the hybrids sired any offspring because of high levels of hatching failure and extra-pair paternity in their nests. These results from a natural hybrid zone suggest that the spermatogenesis of hybrid males may become disrupted despite little genetic divergence between the parental species.
Collapse
Affiliation(s)
- Murielle Alund
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden.
| | | | | | | |
Collapse
|
432
|
Gagnaire PA, Pavey SA, Normandeau E, Bernatchez L. THE GENETIC ARCHITECTURE OF REPRODUCTIVE ISOLATION DURING SPECIATION-WITH-GENE-FLOW IN LAKE WHITEFISH SPECIES PAIRS ASSESSED BY RAD SEQUENCING. Evolution 2013; 67:2483-97. [DOI: 10.1111/evo.12075] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/31/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Scott A. Pavey
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Pavillon Charles-Eugène-Marchand; Québec; Canada; G1V 0A6
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Pavillon Charles-Eugène-Marchand; Québec; Canada; G1V 0A6
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Pavillon Charles-Eugène-Marchand; Québec; Canada; G1V 0A6
| |
Collapse
|
433
|
Parchman TL, Gompert Z, Braun MJ, Brumfield RT, McDonald DB, Uy JAC, Zhang G, Jarvis ED, Schlinger BA, Buerkle CA. The genomic consequences of adaptive divergence and reproductive isolation between species of manakins. Mol Ecol 2013; 22:3304-17. [DOI: 10.1111/mec.12201] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022]
Affiliation(s)
- T. L. Parchman
- Department of Botany; University of Wyoming; Laramie WY 82071 USA
| | - Z. Gompert
- Department of Botany; University of Wyoming; Laramie WY 82071 USA
| | - M. J. Braun
- National Museum of Natural History; Smithsonian Institution; Washington D.C. 20560 USA
| | - R. T. Brumfield
- Department of Biological Sciences and Museum of Natural Science; Louisiana State University; Baton Rouge LA 70803 USA
| | - D. B. McDonald
- Department of Zoology and Physiology; University of Wyoming; Laramie WY 82071 USA
| | - J. A. C. Uy
- Department of Biology; University of Miami; Miami FL 33146 USA
| | - G. Zhang
- Beijing Genome Institute; Beijing China
| | - E. D. Jarvis
- Department of Neurobiology; Duke University Medical Center; Durham NC 27710 USA
| | - B. A. Schlinger
- Department of Integrative Biology and Physiology; University of California-Los Angeles; Los Angeles CA 90095 USA
| | - C. A. Buerkle
- Department of Botany; University of Wyoming; Laramie WY 82071 USA
| |
Collapse
|
434
|
Singhal S. De novo
transcriptomic analyses for non‐model organisms: an evaluation of methods across a multi‐species data set. Mol Ecol Resour 2013; 13:403-16. [DOI: 10.1111/1755-0998.12077] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/13/2012] [Accepted: 12/22/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Sonal Singhal
- Museum of Vertebrate Zoology University of California, Berkeley 3101 Valley Life Sciences Building Berkeley CA 94720‐3160 USA
- Department of Integrative Biology University of California, Berkeley 1005 Valley Life Sciences Building Berkeley CA 94720‐3140 USA
| |
Collapse
|
435
|
Rands CM, Darling A, Fujita M, Kong L, Webster MT, Clabaut C, Emes RD, Heger A, Meader S, Hawkins MB, Eisen MB, Teiling C, Affourtit J, Boese B, Grant PR, Grant BR, Eisen JA, Abzhanov A, Ponting CP. Insights into the evolution of Darwin's finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genomics 2013; 14:95. [PMID: 23402223 PMCID: PMC3575239 DOI: 10.1186/1471-2164-14-95] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/23/2013] [Indexed: 01/01/2023] Open
Abstract
Background A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin’s (Galápagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galápagos archipelago took place in the last 2–3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. Results 13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin’s finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin’s finches.
Collapse
Affiliation(s)
- Chris M Rands
- Department of Physiology, Anatomy, and Genetics, MRC Functional Genomics Unit, University of Oxford, Oxford, OX1 3PT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Vallin N, Nonaka Y, Feng J, Qvarnström A. Relative performance of hybrid nestlings in Ficedula flycatchers: a translocation experiment. Ecol Evol 2013; 3:356-64. [PMID: 23467681 PMCID: PMC3586645 DOI: 10.1002/ece3.472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 12/25/2022] Open
Abstract
Ecological speciation predicts that hybrids should experience relatively low fitness in the local environments of their parental species. In this study, we performed a translocation experiment of nestling hybrids between collared and pied flycatchers into the nests of conspecific pairs of their parental species. Our aim was to compare the performance of hybrids with purebred nestlings. Nestling collared flycatchers are known to beg and grow faster than nestling pied flycatchers under favorable conditions, but to experience higher mortality than nestling pied flycatchers under food limitation. The experiment was performed relatively late in the breeding season when food is limited. If hybrid nestlings have an intermediate growth potential and begging intensity, we expected them to beg and grow faster, but also to experience lower survival than pied flycatchers. In comparison with nestling collared flycatchers, we expected them to beg and grow slower, but to survive better. We found that nestling collared flycatchers indeed begged significantly faster and experienced higher mortality than nestling hybrids. Moreover, nestling hybrids had higher weight and tended to beg faster than nestling pied flycatchers, but we did not detect a difference in survival between the latter two groups of nestlings. We conclude that hybrid Ficedula nestlings appear to have a better intrinsic adaptation to food limitation late in the breeding season compared with nestling collared flycatchers. We discuss possible implications for gene flow between the two species.
Collapse
Affiliation(s)
- Niclas Vallin
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | | | | | | |
Collapse
|
437
|
Shapiro MD, Kronenberg Z, Li C, Domyan ET, Pan H, Campbell M, Tan H, Huff CD, Hu H, Vickrey AI, Nielsen SCA, Stringham SA, Hu H, Willerslev E, Gilbert MTP, Yandell M, Zhang G, Wang J. Genomic diversity and evolution of the head crest in the rock pigeon. Science 2013; 339:1063-7. [PMID: 23371554 DOI: 10.1126/science.1230422] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The geographic origins of breeds and the genetic basis of variation within the widely distributed and phenotypically diverse domestic rock pigeon (Columba livia) remain largely unknown. We generated a rock pigeon reference genome and additional genome sequences representing domestic and feral populations. We found evidence for the origins of major breed groups in the Middle East and contributions from a racing breed to North American feral populations. We identified the gene EphB2 as a strong candidate for the derived head crest phenotype shared by numerous breeds, an important trait in mate selection in many avian species. We also found evidence that this trait evolved just once and spread throughout the species, and that the crest originates early in development by the localized molecular reversal of feather bud polarity.
Collapse
Affiliation(s)
- Michael D Shapiro
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
438
|
Adolfsson S, Ellegren H. Lack of dosage compensation accompanies the arrested stage of sex chromosome evolution in ostriches. Mol Biol Evol 2013; 30:806-10. [PMID: 23329687 PMCID: PMC3603317 DOI: 10.1093/molbev/mst009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sex chromosome evolution is usually seen as a process that, once initiated, will inevitably progress toward an advanced stage of degeneration of the nonrecombining chromosome. However, despite evidence that avian sex chromosome evolution was initiated >100 Ma, ratite birds have been trapped in an arrested stage of sex chromosome divergence. We performed RNA sequencing of several tissues from male and female ostriches and assembled the transcriptome de novo. A total of 315 Z-linked genes fell into two categories: those that have equal expression level in the two sexes (for which Z–W recombination still occurs) and those that have a 2-fold excess of male expression (for which Z–W recombination has ceased). We suggest that failure to evolve dosage compensation has constrained sex chromosome divergence in this basal avian lineage. Our results indicate that dosage compensation is a prerequisite for, not only a consequence of, sex chromosome evolution.
Collapse
Affiliation(s)
- Sofia Adolfsson
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
439
|
Hansson B. Uncovering the genomic signatures of species differences in flycatchers: speciation genetics. Heredity (Edinb) 2012; 110:407-8. [PMID: 23232834 DOI: 10.1038/hdy.2012.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|