401
|
Sims D, Bursteinas B, Gao Q, Zvelebil M, Baum B. FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets. Nucleic Acids Res 2006; 34:D479-83. [PMID: 16381916 PMCID: PMC1347401 DOI: 10.1093/nar/gkj038] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
FLIGHT () is a new database designed to help researchers browse and cross-correlate data from large-scale RNAi studies. To date, the majority of these functional genomic screens have been carried out using Drosophila cell lines. These RNAi screens follow 100 years of classical Drosophila genetics, but have already revealed their potential by ascribing an impressive number of functions to known and novel genes. This has in turn given rise to a pressing need for tools to simplify the analysis of the large amount of phenotypic information generated. FLIGHT aims to do this by providing users with a gene-centric view of screen results and by making it possible to cluster phenotypic data to identify genes with related functions. Additionally, FLIGHT provides microarray expression data for many of the Drosophila cell lines commonly used in RNAi screens. This, together with information about cell lines, protocols and dsRNA primer sequences, is intended to help researchers design their own cell-based screens. Finally, although the current focus of FLIGHT is Drosophila, the database has been designed to facilitate the comparison of functional data across species and to help researchers working with other systems navigate their way through the fly genome.
Collapse
Affiliation(s)
- David Sims
- Morphogenesis Group, Ludwig Institute for Cancer ResearchUCL Branch, Courtauld Building, 91 Riding House Street, London, W1W 7BS, UK
- Bioinformatics and Systems Biology Group, Ludwig Institute for Cancer ResearchUCL Branch, Courtauld Building, 91 Riding House Street, London, W1W 7BS, UK
| | - Borisas Bursteinas
- Bioinformatics and Systems Biology Group, Ludwig Institute for Cancer ResearchUCL Branch, Courtauld Building, 91 Riding House Street, London, W1W 7BS, UK
| | - Qiong Gao
- Bioinformatics and Systems Biology Group, Ludwig Institute for Cancer ResearchUCL Branch, Courtauld Building, 91 Riding House Street, London, W1W 7BS, UK
| | - Marketa Zvelebil
- Bioinformatics and Systems Biology Group, Ludwig Institute for Cancer ResearchUCL Branch, Courtauld Building, 91 Riding House Street, London, W1W 7BS, UK
| | - Buzz Baum
- Morphogenesis Group, Ludwig Institute for Cancer ResearchUCL Branch, Courtauld Building, 91 Riding House Street, London, W1W 7BS, UK
- To whom correspondence should be addressed. Tel: +44 207 878 4044; Fax: +44 207 878 4040;
| |
Collapse
|
402
|
|
403
|
Nichols RJ, Wiebe MS, Traktman P. The vaccinia-related kinases phosphorylate the N' terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol Biol Cell 2006; 17:2451-64. [PMID: 16495336 PMCID: PMC1446082 DOI: 10.1091/mbc.e05-12-1179] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The vaccinia-related kinases (VRKs) comprise a branch of the casein kinase family whose members are characterized by homology to the vaccinia virus B1 kinase. The VRK orthologues encoded by Caenorhabditis elegans and Drosophila melanogaster play an essential role in cell division; however, substrates that mediate this role have yet to be elucidated. VRK1 can complement the temperature sensitivity of a vaccinia B1 mutant, implying that VRK1 and B1 have overlapping substrate specificity. Herein, we demonstrate that B1, VRK1, and VRK2 efficiently phosphorylate the extreme N' terminus of the BAF protein (Barrier to Autointegration Factor). BAF binds to both DNA and LEM domain-containing proteins of the inner nuclear membrane; in lower eukaryotes, BAF has been shown to play an important role during the reassembly of the nuclear envelope at the end of mitosis. We demonstrate that phosphorylation of ser4 and/or thr2/thr3 abrogates the interaction of BAF with DNA and reduces its interaction with the LEM domain. Coexpression of VRK1 and GFP-BAF greatly diminishes the association of BAF with the nuclear chromatin/matrix and leads to its dispersal throughout the cell. Cumulatively, our data suggest that the VRKs may modulate the association of BAF with nuclear components and hence play a role in maintaining appropriate nuclear architecture.
Collapse
Affiliation(s)
- R Jeremy Nichols
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
404
|
Trinkle-Mulcahy L, Andersen J, Lam YW, Moorhead G, Mann M, Lamond AI. Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability. ACTA ACUST UNITED AC 2006; 172:679-92. [PMID: 16492807 PMCID: PMC2063701 DOI: 10.1083/jcb.200508154] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Protein phosphatase 1 (PP1) is a ubiquitous serine/threonine phosphatase regulating many cellular processes. PP1α and -γ are closely related isoforms with distinct localization patterns, shown here by time-lapse microscopy of stably expressed fluorescent protein fusions. A pool of PP1γ is selectively loaded onto chromatin at anaphase. Using stable isotope labeling and proteomics, we identified a novel PP1 binding protein, Repo-Man, which selectively recruits PP1γ onto mitotic chromatin at anaphase and into the following interphase. This approach revealed both novel and known PP1 binding proteins, quantitating their relative distribution between PP1α and -γ in vivo. When overexpressed, Repo-Man can also recruit PP1α to chromatin. Mutating Repo-Man's PP1 binding domain does not disrupt chromatin binding but abolishes recruitment of PP1 onto chromatin. RNA interference–induced knockdown of Repo-Man caused large-scale cell death by apoptosis, as did overexpression of this dominant-negative mutant. The data indicate that Repo-Man forms an essential complex with PP1γ and is required for the recruitment of PP1 to chromatin.
Collapse
|
405
|
Gartel AL, Kandel ES. RNA interference in cancer. ACTA ACUST UNITED AC 2006; 23:17-34. [PMID: 16466964 DOI: 10.1016/j.bioeng.2006.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/08/2006] [Accepted: 01/13/2006] [Indexed: 12/19/2022]
Abstract
In the recent years, RNA interference (RNAi) has emerged as a major regulatory mechanism in eukaryotic gene expression. The realization that changes in the levels of microRNAs are directly associated with cancer led to the recognition of a new class of tumor suppressors and oncogenes. Moreover, RNAi has been turned into a potent tool for artificially modulating gene expression through the introduction of short interfering RNAs. A plethora of individual inhibitory RNAs as well as several large collections of these reagents have been generated. The systems for stable and regulated expression of these molecules emerged as well. These tools have helped to delineate the roles of various cellular factors in oncogenesis and tumor suppression and laid the foundation for new approaches in gene discovery. Furthermore, successful inhibition of tumor cell growth by RNAi aimed at oncogenes in vitro and in vivo supports the enthusiasm for potential therapeutic applications of this technique. In this article we review the evidence of microRNA involvement in cancer, the use of short interfering RNAs in forward and reverse genetics of this disease, and as well as both the benefits and limitations of experimental RNAi.
Collapse
Affiliation(s)
- Andrei L Gartel
- Department of Medicine, University of Illinois at Chicago, 60612, USA.
| | | |
Collapse
|
406
|
Abstract
The myotubularins (MTMs) constitute a large family of phosphoinositide lipid 3-phosphatases with specificity for PtdIns3P and PtdIns (3,5)P2. Mutations in MTM proteins are associated with inherited conditions such as myotubular myopathy and Charcot-Marie-Tooth syndrome. The substrate lipids are known to be regulators of the endosomal pathway through recruitment of specific effector proteins. Hydrolysis of PtdIns (3,5)P2 provides a biosynthetic pathway to the production of PtdIns5P, which itself can allosterically activate MTMs. We review the properties of this intriguing family of proteins and discuss potential physiological functions that include regulation of the endocytic pathway.
Collapse
Affiliation(s)
- Michael J Clague
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX, UK.
| | | |
Collapse
|
407
|
Abstract
The PI3K-Akt-mTOR growth-regulating pathway is conserved from mammals to flies and hyperactivated in many cancers. Accordingly, rapamycin analogs, which are inhibitors of mTOR-Raptor signaling, have recently garnered much interest as potential therapeutic agents against cancer. However, due to the heterogeneity of tumors, prior knowledge of the genetic and biochemical background of cancer cells will be required for effective targeted therapy. Thus, the identification of biological markers against activated oncogenic pathways is needed. In the January issue of Nature Medicine, Thomas et al. identify the loss of VHL tumor suppressor gene as a potential determining factor in tumor sensitivity to rapamycin.
Collapse
Affiliation(s)
- Andrew Y Choo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
408
|
Jin K, Lim S, Mercer SE, Friedman E. The survival kinase Mirk/dyrk1B is activated through Rac1-MKK3 signaling. J Biol Chem 2005; 280:42097-105. [PMID: 16257974 DOI: 10.1074/jbc.m507301200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The serine/threonine kinase Mirk/dyrk1B is activated in several solid tumors where it mediates cell survival, but the mechanism by which Mirk is activated in tumors is unknown. We now demonstrate that Mirk is activated as a kinase by signaling from Rac1 to the mitogen-activated protein kinase kinase MKK3. Rac is a Ras superfamily GTPase that, when activated, functions downstream of Ras oncoproteins to promote cell survival, transformation, and membrane ruffling. The constitutively active mutant Rac1QL activated Mirk in several cell types through MKK3, which in turn activated Mirk by phosphorylation. Dominant negative Rac1, dominant negative MKK3, and knockdown of MKK3 by RNA interference inhibited the kinase activity of co-expressed Mirk. E-cadherin ligation in confluent Madin-Darby canine kidney (MDCK) epithelial cells is known to transiently activate Rac1. Mirk was activated by endogenous Rac1 following E-cadherin ligation in confluent MDCK epithelial cells, whereas treatment of confluent MDCK cells with an Rac1 inhibitor decreased Mirk activity. Disruption of cadherin ligation by EGTA or prevention of cadherin ligation by maintenance of cells at subconfluent density blocked activation of Mirk. Engagement of cadherin molecules on subconfluent cells by an E-cadherin/Fc chimeric molecule transiently activated both Rac1 and Mirk with a similar time course. Rac activity is up-regulated in many human tumors and mediates survival signals, which enable tumor cells to evade apoptosis. This study characterizes a new anti-apoptotic signaling pathway that connects Rac1 with a novel downstream effector, Mirk kinase, which has recently been demonstrated to mediate survival in human tumors.
Collapse
Affiliation(s)
- Kideok Jin
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
409
|
Blair ER, Hoffman HE, Bishop AC. Engineering non-natural inhibitor sensitivity in protein tyrosine phosphatase H1. Bioorg Med Chem 2005; 14:464-71. [PMID: 16182535 DOI: 10.1016/j.bmc.2005.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/11/2005] [Accepted: 08/11/2005] [Indexed: 01/10/2023]
Abstract
Protein tyrosine phosphatase H1, a member of the ubiquitous protein tyrosine phosphatase (PTP) superfamily of enzymes, is an important signaling molecule, mutant forms of which have been found in human colorectal cancers. Selective PTPH1 inhibitors would be valuable tools for investigating PTPH1's roles in cellular regulation. However, no PTPH1-specific inhibitors are known. To identify target-selective inhibitors of human PTPH1, we have redesigned a PTPH1/inhibitor interface. Structure-based protein design was used to identify two amino-acid residues, isoleucine 846 and methionine 883, that control PTPH1's sensitivity to oxalylaminoindole PTP inhibitors. Mutation of residues 846 and 883 to alanine and glycine, respectively, conferred novel inhibitor sensitivity onto PTPH1. From a small panel of putative inhibitors, compounds that potently and selectively target the inhibitor-sensitized PTPH1 mutants were identified.
Collapse
|
410
|
Daub H. Characterisation of kinase-selective inhibitors by chemical proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:183-90. [PMID: 16198161 DOI: 10.1016/j.bbapap.2005.07.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
Low-molecular-weight inhibitors of protein kinases are extensively used as research tools in signal transduction analysis and constitute a rapidly growing class of therapeutics for targeted intervention in human diseases. To determine how kinase-selective drugs interfere with cellular physiology on the molecular level, experimental strategies relying on the affinity capture of cellular targets in combination with protein identification by mass spectrometry have been established for a variety of kinase inhibitors. Importantly, these chemical proteomic methods permit the direct analysis of kinase inhibitor selectivity in biological systems and have led to new insights into the cellular modes of action of kinase-selective small molecule antagonists.
Collapse
Affiliation(s)
- Henrik Daub
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18A, 82152 Martinried, Germany.
| |
Collapse
|
411
|
Abstract
Parkinson's disease (PD) is a common and incurable neurodegenerative disease, affecting 1% of the population over the age of 65. Despite a well-described clinical and pathological phenotype, the molecular mechanisms which lead to neurodegeneration remain elusive. However, there is a wealth of evidence from both toxin based models and genetic based models, which suggest a major etiologic role for mitochondrial dysfunction, protein aggregation, the ubiquitin-proteasome system and kinase signalling pathways in the pathogenesis of PD. Ultimately, an understanding of the molecular events which precipitate neurodegeneration in idiopathic PD will enable the development of targeted and effective therapeutic strategies. We review the latest evidence for the proposed molecular processes and discuss their relevance to the pathogenesis of sporadic PD.
Collapse
Affiliation(s)
- Sonia Gandhi
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London, UK
| | | |
Collapse
|
412
|
Ito M, Kawano K, Miyagishi M, Taira K. Genome-wide application of RNAi to the discovery of potential drug targets. FEBS Lett 2005; 579:5988-95. [PMID: 16153642 DOI: 10.1016/j.febslet.2005.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 08/05/2005] [Accepted: 08/11/2005] [Indexed: 12/23/2022]
Abstract
Progress is being made in the development of RNA interference-based (RNAi-based) strategies for the control of gene expression. It has been demonstrated that small interfering RNAs (siRNAs) can silence the expression of target genes in a sequence-specific manner in mammalian cells. Various groups, including our own, have developed systems for vector-mediated specific RNAi. Vector-based siRNA- (or shRNA) expression libraries directed against the entire human genome and siRNA libraries based on chemically synthesized oligonucleotides now allow the rapid identification of functional genes and potential drug targets. Use of such libraries will enhance our understanding of numerous biological phenomena and contribute to the rational design of drugs against heritable, infectious and malignant diseases.
Collapse
Affiliation(s)
- Masanori Ito
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | |
Collapse
|
413
|
Abstract
Development of effective drugs for treatment of human disease relies on identification of therapeutic molecular targets. The identification of targets to treat human disease has previously relied on genetic screens in model organisms, and less robust or lower throughput approaches in mammalian systems. RNA interference (RNAi) makes possible, for the first time, the use of large-scale functional genomics approaches for target identification in human cells. This remarkable breakthrough has the potential to influence every facet of the drug discovery process, and is poised to revolutionize drug development. Reports of RNAi screens for the identification of novel genes implicated in apoptosis, cell division, and drug resistance support the enormous promise of this technology. Here, we discuss the potential impact of RNAi screens on target identification and validation and consider issues that warrant caution when interpreting RNAi screening results.
Collapse
Affiliation(s)
- Steven Bartz
- Rosetta Inpharmatics, LLC., a wholly owned subsidiary of Merck & Co., Inc., 401 Terry Avenue North, Seattle, WA 98109, USA.
| | | |
Collapse
|
414
|
Westbrook TF, Stegmeier F, Elledge SJ. Dissecting cancer pathways and vulnerabilities with RNAi. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:435-44. [PMID: 16869781 DOI: 10.1101/sqb.2005.70.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The latest generation of molecular-targeted cancer therapeutics has bolstered the notion that a better understanding of the networks governing cancer pathogenesis can be translated into substantial clinical benefits. However, functional annotation exists for only a small proportion of genes in the human genome, raising the likelihood that many cancer-relevant genes and potential drug targets await identification. Unbiased genetic screens in invertebrate organisms have provided substantial insights into signaling networks underlying many cellular and organismal processes. However, such approaches in mammalian cells have been limited by the lack of genetic tools. The emergence of RNA interference (RNAi) as a mechanism to suppress gene expression has revolutionized genetics in mammalian cells and has begun to facilitate decoding of gene functions on a genome scale. Here, we discuss the application of such RNAi-based genetic approaches to elucidating cancer-signaling networks and uncovering cancer vulnerabilities.
Collapse
Affiliation(s)
- T F Westbrook
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|