401
|
Zhou H, Froehlich JW, Briscoe AC, Lee RS. The GlycoFilter: a simple and comprehensive sample preparation platform for proteomics, N-glycomics and glycosylation site assignment. Mol Cell Proteomics 2013; 12:2981-91. [PMID: 23820512 DOI: 10.1074/mcp.m113.027953] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current strategies to study N-glycoproteins in complex samples are often discrete, focusing on either N-glycans or N-glycosites enriched by sugar-based techniques. In this study we report a simple and rapid sample preparation platform, the GlycoFilter, which allows a comprehensive characterization of N-glycans, N-glycosites, and proteins in a single workflow. Both PNGase F catalyzed de-N-glycosylation and trypsin digestions are accelerated by microwave irradiation and performed sequentially in a single spin filter. Both N-glycans and peptides (including de-N-glycosylated peptides) are separately collected by filtration. The condition to effectively collect complex and heterogeneous N-glycans was established on model glycoproteins, bovine ribonuclease B, bovine fetuin, and human serum IgG. With this platform, the N-glycome, N-glycoproteome and proteome of human urine and plasma were characterized. Overall, a total of 865 and 295 N-glycosites were identified from three pairs of urine and plasma samples, respectively. Many sites were defined unambiguously as partially occupied by the detection of their nonsugar-modified peptides (128 from urine and 61 from plasma), demonstrating that partial occupancy of N-glycosylation occurs frequently. Given the likely high prevalence and variability of partial occupancy, glycoprotein quantification based exclusively on deglycosylated peptides may lead to inaccurate quantification.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
402
|
Novotny MV, Alley WR. Recent trends in analytical and structural glycobiology. Curr Opin Chem Biol 2013; 17:832-40. [PMID: 23790311 DOI: 10.1016/j.cbpa.2013.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/24/2013] [Indexed: 12/22/2022]
Abstract
The great complexity of glycosylated biomolecules necessitates a set of powerful analytical methodologies to reveal functionally important structural features. Mass spectrometry (MS), with its different ionization techniques, mass analyzers, and detection strategies, has become the most important analytical method in glycomic and glycoproteomic investigations. In combination with MS, microscale separations (based on capillary chromatography and electrophoresis) and carbohydrate microchemistry, we feature here conceptually important applications of the recent years. This review focuses on methodological advances pertaining to disease biomarker research, immunology, developmental biology, and measurements of importance to biopharmaceuticals. High-sensitivity determinations and sample enrichment/preconcentration are particularly emphasized in glycomic and glycoproteomic profiling.
Collapse
Affiliation(s)
- Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States.
| | | |
Collapse
|
403
|
Heywood WE, Mills P, Grunewald S, Worthington V, Jaeken J, Carreno G, Lemonde H, Clayton PT, Mills K. A new method for the rapid diagnosis of protein N-linked congenital disorders of glycosylation. J Proteome Res 2013; 12:3471-9. [PMID: 23742123 DOI: 10.1021/pr400328g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Congenital Disorders of Glycosylation (CDG) are a devastating group of genetic disorders that encompass a spectrum of glycosylation defects and are characterized by the underglycosylation of or the presence of abnormal glycans on glycoproteins. The N-linked CDG disorders (Type I and II) are usually diagnosed in chemical pathology laboratories by an abnormal serum transferrin isoelectric focusing (IEF) pattern. Transferrin has been the protein of choice for CDG analysis because it is well characterized, highly abundant, and easily detected in plasma. However, IEF provides limited information on the glycosylation defect and requires a separate and extensive glycan analysis to diagnose CDG Type II. We have therefore developed a simple bead-based immunoaffinity and mass spectrometry-based assay to address these issues. Our method uses immuno-purified transferrin and proteolytic digestion followed by a rapid 30 min mass spectral analysis and allows us to identify both micro- and macroheterogeneity of transferrin by sequencing of peptides and glycopeptides. In summary, we have developed a simple, rapid test for N-linked glycosylation disorders that is a significant improvement on existing laboratory tests currently used for investigating defective N-linked glycosylation.
Collapse
Affiliation(s)
- Wendy E Heywood
- Biochemistry Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health & Great Ormond Street Hospital, University College London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Thompson NJ, Rosati S, Heck AJR. Performing native mass spectrometry analysis on therapeutic antibodies. Methods 2013; 65:11-7. [PMID: 23688935 DOI: 10.1016/j.ymeth.2013.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022] Open
Abstract
Since the introduction of "soft" ionization techniques, the role of mass spectrometry (MS) in the field of structural biology has increasingly expanded. With the incorporation of volatile buffers as electrospray ionization (ESI) solvents, non-covalent protein complexes could be efficiently transferred to the gas phase for mass analysis. While native MS has not become a technique used for standard characterization of therapeutic proteins in an industrial setting, it is increasingly used to probe the structural heterogeneity of these complex biomolecules. Here, we describe a detailed sample protocol for the analysis of monoclonal antibodies (mAbs) by native MS and highlight some recent applications of native MS in the analysis of intact mAbs and mAb-based therapeutics.
Collapse
Affiliation(s)
- Natalie J Thompson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara Rosati
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
405
|
Pagel K, Harvey DJ. Ion mobility-mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans. Anal Chem 2013; 85:5138-45. [PMID: 23621517 DOI: 10.1021/ac400403d] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Currently, the vast majority of complex carbohydrates are characterized using mass spectrometry (MS)-based techniques. Measuring the molecular mass of a sugar, however, immediately poses a fundamental problem: entire classes of the constituting monosaccharide building blocks exhibit an identical atomic composition and, consequently, also an identical mass. Therefore, carbohydrate MS data can be highly ambiguous and often it is simply not possible to clearly assign a particular molecular structure. A promising approach to overcome the above-mentioned limitation is to implement an additional gas-phase separation dimension using ion mobility spectrometry (IMS), which is a method in which molecules of identical mass and structure but different structure can be separated according to their shape and collision cross section (CCS). With the emergence of commercially available hybrid ion mobility-mass spectrometry (IM-MS) instruments in 2006, IMS technology became readily available. Because of the nonhomogeneous, traveling wave (TW) field utilized in these instruments, however, CCS values currently cannot be determined directly from the drift times measured. Instead, an external calibration using compounds of known CCS and similar molecular identity is required. Here, we report a calibration protocol for TW IMS instruments using a series of sodiated N-glycans that were released from commercially available glycoproteins using an easy-to-follow protocol. The underlying CCS values were determined using a modified Synapt HDMS instrument with a linear drift tube, which was described in detail previously. Our data indicate that, under in-source fragmentation conditions, only a few glycans are required to obtain a TW IMS calibration of sufficient quality. In this context, however, the type of glycan was shown to be of tremendous importance. Furthermore, our data clearly demonstrate that carbohydrate isomers with identical mass but different conformation can be distinguished based on their CCS when all the associated errors are taken into account.
Collapse
Affiliation(s)
- Kevin Pagel
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
| | | |
Collapse
|
406
|
Qin Y, Zhong Y, Zhu M, Dang L, Yu H, Chen Z, Chen W, Wang X, Zhang H, Li Z. Age- and sex-associated differences in the glycopatterns of human salivary glycoproteins and their roles against influenza A virus. J Proteome Res 2013; 12:2742-54. [PMID: 23590532 DOI: 10.1021/pr400096w] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies have elucidated that expression of certain glycoproteins in human saliva is increased or decreased according to age; meanwhile, human saliva may inhibit viral infection and prevent viral transmission. However, little is known about the age- and sex-associated differences in the glycopatterns of human salivary glycoproteins and their significant roles against influenza A virus (IVA). Here, we investigate the glycopatterns of human salivary glycoproteins with 180 healthy saliva samples divided into six age/sex groups using lectin microarrays and fabricate saliva microarrays to validate the terminal carbohydrate moieties of glycoproteins in individual saliva samples. Furthermore, we assess the inhibiting and neutralizing activity of saliva against two strains of influenza A (H9N2) virus. We find that seven lectins (e.g., MAL-II and SNA) show significant age differences in both females and males, and seven lectins (e.g., WFA and STL) show significant sex differences in children, adults and elderly people. Interestingly, we observe that elderly individuals have strongest resistance to IVA partly by presenting more terminal α2-3/6-linked sialic acid residues in their saliva, which bind with the influenza viral hemagglutinations. We conclude that age- and sex-associated differences in the glycopatterns of human salivary glycoproteins may provide pivotal information to help understand some age related diseases and physiological phenomena.
Collapse
Affiliation(s)
- Yannan Qin
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
407
|
Chen Z, Liu Y, Wang Y, Zhao X, Li J. Dynamic Evaluation of Cell Surface N-Glycan Expression via an Electrogenerated Chemiluminescence Biosensor Based on Concanavalin A-Integrating Gold-Nanoparticle-Modified Ru(bpy)32+-Doped Silica Nanoprobe. Anal Chem 2013; 85:4431-8. [DOI: 10.1021/ac303572g] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhuhai Chen
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Yang Liu
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Yangzhong Wang
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Xin Zhao
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| | - Jinghong Li
- Department of Chemistry, Beijing
Key Laboratory for
Analytical Methods and Instrumentation, Tsinghua University, Beijing
100084, China
| |
Collapse
|
408
|
Bertok T, Sediva A, Katrlik J, Gemeiner P, Mikula M, Nosko M, Tkac J. Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles. Talanta 2013; 108:11-8. [PMID: 23601864 PMCID: PMC4881810 DOI: 10.1016/j.talanta.2013.02.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 01/17/2023]
Abstract
We present here an ultrasensitive electrochemical biosensor based on a lectin biorecognition capable to detect concentrations of glycoproteins down to attomolar (aM) level by investigation of changes in the charge transfer resistance (Rct) using electrochemical impedance spectroscopy (EIS). On polycrystalline gold modified by an aminoalkanethiol linker layer, gold nanoparticles were attached. A Sambucus nigra agglutinin was covalently immobilised on a mixed self-assembled monolayer formed on gold nanoparticles and finally, the biosensor surface was blocked by poly(vinyl alcohol). The lectin biosensor was applied for detection of sialic acid containing glycoproteins fetuin and asialofetuin. Building of a biosensing interface was carefully characterised by a broad range of techniques such as electrochemistry, EIS, atomic force microscopy, scanning electron microscopy and surface plasmon resonance with the best performance of the biosensor achieved by application of HS-(CH2)11-NH2 linker and gold nanoparticles with a diameter of 20 nm. The lectin biosensor responded to an addition of fetuin (8.7% of sialic acid) with sensitivity of (338 ± 11) Ω decade(-1) and to asialofetuin (≤ 0.5% of sialic acid) with sensitivity of (109 ± 10) Ω decade(-1) with a blank experiment with oxidised asialofetuin (without recognisable sialic acid) revealing sensitivity of detection of (79 ± 13) Ω decade(-1). These results suggest the lectin biosensor responded to changes in the glycan amount in a quantitative way with a successful validation by a lectin microarray. Such a biosensor device has a great potential to be employed in early biomedical diagnostics of diseases such as arthritis or cancer, which are connected to aberrant glycosylation of protein biomarkers in biological fluids.
Collapse
Affiliation(s)
- Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Alena Sediva
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Pavol Gemeiner
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Milan Mikula
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Martin Nosko
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02, Bratislava, Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| |
Collapse
|
409
|
Baker JL, Çelik E, DeLisa MP. Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends Biotechnol 2013; 31:313-23. [PMID: 23582719 DOI: 10.1016/j.tibtech.2013.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 01/05/2023]
Abstract
Glycosylation is the most prevalent post-translational modification found on proteins, occurring in all domains of life. Ever since the discovery of asparagine-linked (N-linked) protein glycosylation pathways in bacteria, major efforts have been made to harness these systems for the creation of novel therapeutics, vaccines, and diagnostics. Recent advances such as the ability to produce designer glycans in bacteria, some containing unnatural sugars, and techniques for evolving glycosylation enzymes have spawned an entirely new discipline known as bacterial glycoengineering. In addition to their biotechnological and therapeutic potential, bacteria equipped with recombinant N-linked glycosylation pathways are improving our understanding of the N-glycosylation process. This review discusses the key role played by microorganisms in glycosciences, particularly in the context of N-linked glycosylation.
Collapse
Affiliation(s)
- Jenny L Baker
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
410
|
Alley WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 2013; 113:2668-732. [PMID: 23531120 PMCID: PMC3992972 DOI: 10.1021/cr3003714] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- William R. Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Benjamin F. Mann
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
- Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
411
|
Deciphering O-glycomics for the development and production of biopharmaceuticals. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
412
|
Ni W, Bones J, Karger BL. In-depth characterization of N-linked oligosaccharides using fluoride-mediated negative ion microfluidic chip LC-MS. Anal Chem 2013; 85:3127-35. [PMID: 23398125 PMCID: PMC3604099 DOI: 10.1021/ac3031898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Characterization of N-glycans by liquid chromatography-positive electrospray ionization (ESI) tandem mass spectrometry (LC-MS/MS) using a microfluidic chip packed with porous graphitized carbon (PGC) represents a rapidly developing area in oligosaccharide analysis. Positive ion ESI-MS generates B/Y-type glycosidic fragment ions under collisional-induced dissociation (CID). Although these ions facilitate glycan sequencing, they provide little information on linkage and positional isomers. Isomer identification in these cases is by retention on the PGC stationary phase where the specific structural isomers can, in principle, be separated. In this paper, we broaden the applicability of the PGC microfluidic chip/MS platform by implementing fluoride-mediated negative ESI-MS. Ammonium fluoride, added to the mobile phase, aids in the formation of pseudomolecular oligosaccharide anions due to the ability of fluoride to abstract a proton from the glycan structure. The negative charge results in the generation of C-type glycosidic fragments, highly informative A-type cross-ring fragment ions, and additional gas-phase ion reaction products (e.g., D- and E-type ions), which, when combined, lead to in-depth oligosaccharide characterization, including linkage and positional isomers. Due to the separation of anomers by the PGC phase, comparison of oligosaccharides with an intact reducing terminus to their experimentally prepared corresponding alditols was performed, revealing a more sensitive MS and, especially, MS/MS analysis from the glycans with a free reducing end. Fluoride also ensured recovery of charged oligosaccharides from the PGC stationary phase. Application to the characterization of N-glycans released from polyclonal human and murine serum IgG is presented to demonstrate the effectiveness of the chip/negative ESI approach.
Collapse
Affiliation(s)
- Wenqin Ni
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | - Barry L. Karger
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
413
|
Go EP, Liao HX, Alam SM, Hua D, Haynes BF, Desaire H. Characterization of host-cell line specific glycosylation profiles of early transmitted/founder HIV-1 gp120 envelope proteins. J Proteome Res 2013; 12:1223-34. [PMID: 23339644 PMCID: PMC3674872 DOI: 10.1021/pr300870t] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosylation plays an essential role in regulating protein function by modulating biological, structural, and therapeutic properties. However, due to its inherent heterogeneity and diversity, the comprehensive analysis of protein glycosylation remains a challenge. As part of our continuing effort in the analysis of glycosylation profiles of recombinant HIV-1 envelope-based immunogens, we evaluated and compared the host-cell specific glycosylation pattern of recombinant HIV-1 surface glycoprotein, gp120, derived from clade C transmitted/founder virus 1086.C expressed in Chinese hamster ovary (CHO) and human embryonic kidney containing T antigen (293T) cell lines. We used an integrated glycopeptide-based mass mapping workflow that includes a partial deglycosylation step described in our previous study with the inclusion of a fragmentation technique, electron transfer dissociation (ETD), to complement collision-induced dissociation. The inclusion of ETD facilitated the analysis by providing additional validation for glycopeptide identification and expanding the identified glycopeptides to include coverage of O-linked glycosylation. The site-specific glycosylation analysis shows that the transmitted/founder 1086.C gp120 expressed in CHO and 293T displayed distinct similarities and differences. For N-linked glycosylation, two sites (N386 and N392) in the V4 region were populated with high mannose glycans in the CHO cell-derived 1086.C gp120, while these sites had a mixture of high mannose and processed glycans in the 293T cell-derived 1086.C gp120. Compositional analysis of O-linked glycans revealed that 293T cell-derived 1086.C gp120 consisted of core 1, 2, and 4 type O-linked glycans, while CHO cell-derived 1086.C exclusively consisted of core 1 type O-linked glycans. Overall, glycosylation site occupancy of the CHO and 293T cell-derived 1086.C gp120 showed a high degree of similarity except for one site at N88 in the C1 region. This site was partially occupied in 293T-gp120 but fully occupied in CHO-gp120. Site-specific glycopeptide analysis of transmitted/founder 1086.C gp120 expressed in CHO cells revealed the presence of phosphorylated glycans, while 293T cell-produced 1086.C gp120 glycans were not phosphorylated. While the influence of phosphorylated glycans on immunogenicity is unclear, distinguishing host-cell specific variations in glycosylation profiles provide insights into the similarity (or difference) in recombinant vaccine products. While these differences had minimal effect on envelope antigenicity, they may be important in considering immunogenicity and functional capacities of recombinant envelope proteins produced in different expression systems.
Collapse
Affiliation(s)
- Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, KS
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Department of Medicine, Duke University Medical Center, Durham, NC
| | - S. Munir Alam
- Duke Human Vaccine Institute, Department of Medicine, Duke University Medical Center, Durham, NC
| | - David Hua
- Department of Chemistry, University of Kansas, Lawrence, KS
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Department of Medicine, Duke University Medical Center, Durham, NC
- Department of Immunology, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
414
|
Leonori D, Seeberger PH. De novo synthesis of D- and L-fucosamine containing disaccharides. Beilstein J Org Chem 2013; 9:332-41. [PMID: 23503315 PMCID: PMC3596053 DOI: 10.3762/bjoc.9.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/16/2013] [Indexed: 12/27/2022] Open
Abstract
The availability of rare monosaccharides that cannot be isolated from natural sources is currently limiting the access to the synthesis and the biological evaluation of complex bacterial cell-surface glycans. Here, we report the synthesis of D- and L-fucosamine building blocks by a de novo approach from L- and D-Garner aldehydes. These differentially protected monosaccharide building blocks were utilized to prepare disaccharides present on the surface of Pseudomonas aeruginosa bacteria.
Collapse
Affiliation(s)
- Daniele Leonori
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
415
|
Zhang W, Han H, Bai H, Tong W, Zhang Y, Ying W, Qin W, Qian X. A Highly Efficient and Visualized Method for Glycan Enrichment by Self-Assembling Pyrene Derivative Functionalized Free Graphene Oxide. Anal Chem 2013; 85:2703-9. [DOI: 10.1021/ac303101t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wanjun Zhang
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Huanhuan Han
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Haihong Bai
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Wei Tong
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Yangjun Zhang
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Wantao Ying
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Weijie Qin
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Xiaohong Qian
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| |
Collapse
|
416
|
Gilgunn S, Conroy PJ, Saldova R, Rudd PM, O'Kennedy RJ. Aberrant PSA glycosylation--a sweet predictor of prostate cancer. Nat Rev Urol 2013; 10:99-107. [PMID: 23318363 DOI: 10.1038/nrurol.2012.258] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate cancer--the most commonly diagnosed cancer in men worldwide--can have a substantial effect on quality of life, regardless of the route the cancer takes. The serum PSA assay is the current gold standard option for diagnosing prostate cancer. However, a growing body of evidence suggests that PSA screening for prostate cancer results in extensive overdiagnosis and overtreatment. It is increasingly evident that the potential harm from overdiagnosis (in terms of unnecessary biopsies) must be weighed against the benefit derived from the early detection and treatment of potentially fatal prostate cancers. Rapid screening methods have been used to analyse glycosylation patterns on glycoproteins in large cohorts of patients, enabling the identification of a new generation of disease biomarkers. Changes to the expression status of certain glycan structures are now widely thought to be common features of tumour progression. In light of this development, much research has focused on the potential role of altered PSA glycosylation patterns in discriminating between significant and insignificant prostate cancers, with the aim of developing a more reliable diagnostic tool than the current serum PSA test.
Collapse
Affiliation(s)
- Sarah Gilgunn
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
417
|
Sokolowska I, Wetie AGN, Woods AG, Darie CC. Applications of Mass Spectrometry in Proteomics. Aust J Chem 2013. [DOI: 10.1071/ch13137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Characterisation of proteins and whole proteomes can provide a foundation to our understanding of physiological and pathological states and biological diseases or disorders. Constant development of more reliable and accurate mass spectrometry (MS) instruments and techniques has allowed for better identification and quantification of the thousands of proteins involved in basic physiological processes. Therefore, MS-based proteomics has been widely applied to the analysis of biological samples and has greatly contributed to our understanding of protein functions, interactions, and dynamics, advancing our knowledge of cellular processes as well as the physiology and pathology of the human body. This review will discuss current proteomic approaches for protein identification and characterisation, including post-translational modification (PTM) analysis and quantitative proteomics as well as investigation of protein–protein interactions (PPIs).
Collapse
|
418
|
Thaysen-Andersen M, Larsen MR, Packer NH, Palmisano G. Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Adv 2013. [DOI: 10.1039/c3ra42960a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
419
|
Bertók T, Katrlík J, Gemeiner P, Tkac J. Electrochemical lectin based biosensors as a label-free tool in glycomics. Mikrochim Acta 2013; 180:1-13. [PMID: 27239071 PMCID: PMC4883647 DOI: 10.1007/s00604-012-0876-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Glycans and other saccharide moieties attached to proteins and lipids, or present on the surface of a cell, are actively involved in numerous physiological or pathological processes. Their structural flexibility (that is based on the formation of various kinds of linkages between saccharides) is making glycans superb "identity cards". In fact, glycans can form more "words" or "codes" (i.e., unique sequences) from the same number of "letters" (building blocks) than DNA or proteins. Glycans are physicochemically similar and it is not a trivial task to identify their sequence, or - even more challenging - to link a given glycan to a particular physiological or pathological process. Lectins can recognise differences in glycan compositions even in their bound state and therefore are most useful tools in the task to decipher the "glycocode". Thus, lectin-based biosensors working in a label-free mode can effectively complement the current weaponry of analytical tools in glycomics. This review gives an introduction into the area of glycomics and then focuses on the design, analytical performance, and practical utility of lectin-based electrochemical label-free biosensors for the detection of isolated glycoproteins or intact cells.
Collapse
Affiliation(s)
- Tomáš Bertók
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| |
Collapse
|
420
|
Wetie AGN, Sokolowska I, Woods AG, Darie CC. Identification of Post-Translational Modifications by Mass Spectrometry. Aust J Chem 2013. [DOI: 10.1071/ch13144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are the effector molecules of many cellular and biological processes and are thus very dynamic and flexible. Regulation of protein activity, structure, stability, and turnover is in part controlled by their post-translational modifications (PTMs). Common PTMs of proteins include phosphorylation, glycosylation, methylation, ubiquitination, acetylation, and oxidation. Understanding the biology of protein PTMs can help elucidate the mechanisms of many pathological conditions and provide opportunities for prevention, diagnostics, and treatment of these disorders. Prior to the era of proteomics, it was standard to use chemistry methods for the identification of protein modifications. With advancements in proteomic technologies, mass spectrometry has become the method of choice for the analysis of protein PTMs. In this brief review, we will highlight the biochemistry of PTMs with an emphasis on mass spectrometry.
Collapse
|
421
|
Palmisano G, Larsen MR, Packer NH, Thaysen-Andersen M. Structural analysis of glycoprotein sialylation – part II: LC-MS based detection. RSC Adv 2013. [DOI: 10.1039/c3ra42969e] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
422
|
Abstract
Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage diseases, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Manfred Wuhrer
- Department of Parasitology, Biomolecular Mass Spectrometry Unit, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands.
| |
Collapse
|
423
|
Reusch D, Haberger M, Selman MH, Bulau P, Deelder AM, Wuhrer M, Engler N. High-throughput work flow for IgG Fc-glycosylation analysis of biotechnological samples. Anal Biochem 2013; 432:82-9. [DOI: 10.1016/j.ab.2012.09.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 02/08/2023]
|
424
|
Shi M, Hwang H, Zhang J. Quantitative characterization of glycoproteins in neurodegenerative disorders using iTRAQ. Methods Mol Biol 2013; 951:279-296. [PMID: 23296538 DOI: 10.1007/978-1-62703-146-2_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Aberrant protein glycosylation has been recognized to be associated with many neurodegenerative disorders, including Alzheimer and Parkinson disease. Using mass spectrometry-based technologies to catalog and quantify glycoproteins in these diseases is expected to provide insight into not only the biochemical pathogenesis of neurodegeneration but also the biomarker discovery. This chapter describes a multidisciplinary approach to accomplish the goal of glycoprotein identification and quantification in human brain tissue and cerebrospinal fluid, which includes sample preparation, isobaric tag labeling of digested peptides, glycopeptide enrichment using hydrazide chemistry, protein/peptide identification and quantification by liquid chromatography-based high-resolution tandem mass spectrometry, as well as bioinformatic data processing.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Washington School of Medicine, HMC, Seattle, WA, USA
| | | | | |
Collapse
|
425
|
SUZUKI S. Recent Developments in Liquid Chromatography and Capillary Electrophoresis for the Analysis of Glycoprotein Glycans. ANAL SCI 2013; 29:1117-28. [DOI: 10.2116/analsci.29.1117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
426
|
Li F, Glinskii OV, Glinsky VV. Glycobioinformatics: Current strategies and tools for data mining in MS-based glycoproteomics. Proteomics 2012; 13:341-54. [DOI: 10.1002/pmic.201200149] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 10/06/2012] [Accepted: 11/06/2012] [Indexed: 12/18/2022]
|
427
|
Swadzba ME, Hauck SM, Naim HY, Amann B, Deeg CA. Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis. PLoS One 2012; 7:e50929. [PMID: 23236410 PMCID: PMC3517615 DOI: 10.1371/journal.pone.0050929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/26/2012] [Indexed: 12/11/2022] Open
Abstract
Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology.
Collapse
Affiliation(s)
- Margarete E. Swadzba
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians University, München, Germany
| | - Stefanie M. Hauck
- Research Unit for Protein Science, Helmholtz Zentrum München–German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Barbara Amann
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians University, München, Germany
| | - Cornelia A. Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians University, München, Germany
- * E-mail:
| |
Collapse
|
428
|
Mo J, Tymiak AA, Chen G. Structural mass spectrometry in biologics discovery: advances and future trends. Drug Discov Today 2012; 17:1323-30. [DOI: 10.1016/j.drudis.2012.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/11/2012] [Accepted: 07/13/2012] [Indexed: 11/16/2022]
|
429
|
Partyka J, Foret F. Cationic labeling of oligosaccharides for electrophoretic preconcentration and separation with contactless conductivity detection. J Chromatogr A 2012; 1267:116-20. [DOI: 10.1016/j.chroma.2012.06.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 01/12/2023]
|
430
|
Mohanty S, Tsiouris A, Hammoud Z. Glycomic expression in esophageal disease. Metabolites 2012; 2:1004-11. [PMID: 24957772 PMCID: PMC3901243 DOI: 10.3390/metabo2041004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/05/2012] [Accepted: 11/09/2012] [Indexed: 01/17/2023] Open
Abstract
Glycosylation is among the most common post translation modifications of proteins in humans. Decades of research have demonstrated that aberrant glycosylation can lead to malignant degeneration. Glycoproteomic studies in the past several years have identified techniques that can successfully characterize a glycan or glycan profile associated with a high-grade dysplastic or malignant state. This review summarizes the current glycomic and glycoproteomic literature with specific reference to esophageal cancer. Esophageal adenocarcinoma represents a highly morbid and mortal cancer with a defined progression from metaplasia (Barrett's esophagus) to dysplasia to neoplasia. This disease is highlighted because (1) differences in glycan profiles between the stages of disease progression have been described in the glycoproteomic literature; (2) a glycan biomarker that identifies a given stage may be used as a predictor of disease progression and thus may have significant influence over clinical management; and (3) the differences in glycan profiles between disease and disease-free states in esophageal cancer are more dramatic than in other cancers.
Collapse
Affiliation(s)
- Sanjay Mohanty
- Henry Ford Hospital, 2799 W. Grand Blvd., Detroit, MI 48202, USA.
| | | | - Zane Hammoud
- Henry Ford Hospital, 2799 W. Grand Blvd., Detroit, MI 48202, USA.
| |
Collapse
|
431
|
Kwon SJ, Lee KB, Solakyildirim K, Masuko S, Ly M, Zhang F, Li L, Dordick JS, Linhardt RJ. Signal amplification by glyco-qPCR for ultrasensitive detection of carbohydrates: applications in glycobiology. Angew Chem Int Ed Engl 2012; 51:11800-4. [PMID: 23073897 PMCID: PMC3544480 DOI: 10.1002/anie.201205112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/04/2012] [Indexed: 11/12/2022]
Abstract
Tiny amounts of carbohydrates (ca. 1 zmol) can be detected quantitatively by a real-time method based on the conjugation of carbohydrates with DNA markers (see picture). The proposed method (glyco-qPCR) provides uniform, ultrasensitive detection of carbohydrates, which can be applied to glycobiology, as well as carbohydrate-based drug discovery.
Collapse
Affiliation(s)
- Seok Joon Kwon
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 (USA)
| | - Kyung Bok Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-718 (Republic of Korea)
| | - Kemal Solakyildirim
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 (USA)
| | - Sayaka Masuko
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 (USA)
| | - Mellisa Ly
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 (USA)
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 (USA)
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 (USA)
| | - Jonathan S. Dordick
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 (USA)
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 (USA)
| |
Collapse
|
432
|
Harvey DJ, Scarff CA, Crispin M, Scanlan CN, Bonomelli C, Scrivens JH. MALDI-MS/MS with traveling wave ion mobility for the structural analysis of N-linked glycans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1955-66. [PMID: 22993039 DOI: 10.1007/s13361-012-0425-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/24/2012] [Accepted: 05/29/2012] [Indexed: 05/18/2023]
Abstract
The preference for singly charged ion formation by MALDI makes it a better choice than electrospray ionization for profiling mixtures of N-glycans. For structural analysis, fragmentation of negative ions often yields more informative spectra than fragmentation of positive ones but such ions are more difficult to produce from neutral glycans under MALDI conditions. This work investigates conditions for the formation of both positive and negative ions by MALDI from N-linked glycans released from glycoproteins and their subsequent MS/MS and ion mobility behaviour. 2,4,6-Trihydroxyacetophenone (THAP) doped with ammonium nitrate was found to give optimal ion yields in negative ion mode. Ammonium chloride or phosphate also yielded prominent adducts but anionic carbohydrates such as sulfated N-glycans tended to ionize preferentially. Carbohydrates adducted with all three adducts (phosphate, chloride, and nitrate) produced good negative ion CID spectra but those adducted with iodide and sulfate did not yield fragment ions although they gave stronger signals. Fragmentation paralleled that seen following electrospray ionization providing superior spectra than could be obtained by PSD on MALDI-TOF instruments or with ion traps. In addition, ion mobility drift times of the adducted glycans and the ability of this technique to separate isomers also mirrored those obtained following ESI sample introduction. Ion mobility also allowed profiles to be obtained from samples whose MALDI spectra showed no evidence of such ions allowing the technique to be used in conditions where sample amounts were limiting. The method was applied to N-glycans released from the recombinant human immunodeficiency virus glycoprotein, gp120.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
433
|
Nishikaze T, Kaneshiro K, Kawabata SI, Tanaka K. Structural Analysis of N-Glycans by the Glycan-Labeling Method Using 3-Aminoquinoline-Based Liquid Matrix in Negative-Ion MALDI-MS. Anal Chem 2012; 84:9453-61. [DOI: 10.1021/ac302286e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Takashi Nishikaze
- Koichi Tanaka Laboratory of Advanced Science
and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Kaoru Kaneshiro
- Koichi Tanaka Laboratory of Advanced Science
and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shin-ichirou Kawabata
- Koichi Tanaka Laboratory of Advanced Science
and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Koichi Tanaka
- Koichi Tanaka Laboratory of Advanced Science
and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
434
|
Abstract
Multiple sclerosis, the clinical features and pathological correlate for which were first described by Charcot, is a chronic neuroinflammatory disease with unknown etiology and variable clinical evolution. Although neuroinflammation is a descriptive denominator in multiple sclerosis based on histopathological observations, namely the penetration of leukocytes into the central nervous system, the clinical symptoms of relapses, remissions and progressive paralysis are the result of losses of myelin and neurons. In the absence of etiological factors as targets for prevention and therapy, the definition of molecular mechanisms that form the basis of inflammation, demyelination and toxicity for neurons have led to a number of treatments that slow down disease progression in specific patient cohorts, but that do not cure the disease. Current therapies are directed to block the immune processes, both innate and adaptive, that are associated with multiple sclerosis. In this review, we analyze the role of cytokines in the multiple sclerosis pathogenesis and current/future use of them in treatments of multiple sclerosis.
Collapse
|
435
|
Etxebarria J, Calvo J, Martin-Lomas M, Reichardt NC. Lectin-array blotting: profiling protein glycosylation in complex mixtures. ACS Chem Biol 2012; 7:1729-37. [PMID: 22871985 DOI: 10.1021/cb300262x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By combining electrophoretic protein separation with lectin-array-based glycan profiling into a single experiment, we have developed a high-throughput method for the rapid analysis of protein glycosylation in biofluids. Fluorescently tagged proteins are separated by SDS-PAGE and transferred by diffusion to a microscope slide covered with multiple copies of 20 different lectins, where they are trapped by specific carbohydrate protein interactions while retaining their relative locations on the gel. A fluorescence scan of the slide then provides an affinity profile with each of the 20 lectins containing a wealth of structural information regarding the present glycans. The affinity of the employed lectins toward N-glycans was verified on a glycan array of 76 structures. While current lectin-based methods for glycan analysis provide only a picture of the bulk glycosylation in complex protein mixtures or are focused on a few specific known biomarkers, our array-based glycoproteomics method can be used as a biomarker discovery tool for the qualitative exploration of protein glycosylation in an unbiased fashion.
Collapse
Affiliation(s)
- Juan Etxebarria
- Biofunctional Nanomaterials
Unit and ‡Mass Spectrometry Platform, CIC biomaGUNE, and §CIBER-BBN, Paseo Miramon
182, 20009 San Sebastian, Spain
| | - Javier Calvo
- Biofunctional Nanomaterials
Unit and ‡Mass Spectrometry Platform, CIC biomaGUNE, and §CIBER-BBN, Paseo Miramon
182, 20009 San Sebastian, Spain
| | - Manuel Martin-Lomas
- Biofunctional Nanomaterials
Unit and ‡Mass Spectrometry Platform, CIC biomaGUNE, and §CIBER-BBN, Paseo Miramon
182, 20009 San Sebastian, Spain
| | - Niels-Christian Reichardt
- Biofunctional Nanomaterials
Unit and ‡Mass Spectrometry Platform, CIC biomaGUNE, and §CIBER-BBN, Paseo Miramon
182, 20009 San Sebastian, Spain
| |
Collapse
|
436
|
Kwon SJ, Lee KB, Solakyildirim K, Masuko S, Ly M, Zhang F, Li L, Dordick JS, Linhardt RJ. Signal Amplification by Glyco-qPCR for Ultrasensitive Detection of Carbohydrates: Applications in Glycobiology. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
437
|
Ali L, Kenny DT, Hayes CA, Karlsson NG. Structural Identification of O-Linked Oligosaccharides Using Exoglycosidases and MSn Together with UniCarb-DB Fragment Spectra Comparison. Metabolites 2012; 2:648-66. [PMID: 24957756 DOI: 10.3390/metabo2040648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/18/2012] [Accepted: 09/28/2012] [Indexed: 11/16/2022] Open
Abstract
The availability of specific exoglycosidases alongside a spectral library of O-linked oligosaccharide collision induced dissociation (CID) MS fragments, UniCarb-DB, provides a pathway to make the elucidation of O-linked oligosaccharides more efficient. Here, we advise an approach of exoglycosidase-digestion of O-linked oligosaccharide mixtures, for structures that do not provide confirmative spectra. The combination of specific exoglycosidase digestion and MS2 matching of the exoglycosidase products with structures from UniCarb-DB, allowed the assignment of unknown structures. This approach was illustrated by treating sialylated core 2 O-linked oligosaccharides, released from the human synovial glycoprotein (lubricin), with a α2-3 specific sialidase. This methodology demonstrated the exclusive 3 linked nature of the sialylation of core 2 oligosaccharides on lubricin. When specific exoglycosidases were not available, MS3 spectral matching using standards was used. This allowed the unusual 4-linked terminal GlcNAc epitope in a porcine stomach to be identified in the GlcNAc1-4Galb1-3(GlcNAcb1-6)GalNAcol structure, indicating the antibacterial epitope GlcNAca1-4. In total, 13 structures were identified using exoglycosidase and MSn, alongside UniCarb-DB fragment spectra comparison. UniCarb-DB could also be used to identify the specificity of unknown exoglycosidases in human saliva. Endogenous salivary exoglycosidase activity on mucin oligosaccharides could be monitored by comparing the generated tandem MS spectra with those present in UniCarb-DB, showing that oral exoglycosidases were dominated by sialidases with a higher activity towards 3-linked sialic acid rather than 6-linked sialic acid.
Collapse
Affiliation(s)
- Liaqat Ali
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Diarmuid T Kenny
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Catherine A Hayes
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
438
|
Ozohanics O, Turiák L, Puerta A, Vékey K, Drahos L. High-performance liquid chromatography coupled to mass spectrometry methodology for analyzing site-specific N-glycosylation patterns. J Chromatogr A 2012; 1259:200-12. [DOI: 10.1016/j.chroma.2012.05.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
|
439
|
Koharudin LMI, Gronenborn AM. Sweet entanglements--protein:glycan interactions in two HIV-inactivating lectin families. Biopolymers 2012; 99:196-202. [PMID: 23023834 DOI: 10.1002/bip.22106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/25/2012] [Indexed: 11/08/2022]
Abstract
Structures and sugar binding by members of two lectin families, Cyanovirin-N homolog (CVNH) and Oscillatoria Agardhii agglutinin homolog (OAAH), were determined to elucidate the basis for recognition of high-mannose glycans on the HIV envelope glycoprotein gp120. We solved NMR solution and/or crystal structures for several lectins and delineated their carbohydrate specificity by array screening and direct NMR titrations. Both families recognize different epitopes on high-mannose glycans, namely, Manα(1-2)Man units at the end of the D1 and D3 arms and α3,α6-mannopentaose at the central branch point of Man-8 or Man-9 for CVNH and OAAH lectins, respectively.
Collapse
Affiliation(s)
- Leonardus M I Koharudin
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
440
|
Jayo RG, Li J, Chen DDY. Capillary Electrophoresis Mass Spectrometry for the Characterization of O-Acetylated N-Glycans from Fish Serum. Anal Chem 2012; 84:8756-62. [DOI: 10.1021/ac301889k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Roxana G. Jayo
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada
| | - Jianjun Li
- Human
Health Therapeutics, National Research Council Canada, Ontario, Canada
| | - David D. Y. Chen
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada
| |
Collapse
|
441
|
Leonori D, Seeberger PH. De Novo Synthesis of the Bacterial 2-Amino-2,6-Dideoxy Sugar Building Blocks d-Fucosamine, d-Bacillosamine, and d-Xylo-6-deoxy-4-ketohexosamine. Org Lett 2012; 14:4954-7. [DOI: 10.1021/ol3023227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniele Leonori
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany, and Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany, and Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
442
|
Barone R, Sturiale L, Palmigiano A, Zappia M, Garozzo D. Glycomics of pediatric and adulthood diseases of the central nervous system. J Proteomics 2012; 75:5123-39. [DOI: 10.1016/j.jprot.2012.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/05/2012] [Accepted: 07/04/2012] [Indexed: 12/14/2022]
|
443
|
Tharmalingam T, Adamczyk B, Doherty MA, Royle L, Rudd PM. Strategies for the profiling, characterisation and detailed structural analysis of N-linked oligosaccharides. Glycoconj J 2012; 30:137-46. [PMID: 22922975 DOI: 10.1007/s10719-012-9443-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 12/25/2022]
Abstract
Many post-translational modifications, including glycosylation, are pivotal for the structural integrity, location and functional activity of glycoproteins. Sub-populations of proteins that are relocated or functionally changed by such modifications can change resting proteins into active ones, mediating specific effector functions, as in the case of monoclonal antibodies. To ensure safe and efficacious drugs it is essential to employ appropriate robust, quantitative analytical strategies that can (i) perform detailed glycan structural analysis, (ii) characterise specific subsets of glycans to assess known critical features of therapeutic activities (iii) rapidly profile glycan pools for at-line monitoring or high level batch to batch screening. Here we focus on these aspects of glycan analysis, showing how state-of-the-art technologies are required at all stages during the production of recombinant glycotherapeutics. These data can provide insights into processing pathways and suggest markers for intervention at critical control points in bioprocessing and also critical decision points in disease and drug monitoring in patients. Importantly, these tools are now enabling the first glycome/genome studies in large populations, allowing the integration of glycomics into other 'omics platforms in a systems biology context.
Collapse
Affiliation(s)
- Tharmala Tharmalingam
- NIBRT Glycobiology Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co Dublin, Ireland
| | | | | | | | | |
Collapse
|
444
|
Chauhan JS, Bhat AH, Raghava GPS, Rao A. GlycoPP: a webserver for prediction of N- and O-glycosites in prokaryotic protein sequences. PLoS One 2012; 7:e40155. [PMID: 22808107 PMCID: PMC3392279 DOI: 10.1371/journal.pone.0040155] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/01/2012] [Indexed: 12/30/2022] Open
Abstract
Glycosylation is one of the most abundant post-translational modifications (PTMs) required for various structure/function modulations of proteins in a living cell. Although elucidated recently in prokaryotes, this type of PTM is present across all three domains of life. In prokaryotes, two types of protein glycan linkages are more widespread namely, N- linked, where a glycan moiety is attached to the amide group of Asn, and O- linked, where a glycan moiety is attached to the hydroxyl group of Ser/Thr/Tyr. For their biologically ubiquitous nature, significance, and technology applications, the study of prokaryotic glycoproteins is a fast emerging area of research. Here we describe new Support Vector Machine (SVM) based algorithms (models) developed for predicting glycosylated-residues (glycosites) with high accuracy in prokaryotic protein sequences. The models are based on binary profile of patterns, composition profile of patterns, and position-specific scoring matrix profile of patterns as training features. The study employ an extensive dataset of 107 N-linked and 116 O-linked glycosites extracted from 59 experimentally characterized glycoproteins of prokaryotes. This dataset includes validated N-glycosites from phyla Crenarchaeota, Euryarchaeota (domain Archaea), Proteobacteria (domain Bacteria) and validated O-glycosites from phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria (domain Bacteria). In view of the current understanding that glycosylation occurs on folded proteins in bacteria, hybrid models have been developed using information on predicted secondary structures and accessible surface area in various combinations with training features. Using these models, N-glycosites and O-glycosites could be predicted with an accuracy of 82.71% (MCC 0.65) and 73.71% (MCC 0.48), respectively. An evaluation of the best performing models with 28 independent prokaryotic glycoproteins confirms the suitability of these models in predicting N- and O-glycosites in potential glycoproteins from aforementioned organisms, with reasonably high confidence. A web server GlycoPP, implementing these models is available freely at http:/www.imtech.res.in/raghava/glycopp/.
Collapse
Affiliation(s)
- Jagat S. Chauhan
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Adil H. Bhat
- Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Gajendra P. S. Raghava
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
- * E-mail: (AR); (GPSR)
| | - Alka Rao
- Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
- * E-mail: (AR); (GPSR)
| |
Collapse
|
445
|
Nishikaze T, Fukuyama Y, Kawabata SI, Tanaka K. Sensitive Analyses of Neutral N-Glycans using Anion-Doped Liquid Matrix G3CA by Negative-Ion Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2012; 84:6097-103. [DOI: 10.1021/ac3009803] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Nishikaze
- Koichi Tanaka
Laboratory of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku,
Kyoto 604-8511, Japan
| | - Yuko Fukuyama
- Koichi Tanaka
Laboratory of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku,
Kyoto 604-8511, Japan
| | - Shin-ichirou Kawabata
- Koichi Tanaka
Laboratory of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku,
Kyoto 604-8511, Japan
| | - Koichi Tanaka
- Koichi Tanaka
Laboratory of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku,
Kyoto 604-8511, Japan
| |
Collapse
|
446
|
Berkowitz SA, Engen JR, Mazzeo JR, Jones GB. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov 2012; 11:527-40. [PMID: 22743980 DOI: 10.1038/nrd3746] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biologics such as monoclonal antibodies are much more complex than small-molecule drugs, which raises challenging questions for the development and regulatory evaluation of follow-on versions of such biopharmaceutical products (also known as biosimilars) and their clinical use once patent protection for the pioneering biologic has expired. With the recent introduction of regulatory pathways for follow-on versions of complex biologics, the role of analytical technologies in comparing biosimilars with the corresponding reference product is attracting substantial interest in establishing the development requirements for biosimilars. Here, we discuss the current state of the art in analytical technologies to assess three characteristics of protein biopharmaceuticals that regulatory authorities have identified as being important in development strategies for biosimilars: post-translational modifications, three-dimensional structures and protein aggregation.
Collapse
Affiliation(s)
- Steven A Berkowitz
- Analytical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
447
|
Schiel JE. Glycoprotein analysis using mass spectrometry: unraveling the layers of complexity. Anal Bioanal Chem 2012; 404:1141-9. [PMID: 22733248 DOI: 10.1007/s00216-012-6185-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 12/13/2022]
Abstract
A glycoprotein exists as a heterogeneous mixture of forms due to differential glycosylation, each of which may confer different functionality and/or serve as a biochemical marker for disease. The complex structure of glycans make them a bioanalytical challenge requiring multiple mass spectrometry based approaches to gain different types of information. The following article will briefly describe recently utilized mass spectrometry methods to identify glycosylation sites and measure glycan composition, sequence, branching, and relative quantities. Potential metrological developments are discussed in light of current trends toward complete, reliable glycoanalytical characterization in a high-throughput manner.
Collapse
Affiliation(s)
- John E Schiel
- National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD 20899, USA.
| |
Collapse
|
448
|
Kim JY, Kim SK, Kang D, Moon MH. Dual lectin-based size sorting strategy to enrich targeted N-glycopeptides by asymmetrical flow field-flow fractionation: profiling lung cancer biomarkers. Anal Chem 2012; 84:5343-50. [PMID: 22616828 DOI: 10.1021/ac300772w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A dual lectin-based size sorting and simultaneous enrichment strategy for selectively isolating N-linked glycopeptides was developed using asymmetrical flow field-flow fractionation (AF4). AF4 is an elution-based method for separating biological macromolecules that has been utilized for the separation of lectin-glycopeptide complexes formed by mixing serum peptides with lectin cocktails according to the difference in diffusion coefficients. It has also been used for simultaneous depletion of nonglycosylated peptides. The dual lectin-based enrichment method was applied to proteolytic peptides from lung cancer serum samples with two lectins (WGA, GlcNAc-specific, and SNA, Sia-specific), and the whole mixture was separated by AF4. The lectin-glycopeptide complex fractions collected during AF4 separation were endoglycosidically digested with PNGase F. The resulting deamidated glycopeptides were analyzed by nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS) to semiquantitatively profile the N-linked glycopeptides from the sera of lung cancer patients and healthy controls. The AF4 enrichment strategy coupled with nLC-ESI-MS-MS identified 16/24 (up/down-regulated by at least 10-fold compared to normal sera) N-linked glycopeptides from a WGA complex fraction of lung cancer sera and 18/3 from a SNA fraction.
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| | | | | | | |
Collapse
|
449
|
Schulz BL, Cooper-White J, Punyadeera CK. Saliva proteome research: current status and future outlook. Crit Rev Biotechnol 2012; 33:246-59. [DOI: 10.3109/07388551.2012.687361] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
450
|
Mazumder R, Morampudi KS, Motwani M, Vasudevan S, Goldman R. Proteome-wide analysis of single-nucleotide variations in the N-glycosylation sequon of human genes. PLoS One 2012; 7:e36212. [PMID: 22586465 PMCID: PMC3346765 DOI: 10.1371/journal.pone.0036212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/28/2012] [Indexed: 11/22/2022] Open
Abstract
N-linked glycosylation is one of the most frequent post-translational modifications of proteins with a profound impact on their biological function. Besides other functions, N-linked glycosylation assists in protein folding, determines protein orientation at the cell surface, or protects proteins from proteases. The N-linked glycans attach to asparagines in the sequence context Asn-X-Ser/Thr, where X is any amino acid except proline. Any variation (e.g. non-synonymous single nucleotide polymorphism or mutation) that abolishes the N-glycosylation sequence motif will lead to the loss of a glycosylation site. On the other hand, variations causing a substitution that creates a new N-glycosylation sequence motif can result in the gain of glycosylation. Although the general importance of glycosylation is well known and acknowledged, the effect of variation on the actual glycoproteome of an organism is still mostly unknown. In this study, we focus on a comprehensive analysis of non-synonymous single nucleotide variations (nsSNV) that lead to either loss or gain of the N-glycosylation motif. We find that 1091 proteins have modified N-glycosylation sequons due to nsSNVs in the genome. Based on analysis of proteins that have a solved 3D structure at the site of variation, we find that 48% of the variations that lead to changes in glycosylation sites occur at the loop and bend regions of the proteins. Pathway and function enrichment analysis show that a significant number of proteins that gained or lost the glycosylation motif are involved in kinase activity, immune response, and blood coagulation. A structure-function analysis of a blood coagulation protein, antithrombin III and a protease, cathepsin D, showcases how a comprehensive study followed by structural analysis can help better understand the functional impact of the nsSNVs.
Collapse
Affiliation(s)
- Raja Mazumder
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington, DC, USA.
| | | | | | | | | |
Collapse
|