401
|
Mary-Sinclair MN, Wang X, Swanson DJ, Sung CY, Mendonca EA, Wroblewski K, Baumer SH, Goldowitz D, Jablonski MM, Skapek SX. Varied manifestations of persistent hyperplastic primary vitreous with graded somatic mosaic deletion of a single gene. Mol Vis 2014; 20:215-30. [PMID: 24623965 PMCID: PMC3945809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/28/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Persistent hyperplastic primary vitreous (PHPV) represents a developmental eye disease known to have diverse manifestations ranging from a trivial remnant of hyaloid vessels to a dense fibrovascular mass causing lens opacity and retinal detachment. PHPV can be modeled in mice lacking individual genes, but certain features of such models differ from the clinical realm. For example, mice lacking the Arf gene have uniformly severe disease with consistent autosomal recessive disease penetrance. We tested whether the graded somatic loss of Arf in a subset of cells in chimeric mice mimics the range of disease in a non-heritable manner. METHODS Wild type ↔ Arf(-/-) mouse chimeras were generated by morulae fusion, and when the mice were 10 weeks old, fundoscopic, slit-lamp, and histological evaluations were performed. The relative fraction of cells of the Arf(-/-) lineage was assessed with visual, molecular genetic, and histological analysis. Objective quantification of various aspects of the phenotype was correlated with the genotype. RESULTS Sixteen chimeras were generated and shown to have low, medium, and high contributions of Arf(-/-) cells to tail DNA, the cornea, and the retinal pigment epithelium (RPE), with excellent correlation between chimerism in the tail DNA and the RPE. Phenotypic differences (coat color and severity of eye disease) were evident, objectively quantified, and found to correlate with the contribution of Arf(-/-) cells to the RPE and tail-derived DNA, but not the cornea. CONCLUSIONS Generating animals composed of different numbers of Arf(-/-) cells mimicked the range of disease severity observed in patients with PHPV. This establishes the potential for full manifestations of PHPV to be caused by somatic mutations of a single gene during development.
Collapse
Affiliation(s)
- Michelle N. Mary-Sinclair
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - XiaoFei Wang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN
| | - Douglas J. Swanson
- Department of Medical Genetics, Centre of Molecular Medicine and Therapeutics, CFRI, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Y. Sung
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eneida A. Mendonca
- Department of Pediatrics and Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI
| | | | | | - Dan Goldowitz
- Department of Medical Genetics, Centre of Molecular Medicine and Therapeutics, CFRI, University of British Columbia, Vancouver, BC, Canada
| | - Monica M. Jablonski
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN
| | - Stephen X. Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
402
|
Forsberg LA, Absher D, Dumanski JP. Republished: Non-heritable genetics of human disease: spotlight on post-zygotic genetic variation acquired during lifetime. Postgrad Med J 2014; 89:417-26. [PMID: 23781115 PMCID: PMC3711362 DOI: 10.1136/postgradmedj-2012-101322rep] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The heritability of most common, multifactorial diseases is rather modest and known genetic effects account for a small part of it. The remaining portion of disease aetiology has been conventionally ascribed to environmental effects, with an unknown part being stochastic. This review focuses on recent studies highlighting stochastic events of potentially great importance in human disease—the accumulation of post-zygotic structural aberrations with age in phenotypically normal humans. These findings are in agreement with a substantial mutational load predicted to occur during lifetime within the human soma. A major consequence of these results is that the genetic profile of a single tissue collected at one time point should be used with caution as a faithful portrait of other tissues from the same subject or the same tissue throughout life. Thus, the design of studies in human genetics interrogating a single sample per subject or applying lymphoblastoid cell lines may come into question. Sporadic disorders are common in medicine. We wish to stress the non-heritable genetic variation as a potentially important factor behind the development of sporadic diseases. Moreover, associations between post-zygotic mutations, clonal cell expansions and their relation to cancer predisposition are central in this context. Post-zygotic mutations are amenable to robust examination and are likely to explain a sizable part of non-heritable disease causality, which has routinely been thought of as synonymous with environmental factors. In view of the widespread accumulation of genetic aberrations with age and strong predictions of disease risk from such analyses, studies of post-zygotic mutations may be a fruitful approach for delineation of variants that are causative for common human disorders.
Collapse
Affiliation(s)
- Lars Anders Forsberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | | | | |
Collapse
|
403
|
Henriques A, Rodríguez-Caballero A, Criado I, Langerak AW, Nieto WG, Lécrevisse Q, González M, Cortesão E, Paiva A, Almeida J, Orfao A. Molecular and cytogenetic characterization of expanded B-cell clones from multiclonal versus monoclonal B-cell chronic lymphoproliferative disorders. Haematologica 2014; 99:897-907. [PMID: 24488564 DOI: 10.3324/haematol.2013.098913] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chronic antigen-stimulation has been recurrently involved in the earlier stages of monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The expansion of two or more B-cell clones has frequently been reported in individuals with these conditions; potentially, such coexisting clones have a greater probability of interaction with common immunological determinants. Here, we analyzed the B-cell receptor repertoire and molecular profile, as well as the phenotypic, cytogenetic and hematologic features, of 228 chronic lymphocytic leukemia-like and non-chronic lymphocytic leukemia-like clones comparing multiclonal (n=85 clones from 41 cases) versus monoclonal (n=143 clones) monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The B-cell receptor of B-cell clones from multiclonal cases showed a slightly higher degree of HCDR3 homology than B-cell clones from mono clonal cases, in association with unique hematologic (e.g. lower B-lymphocyte counts) and cytogenetic (e.g. lower frequency of cytogenetically altered clones) features usually related to earlier stages of the disease. Moreover, a subgroup of coexisting B-cell clones from individual multiclonal cases which were found to be phylogenetically related showed unique molecular and cytogenetic features: they more frequently shared IGHV3 gene usage, shorter HCDR3 sequences with a greater proportion of IGHV mutations and del(13q14.3), than other unrelated B-cell clones. These results would support the antigen-driven nature of such multiclonal B-cell expansions, with potential involvement of multiple antigens/epitopes.
Collapse
|
404
|
Abstract
Advances in whole-genome and whole-transcriptome amplification have permitted the sequencing of the minute amounts of DNA and RNA present in a single cell, offering a window into the extent and nature of genomic and transcriptomic heterogeneity which occurs in both normal development and disease. Single-cell approaches stand poised to revolutionise our capacity to understand the scale of genomic, epigenomic, and transcriptomic diversity that occurs during the lifetime of an individual organism. Here, we review the major technological and biological breakthroughs achieved, describe the remaining challenges to overcome, and provide a glimpse into the promise of recent and future developments.
Collapse
|
405
|
Abstract
Genomes are inherently unstable because of the need for DNA sequence variation as a substrate for evolution through natural selection. However, most multicellular organisms have postmitotic tissues, with limited opportunity for selective removal of cells harboring persistent damage and deleterious mutations, which can therefore contribute to functional decline, disease, and death. Key in this process is the role of genome maintenance, the network of protein products that repair DNA damage and signal DNA damage response pathways. Genome maintenance is beneficial early in life by swiftly eliminating DNA damage or damaged cells, facilitating rapid cell proliferation. However, at later ages accumulation of unrepaired damage and mutations, as well as ongoing cell depletion, promotes cancer, atrophy, and other deleterious effects associated with aging. As such, genome maintenance and its phenotypic sequelae provide yet another example of antagonistic pleiotropy in aging and longevity.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
406
|
Acquired chromosomal anomalies in chronic lymphocytic leukemia patients compared with more than 50,000 quasi-normal participants. Cancer Genet 2014; 207:19-30. [PMID: 24613276 DOI: 10.1016/j.cancergen.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/03/2014] [Accepted: 01/11/2014] [Indexed: 11/23/2022]
Abstract
Pretherapy patients with chronic lymphocytic leukemia (CLL) from US Intergroup trial E2997 were analyzed with single nucleotide polymorphism microarrays to detect acquired chromosomal anomalies. The four CLL-typical anomalies (11q-, +12, 13q-, and 17p-) were found at expected frequencies. Acquired anomalies in other regions account for 70% of the total detected anomalies, and their number per participant has a significant effect on progression-free survival after adjusting for the effects of 17p- (and other covariates). These results were compared with those from a previous study of more than 50,000 participants from the GENEVA consortium of genome-wide association studies, which analyzed individuals with a variety of medical conditions and healthy controls. The percentage of individuals with acquired anomalies is vastly different between the two studies (GENEVA 0.8%; E2997 80%). The composition of the anomalies also differs, with GENEVA having a higher percentage of acquired uniparental disomies and a lower percentage of deletions. The four common CLL anomalies are among the most frequent in GENEVA participants, some of whom may have CLL-precursor conditions or early stages of CLL. However, the patients from E2997 (and other studies of symptomatic CLL) have recurrent acquired anomalies that were not found in GENEVA participants, thus identifying genomic changes that may be unique to symptomatic stages of CLL.
Collapse
|
407
|
Avila J, Gómez-Ramos A, Soriano E. Variations in brain DNA. Front Aging Neurosci 2014; 6:323. [PMID: 25505410 PMCID: PMC4243573 DOI: 10.3389/fnagi.2014.00323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/06/2014] [Indexed: 12/16/2022] Open
Abstract
It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain) of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology LaboratoryMadrid, Spain
- *Correspondence: Jesús Avila, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, 208, C/ Nicolás Cabrera no. 1, Madrid, 28049, Spain e-mail: ; Eduardo Soriano, Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de Barcelona, Baldiri i Reixac, 10, Barcelona 08028, Spain e-mail:
| | - Alberto Gómez-Ramos
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology LaboratoryMadrid, Spain
| | - Eduardo Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadrid, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de BarcelonaBarcelona, Spain
- Vall d’Hebrón Institut de Recerca (VHIR)Barcelona, Spain
- *Correspondence: Jesús Avila, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, 208, C/ Nicolás Cabrera no. 1, Madrid, 28049, Spain e-mail: ; Eduardo Soriano, Department of Cell Biology, Faculty of Biology, University of Barcelona, Developmental Neurobiology and Regeneration Lab, Parc Científic de Barcelona, Baldiri i Reixac, 10, Barcelona 08028, Spain e-mail:
| |
Collapse
|
408
|
Robasky K, Lewis NE, Church GM. The role of replicates for error mitigation in next-generation sequencing. Nat Rev Genet 2013; 15:56-62. [PMID: 24322726 DOI: 10.1038/nrg3655] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advances in next-generation sequencing (NGS) technologies have rapidly improved sequencing fidelity and substantially decreased sequencing error rates. However, given that there are billions of nucleotides in a human genome, even low experimental error rates yield many errors in variant calls. Erroneous variants can mimic true somatic and rare variants, thus requiring costly confirmatory experiments to minimize the number of false positives. Here, we discuss sources of experimental errors in NGS and how replicates can be used to abate such errors.
Collapse
Affiliation(s)
- Kimberly Robasky
- 1] Program in Bioinformatics, Boston University, Massachusetts 02115, USA.Department of Genetics, Harvard Medical School, and the Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA. Present address: Expression Analysis, a Quintiles Company, Durham, North Carolina 27713, USA. [2]
| | - Nathan E Lewis
- 1] Department of Genetics, Harvard Medical School, and the Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA. Department of Biology, Brigham Young University, Provo, Utah 84602, USA. Present address: Division of Pediatric Pharmacology and Drug Discovery, University of California, San Diego School of Medicine, La Jolla, California 92093, USA. [2]
| | - George M Church
- Department of Genetics, Harvard Medical School, and the Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
409
|
Carreira PE, Richardson SR, Faulkner GJ. L1 retrotransposons, cancer stem cells and oncogenesis. FEBS J 2013; 281:63-73. [PMID: 24286172 PMCID: PMC4160015 DOI: 10.1111/febs.12601] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/28/2013] [Accepted: 11/11/2013] [Indexed: 12/17/2022]
Abstract
Retrotransposons have played a central role in human genome evolution. The accumulation of heritable L1, Alu and SVA retrotransposon insertions continues to generate structural variation within and between populations, and can result in spontaneous genetic disease. Recent works have reported somatic L1 retrotransposition in tumours, which in some cases may contribute to oncogenesis. Intriguingly, L1 mobilization appears to occur almost exclusively in cancers of epithelial cell origin. In this review, we discuss how L1 retrotransposition could potentially trigger neoplastic transformation, based on the established correlation between L1 activity and cellular plasticity, and the proven capacity of L1-mediated insertional mutagenesis to decisively alter gene expression and functional output.
Collapse
Affiliation(s)
- Patricia E Carreira
- Cancer Biology Program, Mater Medical Research Institute, South Brisbane, Australia
| | | | | |
Collapse
|
410
|
Abstract
A longstanding endeavor to define the genetic lesions that drive myeloid malignances has stimulated a period of remarkable discovery. Enabled by technological advances that have sharply decreased the cost of DNA sequencing, the full compendium of common, recurrent somatic mutations in the coding genome of myeloid malignancies is nearly complete. As the focus of genetic discovery shifts to the noncoding genome, renewed attention is being applied to the clinical and biological implications of recent genomic advances. Although the potential for this newfound knowledge to influence the care of patients has not yet been realized, broad genetic surveys of patient samples are now being used to improve the accuracy of disease diagnosis, define a molecular taxonomy of myeloid malignancies, refine prognostic and predictive models, and identify novel therapeutic strategies. Here, we will review recent advances in the genetics of myeloid malignancies and discuss their potential impact on clinical practice.
Collapse
Affiliation(s)
- R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | | |
Collapse
|
411
|
Affiliation(s)
- Evan Z Macosko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
412
|
Teng X, Dayhoff-Brannigan M, Cheng WC, Gilbert CE, Sing CN, Diny NL, Wheelan SJ, Dunham MJ, Boeke JD, Pineda FJ, Hardwick JM. Genome-wide consequences of deleting any single gene. Mol Cell 2013; 52:485-94. [PMID: 24211263 DOI: 10.1016/j.molcel.2013.09.026] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/18/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
Loss or duplication of chromosome segments can lead to further genomic changes associated with cancer. However, it is not known whether only a select subset of genes is responsible for driving further changes. To determine whether perturbation of any given gene in a genome suffices to drive subsequent genetic changes, we analyzed the yeast knockout collection for secondary mutations of functional consequence. Unlike wild-type, most gene knockout strains were found to have one additional mutant gene affecting nutrient responses and/or heat-stress-induced cell death. Moreover, independent knockouts of the same gene often evolved mutations in the same secondary gene. Genome sequencing identified acquired mutations in several human tumor suppressor homologs. Thus, mutation of any single gene may cause a genomic imbalance, with consequences sufficient to drive adaptive genetic changes. This complicates genetic analyses but is a logical consequence of losing a functional unit originally acquired under pressure during evolution.
Collapse
Affiliation(s)
- Xinchen Teng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
413
|
|
414
|
Copy Number Studies in Noisy Samples. MICROARRAYS 2013; 2:284-303. [PMID: 27605193 PMCID: PMC5003442 DOI: 10.3390/microarrays2040284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 11/17/2022]
Abstract
System noise was analyzed in 77 Affymetrix 6.0 samples from a previous clinical study of copy number variation (CNV). Twenty-three samples were classified as eligible for CNV detection, 29 samples as ineligible and 25 were classified as being of intermediate quality. New software (“noise-free-cnv”) was developed to visualize the data and reduce system noise. Fresh DNA preparations were more likely to yield eligible samples (p < 0.001). Eligible samples had higher rates of successfully genotyped SNPs (p < 0.001) and lower variance of signal intensities (p < 0.001), yielded fewer CNV findings after Birdview analysis (p < 0.001), and showed a tendency to yield fewer PennCNV calls (p = 0.053). The noise-free-cnv software visualized trend patterns of noise in the signal intensities across the ordered SNPs, including a wave pattern of noise, being co-linear with the banding pattern of metaphase chromosomes, as well as system deviations of individual probe sets (per-SNP noise). Wave noise and per-SNP noise occurred independently and could be separately removed from the samples. We recommend a two-step procedure of CNV validation, including noise reduction and visual inspection of all CNV calls, prior to molecular validation of a selected number of putative CNVs.
Collapse
|
415
|
|
416
|
Jouni H, Shameer K, Asmann YW, Hazin R, de Andrade M, Kullo IJ. Clinical Correlates of Autosomal Chromosomal Abnormalities in an Electronic Medical Record-Linked Genome-Wide Association Study: A Case Series. J Investig Med High Impact Case Rep 2013; 1:2324709613508932. [PMID: 26425586 PMCID: PMC4528839 DOI: 10.1177/2324709613508932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although mosaic autosomal chromosomal abnormalities are being increasingly detected as part of high-density genotyping studies, the clinical correlates are unclear. From an electronic medical record (EMR)–based genome-wide association study (GWAS) of peripheral arterial disease, log-R-ratio and B-allele-frequency data were used to identify mosaic autosomal chromosomal abnormalities including copy number variation and loss of heterozygosity. The EMRs of patients with chromosomal abnormalities and those without chromosomal abnormalities were reviewed to compare clinical characteristics. Among 3336 study participants, 0.75% (n = 25, mean age = 74.8 ± 10.7 years, 64% men) had abnormal intensity plots indicative of autosomal chromosomal abnormalities. A hematologic malignancy was present in 8 patients (32%), of whom 4 also had a solid organ malignancy while 2 patients had a solid organ malignancy only. In 50 age- and sex-matched participants without chromosomal abnormalities, there was a lower rate of hematologic malignancies (2% vs 32%, P < .001) but not solid organ malignancies (20% vs 24%, P = .69). We also report the clinical characteristics of each patient with the observed chromosomal abnormalities. Interestingly, among 5 patients with 20q deletions, 4 had a myeloproliferative disorder while all 3 men in this group had prostate cancer. In summary, in a GWAS of 3336 adults, 0.75% had autosomal chromosomal abnormalities and nearly a third of them had hematologic malignancies. A potential novel association between 20q deletions, myeloproliferative disorders, and prostate cancer was also noted.
Collapse
Affiliation(s)
- Hayan Jouni
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Khader Shameer
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Yan W Asmann
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Ribhi Hazin
- Department of Internal Medicine, Wayne State University, Detroit, MI
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
417
|
Kang H, Shibata D. Direct measurements of human colon crypt stem cell niche genetic fidelity: the role of chance in non-darwinian mutation selection. Front Oncol 2013; 3:264. [PMID: 24133655 PMCID: PMC3796283 DOI: 10.3389/fonc.2013.00264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023] Open
Abstract
Perfect human stem cell genetic fidelity would prevent aging and cancer. However, perfection would be difficult to achieve, and aging is universal and cancers common. A hypothesis is that because mutations are inevitable over a human lifetime, downstream mechanisms have evolved to manage the deleterious effects of beneficial and lethal mutations. In the colon, a crypt stem cell architecture reduces the number of mitotic cells at risk for mutation accumulation, and multiple niche stem cells ensure that a lethal mutation within any single stem cell does not lead to crypt death. In addition, the architecture of the colon crypt stem cell niche may harness probability or chance to randomly discard many beneficial mutations that might lead to cancer. An analysis of somatic chromosome copy number alterations (CNAs) reveals a lack of perfect fidelity in individual normal human crypts, with age-related increases and higher frequencies in ulcerative colitis, a proliferative, inflammatory disease. The age-related increase in somatic CNAs appears consistent with relatively normal replication error and cell division rates. Surprisingly, and similar to point mutations in cancer genomes, the types of crypt mutations were more consistent with random fixation rather than selection. In theory, a simple “non-Darwinian” way to nullify selection is to reduce the size of the reproducing population. Fates are more determined by chance rather than selection in very small populations, and therefore selection may be minimized within small crypt niches. The desired effect is that many beneficial mutations that might lead to cancer are randomly lost by drift rather than fixed by selection. The subdivision of the colon into multiple very small stem cell niches may trade Darwinian evolution for non-Darwinian somatic cell evolution, capitulating to aging but reducing cancer risks.
Collapse
Affiliation(s)
- Haeyoun Kang
- Department of Pathology, CHA Bundang Medical Center, CHA University , Seongnam-si , South Korea
| | | |
Collapse
|
418
|
Li R, Montpetit A, Rousseau M, Wu SYM, Greenwood CMT, Spector TD, Pollak M, Polychronakos C, Richards JB. Somatic point mutations occurring early in development: a monozygotic twin study. J Med Genet 2013; 51:28-34. [DOI: 10.1136/jmedgenet-2013-101712] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
419
|
Abstract
Human genetic mosaicism is the presence of two or more cellular populations with distinct genotypes in an individual who developed from a single fertilized ovum. While initially observed across a spectrum of rare genetic disorders, detailed assessment of data from genome-wide association studies now reveal that detectable clonal mosaicism involving large structural alterations (>2 Mb) can also be seen in populations of apparently healthy individuals. The first generation of descriptive studies has generated new interest in understanding the molecular basis of the affected genomic regions, percent of the cellular subpopulation involved, and developmental timing of the underlying mutational event, which could reveal new insights into the initiation, clonal expansion, and phenotypic manifestations of mosaic events. Early evidence indicates detectable clonal mosaicism increases in frequency with age and could preferentially occur in males. The observed pattern of recurrent events affecting specific chromosomal regions indicates some regions are more susceptible to these events, which could reflect inter-individual differences in genomic stability. Moreover, it is also plausible that the presence of large structural events could be associated with cancer risk. The characterization of detectable genetic mosaicism reveals that there could be important dynamic changes in the human genome associated with the aging process, which could be associated with risk for common disorders, such as cancer, cardiovascular disease, diabetes, and neurological disorders.
Collapse
Affiliation(s)
- Mitchell J. Machiela
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 20892-4605
| | - Stephen J. Chanock
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 20892-4605
| |
Collapse
|
420
|
Jouni H, Shameer K, Asmann YW, Hazin R, de Andrade M, Kullo IJ. Clinical Correlates of Autosomal Chromosomal Abnormalities in an Electronic Medical Record-Linked Genome-Wide Association Study: A Case Series. J Investig Med 2013; 1:2324709613508932. [PMID: 25125939 PMCID: PMC4130164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although mosaic autosomal chromosomal abnormalities are being increasingly detected as part of high-density genotyping studies, the clinical correlates are unclear. From an electronic medical record (EMR)-based genome-wide association study (GWAS) of peripheral arterial disease, log-R-ratio and B-allele-frequency data were used to identify mosaic autosomal chromosomal abnormalities including copy number variation and loss of heterozygosity. The EMRs of patients with chromosomal abnormalities and those without chromosomal abnormalities were reviewed to compare clinical characteristics. Among 3336 study participants, 0.75% (n = 25, mean age = 74.8 ± 10.7 years, 64% men) had abnormal intensity plots indicative of autosomal chromosomal abnormalities. A hematologic malignancy was present in 8 patients (32%), of whom 4 also had a solid organ malignancy while 2 patients had a solid organ malignancy only. In 50 age- and sex-matched participants without chromosomal abnormalities, there was a lower rate of hematologic malignancies (2% vs 32%, P < .001) but not solid organ malignancies (20% vs 24%, P = .69). We also report the clinical characteristics of each patient with the observed chromosomal abnormalities. Interestingly, among 5 patients with 20q deletions, 4 had a myeloproliferative disorder while all 3 men in this group had prostate cancer. In summary, in a GWAS of 3336 adults, 0.75% had autosomal chromosomal abnormalities and nearly a third of them had hematologic malignancies. A potential novel association between 20q deletions, myeloproliferative disorders, and prostate cancer was also noted.
Collapse
Affiliation(s)
- Hayan Jouni
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Khader Shameer
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Yan W. Asmann
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Ribhi Hazin
- Department of Internal Medicine, Wayne State University, Detroit, MI
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
421
|
Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, O'Shaughnessy J, Kinzler KW, Parmigiani G, Vogelstein B, Diaz LA, Velculescu VE. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 2013. [PMID: 23197571 DOI: 10.1126/scitranslmed.3004742] [Citation(s) in RCA: 487] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical management of cancer patients could be improved through the development of noninvasive approaches for the detection of incipient, residual, and recurrent tumors. We describe an approach to directly identify tumor-derived chromosomal alterations through analysis of circulating cell-free DNA from cancer patients. Whole-genome analyses of DNA from the plasma of 10 colorectal and breast cancer patients and 10 healthy individuals with massively parallel sequencing identified, in all patients, structural alterations that were not present in plasma DNA from healthy subjects. Detected alterations comprised chromosomal copy number changes and rearrangements, including amplification of cancer driver genes such as ERBB2 and CDK6. The level of circulating tumor DNA in the cancer patients ranged from 1.4 to 47.9%. The sensitivity and specificity of this approach are dependent on the amount of sequence data obtained and are derived from the fact that most cancers harbor multiple chromosomal alterations, each of which is unlikely to be present in normal cells. Given that chromosomal abnormalities are present in nearly all human cancers, this approach represents a useful method for the noninvasive detection of human tumors that is not dependent on the availability of tumor biopsies.
Collapse
Affiliation(s)
- Rebecca J Leary
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Therapeutic implications of activation of the host gene (Dleu2) promoter for miR-15a/16-1 in chronic lymphocytic leukemia. Oncogene 2013; 33:3307-15. [PMID: 23995789 PMCID: PMC4508006 DOI: 10.1038/onc.2013.291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/25/2013] [Accepted: 05/09/2013] [Indexed: 12/30/2022]
Abstract
Genetic lesions and other regulatory events lead to silencing of the 13q14 locus in a majority of chronic lymphocytic leukemia (CLL) patients. This locus encodes a pair of critical pro-apoptotic microRNAs, miR-15a/16-1. Decreased levels of miR-15a/16-1 are critical for the increased survival exhibited by CLL cells. Similarly, in a de novo murine model of CLL, the NZB strain, germline-encoded regulation of the syntenic region resulted in decreased miR-15a/16-1. In this paper we have identified additional molecular mechanisms regulating miR-15a/16-1 levels and shown that the transcription factor BSAP (B cell Specific Activator Protein) directly interacts with Dleu2, the host gene containing the mir-15a/16-1 loci and via negative regulation of the Dleu2 promoter results in repression of mir-15a/16 expression. CLL patient B cell expression levels of BSAP were increased compared to control sources of B cells. With the use of siRNA mediated repression, the levels of BSAP were decreased in vitro in the NZB derived malignant B1 cell line, LNC, and in ex vivo CLL patient PBMC. BSAP knockdown led to an increase in the expression of miR-15a/16-1 and an increase in apoptosis and a cell cycle arrest in both the cell line and patient PBMC. Moreover, using Dleu2 promoter analysis by chromatin immunoprecipitation (ChIP) assay we have shown that BSAP directly interacts with the Dleu2 promoter. Derepression of the Dleu2 promoter via inhibition of histone deacetylation combined with BSAP knockdown increased miR-15a/16 expression and increased malignant B cell death. In summary, therapy targeting enhanced host gene Dleu2 transcription may augment CLL therapy.
Collapse
|
423
|
Valdes AM, Glass D, Spector TD. Omics technologies and the study of human ageing. Nat Rev Genet 2013; 14:601-7. [PMID: 23938363 DOI: 10.1038/nrg3553] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Normal ageing is associated with diverse physiological changes in all organ systems but the rate and extent of these changes vary markedly among individuals. One aspect of ageing research focuses on the molecular profiling of the changes that occur with increasing age in humans. Such profiling has implications for disease prevention and treatment. New high-throughput 'omics' technologies (such as genomics, metabolomics, metagenomics and transcriptomics) are enabling detailed studies of these molecular changes and are thus revealing information about the biological pathways that change with age.
Collapse
Affiliation(s)
- Ana M Valdes
- 1] Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK. [2] Academic Rheumatology, University of Nottingham, Nottingham NG5 1PB, UK
| | | | | |
Collapse
|
424
|
Distinctive topology of age-associated epigenetic drift in the human interactome. Proc Natl Acad Sci U S A 2013; 110:14138-43. [PMID: 23940324 DOI: 10.1073/pnas.1307242110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recently, it has been demonstrated that DNA methylation, a covalent modification of DNA that can regulate gene expression, is modified as a function of age. However, the biological and clinical significance of this age-associated epigenetic drift is unclear. To shed light on the potential biological significance, we here adopt a systems approach and study the genes undergoing age-associated changes in DNA methylation in the context of a protein interaction network, focusing on their topological properties. In contrast to what has been observed for other age-related gene classes, including longevity- and disease-associated genes, as well as genes undergoing age-associated changes in gene expression, we here demonstrate that age-associated epigenetic drift occurs preferentially in genes that occupy peripheral network positions of exceptionally low connectivity. In addition, we show that these genes synergize topologically with disease and longevity genes, forming unexpectedly large network communities. Thus, these results point toward a potentially distinct mechanistic and biological role of DNA methylation in dictating the complex aging and disease phenotypes.
Collapse
|
425
|
Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet 2013; 132:1323-38. [PMID: 23925498 PMCID: PMC3898394 DOI: 10.1007/s00439-013-1342-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/15/2013] [Indexed: 12/17/2022]
Abstract
Longevity and healthy aging are among the most complex phenotypes studied to date. The heritability of age at death in adulthood is approximately 25 %. Studies of exceptionally long-lived individuals show that heritability is greatest at the oldest ages. Linkage studies of exceptionally long-lived families now support a longevity locus on chromosome 3; other putative longevity loci differ between studies. Candidate gene studies have identified variants at APOE and FOXO3A associated with longevity; other genes show inconsistent results. Genome-wide association scans (GWAS) of centenarians vs. younger controls reveal only APOE as achieving genome-wide significance (GWS); however, analyses of combinations of SNPs or genes represented among associations that do not reach GWS have identified pathways and signatures that converge upon genes and biological processes related to aging. The impact of these SNPs, which may exert joint effects, may be obscured by gene-environment interactions or inter-ethnic differences. GWAS and whole genome sequencing data both show that the risk alleles defined by GWAS of common complex diseases are, perhaps surprisingly, found in long-lived individuals, who may tolerate them by means of protective genetic factors. Such protective factors may ‘buffer’ the effects of specific risk alleles. Rare alleles are also likely to contribute to healthy aging and longevity. Epigenetics is quickly emerging as a critical aspect of aging and longevity. Centenarians delay age-related methylation changes, and they can pass this methylation preservation ability on to their offspring. Non-genetic factors, particularly lifestyle, clearly affect the development of age-related diseases and affect health and lifespan in the general population. To fully understand the desirable phenotypes of healthy aging and longevity, it will be necessary to examine whole genome data from large numbers of healthy long-lived individuals to look simultaneously at both common and rare alleles, with impeccable control for population stratification and consideration of non-genetic factors such as environment.
Collapse
Affiliation(s)
- Angela R Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada,
| |
Collapse
|
426
|
Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet 2013; 22:R7-R15. [PMID: 23918660 PMCID: PMC3782071 DOI: 10.1093/hmg/ddt375] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is now well established that the genomic landscape of DNA methylation (DNAm) gets altered as a function of age, a process we here call ‘epigenetic drift’. The biological, functional, clinical and evolutionary significance of this epigenetic drift, however, remains unclear. We here provide a brief review of epigenetic drift, focusing on the potential implications for ageing, stem cell biology and disease risk prediction. It has been demonstrated that epigenetic drift affects most of the genome, suggesting a global deregulation of DNAm patterns with age. A component of this drift is tissue-specific, allowing remarkably accurate age-predictive models to be constructed. Another component is tissue-independent, targeting stem cell differentiation pathways and affecting stem cells, which may explain the observed decline of stem cell function with age. Age-associated increases in DNAm target developmental genes, overlapping those associated with environmental disease risk factors and with disease itself, notably cancer. In particular, cancers and precursor cancer lesions exhibit aggravated age DNAm signatures. Epigenetic drift is also influenced by genetic factors. Thus, drift emerges as a promising biomarker for premature or biological ageing, and could potentially be used in geriatrics for disease risk prediction. Finally, we propose, in the context of human evolution, that epigenetic drift may represent a case of epigenetic thrift, or bet-hedging. In summary, this review demonstrates the growing importance of the ‘ageing epigenome’, with potentially far-reaching implications for understanding the effect of age on stem cell function and differentiation, as well as for disease prevention.
Collapse
Affiliation(s)
- Andrew E. Teschendorff
- Statistical Cancer Genomics and
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London WC1E 6BT, UK
- To whom correspondence should be addressed.
| | - James West
- Statistical Cancer Genomics and
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London WC1E 6BT, UK
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK and
| |
Collapse
|
427
|
Bonnefond A, Skrobek B, Lobbens S, Eury E, Thuillier D, Cauchi S, Lantieri O, Balkau B, Riboli E, Marre M, Charpentier G, Yengo L, Froguel P. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat Genet 2013; 45:1040-3. [PMID: 23852171 DOI: 10.1038/ng.2700] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/19/2013] [Indexed: 12/15/2022]
Abstract
Large chromosomal clonal mosaic events (CMEs) have been suggested to be linked to aging and to predict cancer. Type 2 diabetes (T2D) has been conceptualized as an accelerated-aging disease and is associated with higher prevalence of cancers. Here we aimed to assess the association between T2D and CME occurrence in blood. We evaluated the presence of CMEs in 7,659 individuals (including 2,208 with T2D) using DNA arrays. A significant association between CME occurrence and T2D was found (odds ratio (OR) = 5.3; P = 5.1 × 10(-5)) and was stronger when we only considered non-obese individuals with T2D (OR = 5.6; P = 4.9 × 10(-5)). Notably, CME carriers with T2D had higher prevalence of vascular complications than non-carriers with T2D (71.4% versus 37.1%, respectively; P = 7.7 × 10(-4)). In CME carriers, we found an increase in the percentage of abnormal cells over 6 years (P = 8.60 × 10(-3)). In conclusion, given the increased risk of cancer in CME carriers, our results may have profound clinical implications in patients with severe T2D.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Centre National de Recherche Scientifique (CNRS) Unité Mixte de Recherche 8199, Lille Pasteur Institute, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Palumbo E, Tosoni E, Matricardi L, Russo A. Genetic instability of the tumor suppressor gene FHIT in normal human cells. Genes Chromosomes Cancer 2013; 52:832-44. [PMID: 23780737 DOI: 10.1002/gcc.22079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/10/2013] [Indexed: 11/11/2022] Open
Abstract
Common fragile sites are hotspots for chromosome instability and co-localize to cancer genomic rearrangements. Whether these loci may be considered stable in human subjects under physiological conditions remains an open question. Here we show by molecular combing that a small but significant percentage of normal human cells carry an abnormal sequence pattern within the tumor suppressor gene FHIT (3p14.2) at FRA3B. Each sequence variation represents a unique pattern within a normal cell population, and therefore it would remain undetected or not interpreted by genome-wide analyses. Remarkably, the region is the same as in FHIT rearrangements described in tumors. By analyses on several normal cell lines (proliferating and resting primary lymphocytes, primary fibroblasts, lymphoblastoid cells including clonal cell cultures) we verified that: (a) each cell type displays altered sequence patterns at FHIT; (b) the presence of abnormal sequence patterns is specific for the FHIT locus; and (c) FHIT instability occurs de novo during cell proliferation, and heterogeneous sequence variants progressively accumulate in the cell populations. FHIT has been widely investigated in cancer cells, but to our knowledge this is the first direct evidence of spontaneous and recurrent occurrence of genomic instability at this gene in human subjects, at the same region involved in cancer rearrangements. Our results suggest that common fragile site activity is not restricted to in vitro cell culture and that genomic instability may pre-exist in normal cells in the absence of exogenous replication stress.
Collapse
Affiliation(s)
- Elisa Palumbo
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | | | | | | |
Collapse
|
429
|
Abstract
Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guido Kroemer
- INSERM, U848, Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
430
|
Baugher JD, Baugher BD, Shirley MD, Pevsner J. Sensitive and specific detection of mosaic chromosomal abnormalities using the Parent-of-Origin-based Detection (POD) method. BMC Genomics 2013; 14:367. [PMID: 23724825 PMCID: PMC3680018 DOI: 10.1186/1471-2164-14-367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 05/14/2013] [Indexed: 11/25/2022] Open
Abstract
Background Mosaic somatic alterations are present in all multi-cellular organisms, but the physiological effects of low-level mosaicism are largely unknown. Most mosaic alterations remain undetectable with current analytical approaches, although the presence of such alterations is increasingly implicated as causative for disease. Results Here, we present the Parent-of-Origin-based Detection (POD) method for chromosomal abnormality detection in trio-based SNP microarray data. Our software implementation, triPOD, was benchmarked using a simulated dataset, outperformed comparable software for sensitivity of abnormality detection, and displayed substantial improvement in the detection of low-level mosaicism while maintaining comparable specificity. Examples of low-level mosaic abnormalities from a large autism dataset demonstrate the benefits of the increased sensitivity provided by triPOD. The triPOD analyses showed robustness across multiple types of Illumina microarray chips. Two large, clinically-relevant datasets were characterized and compared. Conclusions Our method and software provide a significant advancement in the ability to detect low-level mosaic abnormalities, thereby opening new avenues for research into the implications of mosaicism in pathogenic and non-pathogenic processes.
Collapse
Affiliation(s)
- Joseph D Baugher
- Program in Biochemistry, Cellular and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
431
|
Abstract
The ageing of populations worldwide is leading to an unprecedented increase in cancer cases and fatalities. Understanding the links between cancer and ageing is therefore more important than ever. How the interplay of ageing-associated changes affects cancer initiation and progression is complex, however, and some ageing processes probably foster cancer development whereas others hinder it, possibly in a tissue-specific manner. In the emerging age of cancer, how can our growing understanding of the biology of ageing inform cancer biology?
Collapse
|
432
|
van Heesch S, Mokry M, Boskova V, Junker W, Mehon R, Toonen P, de Bruijn E, Shull JD, Aitman TJ, Cuppen E, Guryev V. Systematic biases in DNA copy number originate from isolation procedures. Genome Biol 2013; 14:R33. [PMID: 23618369 PMCID: PMC4054094 DOI: 10.1186/gb-2013-14-4-r33] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Background The ability to accurately detect DNA copy number variation in both a sensitive and quantitative manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated by variations in detection signal. Results While GC content has been used to correct for this, here we show that coverage biases are tissue-specific and independent of the detection method as demonstrated by next-generation sequencing and array CGH. Moreover, we show that DNA isolation stringency affects the degree of equimolar coverage and that the observed biases coincide with chromatin characteristics like gene expression, genomic isochores, and replication timing. Conclusion These results indicate that chromatin organization is a main determinant for differential DNA retrieval. These findings are highly relevant for germline and somatic DNA copy number variation analyses.
Collapse
|
433
|
Steensma DP. Dysplasia has A differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors. Curr Hematol Malig Rep 2013; 7:310-20. [PMID: 23015360 DOI: 10.1007/s11899-012-0140-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Just as a pawnshop owner who is unable to distinguish a genuine Rolex™ watch from a cheap knockoff courts financial ruin, the physician who fails to discriminate between authentic myelodysplastic syndromes (MDS) and conditions resembling MDS risks misinforming or harming patients. This review summarizes minimal criteria for diagnosing MDS and discusses common diagnostic challenges. MDS needs to be separated from numerous neoplastic and non-clonal hematologic disorders that can mimic MDS, including other myeloid neoplasms, nutritional deficiencies, toxin exposures, aplastic anemia, and inherited disorders (e.g., congenital sideroblastic anemia). Some distinctions are more critical therapeutically than others; e.g., recognizing B12 deficiency is more important than parsing high-risk MDS from erythroleukemia. Diagnostically ambiguous cases may be assigned holding-pattern terms, "idiopathic cytopenia(s) of undetermined significance" (ICUS) or "idiopathic dysplasia of undetermined significance" (IDUS), while awaiting clarifying information or further clinical developments. In the future, advances in molecular pathology will improve diagnostic accuracy, especially in morphologically non-descript cases.
Collapse
Affiliation(s)
- David P Steensma
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, 450 Brookline Ave, Suite D1B30, Mayer 1B21, Boston, MA, 02215, USA.
| |
Collapse
|
434
|
|
435
|
DeGregori J. Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age? Oncogene 2013; 32:1869-75. [PMID: 22751134 PMCID: PMC3670419 DOI: 10.1038/onc.2012.281] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/30/2012] [Indexed: 12/15/2022]
Abstract
A widely accepted paradigm in cancer research holds that the development of cancers is rate limited by the occurrence of oncogenic mutations. In particular, the exponential rise in the incidence of most cancers with age is thought to reflect the time required for cells to accumulate the multiple oncogenic mutations needed to confer the cancer phenotype. Here I will argue against the axiom that the occurrence of oncogenic mutations limits cancer incidence with age, based on several observations, including that the rate of mutation accumulation is maximal during ontogeny, oncogenic mutations are frequently detected in normal tissues, the evolution of complex multicellularity was not accompanied by reductions in mutation rates, and that many oncogenic mutations have been shown to impair stem cell activity. Moreover, although evidence that has been used to support the current paradigm includes increased cancer incidence in individuals with inherited DNA repair deficiencies or exposed to mutagens, the pleotropic effects of these contexts could enhance tumorigenesis at multiple levels. I will further argue that age-dependent alteration of selection for oncogenic mutations provides a more plausible explanation for increased cancer incidence in the elderly. Although oncogenic mutations are clearly required for cancer evolution, together these observations counter the common view that age dependence of cancers is largely explained by the time required to accumulate sufficient oncogenic mutations.
Collapse
Affiliation(s)
- J DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
436
|
An evolutionary perspective on chronic myelomonocytic leukemia. Leukemia 2013; 27:1441-50. [DOI: 10.1038/leu.2013.100] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/29/2013] [Accepted: 03/29/2013] [Indexed: 01/12/2023]
|
437
|
Hsieh JCF, Van Den Berg D, Kang H, Hsieh CL, Lieber MR. Large chromosome deletions, duplications, and gene conversion events accumulate with age in normal human colon crypts. Aging Cell 2013; 12:269-79. [PMID: 23425690 DOI: 10.1111/acel.12053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2013] [Indexed: 11/30/2022] Open
Abstract
Little is known about the types and numbers of mutations that may accumulate in normal human cells with age. Such information would require obtaining enough DNA from a single cell to accurately carry out reliable analysis despite extensive amplification; and complete genomic coverage under these circumstances is difficult. We have compared colon crypts, which are putatively clonal and contain ~2000 cells each, to determine how much somatic genetic variation occurs in vivo (without ex vivo cell culturing). Using high-density SNP microarrays, we find that chromosome deletions, duplications, and gene conversions were significantly more frequent in colons from the older individuals. These changes affected lengths ranging from 73 kb to 46 Mb. Although detection requires progeny of a single mutant stem cell to reach niche dominance over neighboring stem cells, none of the deletions appear likely to confer a selective advantage. Mutations can become fixed randomly during stem cell evolution through neutral drift in normal human crypts. The fact that chromosomal changes are detected in individual crypts with increasing age suggests that either such changes accumulate with age or single stem cell dominance increases with age, and the former is more likely. This progressive genome-wide divergence of human somatic cells with age has implications for aging and disease in multicellular organisms.
Collapse
Affiliation(s)
- John C. F. Hsieh
- USC Norris Comprehensive Cancer Center; University of Southern California Keck School of Medicine; 1441 Eastlake Ave., MC9176; Los Angeles; CA; 90089; USA
| | - David Van Den Berg
- USC Norris Comprehensive Cancer Center; University of Southern California Keck School of Medicine; 1441 Eastlake Ave., MC9176; Los Angeles; CA; 90089; USA
| | - Haeyoun Kang
- USC Norris Comprehensive Cancer Center; University of Southern California Keck School of Medicine; 1441 Eastlake Ave., MC9176; Los Angeles; CA; 90089; USA
| | - Chih-Lin Hsieh
- USC Norris Comprehensive Cancer Center; University of Southern California Keck School of Medicine; 1441 Eastlake Ave., MC9176; Los Angeles; CA; 90089; USA
| | - Michael R. Lieber
- USC Norris Comprehensive Cancer Center; University of Southern California Keck School of Medicine; 1441 Eastlake Ave., MC9176; Los Angeles; CA; 90089; USA
| |
Collapse
|
438
|
Schick UM, McDavid A, Crane PK, Weston N, Ehrlich K, Newton KM, Wallace R, Bookman E, Harrison T, Aragaki A, Crosslin DR, Wang SS, Reiner AP, Jackson RD, Peters U, Larson EB, Jarvik GP, Carlson CS. Confirmation of the reported association of clonal chromosomal mosaicism with an increased risk of incident hematologic cancer. PLoS One 2013; 8:e59823. [PMID: 23533652 PMCID: PMC3606281 DOI: 10.1371/journal.pone.0059823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Chromosomal abnormalities provide clinical utility in the diagnosis and treatment of hematologic malignancies, and may be predictive of malignant transformation in individuals without apparent clinical presentation of a hematologic cancer. In an effort to confirm previous reports of an association between clonal mosaicism and incident hematologic cancer, we applied the anomDetectBAF algorithm to call chromosomal anomalies in genotype data from previously conducted Genome Wide Association Studies (GWAS). The genotypes were initially collected from DNA derived from peripheral blood of 12,176 participants in the Group Health electronic Medical Records and Genomics study (eMERGE) and the Women’s Health Initiative (WHI). We detected clonal mosaicism in 169 individuals (1.4%) and large clonal mosaic events (>2 mb) in 117 (1.0%) individuals. Though only 9.5% of clonal mosaic carriers had an incident diagnosis of hematologic cancer (multiple myeloma, myelodysplastic syndrome, lymphoma, or leukemia), the carriers had a 5.5-fold increased risk (95% CI: 3.3–9.3; p-value = 7.5×10−11) of developing these cancers subsequently. Carriers of large mosaic anomalies showed particularly pronounced risk of subsequent leukemia (HR = 19.2, 95% CI: 8.9–41.6; p-value = 7.3×10−14). Thus we independently confirm the association between detectable clonal mosaicism and hematologic cancer found previously in two recent publications.
Collapse
Affiliation(s)
- Ursula M. Schick
- The Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrew McDavid
- The Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Paul K. Crane
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Noah Weston
- Group Health Research Institute, Seattle, Washington, United States of America
| | - Kelly Ehrlich
- Group Health Research Institute, Seattle, Washington, United States of America
| | - Katherine M. Newton
- Group Health Research Institute, Seattle, Washington, United States of America
- School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Robert Wallace
- University of Iowa, College of Public Health, Iowa City, Iowa, United States of America
| | - Ebony Bookman
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tabitha Harrison
- The Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aaron Aragaki
- The Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David R. Crosslin
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington, United States of America
| | - Sophia S. Wang
- Division of Cancer Etiology, Department of Population Sciences, City of Hope and the Beckman Research Institute, Duarte, California, United States of America
| | - Alex P. Reiner
- The Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Rebecca D. Jackson
- Division of Endocrinology, Ohio State University, Columbus, Ohio, United States of America
| | - Ulrike Peters
- The Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eric B. Larson
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Seattle, Washington, United States of America
| | - Gail P. Jarvik
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington, United States of America
| | - Christopher S. Carlson
- The Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
439
|
Incidental genetic findings in randomized clinical trials: recommendations from the Genomics and Randomized Trials Network (GARNET). Genome Med 2013; 5:7. [PMID: 23363732 PMCID: PMC3706830 DOI: 10.1186/gm411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recommendations and guidance on how to handle the return of genetic results to patients have offered limited insight into how to approach incidental genetic findings in the context of clinical trials. This paper provides the Genomics and Randomized Trials Network (GARNET) recommendations on incidental genetic findings in the context of clinical trials, and discusses the ethical and practical issues considered in formulating our recommendations. There are arguments in support of as well as against returning incidental genetic findings in clinical trials. For instance, reporting incidental findings in clinical trials may improve the investigator-participant relationship and the satisfaction of participation, but it may also blur the line between clinical care and research. The issues of whether and how to return incidental genetic findings, including the costs of doing so, should be considered when developing clinical trial protocols. Once decided, plans related to sharing individual results from the aim(s) of the trial, as well as incidental findings, should be discussed explicitly in the consent form. Institutional Review Boards (IRBs) and other study-specific governing bodies should be part of the decision as to if, when, and how to return incidental findings, including when plans in this regard are being reconsidered.
Collapse
|
440
|
Valent P, Bonnet D, Wöhrer S, Andreeff M, Copland M, Chomienne C, Eaves C. Heterogeneity of neoplastic stem cells: theoretical, functional, and clinical implications. Cancer Res 2013; 73:1037-45. [PMID: 23345162 DOI: 10.1158/0008-5472.can-12-3678] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accumulating evidence suggests that human cancers develop through a step-wise, but nonlinear process of cellular diversification and evolution. Recent mutational analyses indicate that this process is more complex and diverse than anticipated before whole-genome sequencing methods were readily available. Examples are also emerging now of genetically abnormal clones of cells that have acquired mutations with known oncogenic potential but, nevertheless, may show no manifestations of malignant change for many years. To accommodate these diverse realities, we suggest the term neoplastic refer to clones of cells that have any type of somatic aberrancy associated with an increased propensity to become malignant, and the derivative term neoplastic stem cell be adopted to identify the cells responsible for the long-term maintenance of such clones. Neoplastic clones would thus include those that never evolve further, as well as those that eventually give rise to fully malignant populations, and all stages in between. The term cancer stem cells would then be more appropriately restricted to cells generating subclones that have established malignant properties. More precise molecular understanding of the different stem cell states thus distinguished should contribute to the development of more effective prognostic and therapeutic tools for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Peter Valent
- Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
441
|
Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, Brough R, Rodrigues DN, Renwick A, Seal S, Ramsay E, Duarte SDV, Rivas MA, Warren-Perry M, Zachariou A, Campion-Flora A, Hanks S, Murray A, Pour NA, Douglas J, Gregory L, Rimmer A, Walker NM, Yang TP, Adlard JW, Barwell J, Berg J, Brady AF, Brewer C, Brice G, Chapman C, Cook J, Davidson R, Donaldson A, Douglas F, Eccles D, Evans DG, Greenhalgh L, Henderson A, Izatt L, Kumar A, Lalloo F, Miedzybrodzka Z, Morrison PJ, Paterson J, Porteous M, Rogers MT, Shanley S, Walker L, Gore M, Houlston R, Brown MA, Caufield MJ, Deloukas P, McCarthy MI, Todd JA, Turnbull C, Reis-Filho JS, Ashworth A, Antoniou AC, Lord CJ, Donnelly P, Rahman N. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 2013; 493:406-10. [PMID: 23242139 PMCID: PMC3759028 DOI: 10.1038/nature11725] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/26/2012] [Indexed: 02/06/2023]
Abstract
Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case-control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10(-5)), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10(-4)) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10(-9)). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.
Collapse
Affiliation(s)
- Elise Ruark
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Katie Snape
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Peter Humburg
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Chey Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Ilirjana Bajrami
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachel Brough
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Daniel Nava Rodrigues
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Anthony Renwick
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Sheila Seal
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Emma Ramsay
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | | | - Manuel A. Rivas
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7LD, UK
| | - Margaret Warren-Perry
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Anna Zachariou
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Adriana Campion-Flora
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Sandra Hanks
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Anne Murray
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Naser Ansari Pour
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Jenny Douglas
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Lorna Gregory
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew Rimmer
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Neil M. Walker
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Tsun-Po Yang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Julian W. Adlard
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, LS7 4SA, UK
| | - Julian Barwell
- Leicestershire Genetics Centre, University Hospitals of Leicester NHS Trust, LE1 5WW, UK
| | - Jonathan Berg
- Human genetics, Division of Medical Sciences, University of Dundee, DD1 9SY, UK
| | - Angela F. Brady
- NW Thames Regional Genetics Service, Kennedy Galton Centre, London, HA1 3UJ, UK
| | - Carole Brewer
- Peninsula Regional Genetics Service, Royal Devon & Exeter Hospital, Exeter, EX1 2ED, UK
| | - Glen Brice
- SW Thames Regional Genetics Service, St George’s Hospital, London, SW17 0RE, UK
| | - Cyril Chapman
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, B15 2TG, UK
| | - Jackie Cook
- Sheffield Regional Genetics Service, Sheffield Children’s NHS Foundation Trust, S10 2TH, UK
| | - Rosemarie Davidson
- West of Scotland Regional Genetics Service, Laboratory Medicine, Southern General Hospital, Glasgow, G51 4TF, UK
| | - Alan Donaldson
- South Western Regional Genetics Service, University Hospitals of Bristol NHS Foundation Trust, BS2 8EG, UK
| | - Fiona Douglas
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 3BZ, UK
| | - Diana Eccles
- Faculty of Medicine, University of Southampton, Southampton University Hospitals NHS Trust, SO16 5YA, UK
| | - D. Gareth Evans
- Genetic Medicine, Manchester Academic Health Science Centre, St. Mary’s Hospital, Manchester M13 9WL, UK
| | - Lynn Greenhalgh
- Merseyside and Cheshire Clinical Genetics Service, Liverpool Women’s NHS Foundation Trust, Liverpool, L8 7SS, UK
| | - Alex Henderson
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 3BZ, UK
| | - Louise Izatt
- SE Thames Regional Genetics Service, Guy’s and St Thomas NHS Foundation Trust, London, SE1 9RT, UK
| | - Ajith Kumar
- NE Thames Regional Genetics Service, Great Ormond St Hospital, London, WC1N 3JH, UK
| | - Fiona Lalloo
- University Dept of Medical Genetics & Regional Genetics Service, St Mary’s Hospital, Manchester, M13 9WL, UK
| | - Zosia Miedzybrodzka
- University of Aberdeen and North of Scotland Clinical Genetics Service, Aberdeen Royal Infirmary, AB25 2ZA, UK
| | - Patrick J. Morrison
- Northern Ireland Regional Genetics Service, Belfast HSC Trust, Department of Medical Genetics, Queen’s University Belfast, BT9 7AB, UK
| | - Joan Paterson
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, CB2 0QQ, UK
| | - Mary Porteous
- South East of Scotland Clinical Genetics Service, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Mark T. Rogers
- All Wales Medical Genetics Service, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Susan Shanley
- Dept of Cancer Genetics, Royal Marsden NHS Foundation Trust, Sutton, SM2 5PT, UK
| | - Lisa Walker
- Oxford Regional Genetics Service, Oxford University Hospitals NHS Trust, Oxford, OX3 7LJ, UK
| | - Martin Gore
- Dept of Gynaecologic Oncology, Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Richard Houlston
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Matthew A. Brown
- University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, 4102, Australia
| | - Mark J. Caufield
- Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Panagiotis Deloukas
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mark I. McCarthy
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LI, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LI, UK
| | - John A. Todd
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | | | | | - Clare Turnbull
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
- Dept of Cancer Genetics, Royal Marsden NHS Foundation Trust, Sutton, SM2 5PT, UK
| | - Jorge S. Reis-Filho
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Christopher J. Lord
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Peter Donnelly
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Statistics, University of Oxford, Oxford, OX1 3TG, UK
| | - Nazneen Rahman
- Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
- Dept of Cancer Genetics, Royal Marsden NHS Foundation Trust, Sutton, SM2 5PT, UK
| |
Collapse
|
442
|
Abstract
How can organisms silence deleterious gene loci? A recent study has shed light on a very brute mechanism in a jawless vertebrate: the irreversible deletion of massive chunks of genomic DNA.
Collapse
|
443
|
Jacobs PA, Maloney V, Cooke R, Crolla JA, Ashworth A, Swerdlow AJ. Male breast cancer, age and sex chromosome aneuploidy. Br J Cancer 2013; 108:959-63. [PMID: 23299533 PMCID: PMC3590654 DOI: 10.1038/bjc.2012.577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: In cultured, dividing transformed T lymphocytes and in dividing bone marrow cells from normal men and those with a haematological malignancy, sex chromosome aneuploidy has been found to increase in prevalence and degree with age. This has rarely been investigated in non-dividing uncultured blood samples. The loss and gain of the X chromosome in dividing transformed lymphocytes in women with age is much more frequent than that of the Y chromosome in males. However, paradoxically X chromosome aneuploidy is rarely seen in the dividing cells of bone marrow of females. Methods: In blood samples from 565 men with breast cancer and 54 control men from the England and Wales general population, 80 cell nuclei per sample were scored for presence of X and Y chromosomes using fluorescent centromeric probes. Results: Sex chromosome aneuploidy, largely Y chromosome loss, was present in 63% of cases and 57% of controls, with the prevalence and degree of aneuploidy increasingly sharply and highly significantly with age. At ages 65–80 years, 71% of cases and 85% of controls showed aneuploidy and 15% and 25%, respectively, had ⩾10% of cells aneuploid. Allowing for age, aneuploidy was less prevalent (P=0.03) in cases than controls. Conclusion: Sex chromosome aneuploidy in non-dividing nuclei of peripheral blood cells is frequent in adult men, the prevalence and degree increasing sharply with age. The possible relation of sex chromosome aneuploidy to breast cancer risk in men, and to cancer risk generally, needs further investigation, ideally in cohort studies.
Collapse
Affiliation(s)
- P A Jacobs
- Wessex Regional Genetics Laboratory, Salisbury Foundation NHS Trust, Salisbury SP2 8BJ, UK
| | | | | | | | | | | |
Collapse
|
444
|
Uniparental disomy analysis in trios using genome-wide SNP array and whole-genome sequencing data imply segmental uniparental isodisomy in general populations. Gene 2013; 512:267-74. [PMID: 23111162 DOI: 10.1016/j.gene.2012.10.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 10/04/2012] [Accepted: 10/19/2012] [Indexed: 11/24/2022]
|
445
|
Forsberg LA, Absher D, Dumanski JP. Non-heritable genetics of human disease: spotlight on post-zygotic genetic variation acquired during lifetime. J Med Genet 2013; 50:1-10. [PMID: 23172682 PMCID: PMC3534255 DOI: 10.1136/jmedgenet-2012-101322] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/06/2023]
Abstract
The heritability of most common, multifactorial diseases is rather modest and known genetic effects account for a small part of it. The remaining portion of disease aetiology has been conventionally ascribed to environmental effects, with an unknown part being stochastic. This review focuses on recent studies highlighting stochastic events of potentially great importance in human disease-the accumulation of post-zygotic structural aberrations with age in phenotypically normal humans. These findings are in agreement with a substantial mutational load predicted to occur during lifetime within the human soma. A major consequence of these results is that the genetic profile of a single tissue collected at one time point should be used with caution as a faithful portrait of other tissues from the same subject or the same tissue throughout life. Thus, the design of studies in human genetics interrogating a single sample per subject or applying lymphoblastoid cell lines may come into question. Sporadic disorders are common in medicine. We wish to stress the non-heritable genetic variation as a potentially important factor behind the development of sporadic diseases. Moreover, associations between post-zygotic mutations, clonal cell expansions and their relation to cancer predisposition are central in this context. Post-zygotic mutations are amenable to robust examination and are likely to explain a sizable part of non-heritable disease causality, which has routinely been thought of as synonymous with environmental factors. In view of the widespread accumulation of genetic aberrations with age and strong predictions of disease risk from such analyses, studies of post-zygotic mutations may be a fruitful approach for delineation of variants that are causative for common human disorders.
Collapse
Affiliation(s)
- Lars Anders Forsberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
446
|
Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2012; 121:1403-12. [PMID: 23243274 DOI: 10.1182/blood-2012-09-458265] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification of new genetic lesions in chronic lymphocytic leukemia (CLL) prompts a comprehensive and dynamic prognostic algorithm including gene mutations and chromosomal abnormalities and their changes during clonal evolution. By integrating mutational and cytogenetic analysis in 1274 CLL samples and using both a training-validation and a time-dependent design, 4 CLL subgroups were hierarchically classified: (1) high-risk, harboring TP53 and/or BIRC3 abnormalities (10-year survival: 29%); (2) intermediate-risk, harboring NOTCH1 and/or SF3B1 mutations and/or del11q22-q23 (10-year survival: 37%); (3) low-risk, harboring +12 or a normal genetics (10-year survival: 57%); and (4) very low-risk, harboring del13q14 only, whose 10-year survival (69.3%) did not significantly differ from a matched general population. This integrated mutational and cytogenetic model independently predicted survival, improved CLL prognostication accuracy compared with FISH karyotype (P < .0001), and was externally validated in an independent CLL cohort. Clonal evolution from lower to higher risk implicated the emergence of NOTCH1, SF3B1, and BIRC3 abnormalities in addition to TP53 and 11q22-q23 lesions. By taking into account clonal evolution through time-dependent analysis, the genetic model maintained its prognostic relevance at any time from diagnosis. These findings may have relevant implications for the design of clinical trials aimed at assessing the use of mutational profiling to inform therapeutic decisions.
Collapse
|
447
|
Saldivar JC, Miuma S, Bene J, Hosseini SA, Shibata H, Sun J, Wheeler LJ, Mathews CK, Huebner K. Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet 2012; 8:e1003077. [PMID: 23209436 PMCID: PMC3510054 DOI: 10.1371/journal.pgen.1003077] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/25/2012] [Indexed: 12/27/2022] Open
Abstract
Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common chromosome fragile sites are exquisitely sensitive to replication stress, it has been proposed that their clonal alterations in cancer cells are due to stress sensitivity rather than to a selective advantage imparted by loss of expression of fragile gene products. Here, we show in normal, transformed, and cancer-derived cell lines that Fhit-depletion causes replication stress-induced DNA double-strand breaks. Using DNA combing, we observed a defect in replication fork progression in Fhit-deficient cells that stemmed primarily from fork stalling and collapse. The likely mechanism for the role of Fhit in replication fork progression is through regulation of Thymidine kinase 1 expression and thymidine triphosphate pool levels; notably, restoration of nucleotide balance rescued DNA replication defects and suppressed DNA breakage in Fhit-deficient cells. Depletion of Fhit did not activate the DNA damage response nor cause cell cycle arrest, allowing continued cell proliferation and ongoing chromosomal instability. This finding was in accord with in vivo studies, as Fhit knockout mouse tissue showed no evidence of cell cycle arrest or senescence yet exhibited numerous somatic DNA copy number aberrations at replication stress-sensitive loci. Furthermore, cells established from Fhit knockout tissue showed rapid immortalization and selection of DNA deletions and amplifications, including amplification of the Mdm2 gene, suggesting that Fhit loss-induced genome instability facilitates transformation. We propose that loss of Fhit expression in precancerous lesions is the first step in the initiation of genomic instability, linking alterations at common fragile sites to the origin of genome instability. Normal cells have robust mechanisms to maintain the proper sequence of their DNA; in cancer cells these mechanisms are compromised, resulting in complex changes in the DNA of tumors. How this genome instability begins has not been defined, except in cases of familial cancers, which often have mutations in genes called “caretaker” genes, necessary to preserve DNA stability. We have defined a mechanism for genome instability in non-familial tumors that occur sporadically in the population. Certain fragile regions of our DNA are more difficult to duplicate during cell division and are prone to breakage. A fragile region, FRA3B, lies within the FHIT gene, and deletions within FRA3B are common in precancer cells, causing loss of Fhit protein expression. We find that loss of Fhit protein causes defective DNA replication, leading to further DNA breaks. Cells that continue DNA replication in the absence of Fhit develop numerous chromosomal aberrations. Importantly, cells established from tissues of mice that are missing Fhit undergo selection for increasing DNA alterations that can promote immortality, a cancer cell hallmark. Thus, loss of Fhit expression in precancer cells is the first step in the initiation of genomic instability and facilitates cancer development.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Biomedical Sciences Graduate Program, Ohio State University, Columbus, Ohio, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Gogarten SM, Bhangale T, Conomos MP, Laurie CA, McHugh CP, Painter I, Zheng X, Crosslin DR, Levine D, Lumley T, Nelson SC, Rice K, Shen J, Swarnkar R, Weir BS, Laurie CC. GWASTools: an R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics 2012; 28:3329-31. [PMID: 23052040 DOI: 10.1093/bioinformatics/bts610] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GWASTools is an R/Bioconductor package for quality control and analysis of genome-wide association studies (GWAS). GWASTools brings the interactive capability and extensive statistical libraries of R to GWAS. Data are stored in NetCDF format to accommodate extremely large datasets that cannot fit within R's memory limits. The documentation includes instructions for converting data from multiple formats, including variants called from sequencing. GWASTools provides a convenient interface for linking genotypes and intensity data with sample and single nucleotide polymorphism annotation.
Collapse
|
449
|
Abstract
With the desire to assess genetic variation across the lifespan in large-scale collaborative projects, one question is whether inference of copy number (CN) is sensitive to the source of material for deoxyribonucleic acid (DNA) analysis (e.g., blood and buccal) and another question is whether CN is stable as individual sage. Here, we address these questions by applying Affymetrix 6.0 single nucleotide polymorphism (SNP)micro-arrays to 1,472 DNA samples from 710 individuals from the Netherlands Twin Register, including twin and non-twin individuals (372 with buccal and blood derived DNA and 388 with longitudinal data).Similar concordance for CN and genotype inference between samples from the same individual [or from the monozygotic (MZ) co-twins] was found for blood and buccal tissues. There was a small but statistically significant decrease in across-tissue concordance compared with concordance of samples from the same tissue type. No temporal effect was seen on CN variation from the 388 individuals sampled at two time points ranging from 1 to 12 years apart. The majority of our individuals were sampled at age younger than 20 years. Genotype concordance was very high (~ > 99%) between co-twins from 43 MZ pairs. For75 dizygotic (DZ) pairs, ~was ~65%. CN estimates were highly consistent between co-twins from MZ pairs for both deletions (f?2 ~ 90%) and duplications (~ ~ 86%). For DZ, these were similar for within-individual comparisons, but naturally lower between co-twins (~ ~ 50-60%). These results suggest that DNA from buccal samples perform as well as DNA from blood samples on the current generation of micro-array technologies.
Collapse
|
450
|
Greer JM, McCombe PA. The role of epigenetic mechanisms and processes in autoimmune disorders. Biologics 2012; 6:307-27. [PMID: 23055689 PMCID: PMC3459549 DOI: 10.2147/btt.s24067] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Indexed: 12/18/2022]
Abstract
The lack of complete concordance of autoimmune disease in identical twins suggests that nongenetic factors play a major role in determining disease susceptibility. In this review, we consider how epigenetic mechanisms could affect the immune system and effector mechanisms in autoimmunity and/or the target organ of autoimmunity and thus affect the development of autoimmune diseases. We also consider the types of stimuli that lead to epigenetic modifications and how these relate to the epidemiology of autoimmune diseases and the biological pathways operative in different autoimmune diseases. Increasing our knowledge of these epigenetic mechanisms and processes will increase the prospects for controlling or preventing autoimmune diseases in the future through the use of drugs that target the epigenetic pathways.
Collapse
Affiliation(s)
- Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Pamela A McCombe
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
| |
Collapse
|