401
|
Hsu F, Mao Y. The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:698-710. [PMID: 25264170 DOI: 10.1016/j.bbalip.2014.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
Abstract
Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- FoSheng Hsu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
402
|
Carnero A, Paramio JM. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models. Front Oncol 2014; 4:252. [PMID: 25295225 PMCID: PMC4172058 DOI: 10.3389/fonc.2014.00252] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022] Open
Abstract
When PI3K (phosphatidylinositol-3 kinase) is activated by receptor tyrosine kinases, it phosphorylates PIP2 to generate PIP3 and activates the signaling pathway. Phosphatase and tensin homolog deleted on chromosome 10 dephosphorylates PIP3 to PIP2, and thus, negatively regulates the pathway. AKT (v-akt murine thymoma viral oncogene homolog; protein kinase B) is activated downstream of PIP3 and mediates physiological processes. Furthermore, substantial crosstalk exists with other signaling networks at all levels of the PI3K pathway. Because of its diverse array, gene mutations, and amplifications and also as a consequence of its central role in several signal transduction pathways, the PI3K-dependent axis is frequently activated in many tumors and is an attractive therapeutic target. The preclinical testing and analysis of these novel therapies requires appropriate and well-tailored systems. Mouse models in which this pathway has been genetically modified have been essential in understanding the role that this pathway plays in the tumorigenesis process. Here, we review cancer mouse models in which the PI3K/AKT pathway has been genetically modified.
Collapse
Affiliation(s)
- Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla , Seville , Spain
| | - Jesus M Paramio
- Molecular Oncology Unit, Division of Biomedicine, CIEMAT , Madrid , Spain ; Oncogenomics Unit, Biomedical Research Institute, "12 de Octubre" University Hospital , Madrid , Spain
| |
Collapse
|
403
|
Fate and plasticity of the epidermis in response to congenital activation of BRAF. J Invest Dermatol 2014; 135:481-9. [PMID: 25202828 PMCID: PMC4289449 DOI: 10.1038/jid.2014.388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/07/2014] [Accepted: 08/19/2014] [Indexed: 01/22/2023]
Abstract
Determining the developmental consequences of activated RAS and its downstream effectors is critical to understanding several congenital conditions caused by either germline or somatic mutations of the RAS pathway. Here we demonstrate that embryonic activation of BRAF in mouse ectoderm triggers both craniofacial and skin defects, including hyperproliferation, loss of spinous and granular keratinocyte differentiation, and cleft palate. RNA-sequencing reveals that despite an apparent block in spinous and granular differentiation, the epidermis continues to mature, expressing >80% of EDC genes and forming a hydrophobic barrier, both characteristic of later stages in epidermal development. Spinous and granular differentiation can be restored by pharmacologic inhibition of MEK or BRAF; however, in tissue recombination studies, phenotypic reversion was found to be non-cell autonomous and required dermal tissue to be present. These studies indicate that early activation of the RAF signaling pathway in the ectoderm has specific effects on progressive differentiation of the epidermis, which may be amendable to treatment using existing pharmacologic inhibitors.
Collapse
|
404
|
Huang PY, Balmain A. Modeling cutaneous squamous carcinoma development in the mouse. Cold Spring Harb Perspect Med 2014; 4:a013623. [PMID: 25183851 DOI: 10.1101/cshperspect.a013623] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most common cancers in Caucasian populations and is associated with a significant risk of morbidity and mortality. The classic mouse model for studying SCC involves two-stage chemical carcinogenesis, which has been instrumental in the evolution of the concept of multistage carcinogenesis, as widely applied to both human and mouse cancers. Much is now known about the sequence of biological and genetic events that occur in this skin carcinogenesis model and the factors that can influence the course of tumor development, such as perturbations in the oncogene/tumor-suppressor signaling pathways involved, the nature of the target cell that acquires the first genetic hit, and the role of inflammation. Increasingly, studies of tumor-initiating cells, malignant progression, and metastasis in mouse skin cancer models will have the potential to inform future approaches to treatment and chemoprevention of human squamous malignancies.
Collapse
Affiliation(s)
- Phillips Y Huang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
405
|
Ciuffreda L, Falcone I, Incani UC, Del Curatolo A, Conciatori F, Matteoni S, Vari S, Vaccaro V, Cognetti F, Milella M. PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting. Adv Biol Regul 2014; 56:66-80. [PMID: 25088603 DOI: 10.1016/j.jbior.2014.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a non-redundant lipid phosphatase that restrains and fine tunes the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PTEN is involved in inherited syndromes, which predispose to different types of cancers and is among the most frequently inactivated tumor suppressor genes in sporadic cancers. Indeed, loss of PTEN function occurs in a wide spectrum of human cancers through a variety of mechanisms, including mutations, deletions, transcriptional silencing, or protein instability. PTEN prevents tumorigenesis through multiple mechanisms and regulates a plethora of cellular processes, including survival, proliferation, energy metabolism and cellular architecture. Moreover, recent studies have demonstrated that PTEN is able to exit, exist, and function outside the cell, allowing for inhibition of the PI3K pathway in neighboring cells in a paracrine fashion. Most recently, studies have shown that PTEN is also critical for stem cell maintenance and that PTEN loss can lead to the emergence and proliferation of cancer stem cell (CSC) clones. Depending on the cellular and tissue context of origin, PTEN deletion may result in increased self-renewal capacity or normal stem cell exhaustion and PTEN-defìcient stem and progenitor cells have been reported in prostate, lung, intestinal, and pancreatic tissues before tumor formation; moreover, reversible or irreversible PTEN loss is frequently observed in CSC from a variety of solid and hematologic malignancies, where it may contribute to the functional phenotype of CSC. In this review, we will focus on the role of PTEN expression and function and downstream pathway activation in cancer stem cell biology and regulation of the tumorigenic potential; the emerging role of PTEN in mediating the crosstalk between the PI3K and MAPK pathways will also be discussed, together with prospects for the therapeutic targeting of tumors lacking PTEN expression.
Collapse
Affiliation(s)
- Ludovica Ciuffreda
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Italia Falcone
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Ursula Cesta Incani
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Anais Del Curatolo
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Fabiana Conciatori
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Matteoni
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Sabrina Vari
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Vanja Vaccaro
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesco Cognetti
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Michele Milella
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
406
|
Kraft S, Granter SR. Molecular pathology of skin neoplasms of the head and neck. Arch Pathol Lab Med 2014; 138:759-87. [PMID: 24878016 DOI: 10.5858/arpa.2013-0157-ra] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Skin neoplasms include the most common malignancies affecting humans. Many show an ultraviolet (UV)-induced pathogenesis and often affect the head and neck region. OBJECTIVE To review literature on cutaneous neoplasms that show a predilection for the head and neck region and that are associated with molecular alterations. DATA SOURCES Literature review. CONCLUSIONS Common nonmelanoma skin cancers, such as basal and squamous cell carcinomas, show a UV-induced pathogenesis. Basal cell carcinomas are characterized by molecular alterations of the Hedgehog pathway, affecting patched and smoothened genes. While squamous cell carcinomas show UV-induced mutations in several genes, driver mutations are only beginning to be identified. In addition, certain adnexal neoplasms also predominantly affect the head and neck region and show interesting, recently discovered molecular abnormalities, or are associated with hereditary conditions whose molecular genetic pathogenesis is well understood. Furthermore, recent advances have led to an increased understanding of the molecular pathogenesis of melanoma. Certain melanoma subtypes, such as lentigo maligna melanoma and desmoplastic melanoma, which are more often seen on the chronically sun-damaged skin of the head and neck, show differences in their molecular signature when compared to the other more common subtypes, such as superficial spreading melanoma, which are more prone to occur at sites with acute intermittent sun damage. In summary, molecular alterations in cutaneous neoplasms of the head and neck are often related to UV exposure. Their molecular footprint often reflects the histologic tumor type, and familiarity with these changes will be increasingly necessary for diagnostic and therapeutic considerations.
Collapse
Affiliation(s)
- Stefan Kraft
- From the Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (Dr Kraft); and the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Dr Granter)
| | | |
Collapse
|
407
|
Mester J, Eng C. Cowden syndrome: Recognizing and managing a not-so-rare hereditary cancer syndrome. J Surg Oncol 2014; 111:125-30. [DOI: 10.1002/jso.23735] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/04/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Jessica Mester
- Cleveland Clinic Genomic Medicine Institute; Cleveland OH
| | - Charis Eng
- Cleveland Clinic Genomic Medicine Institute; Cleveland OH
| |
Collapse
|
408
|
Webber LP, Martins MD, Carrard VC, Trevizani Martins MA, Munerato MC. Cowden syndrome-a case report emphasizing the role of the dental surgeon in diagnosis. SPECIAL CARE IN DENTISTRY 2014; 35:51-4. [DOI: 10.1111/scd.12081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liana Preto Webber
- Master degree student, Department of Oral Pathology; School of Dentistry; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Manoela Domingues Martins
- Assistant professor, Department of Oral Pathology, School of Dentistry; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Vinícius Coelho Carrard
- Assistant professor, Department of Oral Pathology, School of Dentistry; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Marco Antônio Trevizani Martins
- Assistant professor, Department of Oral Pathology, School of Dentistry; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Maria Cristina Munerato
- Assistant professor, Department of Stomatology of Hospital de Clínicas de Porto Alegre; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
409
|
DE MELO JASON, WU VINCENT, HE LIZHI, YAN JUDY, TANG DAMU. SIPL1 enhances the proliferation, attachment, and migration of CHO cells by inhibiting PTEN function. Int J Mol Med 2014; 34:835-41. [DOI: 10.3892/ijmm.2014.1840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/13/2014] [Indexed: 11/06/2022] Open
|
410
|
Papa A, Wan L, Bonora M, Salmena L, Song MS, Hobbs RM, Lunardi A, Webster K, Ng C, Newton RH, Knoblauch N, Guarnerio J, Ito K, Turka LA, Beck AH, Pinton P, Bronson RT, Wei W, Pandolfi PP. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell 2014; 157:595-610. [PMID: 24766807 DOI: 10.1016/j.cell.2014.03.027] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/25/2013] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
PTEN dysfunction plays a crucial role in the pathogenesis of hereditary and sporadic cancers. Here, we show that PTEN homodimerizes and, in this active conformation, exerts lipid phosphatase activity on PtdIns(3,4,5)P3. We demonstrate that catalytically inactive cancer-associated PTEN mutants heterodimerize with wild-type PTEN and constrain its phosphatase activity in a dominant-negative manner. To study the consequences of homo- and heterodimerization of wild-type and mutant PTEN in vivo, we generated Pten knockin mice harboring two cancer-associated PTEN mutations (PtenC124S and PtenG129E). Heterozygous Pten(C124S/+) and Pten(G129E/+) cells and tissues exhibit increased sensitivity to PI3-K/Akt activation compared to wild-type and Pten(+/-) counterparts, whereas this difference is no longer apparent between Pten(C124S/-) and Pten(-/-) cells. Notably, Pten KI mice are more tumor prone and display features reminiscent of complete Pten loss. Our findings reveal that PTEN loss and PTEN mutations are not synonymous and define a working model for the function and regulation of PTEN.
Collapse
Affiliation(s)
- Antonella Papa
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine Section of General Pathology University of Ferrara, Ferrara 44124, Italy
| | - Leonardo Salmena
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Min Sup Song
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Robin M Hobbs
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrea Lunardi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaitlyn Webster
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher Ng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan H Newton
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Knoblauch
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jlenia Guarnerio
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Keisuke Ito
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Laurence A Turka
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Andy H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine Section of General Pathology University of Ferrara, Ferrara 44124, Italy
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
411
|
Umemori Y, Kuribayashi K, Nirasawa S, Kondoh T, Tanaka M, Kobayashi D, Watanabe N. Protein kinase C ζ regulates survivin expression and inhibits apoptosis in colon cancer. Int J Oncol 2014; 45:1043-50. [PMID: 24920238 DOI: 10.3892/ijo.2014.2489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/02/2014] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3-kinase pathway transduces cell survival signals in different malignancies. Protein kinase C ζ (PKCζ) is one of the molecules involved in this pathway. In this study, we investigated the role of PKCζ in apoptosis. Short interfering RNA against PKCζ (siPKCζ) sensitized HCT116 and SW480 colon cancer cells to TRAIL‑induced apoptosis. Among anti-apoptotic proteins, survivin protein and mRNA expression levels decreased after siPKCζ transfection while protein half-life did not change. The expression levels of survivin and PKCζ were correlated in 18 colon cancer specimens (r=0.72, P=3.01x10‑4). Chemosensitivity to 5-FU was enhanced by siPKCζ in HCT116 and SW480 cells. These results indicate that PKCζ regulates survivin expression levels and inhibits apoptosis in colon cancer cells. This study provides a rationale for targeting PKCζ in combination with chemotherapy for colon cancer treatment.
Collapse
Affiliation(s)
- Yoshifumi Umemori
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Kageaki Kuribayashi
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Shinya Nirasawa
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Takashi Kondoh
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Maki Tanaka
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Daisuke Kobayashi
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Naoki Watanabe
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| |
Collapse
|
412
|
Schrodi SJ, Mukherjee S, Shan Y, Tromp G, Sninsky JJ, Callear AP, Carter TC, Ye Z, Haines JL, Brilliant MH, Crane PK, Smelser DT, Elston RC, Weeks DE. Genetic-based prediction of disease traits: prediction is very difficult, especially about the future. Front Genet 2014; 5:162. [PMID: 24917882 PMCID: PMC4040440 DOI: 10.3389/fgene.2014.00162] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/15/2014] [Indexed: 01/08/2023] Open
Abstract
Translation of results from genetic findings to inform medical practice is a highly anticipated goal of human genetics. The aim of this paper is to review and discuss the role of genetics in medically-relevant prediction. Germline genetics presages disease onset and therefore can contribute prognostic signals that augment laboratory tests and clinical features. As such, the impact of genetic-based predictive models on clinical decisions and therapy choice could be profound. However, given that (i) medical traits result from a complex interplay between genetic and environmental factors, (ii) the underlying genetic architectures for susceptibility to common diseases are not well-understood, and (iii) replicable susceptibility alleles, in combination, account for only a moderate amount of disease heritability, there are substantial challenges to constructing and implementing genetic risk prediction models with high utility. In spite of these challenges, concerted progress has continued in this area with an ongoing accumulation of studies that identify disease predisposing genotypes. Several statistical approaches with the aim of predicting disease have been published. Here we summarize the current state of disease susceptibility mapping and pharmacogenetics efforts for risk prediction, describe methods used to construct and evaluate genetic-based predictive models, and discuss applications.
Collapse
Affiliation(s)
- Steven J Schrodi
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Shubhabrata Mukherjee
- Department of Medicine, School of Medicine, University of Washington Seattle, WA, USA
| | - Ying Shan
- Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh PA, USA
| | - Gerard Tromp
- Sigfried and Janet Weis Center for Research, Geisinger Health System Danville, PA, USA
| | - John J Sninsky
- Subsidiary of Quest Diagnostics, Discovery Research, Celera Corporation Alameda, CA, USA
| | - Amy P Callear
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA ; Department of Biological Sciences, University of Pittsburgh Pittsburgh, PA, USA
| | - Tonia C Carter
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Zhan Ye
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Jonathan L Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve School of Medicine Cleveland, OH, USA
| | - Murray H Brilliant
- Center for Human Genetics, Marshfield Clinic Research Foundation Marshfield, WI, USA
| | - Paul K Crane
- Department of Medicine, School of Medicine, University of Washington Seattle, WA, USA
| | - Diane T Smelser
- Sigfried and Janet Weis Center for Research, Geisinger Health System Danville, PA, USA
| | - Robert C Elston
- Department of Epidemiology and Biostatistics, Case Western Reserve School of Medicine Cleveland, OH, USA
| | - Daniel E Weeks
- Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh PA, USA
| |
Collapse
|
413
|
Stathopoulos P, Raymond A, Esson M. Cowden syndrome: mucocutaneous lesions as precursors of internal malignancy. Oral Maxillofac Surg 2014; 18:229-235. [PMID: 24687348 DOI: 10.1007/s10006-014-0445-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Cowden syndrome is an autosomal-dominant hereditary cancer syndrome with high variability and susceptibility. It is characterized by multiple hamartomas and neoplasms of ectodermal, endodermal and mesodermal origin affecting many organs and also by the increased risk of development of internal malignancies. CASE REPORT A 62-year-old woman was referred to our Maxillofacial Unit with a hamartomatous mass of the left lateral tongue which had slowly grown and was obstructing normal speech and restricting oral intake. The patient had a known history of Cowden syndrome and underwent excision of the lesion under general anaesthetic. DISCUSSION Orofacial mucocutaneous features are very common in multiple hamartoma and neoplasia syndrome with almost up to 90% of the patients being affected. These cutaneous and mucosal lesions, which are predominantly benign, often manifest prior to the development of the internal malignant tumours associated with the syndrome. CONCLUSIONS The prompt identification of Cowden syndrome's plethoric signs and symptoms can lead to appropriate surveillance and multidisciplinary management. Oral manifestations are frequent, prominent and usually precede the establishment of malignant tumours of visceral organs; hence, the maxillofacial surgeon or general dentist may have a significant role in the recognition of the disease. Overall prognosis is dependent on prevention or early treatment of internal malignancies; consequently, early diagnosis together with frequent follow-up forms the cornerstone of management.
Collapse
|
414
|
An update on molecular biology of thyroid cancers. Crit Rev Oncol Hematol 2014; 90:233-52. [DOI: 10.1016/j.critrevonc.2013.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/27/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022] Open
|
415
|
Liu C, Srihari S, Cao KAL, Chenevix-Trench G, Simpson PT, Ragan MA, Khanna KK. A fine-scale dissection of the DNA double-strand break repair machinery and its implications for breast cancer therapy. Nucleic Acids Res 2014; 42:6106-27. [PMID: 24792170 PMCID: PMC4041457 DOI: 10.1093/nar/gku284] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/21/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023] Open
Abstract
DNA-damage response machinery is crucial to maintain the genomic integrity of cells, by enabling effective repair of even highly lethal lesions such as DNA double-strand breaks (DSBs). Defects in specific genes acquired through mutations, copy-number alterations or epigenetic changes can alter the balance of these pathways, triggering cancerous potential in cells. Selective killing of cancer cells by sensitizing them to further DNA damage, especially by induction of DSBs, therefore requires careful modulation of DSB-repair pathways. Here, we review the latest knowledge on the two DSB-repair pathways, homologous recombination and non-homologous end joining in human, describing in detail the functions of their components and the key mechanisms contributing to the repair. Such an in-depth characterization of these pathways enables a more mechanistic understanding of how cells respond to therapies, and suggests molecules and processes that can be explored as potential therapeutic targets. One such avenue that has shown immense promise is via the exploitation of synthetic lethal relationships, for which the BRCA1-PARP1 relationship is particularly notable. Here, we describe how this relationship functions and the manner in which cancer cells acquire therapy resistance by restoring their DSB repair potential.
Collapse
Affiliation(s)
- Chao Liu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Kim-Anh Lê Cao
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia Queensland Facility for Advanced Bioinformatics, The University of Queensland, St. Lucia 4072, Australia
| | | | - Peter T Simpson
- The University of Queensland Centre for Clinical Research, Herston, Brisbane, QLD 4029, Australia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Kum Kum Khanna
- Queensland Facility for Advanced Bioinformatics, The University of Queensland, St. Lucia 4072, Australia
| |
Collapse
|
416
|
Mirzaa GM, Poduri A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:156-72. [PMID: 24888963 DOI: 10.1002/ajmg.c.31401] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Megalencephaly (MEG) is a developmental disorder characterized by brain overgrowth that occurs due to either increased number or size of neurons and glial cells. The former may be due to either increased neuronal proliferation or decreased apoptosis. The degree of brain overgrowth may be extensive, ranging from generalized MEG affecting the entire cortex-as with mutations in PTEN (phosphatase and tensin homolog on chromosome ten)-to unilateral hemispheric malformations-as in classic hemimegalencephaly (HME). On the other hand, some lesions are more focal or segmental. These developmental brain abnormalities may occur in isolation in some individuals, whereas others occur in the context of a syndrome involving dysmorphic features, skin findings, or other organ system involvement. Brain overgrowth disorders are often associated with malformations of cortical development, resulting in increased risk of epilepsy, intellectual disability, and autistic features, and some are associated with hydrocephalus. The past few years have witnessed a dramatic leap in our understanding of the molecular basis of brain overgrowth, particularly the identification of mosaic (or post-zygotic) mutations in core components of key cellular pathways such as the phosphatidylinositol 3-kinase (PI3K)-vakt murine thymoma viral oncogene homolog (AKT)-mTOR pathway. These molecular insights have broadened our view of brain overgrowth disorders that now appear to span a wide spectrum of overlapping phenotypic, neuroimaging, and neuropathologic features and molecular pathogenesis. These molecular advances also bring to light the possibility of pathway-based therapies for these often medically devastating developmental disorders.
Collapse
|
417
|
Zhang C, Cao S, Toole BP, Xu Y. Cancer may be a pathway to cell survival under persistent hypoxia and elevated ROS: a model for solid-cancer initiation and early development. Int J Cancer 2014; 136:2001-11. [PMID: 24828886 DOI: 10.1002/ijc.28975] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/05/2014] [Indexed: 12/20/2022]
Abstract
A number of proposals have been made in the past century regarding what may drive sporadic cancers to initiate and develop. Yet the problem remains largely unsolved as none of the proposals have been widely accepted as cancer-initiation drivers. We propose here a driver model for the initiation and early development of solid cancers associated with inflammation-induced chronic hypoxia and reactive oxygen species (ROS) accumulation. The model consists of five key elements: (i)human cells tend to have a substantial gap between ATP demand and supply during chronic hypoxia, which would inevitably lead to increased uptake of glucose and accumulation of its metabolites; (ii) the accumulation of these metabolites will cast mounting pressure on the cells and ultimately result in the production and export of hyaluronic acid; (iii) the exported hyaluronic acid will be degraded into fragments of various sizes, serving as tissue-repair signals, including signals for cell proliferation, cell survival and angiogenesis, which lead to the initial proliferation of the underlying cells; (iv) cell division provides an exit for the accumulated glucose metabolites using them towards macromolecular synthesis for the new cell, and hence alleviate the pressure from the metabolite accumulation; and (v) this process continues as long as the hypoxic condition persists. In tandem, genetic mutations may be selected to make cell divisions and hence survival more sustainable and efficient, also increasingly more uncontrollable. This model also applies to some hereditary cancers as their key mutations, such as BRCA for breast cancer, generally lead to increased ROS and ultimately to repression of mitochondrial activities and up-regulation of glycolysis, as well as hypoxia; hence the energy gap, glucose-metabolite accumulation, hyaluronic acid production and continuous cell division for survival.
Collapse
Affiliation(s)
- Chi Zhang
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA
| | | | | | | |
Collapse
|
418
|
PTENα, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism. Cell Metab 2014; 19:836-48. [PMID: 24768297 PMCID: PMC4097321 DOI: 10.1016/j.cmet.2014.03.023] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/07/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
PTEN is one of the most frequently mutated genes in human cancer. It is known that PTEN has a wide range of biological functions beyond tumor suppression. Here, we report that PTENα, an N-terminally extended form of PTEN, functions in mitochondrial metabolism. Translation of PTENα is initiated from a CUG codon upstream of and in-frame with the coding region of canonical PTEN. Eukaryotic translation initiation factor 2A (eIF2A) controls PTENα translation, which requires a CUG-centered palindromic motif. We show that PTENα induces cytochrome c oxidase activity and ATP production in mitochondria. TALEN-mediated somatic deletion of PTENα impairs mitochondrial respiratory chain function. PTENα interacts with canonical PTEN to increase PINK1 protein levels and promote energy production. Our studies demonstrate the importance of eIF2A-mediated alternative translation for generation of protein diversity in eukaryotic systems and provide insights into the mechanism by which the PTEN family is involved in multiple cellular processes.
Collapse
|
419
|
Rudzińska M, Gaweł D, Sikorska J, Karpińska KM, Kiedrowski M, Stępień T, Marchlewska M, Czarnocka B. The role of podoplanin in the biology of differentiated thyroid cancers. PLoS One 2014; 9:e96541. [PMID: 24797369 PMCID: PMC4010536 DOI: 10.1371/journal.pone.0096541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023] Open
Abstract
Podoplanin (PDPN), a mucin-type transmembrane glycoprotein specific to the lymphatic system is expressed in a variety of human cancers, and is regarded as a factor promoting tumor progression. The purpose of this study was to elucidate the molecular role of PDPN in the biology of thyroid cancer cells. PDPN expression was evaluated in primary thyroid carcinomas and thyroid carcinoma cell lines by RT-qPCR, Western blotting, IF and IHC. To examine the role of podoplanin in determining a cell's malignant potential (cellular migration, invasion, proliferation, adhesion, motility, apoptosis), a thyroid cancer cell line with silenced PDPN expression was used. We observed that PDPN was solely expressed in the cancer cells of 40% of papillary thyroid carcinoma (PTC) tissues. Moreover, PDPN mRNA and protein were highly expressed in PTC-derived TPC1 and BcPAP cell lines but were not detected in follicular thyroid cancer derived cell lines. PDPN knock-down significantly decreased cellular invasion, and modestly reduced cell migration, while proliferation and adhesion were not affected. Our results demonstrate that PDPN mediates the invasive properties of cells derived from papillary thyroid carcinomas, suggesting that podoplanin might promote PTC progression.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Damian Gaweł
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Justyna Sikorska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Kamila M. Karpińska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Mirosław Kiedrowski
- Department of Pathology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Tomasz Stępień
- Department of General and Endocrinological Surgery, Copernicus Memorial Hospital, Łódź, Poland
| | - Magdalena Marchlewska
- Department of General and Endocrinological Surgery, Copernicus Memorial Hospital, Łódź, Poland
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
- * E-mail:
| |
Collapse
|
420
|
Vural HC. PCR-SSCP-DNA Sequencing Method in DetectingPTENGene Mutation and its Significance in Human Breast Cancer in Turkish Populations. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
421
|
Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE. PTEN function: the long and the short of it. Trends Biochem Sci 2014; 39:183-90. [PMID: 24656806 DOI: 10.1016/j.tibs.2014.02.006] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and -independent roles, and genetic alterations in PTEN lead to deregulation of protein synthesis, the cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and -modifying proteins have profound effects on the tumor suppressive functions of PTEN. Moreover, recent studies identified mechanisms by which PTEN can exit cells, via either exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Cindy Hodakoski
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Douglas Barrows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Sarah M Mense
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
422
|
Lasarge CL, Danzer SC. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation. Front Mol Neurosci 2014; 7:18. [PMID: 24672426 PMCID: PMC3953715 DOI: 10.3389/fnmol.2014.00018] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/27/2014] [Indexed: 01/19/2023] Open
Abstract
The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2). These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1, and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.
Collapse
Affiliation(s)
- Candi L Lasarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; Department of Anesthesia, University of Cincinnati Cincinnati, OH, USA ; Department of Pediatrics, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
423
|
Kalli AC, Devaney I, Sansom MSP. Interactions of phosphatase and tensin homologue (PTEN) proteins with phosphatidylinositol phosphates: insights from molecular dynamics simulations of PTEN and voltage sensitive phosphatase. Biochemistry 2014; 53:1724-32. [PMID: 24588644 PMCID: PMC4167384 DOI: 10.1021/bi5000299] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
The
phosphatase and tensin homologue (PTEN) and the Ciona
intestinalis voltage sensitive phosphatase (Ci-VSP) are both
phosphatidylinositol phosphate (PIP) phosphatases that contain a C2
domain. PTEN is a tumor suppressor protein that acts as a phosphatase
on PIP3 in mammalian cell membranes. It contains two principal
domains:
a phosphatase domain (PD) and a C2 domain. Despite detailed structural
and functional characterization, less is known about its mechanism
of interaction with PIP-containing lipid bilayers. Ci-VSP consists
of an N-terminal transmembrane voltage sensor domain and a C-terminal
PTEN domain, which in turn contains a PD and a C2 domain. The nature
of the interaction of the PTEN domain of Ci-VSP with membranes has
not been well established. We have used multiscale molecular dynamics
simulations to define the interaction mechanisms
of PTEN and of the Ci-VSP PTEN domains with PIP-containing lipid bilayers.
Our results suggest a novel mechanism of association of the PTEN with
such bilayers, in which an initial electrostatics-driven encounter
of the protein and bilayer is followed by reorientation of the protein
to optimize its interactions with PIP molecules in the membrane. Although
a PIP3 molecule binds close to the active site of PTEN,
our simulations suggest a further conformational change of the protein
may be required for catalytically productive binding to occur. Ci-VSP
interacted with membranes in an orientation comparable to that of
PTEN but bound directly to PIP-containing membranes without a subsequent
reorientation step. Again, PIP3 bound close to the active
site of the Ci-VSP PD, but not in a catalytically productive manner.
Interactions of Ci-VSP with the bilayer induced clustering of PIP
molecules around the protein.
Collapse
Affiliation(s)
- Antreas C Kalli
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | | | | |
Collapse
|
424
|
Garcia-Junco-Clemente P, Golshani P. PTEN: A master regulator of neuronal structure, function, and plasticity. Commun Integr Biol 2014; 7:e28358. [PMID: 24778766 PMCID: PMC3995733 DOI: 10.4161/cib.28358] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
PTEN (phosphatase and tensin homolog on chromosome ten) is a dual protein/lipid phosphatase that dephosphorylates PIP3, thereby inhibiting the AKT/mTOR pathway. This inhibition ultimately decreases protein translation, cell proliferation and cell growth. In the central nervous system, inhibition of PTEN leads to increased stem cell proliferation, somatic, dendritic and axonal growth, accelerated spine maturation, diminished synaptic plasticity, and altered intrinsic excitability. In agreement with these findings, patients carrying single-copy inactivating mutations of PTEN suffer from autism, macrocephaly, mental retardation, and epilepsy.(1) (-) (9) Understanding the mechanisms through which PTEN modulates the structure, function, and plasticity of cortical networks is a major focus of study. Preventing and reversing the changes induced by loss of Pten in model animals will pave the way for treatments in humans.
Collapse
Affiliation(s)
| | - Peyman Golshani
- Department of Neurology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA ; West Los Angeles VA Medical Center; Los Angeles, CA USA
| |
Collapse
|
425
|
Li J, Gong P, Lyu X, Yao K, Li X, Peng H. Aberrant CpG island methylation of PTEN is an early event in nasopharyngeal carcinoma and a potential diagnostic biomarker. Oncol Rep 2014; 31:2206-12. [PMID: 24604064 DOI: 10.3892/or.2014.3061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/14/2014] [Indexed: 11/06/2022] Open
Abstract
The inactivation of phosphatase and tensin homolog (PTEN) due to its CpG island hypermethylation has been observed in some types of tumors except nasopharyngeal carcinoma (NPC). In the present study, we focused on the aberrant methylation of PTEN CpG islands in NPC. The mRNA expression of PTEN was detected by quantitative PCR in 45 NPC and 22 non-tumor nasopharyngeal epithelial (NP) tissues. The methylation status of PTEN was examined by methylation-specific polymerase chain reaction and sequencing. The mRNA expression of PTEN in three NPC cell lines treated with 5-aza-2'-deoxycytidine (5-aza-dC) was also examined. PTEN was downregulated in both NPC tissues and NPC cell lines and a relatively higher methylation level of PTEN was found in NPC specimens (82.2%) relative to NP tissues (5.3%). The PTEN mRNA expression was restored in NPC cell lines by treatment with 5-aza-dC. These results first reveal an epigenetic alteration, aberrant methylation of PTEN, in NPC, which is probably an early event and may be regarded as a novel candidate biomarker for early stage of NPC detection and prevention.
Collapse
Affiliation(s)
- Jinbang Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Pinggui Gong
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoming Lyu
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kaitai Yao
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xin Li
- Cancer Research Institute and the Provincial Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong Peng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
426
|
Rasool S, Rasool V, Naqvi T, Ganai BA, Shah BA. Genetic unraveling of colorectal cancer. Tumour Biol 2014; 35:5067-82. [PMID: 24573608 DOI: 10.1007/s13277-014-1713-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/29/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a common disease in both men and women (being the third most common cancer in men and the second most common among women) and thus represents an important and serious public health issue, especially in the western world. Although it is a well-established fact that cancers of the large intestine produce symptoms relatively earlier at a stage that can be easily cured by resection, a large number of people lose their lives to this deadly disease each year. Recent times have seen an important change in the incidence of colorectal cancer in different parts of the world. The etiology of colorectal cancer is multifactorial and is likely to involve the actions of genes at multiple levels along the multistage carcinogenesis process. Exhaustive efforts have been made out in the direction of unraveling the role of various environmental factors, gene mutations, and polymorphisms worldwide (as well as in Kashmir-"a valley of gastrointestinal cancers") that have got a role to play in the development of this disease so that antitumor drugs could be developed against this cancer, first, and, finally, the responsiveness or resistance to these agents could be understood for combating this global issue.
Collapse
Affiliation(s)
- Sabha Rasool
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | | | | | | | | |
Collapse
|
427
|
Stanich PP, Pilarski R, Rock J, Frankel WL, El-Dika S, Meyer MM. Colonic manifestations of PTEN hamartoma tumor syndrome: Case series and systematic review. World J Gastroenterol 2014; 20:1833-1838. [PMID: 24587660 PMCID: PMC3930981 DOI: 10.3748/wjg.v20.i7.1833] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/12/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate our clinical experience with the colonic manifestations of phosphatase and tensin homolog on chromosome ten (PTEN) hamartoma tumor syndrome (PHTS) and to perform a systematic literature review regarding the same.
METHODS: This study was approved by the appropriate institutional review board prior to initiation. A clinical genetics database was searched for patients with PHTS or a component syndrome that received gastrointestinal endoscopy or pathology interpretation at our center. These patient’s records were retrospectively reviewed for clinical characteristics (including family history and genetic testing), endoscopy results and pathology findings. We also performed a systematic review of the literature for case series of PHTS or component syndromes that reported gastrointestinal manifestations and investigations published after consensus diagnostic criteria were established in 1996. These results were compiled and reported.
RESULTS: Eight patients from our institution met initial inclusion criteria. Of these, 5 patients underwent 4.2 colonoscopies at mean age 45.8 ± 10.8 years. All were found to have colon polyps during their clinical course and polyp histology included adenoma, hyperplastic, ganglioneuroma and juvenile. No malignant lesions were identified. Two had multiple histologic types. One patient underwent colectomy due to innumerable polyps and concern for future malignant potential. Systematic literature review of PHTS patients undergoing endoscopy revealed 107 patients receiving colonoscopy at mean age 37.4 years. Colon polyps were noted in 92.5% and multiple colon polyp histologies were reported in 53.6%. Common polyp histologies included hyperplastic (43.6%), adenoma (40.4%), hamartoma (38.3%), ganglioneuroma (33%) and inflammatory (24.5%) polyps. Twelve (11.2%) patients had colorectal cancer at mean age 46.7 years (range 35-62). Clinical outcomes secondary to colon polyposis and malignancy were not commonly reported.
CONCLUSION: PHTS has a high prevalence of colon polyposis with multiple histologic types. It should be considered a mixed polyposis syndrome. Systematic review found an increased prevalence of colorectal cancer and we recommend initiating colonoscopy for colorectal cancer surveillance at age 35 years.
Collapse
|
428
|
Sun Z, Huang C, He J, Lamb KL, Kang X, Gu T, Shen WH, Yin Y. PTEN C-terminal deletion causes genomic instability and tumor development. Cell Rep 2014; 6:844-54. [PMID: 24561254 DOI: 10.1016/j.celrep.2014.01.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/22/2013] [Accepted: 01/23/2014] [Indexed: 12/18/2022] Open
Abstract
Tumor suppressor PTEN controls genomic stability and inhibits tumorigenesis. The N-terminal phosphatase domain of PTEN antagonizes the PI3K/AKT pathway, but its C-terminal function is less defined. Here, we describe a knockin mouse model of a nonsense mutation that results in the deletion of the entire Pten C-terminal region, referred to as Pten(ΔC). Mice heterozygous for Pten(ΔC) develop multiple spontaneous tumors, including cancers and B cell lymphoma. Heterozygous deletion of the Pten C-terminal domain also causes genomic instability and common fragile site rearrangement. We found that Pten C-terminal disruption induces p53 and its downstream targets. Simultaneous depletion of p53 promotes metastasis without influencing the initiation of tumors, suggesting that p53 mainly suppresses tumor progression. Our data highlight the essential role of the PTEN C terminus in the maintenance of genomic stability and suppression of tumorigenesis.
Collapse
Affiliation(s)
- Zhuo Sun
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PRC; Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Chuanxin Huang
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Jinxue He
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Kristy L Lamb
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Xi Kang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PRC; Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Tingting Gu
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Wen Hong Shen
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PRC; Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
429
|
Iwasa K, Hayashi S, Fujishiro T, Kanzaki N, Hashimoto S, Sakata S, Chinzei N, Nishiyama T, Kuroda R, Kurosaka M. PTEN regulates matrix synthesis in adult human chondrocytes under oxidative stress. J Orthop Res 2014; 32:231-7. [PMID: 24155249 DOI: 10.1002/jor.22506] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/24/2013] [Indexed: 02/04/2023]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was identified as an important tumor suppressor gene. PTEN functions as a negative regulator of phosphoinositol-3-kinase (PI3K)-Akt and MEK/ERK signaling. The PI3K-Akt pathway is critical for cell survival, differentiation, and matrix synthesis. Oxidative stress is considered a critical factor in the onset and progression of osteoarthritis (OA). Therefore, we investigated the function of PTEN in OA chondrocytes under oxidative stress. Chondrocytes were treated with insulin-like growth factor-1 (IGF-1) and/or tert-butyl hydroperoxide (tBHP), which causes oxidative stress. The expression levels of type2 collagen (Col2a1) and aggrecan were analyzed by real-time PCR, and phosphorylation of Akt and ERK1/2 was analyzed by Western blotting. Chondrocytes were treated with PTEN-specific small interfering RNA (siRNA), as well as IGF-1 and/or tBHP. PTEN and IGF-1 expressions in OA chondrocytes were increased. The downregulation of PTEN expression increased the expression levels of Col2a1 and aggrecan, and increased proteoglycan synthesis under oxidative stress. Oxidative stress decreased the phosphorylation of Akt and increased that of ERK1/2. The downregulation of PTEN expression increased Akt phosphorylation, but did not increase that of ERK 1/2. Our results suggest that PTEN regulates matrix synthesis via the PI3K-Akt pathway under oxidative stress.
Collapse
Affiliation(s)
- Kenjiro Iwasa
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Molinari F, Frattini M. Functions and Regulation of the PTEN Gene in Colorectal Cancer. Front Oncol 2014; 3:326. [PMID: 24475377 PMCID: PMC3893597 DOI: 10.3389/fonc.2013.00326] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/20/2013] [Indexed: 12/20/2022] Open
Abstract
Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene located at chromosome 10q23.31, encoding for a 403-amino acid protein that possesses both lipid and protein phosphatase activities. The main function of PTEN is to block the PI3K pathway by dephosphorylating phosphatidylinositol (PI) 3,4,5-triphosphate to PI-4,5-bisphosphate thus counteracting PI3K function. PTEN inactivation is a frequent event in many cancer types and can occur through various genetic alterations including point mutations, large chromosomal deletions, and epigenetic mechanisms. In colorectal cancer (CRC) PTEN is altered through mixed genetic/epigenetic mechanisms (typically: mutations and promoter hypermethylation or 10q23 LOH and promoter hypermethylation), which lead to the biallelic inactivation of the protein in 20–30% of cases. The role of PTEN as a prognostic and predictive factor in CRC has been addressed by relatively few works. This review is focused on the report and on the discussion of the studies investigating these aspects. Overall, at the moment, there are conflicting results and, therefore it has not been clarified whether PTEN might play a prognostic role in CRC. The same is valid also for the predictive role, leading to the fact that PTEN evaluation cannot be used in routinely diagnosis for the early identification of patients who might be addressed to the treatment with EGFR-targeted therapies, at odds with other genetic alterations belonging to EGFR-downstream pathways. The reason of discordant results may be attributable to several issues: (1) the size of the analyzed cohort, (2) patients inclusion criteria, (3) the methods of assessing PTEN alteration. In particular, there are no standardized methods to evaluate this marker, especially for immunohistochemistry, a technique suffering of intra and inter-observer variability due to the semi-quantitative character of such an analysis. In conclusion, much work, especially in large and homogeneous cohorts of cases from different laboratories, has to be done before the establishment of PTEN as prognostic or predictive marker in CRC.
Collapse
Affiliation(s)
- Francesca Molinari
- Laboratory of Molecular Pathology, Institute of Pathology , Locarno , Switzerland
| | - Milo Frattini
- Laboratory of Molecular Pathology, Institute of Pathology , Locarno , Switzerland
| |
Collapse
|
431
|
Ahmed M, Lalloo F, Evans DG. Update on genetic predisposition to breast cancer. Expert Rev Anticancer Ther 2014; 9:1103-13. [DOI: 10.1586/era.09.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
432
|
Haas NB, Nathanson KL. Hereditary kidney cancer syndromes. Adv Chronic Kidney Dis 2014; 21:81-90. [PMID: 24359990 DOI: 10.1053/j.ackd.2013.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 12/17/2022]
Abstract
Inherited susceptibility to kidney cancer is a fascinating and complex topic. Our knowledge about types of genetic syndromes associated with an increased risk of disease is continually expanding. Currently, there are 10 syndromes associated with an increased risk of all types of kidney cancer, which are reviewed herein. Clear cell kidney cancer is associated with von Hippel Lindau disease, chromosome 3 translocations, PTEN hamartomatous syndrome, and mutations in the BAP1 gene as well as several of the genes encoding the proteins comprising the succinate dehydrogenase complex (SDHB/C/D). Type 1 papillary kidney cancers arise in conjunction with germline mutations in MET and type 2 as part of hereditary leiomyomatosis and kidney cell cancer (fumarate hydratase [FH] mutations). Chromophone and oncocytic kidney cancers are predominantly associated with Birt-Hogg-Dubé syndrome. Patients with Tuberous Sclerosis Complex (TSC) commonly have angiomyolipomas and rarely their malignant counterpart epithelioid angiomyolipomas. The targeted therapeutic options for the kidney cancer associated with these diseases are just starting to expand and are an area of active clinical research.
Collapse
|
433
|
Oncogenic events and therapeutic targets in thyroid cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
434
|
PTEN, Longevity and Age-Related Diseases. Biomedicines 2013; 1:17-48. [PMID: 28548055 PMCID: PMC5423463 DOI: 10.3390/biomedicines1010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of PTEN, this protein has been shown to be an effective suppressor of cancer and a contributor to longevity. This report will review, in depth, the associations between PTEN and other molecules, its mutations and regulations in order to present how PTEN can be used to increase longevity. This report will collect recent research of PTEN and use this to discuss PTEN’s role in caloric restriction, antioxidative defense of DNA-damage and the role it plays in suppressing tumors. The report will also discuss that variety of ways that PTEN can be compromised, through mutations, complete loss of alleles and its main antagonist, the PI3K/AKT pathway.
Collapse
|
435
|
Zhang J, Zhang P, Wei Y, Piao HL, Wang W, Maddika S, Wang M, Chen D, Sun Y, Hung MC, Chen J, Ma L. Deubiquitylation and stabilization of PTEN by USP13. Nat Cell Biol 2013; 15:1486-1494. [PMID: 24270891 PMCID: PMC3951854 DOI: 10.1038/ncb2874] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022]
Abstract
The tumor suppressor PTEN is frequently lost in human cancers. In addition to gene mutations and deletions, recent studies have revealed the importance of post-translational modifications, such as ubiquitination, in the regulation of PTEN stability, activity and localization. However, the deubiquitinase that regulates PTEN poly-ubiquitination and protein stability remains unknown. Here we screened a total of 30 deubiquitinating enzymes (DUBs) and identified five DUBs that physically associate with PTEN. One of them, USP13, stabilizes PTEN protein via direct binding and deubiquitination of PTEN. Loss of USP13 in breast cancer cells promotes AKT phosphorylation, cell proliferation, anchorage-independent growth, glycolysis and tumor growth through downregulation of PTEN. Conversely, overexpression of USP13 suppresses tumorigenesis and glycolysis in PTEN-positive but not PTEN-null breast cancer cells. Importantly, USP13 protein is downregulated in human breast tumors and correlates with PTEN protein levels. These findings identify USP13 as a tumor-suppressing protein that functions through deubiquitination and stabilization of PTEN.
Collapse
Affiliation(s)
- Jinsong Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Peijing Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hai-Long Piao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wenqi Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India
| | - Min Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Dahu Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Cancer Biology Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 402, Taiwan
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Cancer Biology Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Cancer Biology Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
436
|
Bellizzi AM. Contributions of molecular analysis to the diagnosis and treatment of gastrointestinal neoplasms. Semin Diagn Pathol 2013; 30:329-61. [DOI: 10.1053/j.semdp.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
437
|
Pilarski R, Burt R, Kohlman W, Pho L, Shannon KM, Swisher E. Cowden Syndrome and the PTEN Hamartoma Tumor Syndrome: Systematic Review and Revised Diagnostic Criteria. J Natl Cancer Inst 2013; 105:1607-16. [DOI: 10.1093/jnci/djt277] [Citation(s) in RCA: 372] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
438
|
Lachlan KL. Cowden syndrome and the PTEN hamartoma tumor syndrome: how to define rare genetic syndromes. J Natl Cancer Inst 2013; 105:1595-7. [PMID: 24136892 DOI: 10.1093/jnci/djt290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Katherine L Lachlan
- Affiliations of author: Wessex Clinical Genetics Service, University of Southampton Foundation NHS Trust, Southampton, UK; and Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southamption, UK
| |
Collapse
|
439
|
Mester J, Eng C. When overgrowth bumps into cancer: the PTEN-opathies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:114-21. [PMID: 23613428 DOI: 10.1002/ajmg.c.31364] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PTEN is a dual-specificity phosphatase and well-known tumor suppressor gene. When functioning properly, it works in its canonical pathway to inhibit AKT/mTOR and MAPK signaling, leading to cell death and growth regulation. PTEN mutations cause dysregulation of these pathways, resulting in cellular proliferation and overgrowth. When germline mutations are present as in patients with PTEN Hamartoma Tumor Syndrome (PHTS), benign and malignant neoplasias occur as well as cerebral overgrowth and neurodevelopmental abnormalities. This review article will summarize recent laboratory and clinical investigations relating to PTEN, highlighting the overgrowth aspects of this syndrome and the molecular drivers behind these key phenotypes. Finally, therapies developed targeted the PI3K/AKT/mTOR pathway for other tumor predisposition syndromes will be discussed.
Collapse
Affiliation(s)
- Jessica Mester
- PTEN/Cowden Multidisciplinary Clinic, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
440
|
Wang Q, Weisberg E, Zhao JJ. The gene dosage of class Ia PI3K dictates the development of PTEN hamartoma tumor syndrome. Cell Cycle 2013; 12:3589-93. [PMID: 24131925 DOI: 10.4161/cc.26812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The PTEN hamartoma tumor syndrome (PHTS) is a complex disorder caused by germline inactivating mutations of the tumor suppressor gene PTEN. Loss of PTEN function leads to unimpeded phosphatidylinositol-3'-kinase (PI3K) activity and PI3K-driven cell division. Individuals with PHTS develop benign hamartomas in various tissues and have an increased risk of developing malignant diseases. Notably, no effective therapy currently exists for this disorder. Using both genetic mouse models and pharmacological approaches, we recently demonstrated that PI3K p110α and p110β isoforms play spatially distinct but concerted roles in the skin that are required for the development and maintenance of PHTS. We also show that treatment with a pan-PI3K inhibitor prevents the development of skin PHTS and reverses advanced-stage skin hamartomas in vivo. Here, we report that genetic ablation of only 3 out of 4 p110 alleles is sufficient to block the development of skin hamartomas resulting from the complete loss of Pten in mice. Similar to our findings in skin, we now also show that mammary gland neoplastic lesions can be prevented or reversed upon PI3K inhibition in our PHTS mouse model. Our data suggest a possible route to chemoprevention using reduced doses of PI3K inhibitors for PTEN-deficient carrier patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cancer Biology; Dana-Farber Cancer Institute; Boston, MA USA; Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | | | | |
Collapse
|
441
|
Genome-wide association study of breast cancer in the Japanese population. PLoS One 2013; 8:e76463. [PMID: 24143190 PMCID: PMC3797071 DOI: 10.1371/journal.pone.0076463] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common malignancy among women in worldwide including Japan. Several studies have identified common genetic variants to be associated with the risk of breast cancer. Due to the complex linkage disequilibrium structure and various environmental exposures in different populations, it is essential to identify variants associated with breast cancer in each population, which subsequently facilitate the better understanding of mammary carcinogenesis. In this study, we conducted a genome-wide association study (GWAS) as well as whole-genome imputation with 2,642 cases and 2,099 unaffected female controls. We further examined 13 suggestive loci (P<1.0×10−5) using an independent sample set of 2,885 cases and 3,395 controls and successfully validated two previously-reported loci, rs2981578 (combined P-value of 1.31×10−12, OR = 1.23; 95% CI = 1.16–.30) on chromosome 10q26 (FGFR2), rs3803662 (combined P-value of 2.79×10−11, OR = 1.21; 95% CI = 1.15–.28) and rs12922061 (combined P-value of 3.97×10−10, OR = 1.23; 95% CI = 1.15–.31) on chromosome 16q12 (TOX3-LOC643714). Weighted genetic risk score on the basis of three significantly associated variants and two previously reported breast cancer associated loci in East Asian population revealed that individuals who carry the most risk alleles in category 5 have 2.2 times higher risk of developing breast cancer in the Japanese population than those who carry the least risk alleles in reference category 1. Although we could not identify additional loci associated with breast cancer, our study utilized one of the largest sample sizes reported to date, and provided genetic status that represent the Japanese population. Further local and international collaborative study is essential to identify additional genetic variants that could lead to a better, accurate prediction for breast cancer.
Collapse
|
442
|
Piccione M, Fragapane T, Antona V, Giachino D, Cupido F, Corsello G. PTEN hamartoma tumor syndromes in childhood: Description of two cases and a proposal for follow-up protocol. Am J Med Genet A 2013; 161A:2902-8. [DOI: 10.1002/ajmg.a.36266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Maria Piccione
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D'Alessandro”; University of Palermo; Palermo Italy
| | - Tiziana Fragapane
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D'Alessandro”; University of Palermo; Palermo Italy
| | - Vincenzo Antona
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D'Alessandro”; University of Palermo; Palermo Italy
| | - Daniela Giachino
- Department of Clinical and Biological Sciences; University of Torino; Torino Italy
| | - Francesco Cupido
- Department of Surgical and Oncological Disciplines; University of Palermo; Palermo Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D'Alessandro”; University of Palermo; Palermo Italy
| |
Collapse
|
443
|
Reinbolt RE, Hays JL. The Role of PARP Inhibitors in the Treatment of Gynecologic Malignancies. Front Oncol 2013; 3:237. [PMID: 24098868 PMCID: PMC3787651 DOI: 10.3389/fonc.2013.00237] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/28/2013] [Indexed: 01/08/2023] Open
Abstract
Gynecologic malignancies annually account for over 91,000 new cancer cases and approximately 28,000 deaths in the United States. Although there have been advancements in cytotoxic chemotherapies, there has not been significant improvement in overall survival in these patients. While targeted therapies have shown some benefit in many solid tumors, further development of these agents is needed for the treatment of gynecologic malignancies. Poly(ADP-ribose) polymerase (PARP) catalyzes the polyADP-ribosylation of proteins involved in DNA repair. Inhibitors of PARP were originally developed for cancers with homologous recombination deficiencies, such as those harboring mutations in BRCA1 or BRCA2 genes. However, pre-clinical research and clinical trials have suggested that the activity of PARP inhibitors is not limited to those with BRCA mutations. PARP inhibitors may have activity in cancers deficient in other DNA repair genes, signaling pathways that mitigate DNA repair, or in combination with DNA-damaging agents independent of DNA repair dysfunction. Currently there are seven different PARP inhibitors in clinical development for cancer. While there has been promising clinical activity for some of these agents, there are still significant unanswered questions regarding their use. Going forward, specific questions that must be answered include timing of therapy, use in combination with cytotoxic agents or as single-agent maintenance therapy, and whether there is a predictive biomarker that can be used with PARP inhibition. Even with large strides in the treatment of many gynecologic malignancies in recent years, it is imperative that we develop newer agents and methods to identify patients that may benefit from these compounds. The focus of this review will be on pre-clinical data, current clinical trials, and the future of PARP inhibitors in the treatment of ovarian, endometrial, and cervical cancer.
Collapse
Affiliation(s)
- Raquel E Reinbolt
- Division of Medical Oncology, Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center , Columbus, OH , USA
| | | |
Collapse
|
444
|
Myers AP. New Strategies in Endometrial Cancer: Targeting the PI3K/mTOR Pathway—The Devil Is in the Details. Clin Cancer Res 2013; 19:5264-74. [DOI: 10.1158/1078-0432.ccr-13-0615] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
445
|
Wang Q, Von T, Bronson R, Ruan M, Mu W, Huang A, Maira SM, Zhao JJ. Spatially distinct roles of class Ia PI3K isoforms in the development and maintenance of PTEN hamartoma tumor syndrome. Genes Dev 2013; 27:1568-80. [PMID: 23873941 DOI: 10.1101/gad.216069.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PTEN hamartoma tumor syndrome (PHTS) comprises a collection of genetic disorders associated with germline mutations in the tumor suppressor gene PTEN. Therapeutic options and preventative measures for PHTS are limited. Using both genetically engineered mouse models and pharmacological PI3K isoform-selective inhibitors, we found that the roles of PI3K isoforms are spatially distinct in the skin: While p110α is responsible for the sustained survival of suprabasal cells of the epidermis in the absence of PTEN, p110β is important for the hyperproliferation of basal cells in PHTS. Furthermore, we identified a differential expression pattern of p110α and p110β in basal and suprabasal keratinocytes as well as differential PI3K regulation by upstream signals in the basal and suprabasal compartments of the epidermis, providing a potential molecular mechanism underlying the specific roles of PI3K isoforms in the epidermis. Finally, we demonstrate that combined inhibition of both PI3K isoforms prevents the development of PHTS and also reverses skin hamartomas that have reached advanced stages in mice. Together, these results not only advance our overall understanding of the diverse roles of PI3K isoforms, but also have the potential for meaningful translation via the clinical utilization of PI3K inhibitors for both prevention and therapy in PHTS patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
446
|
Abstract
BACKGROUND Nonmedullary thyroid cancers (NMTC) originate from the follicular cells of the thyroid gland and account for over 90% of all thyroid cancers. About 3-10% of the NMTCs are of familial origin, and familial NMTC (FNMTC) is defined as two or more affected first-degree relatives with NMTC in the absence of other known familial syndromes. SUMMARY The genes involved in the pathogenesis of FNMTC are yet to be elucidated, although some recent studies identified several predisposition loci with a high degree of genetic heterogeneity. To date, several studies have evaluated the aggressive tumor characteristics associated with FNMTC with conflicting results. Several studies demonstrated that patients with FNMTC have increased rates of multifocal disease, extrathyroidal invasion, and involved lymph nodes compared with sporadic disease. It has been hypothesized that this increased aggressiveness translates into higher recurrence rates and decreased survival of patients with FNMTC. CONCLUSION This review highlights clinical aspects and management dilemmas as well as controversial issues in FNMTC. Management recommendations are deduced.
Collapse
Affiliation(s)
- Haggi Mazeh
- 1 Section of Endocrine Surgery, Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | | |
Collapse
|
447
|
Lumb CN, Sansom MSP. Defining the membrane-associated state of the PTEN tumor suppressor protein. Biophys J 2013; 104:613-21. [PMID: 23442912 DOI: 10.1016/j.bpj.2012.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Phosphatase and tensin-homolog deleted on chromosome 10 (PTEN) is a tumor-suppressor protein that regulates phosphatidylinositol 3-kinase (PI3-K) signaling by binding to the plasma membrane and hydrolyzing the 3' phosphate from phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) to form phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2). Several loss-of-function mutations in PTEN that impair lipid phosphatase activity and membrane binding are oncogenic, leading to the development of a variety of cancers, but information about the membrane-associated state of PTEN remains sparse. We have modeled a membrane-associated state of the truncated PTEN structure bound to PI(3,4,5)P3 via multiscale molecular dynamics simulations. We show that the location of the membrane-binding surface agrees with experimental observations and is robust to changes in lipid composition. The level of membrane interaction is substantially reduced in the phosphatase domain for the triple mutant R161E/K163E/K164E, in line with experimental results. We observe clustering of anionic lipids around the C2 domain in preference to the phosphatase domain, suggesting that the C2 domain is involved in nonspecific interactions with negatively charged lipid headgroups. Finally, our simulations suggest that the oncogenicity of the R335L mutation may be due to a reduction in the interaction of the mutant PTEN with anionic lipids.
Collapse
Affiliation(s)
- Craig N Lumb
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
448
|
Abstract
This article presents an overview of the PI3K/Akt/mTOR signaling pathway. As a central regulator of cell growth, protein translation, survival, and metabolism, activation of this signaling pathway contributes to the pathogenesis of many tumor types. Biochemical and genetic aberrations of this pathway observed in various cancer types are explored. Last, pathway inhibitors both in development and already approved by the Food and Drug Administration are discussed.
Collapse
|
449
|
Conley-LaComb MK, Saliganan A, Kandagatla P, Chen YQ, Cher ML, Chinni SR. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol Cancer 2013; 12:85. [PMID: 23902739 PMCID: PMC3751767 DOI: 10.1186/1476-4598-12-85] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/01/2013] [Indexed: 02/08/2023] Open
Abstract
Introduction The chemokine CXCL12, also known as SDF-1, and its receptor, CXCR4, are overexpressed in prostate cancers and in animal models of prostate-specific PTEN deletion, but their regulation is poorly understood. Loss of the tumor suppressor PTEN (phosphatase and tensin homolog) is frequently observed in cancer, resulting in the deregulation of cell survival, growth, and proliferation. We hypothesize that loss of PTEN and subsequent activation of Akt, frequent occurrences in prostate cancer, regulate the CXCL12/CXCR4 signaling axis in tumor growth and bone metastasis. Methods Murine prostate epithelial cells from PTEN+/+, PTEN+/−, and PTEN−/− (prostate specific knockdown) mice as well as human prostate cancer cell lines C4-2B, PC3, and DU145 were used in gene expression and invasion studies with Akt inhibition. Additionally, HA-tagged Akt1 was overexpressed in DU145, and tumor growth in subcutaneous and intra-tibia bone metastasis models were analyzed. Results Loss of PTEN resulted in increased expression of CXCR4 and CXCL12 and Akt inhibition reversed expression and cellular invasion. These results suggest that loss of PTEN may play a key role in the regulation of this chemokine activity in prostate cancer. Overexpression of Akt1 in DU145 resulted in increased CXCR4 expression, as well as increased proliferation and cell cycle progression. Subcutaneous injection of these cells also resulted in increased tumor growth as compared to neo controls. Akt1 overexpression reversed the osteosclerotic phenotype associated with DU145 cells to an osteolytic phenotype and enhanced intra-osseous tumor growth. Conclusions These results suggest the basis for activation of CXCL12 signaling through CXCR4 in prostate cancer driven by the loss of PTEN and subsequent activation of Akt. Akt1-associated CXCL12/CXCR4 signaling promotes tumor growth, suggesting that Akt inhibitors may potentially be employed as anticancer agents to target expansion of PC bone metastases.
Collapse
Affiliation(s)
- M Katie Conley-LaComb
- Department of Urology, Wayne State University School of Medicine, 9245 Scott Hall 540 E, Canfield Avenue, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
450
|
|