401
|
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, USA
| | | |
Collapse
|
402
|
Zendo T, Yoneyama F, Sonomoto K. Lactococcal membrane-permeabilizing antimicrobial peptides. Appl Microbiol Biotechnol 2010; 88:1-9. [PMID: 20645082 DOI: 10.1007/s00253-010-2764-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/02/2010] [Accepted: 07/04/2010] [Indexed: 11/26/2022]
Abstract
A number of lactococcal antimicrobial peptides, bacteriocins have been discovered and characterized. Since Lactococcus spp. are generally regarded as safe bacteria, their bacteriocins are expected for various application uses. Most of lactococcal bacteriocins exert antimicrobial activity via membrane permeabilization. The most studied and prominent bacteriocin, nisin A is characterized in the high activity and has been utilized as food preservatives for more than half a century. Recently, other lactococcal bacteriocins such as lacticin Q were found to have distinguished features for further applications as the next generation to nisin.
Collapse
Affiliation(s)
- Takeshi Zendo
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|
403
|
Field D, Quigley L, O'Connor PM, Rea MC, Daly K, Cotter PD, Hill C, Ross RP. Studies with bioengineered Nisin peptides highlight the broad-spectrum potency of Nisin V. Microb Biotechnol 2010; 3:473-86. [PMID: 21255345 PMCID: PMC3815813 DOI: 10.1111/j.1751-7915.2010.00184.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/15/2010] [Indexed: 12/20/2022] Open
Abstract
Nisin A is the most thoroughly investigated member of the lantibiotic family of antimicrobial peptides. In addition to a long history of safe use as a food antimicrobial, its activity against multi-drug resistant pathogens has resulted in a renewed interest in applying nisin as a chemotherapeutic to treat bacterial infections. The wealth of Nisin-related information that has been generated has also led to the development of the biotechnological capacity to engineer novel Nisin variants with a view to improving the function and physicochemical properties of this already potent peptide. However, the identification of bioengineered Nisin derivatives with enhanced antimicrobial activity against Gram-positive targets is a recent event. In this study, we created stable producers of the most promising derivatives of Nisin A generated to date [M21V (hereafter Nisin V) and K22T (hereafter Nisin T)] and assessed their potency against a range of drug-resistant clinical, veterinary and food pathogens. Nisin T exhibited increased activity against all veterinary isolates, including streptococci and staphylococci, and against a number of multi-drug resistant clinical isolates including MRSA, but not vancomycin-resistant enterococci. In contrast, Nisin V displayed increased potency against all targets tested including hVISA strains and the hyper-virulent Clostridium difficile ribotype 027 and against important food pathogens such as Listeria monocytogenes and Bacillus cereus. Significantly, this enhanced activity was validated in a model food system against L. monocytogenes. We conclude that Nisin V possesses significant potential as a novel preservative or chemotherapeutic compound.
Collapse
Affiliation(s)
- Des Field
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Lisa Quigley
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | - Mary C. Rea
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Karen Daly
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - Colin Hill
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - R. Paul Ross
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Ireland
| |
Collapse
|
404
|
Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventós DS, Neve S, Ravn B, Bonvin AMJJ, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 2010; 328:1168-72. [PMID: 20508130 DOI: 10.1126/science.1185723] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Host defense peptides such as defensins are components of innate immunity and have retained antibiotic activity throughout evolution. Their activity is thought to be due to amphipathic structures, which enable binding and disruption of microbial cytoplasmic membranes. Contrary to this, we show that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular target. Consistently, binding studies confirmed the formation of an equimolar stoichiometric complex between Lipid II and plectasin. Furthermore, key residues in plectasin involved in complex formation were identified using nuclear magnetic resonance spectroscopy and computational modeling.
Collapse
Affiliation(s)
- Tanja Schneider
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA. Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol 2010; 8:e1000339. [PMID: 20351769 PMCID: PMC2843593 DOI: 10.1371/journal.pbio.1000339] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/16/2010] [Indexed: 11/19/2022] Open
Abstract
Lantibiotic synthetases are remarkable biocatalysts generating conformationally constrained peptides with a variety of biological activities by repeatedly utilizing two simple posttranslational modification reactions: dehydration of Ser/Thr residues and intramolecular addition of Cys thiols to the resulting dehydro amino acids. Since previously reported lantibiotic synthetases show no apparent homology with any other known protein families, the molecular mechanisms and evolutionary origin of these enzymes are unknown. In this study, we present a novel class of lanthionine synthetases, termed LanL, that consist of three distinct catalytic domains and demonstrate in vitro enzyme activity of a family member from Streptomyces venezuelae. Analysis of individually expressed and purified domains shows that LanL enzymes install dehydroamino acids via phosphorylation of Ser/Thr residues by a protein kinase domain and subsequent elimination of the phosphate by a phosphoSer/Thr lyase domain. The latter has sequence homology with the phosphothreonine lyases found in various pathogenic bacteria that inactivate host mitogen activated protein kinases. A LanC-like cyclase domain then catalyzes the addition of Cys residues to the dehydro amino acids to form the characteristic thioether rings. We propose that LanL enzymes have evolved from stand-alone protein Ser/Thr kinases, phosphoSer/Thr lyases, and enzymes catalyzing thiol alkylation. We also demonstrate that the genes for all three pathways to lanthionine-containing peptides are widespread in Nature. Given the remarkable efficiency of formation of lanthionine-containing polycyclic peptides and the latter's high degree of specificity for their cognate cellular targets, it is perhaps not surprising that (at least) three distinct families of polypeptide sequences have evolved to access this structurally and functionally diverse class of compounds.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bo Li
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jan Claesen
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Yanxiang Shi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mervyn J. Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
406
|
de Leeuw E, Li C, Zeng P, Li C, Diepeveen-de Buin M, Lu WY, Breukink E, Lu W. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett 2010; 584:1543-8. [PMID: 20214904 DOI: 10.1016/j.febslet.2010.03.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
Defensins constitute a major class of cationic antimicrobial peptides in mammals and vertebrates, acting as effectors of innate immunity against infectious microorganisms. It is generally accepted that defensins are bactericidal by disrupting the anionic microbial membrane. Here, we provide evidence that membrane activity of human alpha-defensins does not correlate with antibacterial killing. We further show that the alpha-defensin human neutrophil peptide-1 (HNP1) binds to the cell wall precursor lipid II and that reduction of lipid II levels in the bacterial membrane significantly reduces bacterial killing. The interaction between defensins and lipid II suggests the inhibition of cell wall synthesis as a novel antibacterial mechanism of this important class of host defense peptides.
Collapse
Affiliation(s)
- Erik de Leeuw
- University of Maryland Baltimore School of Medicine, Institute of Human Virology, Department of Biochemistry and Molecular Biology, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
407
|
Development of a fermentation process based on a defined medium for the production of pregallidermin, a nontoxic precursor of the lantibiotic gallidermin. Appl Microbiol Biotechnol 2010; 87:145-57. [DOI: 10.1007/s00253-010-2491-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 11/27/2022]
|
408
|
Meindl K, Schmiederer T, Schneider K, Reicke A, Butz D, Keller S, Gühring H, Vértesy L, Wink J, Hoffmann H, Brönstrup M, Sheldrick G, Süssmuth R. Labyrinthopeptins: A New Class of Carbacyclic Lantibiotics. Angew Chem Int Ed Engl 2010; 49:1151-4. [DOI: 10.1002/anie.200905773] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
409
|
Meindl K, Schmiederer T, Schneider K, Reicke A, Butz D, Keller S, Gühring H, Vértesy L, Wink J, Hoffmann H, Brönstrup M, Sheldrick G, Süssmuth R. Labyrinthopeptine - eine neue Klasse carbacyclischer Lantibiotika. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905773] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
410
|
|
411
|
Medaglia G, Valsesia G, Panke S. Development of a high cell-density protocol for the production of pregallidermin, a non-toxic precursor of the lantibiotic gallidermin. J Biotechnol 2010; 145:176-85. [DOI: 10.1016/j.jbiotec.2009.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/03/2009] [Accepted: 11/12/2009] [Indexed: 11/17/2022]
|
412
|
Schneider T, Sahl HG. An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 2009; 300:161-9. [PMID: 20005776 DOI: 10.1016/j.ijmm.2009.10.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Bacterial cell wall biosynthesis represents the target pathway for penicillin, the first antibiotic that was clinically applied on a large scale. Penicillin, by means of its beta-lactam ring, inhibits a number of enzymes which participate in inserting monomeric cell wall building blocks into the cell wall polymer and which have been termed penicillin-binding proteins (PBPs). Ever since the introduction of penicillin, hundreds of beta-lactam antibiotics have been developed and details of their molecular activities elaborated. Meanwhile, various additional classes of antibiotics have been described, which inhibit the same pathway, yet use target molecules others than the PBPs. Such classes include the glycopeptide antibiotics, lipopeptide and lipodepsipeptide antibiotics, the lantibiotics and various other natural product antibiotics with comparatively complex structures. They usually target the membrane-bound steps of the biosynthesis pathway and the highly conserved lipid-bound intermediates of the building block such as lipid II, which represents a particular "Achilles' heel" for antibiotic attack. With in-depth analysis of the activity of more recently identified inhibitors and with the availability of novel techniques for studying prokaryotic cell biology, new insights were obtained into the molecular organisation of the cell wall biosynthesis machinery and its interconnections with other vital cellular processes such as cell division. This, in turn, provides hints for new targets to be exploited and for the development of novel cell wall biosynthesis inhibitors.
Collapse
Affiliation(s)
- Tanja Schneider
- Institute of Medical Microbiology, Immunology and Parasitology-Pharmaceutical Microbiology Section, University of Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | | |
Collapse
|
413
|
Abstract
The Gram-negative bacterium Campylobacter is the most common bacterial cause of human gastroenteritis in the United States and many industrialized countries. Poultry, particularly chickens, is considered a major source of human campylobacteriosis. Thus, on-farm control of Campylobacter in poultry would reduce the risk of human exposure to this pathogen and have a significant impact on food safety and public health. To date, three general strategies have been proposed to control Campylobacter in poultry at the farm level: (1) reduction of environmental exposure (biosecurity measures), (2) an increase in poultry's host resistance to reduce Campylobacter carriage in the gut (e.g., competitive exclusion, vaccination, and host genetics selection), and (3) the use of antimicrobial alternatives to reduce and even eliminate Campylobacter from colonized chickens (e.g., bacteriophage therapy and bacteriocin treatment). Except for biosecurity measures, the other intervention approaches are currently not commercially available and are still under development. This review is focused on two promising strategies--vaccination and bacteriocin treatment. In particular, we extensively review recent research aimed at discovering and characterizing potent anti-Campylobacter bacteriocins to reduce Campylobacter load at the primary production level in poultry.
Collapse
Affiliation(s)
- Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee 37996-4574, USA.
| |
Collapse
|
414
|
Bouhss A, Al-Dabbagh B, Vincent M, Odaert B, Aumont-Nicaise M, Bressolier P, Desmadril M, Mengin-Lecreulx D, Urdaci MC, Gallay J. Specific interactions of clausin, a new lantibiotic, with lipid precursors of the bacterial cell wall. Biophys J 2009; 97:1390-7. [PMID: 19720027 DOI: 10.1016/j.bpj.2009.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 11/28/2022] Open
Abstract
We investigated the specificity of interaction of a new type A lantibiotic, clausin, isolated from Bacillus clausii, with lipid intermediates of bacterial envelope biosynthesis pathways. Isothermal calorimetry and steady-state fluorescence anisotropy (with dansylated derivatives) identified peptidoglycan lipids I and II, embedded in dodecylphosphocholine micelles, as potential targets. Complex formation with dissociation constants of approximately 0.3 muM and stoichiometry of approximately 2:1 peptides/lipid intermediate was observed. The interaction is enthalpy-driven. For the first time, to our knowledge, we evidenced the interaction between a lantibiotic and C(55)-PP-GlcNAc, a lipid intermediate in the biosynthesis of other bacterial cell wall polymers, including teichoic acids. The pyrophosphate moiety of these lipid intermediates was crucial for the interaction because a strong binding with undecaprenyl pyrophosphate, accounting for 80% of the free energy of binding, was observed. No binding occurred with the undecaprenyl phosphate derivative. The pentapeptide and the N-acetylated sugar moieties strengthened the interaction, but their contributions were weaker than that of the pyrophosphate group. The lantibiotic decreased the mobility of the pentapeptide. Clausin did not interact with the water-soluble UDP-MurNAc- and pyrophosphoryl-MurNAc-pentapeptides, pointing out the importance of the hydrocarbon chain of the lipid target.
Collapse
Affiliation(s)
- Ahmed Bouhss
- CNRS, UMR 8619, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Orsay, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Levengood MR, Knerr PJ, Oman TJ, van der Donk WA. In vitro mutasynthesis of lantibiotic analogues containing nonproteinogenic amino acids. J Am Chem Soc 2009; 131:12024-5. [PMID: 19655738 PMCID: PMC2732204 DOI: 10.1021/ja903239s] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Lantibiotics are ribosomally synthesized and post-translationally modified peptide antibiotics containing the characteristic thioether cross-links lanthionine and methyllanthionine. To date, no analogues of lantibiotics that contain nonproteinogenic amino acids have been reported. In this study, in vitro-reconstituted lacticin 481 synthetase was used in conjunction with synthetic peptide substrates containing nonproteinogenic amino acids to generate 11 analogues of lacticin 481. These analogues contained sarcosine and aminocyclopropanoic acid in place of Gly5, d-valine at position 6, 4-cyanoaminobutyric acid in place of Glu13, β3-homoarginine at the position of Asn15, N-butylglycine and β-Ala at Met16, naphthylalanine (Nal) at Trp19, 4-pyridynylalanine (Pal) at Phe21, and homophenylalanine (hPhe) at Phe23. Of these analogues, the Trp19Nal and Phe23hPhe mutants provided zones of inhibition larger than the parent compound in agar diffusion assays against the indicator strains Lactococcus lactis HP and Bacillus subtilis 6633. These two compounds also demonstrated improved MIC values against liquid cultures of L. lactis HP.
Collapse
Affiliation(s)
- Matthew R Levengood
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
416
|
Abstract
The biosynthesis of glycoconjugates such as N-glycoproteins and GPI-anchored proteins in eukaryotes and cell wall peptidoglycan and lipopolysaccharide in bacteria requires lipid intermediates to be flipped rapidly across the endoplasmic reticulum or bacterial cytoplasmic membrane (so-called biogenic membranes). Rapid flipping is also required to normalize the number of glycerophospholipids in the two leaflets of the bilayer as the membrane expands in a growing cell. Although lipids diffuse rapidly in the plane of the membrane, the intrinsic rate at which they flip across membranes is very low. Biogenic membranes possess dedicated lipid transporters or flippases to increase flipping to a physiologically sufficient rate. The flippases are "ATP-independent" and facilitate "downhill" transport. Most predicted biogenic membrane flippases have not been identified at the molecular level, and the few flippases that have been identified by genetic approaches have not been biochemically validated. Here we summarize recent progress on this fundamental topic and speculate on the mechanism(s) by which biogenic membrane flippases facilitate transbilayer lipid movement.
Collapse
Affiliation(s)
- Sumana Sanyal
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065
| | - Anant K. Menon
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065
| |
Collapse
|
417
|
Liu H, Pattabiraman VR, Vederas JC. Synthesis and Biological Activity of Oxa-Lacticin A2, a Lantibiotic Analogue with Sulfur Replaced by Oxygen. Org Lett 2009; 11:5574-7. [DOI: 10.1021/ol9025205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongqiang Liu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
418
|
Badaoui Najjar M, Kashtanov D, Chikindas ML. Natural Antimicrobials ε-Poly-l-lysine and Nisin A for Control of Oral Microflora. Probiotics Antimicrob Proteins 2009; 1:143. [DOI: 10.1007/s12602-009-9020-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
419
|
Oman TJ, van der Donk WA. Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem Biol 2009; 4:865-74. [PMID: 19678697 PMCID: PMC2812937 DOI: 10.1021/cb900194x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Haloduracin, a recently discovered two-peptide lantibiotic composed of the post-translationally modified peptides Halα and Halβ, is shown to have high potency against a range of Gram-positive bacteria and to inhibit spore outgrowth of Bacillus anthracis. The two peptides display optimal activity in a 1:1 stoichiometry and have efficacy similar to that of the commercially used lantibiotic nisin. However, haloduracin is more stable at pH 7 than nisin. Despite significant structural differences between the two peptides of haloduracin and those of the two-peptide lantibiotic lacticin 3147, these two systems show similarities in their mode of action. Like Ltnα, Halα binds to a target on the surface of Gram-positive bacteria, and like Ltnβ, the addition of Halβ results in pore formation and potassium efflux. Using Halα mutants, its B- and C-thioether rings are shown to be important but not required for bioactivity. A similar observation was made with mutants of Glu22, a residue that is highly conserved among several lipid II-binding lantibiotics such as mersacidin.
Collapse
Affiliation(s)
- Trent J. Oman
- Department of Chemistry, University of Illinois at Urbana-Champaign and the Howard Hughes Medical Institute, 600 S. Mathews Ave, Urbana, Illinois 61801
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign and the Howard Hughes Medical Institute, 600 S. Mathews Ave, Urbana, Illinois 61801
| |
Collapse
|
420
|
Huang YT, Lyu SY, Chuang PH, Hsu NS, Li YS, Chan HC, Huang CJ, Liu YC, Wu CJ, Yang WB, Li TL. In vitro Characterization of Enzymes Involved in the Synthesis of Nonproteinogenic Residue (2S,3S)-β-Methylphenylalanine in Glycopeptide Antibiotic Mannopeptimycin. Chembiochem 2009; 10:2480-7. [DOI: 10.1002/cbic.200900351] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
421
|
Yoneyama F, Fukao M, Zendo T, Nakayama J, Sonomoto K. Biosynthetic characterization and biochemical features of the third natural nisin variant, nisin Q, produced by Lactococcus lactis 61-14. J Appl Microbiol 2009; 105:1982-90. [PMID: 19120645 DOI: 10.1111/j.1365-2672.2008.03958.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To characterize the genetic and biochemical features of nisin Q. METHODS AND RESULTS The nisin Q gene cluster was sequenced, and 11 putative orfs having 82% homology with the nisin A biosynthesis gene cluster were identified. Nisin Q production was confirmed from the nisQ-introduced nisin Z producer. In the reporter assay, nisin Q exhibited an induction level that was threefold lower than that of nisin A. Nisin Q demonstrated an antimicrobial spectrum similar to those of the other nisins. Under oxidizing conditions, nisin Q retained a higher level of activity than nisin A. This higher oxidative tolerance could be attributed to the presence of only one methionine residue in nisin Q, in contrast to other nisins that contain two. CONCLUSIONS The 11 orfs of the nisin producers were identical with regard to their functions. The antimicrobial spectra of the three natural nisins were similar. Nisin Q demonstrated higher oxidative tolerance than nisin A. SIGNIFICANCE AND IMPACT OF THE STUDY Genetic and biochemical features of nisin Q are similar to those of other variants. Moreover, owing to its higher oxidative tolerance, nisin Q is a potential alternative for nisin A.
Collapse
Affiliation(s)
- F Yoneyama
- Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
422
|
Joshi PR, McGuire J, Neff JA. Synthesis and antibacterial activity of nisin-containing block copolymers. J Biomed Mater Res B Appl Biomater 2009; 91:128-34. [DOI: 10.1002/jbm.b.31381] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
423
|
Abstract
Antibiotic-resistant strains of pathogenic bacteria are increasingly prevalent in hospitals and the community. New antibiotics are needed to combat these bacterial pathogens, but progress in developing them has been slow. Historically, most antibiotics have come from a small set of molecular scaffolds whose functional lifetimes have been extended by generations of synthetic tailoring. The emergence of multidrug resistance among the latest generation of pathogens suggests that the discovery of new scaffolds should be a priority. Promising approaches to scaffold discovery are emerging; they include mining underexplored microbial niches for natural products, designing screens that avoid rediscovering old scaffolds, and repurposing libraries of synthetic molecules for use as antibiotics.
Collapse
Affiliation(s)
- Michael A. Fischbach
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
424
|
Antibiotics from microbes: converging to kill. Curr Opin Microbiol 2009; 12:520-7. [PMID: 19695947 DOI: 10.1016/j.mib.2009.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/20/2022]
Abstract
As genetically encoded small molecules, antibiotics are phenotypes that have resulted from mutation and natural selection. Advances in genetics, biochemistry, and bioinformatics have connected hundreds of antibiotics to the gene clusters that encode them, allowing these molecules to be analyzed using the tools of evolutionary biology. This review surveys examples of convergent evolution from microbially produced antibiotics, including the convergence of distinct gene clusters on similar phenotypes and the merger of distinct gene clusters into a single functional unit. Examining antibiotics through an evolutionary lens highlights the versatility of biosynthetic pathways, reveals lessons for combating antibiotic resistance, and provides an entry point for studying the natural roles of these natural products.
Collapse
|
425
|
A crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface. Proc Natl Acad Sci U S A 2009; 106:13759-64. [PMID: 19666597 DOI: 10.1073/pnas.0904686106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologically relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 A. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.
Collapse
|
426
|
Diep DB, Straume D, Kjos M, Torres C, Nes IF. An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 2009; 30:1562-74. [PMID: 19465075 DOI: 10.1016/j.peptides.2009.05.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 12/29/2022]
Abstract
The pln locus responsible for bacteriocin biosynthesis in Lactobacillus plantarum C11 was first unraveled about 15 years ago and since then different strains of L. plantarum (NC8, WCFS1, J23 and J51) have been found to harbor mosaic pln loci in their genomes. Each locus is of 18-19kb and contains 22-25 genes organized into 5-6 operons. Together these strains produce four different class IIb two-peptide bacteriocins, plantaricins EF, JK, NC8 and J51 and a pheromone peptide plantaricin A with antimicrobial activity. Their production has been found to be regulated through a quorum-sensing based network consisting of a secreted peptide pheromone, a membrane-located sensor and one or two transcription regulators. The individual loci each contain a set of semi-conserved regulated promoters with subtle differences necessary for the regulators to regulate their promoter activity individually with respect to timing and strength. These subtle differences in the promoters are highly conserved across the different pln loci, in a functionally related manner. In this review we will discuss various aspects of these bacteriocin loci with special focus on their mosaic genetic composition, gene regulation and mode of action. We also present a novel pln locus containing a transposon of the MULE superfamily, a mobile element which has not been described in L. plantarum before.
Collapse
Affiliation(s)
- Dzung B Diep
- Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, N-1432 As, Norway.
| | | | | | | | | |
Collapse
|
427
|
Wei G, de Leeuw E, Pazgier M, Yuan W, Zou G, Wang J, Ericksen B, Lu WY, Lehrer RI, Lu W. Through the looking glass, mechanistic insights from enantiomeric human defensins. J Biol Chem 2009; 284:29180-92. [PMID: 19640840 DOI: 10.1074/jbc.m109.018085] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the small size and conserved tertiary structure of defensins, little is known at a molecular level about the basis of their functional versatility. For insight into the mechanism(s) of defensin function, we prepared enantiomeric pairs of four human defensins, HNP1, HNP4, HD5, and HBD2, and studied their killing of bacteria, inhibition of anthrax lethal factor, and binding to HIV-1 gp120. Unstructured HNP1, HD5, and HBD3 and several other human alpha- and beta-defensins were also examined. Crystallographic analysis showed a plane of symmetry that related (L)HNP1 and (D)HNP1 to each other. Either d-enantiomerization or linearization significantly impaired the ability of HNP1 and HD5 to kill Staphylococcus aureus but not Escherichia coli. In contrast, (L)HNP4 and (D)HNP4 were equally bactericidal against both bacteria. d-Enantiomers were generally weaker inhibitors or binders of lethal factor and gp120 than their respective native, all-l forms, although activity differences were modest, particularly for HNP4. A strong correlation existed among these different functions. Our data indicate: (a) that HNP1 and HD5 kill E. coli by a process that is mechanistically distinct from their actions that kill S. aureus and (b) that chiral molecular recognition is not a stringent prerequisite for other functions of these defensins, including their ability to inhibit lethal factor and bind gp120 of HIV-1.
Collapse
Affiliation(s)
- Gang Wei
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 2009; 107:475-87. [PMID: 19393544 DOI: 10.1016/j.jbiosc.2009.01.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 11/20/2022]
Abstract
Lantibiotics are one of the most promising alternative candidates for future antibiotics that maintain their antibacterial efficacy through many mechanisms. Of these mechanisms, some modes of activity have recently been reported, providing opportunities to show these peptides as potential candidates for forthcoming applications. Many findings providing new insight into the detailed molecular activities of numerous lantibiotics are constantly being uncovered. The combination of antibiotic mechanisms in one lantibiotic molecule shows its diverse antimicrobial usefulness as a future generation of antibiotic. Since lantibiotics do not have any known candidate resistance mechanisms, the discovered distinct modes of activity may revolutionize the design of anti-infective drugs through the knowledge provided by these super molecules. In this review, we discuss the rising assortment of lantibiotics, with special emphasis on their structure-function relationships, addressing the unique activities involved in their individual modes of action.
Collapse
|
429
|
Patti GJ, Kim SJ, Yu TY, Dietrich E, Tanaka KSE, Parr TR, Far AR, Schaefer J. Vancomycin and oritavancin have different modes of action in Enterococcus faecium. J Mol Biol 2009; 392:1178-91. [PMID: 19576226 DOI: 10.1016/j.jmb.2009.06.064] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/20/2009] [Accepted: 06/24/2009] [Indexed: 02/03/2023]
Abstract
The increasing frequency of Enterococcus faecium isolates with multidrug resistance is a serious clinical problem given the severely limited number of therapeutic options available to treat these infections. Oritavancin is a promising new alternative in clinical development that has potent antimicrobial activity against both staphylococcal and enterococcal vancomycin-resistant pathogens. Using solid-state NMR to detect changes in the cell-wall structure and peptidoglycan precursors of whole cells after antibiotic-induced stress, we report that vancomycin and oritavancin have different modes of action in E. faecium. Our results show the accumulation of peptidoglycan precursors after vancomycin treatment, consistent with transglycosylase inhibition, but no measurable difference in cross-linking. In contrast, after oritavancin exposure, we did not observe the accumulation of peptidoglycan precursors. Instead, the number of cross-links is significantly reduced, showing that oritavancin primarily inhibits transpeptidation. We propose that the activity of oritavancin is the result of a secondary binding interaction with the E. faecium peptidoglycan. The hypothesis is supported by results from (13)C{(19)F} rotational-echo double-resonance (REDOR) experiments on whole cells enriched with l-[1-(13)C]lysine and complexed with desleucyl [(19)F]oritavancin. These experiments establish that an oritavancin derivative with a damaged d-Ala-d-Ala binding pocket still binds to E. faecium peptidoglycan. The (13)C{(19)F} REDOR dephasing maximum indicates that the secondary binding site of oritavancin is specific to nascent and template peptidoglycan. We conclude that the inhibition of transpeptidation by oritavancin in E. faecium is the result of the large number of secondary binding sites relative to the number of primary binding sites.
Collapse
Affiliation(s)
- Gary J Patti
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
430
|
Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol 2009; 75:5451-60. [PMID: 19561184 DOI: 10.1128/aem.00730-09] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lantibiotics are ribosomally synthesized peptide antimicrobials which contain considerable posttranslational modifications. Given their usually broad host range and their highly stable structures, there have been renewed attempts to identify and characterize novel members of the lantibiotic family in recent years. The increasing availability of bacterial genome sequences means that in addition to traditional microbiological approaches, in silico screening strategies may now be employed to the same end. Taking advantage of the highly conserved nature of lantibiotic biosynthetic enzymes, we screened publicly available microbial genome sequences for genes encoding LanM proteins, which are required for the posttranslational modification of type 2 lantibiotics. By using this approach, 89 LanM homologs, including 61 in strains not known to be lantibiotic producers, were identified. Of these strains, five (Streptococcus pneumoniae SP23-BS72, Bacillus licheniformis ATCC 14580, Anabaena variabilis ATCC 29413, Geobacillus thermodenitrificans NG80-2, and Herpetosiphon aurantiacus ATCC 23779) were subjected to a more detailed bioinformatic analysis. Four of the strains possessed genes potentially encoding a structural peptide in close proximity to the lanM determinants, while two, S. pneumoniae SP23-BS72 and B. licheniformis ATCC 14580, possess two potential structural genes. The B. licheniformis strain was selected for a proof-of-concept exercise, which established that a two-peptide lantibiotic, lichenicidin, which exhibits antimicrobial activity against all Listeria monocytogenes, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant enterococcus strains tested, was indeed produced, thereby confirming the benefits of such a bioinformatic approach when screening for novel lantibiotic producers.
Collapse
|
431
|
Rangachari V, Davey ZS, Healy B, Moore BD, Sonoda LK, Cusack B, Maharvi GM, Fauq AH, Rosenberry TL. Rationally designed dehydroalanine (ΔAla)-containing peptides inhibit amyloid-β (Aβ) peptide aggregation. Biopolymers 2009; 91:456-65. [DOI: 10.1002/bip.21151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
432
|
Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother 2009; 53:3375-83. [PMID: 19470513 DOI: 10.1128/aac.01710-08] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telavancin is an investigational lipoglycopeptide antibiotic currently being developed for the treatment of serious infections caused by gram-positive bacteria. The bactericidal action of telavancin results from a mechanism that combines the inhibition of cell wall synthesis and the disruption of membrane barrier function. The purpose of the present study was to further elucidate the mechanism by which telavancin interacts with the bacterial membrane. A flow cytometry assay with the diethyloxacarbocyanine dye DiOC(2)(3) was used to probe the membrane potential of actively growing Staphylococcus aureus cultures. Telavancin caused pronounced membrane depolarization that was both time and concentration dependent. Membrane depolarization was demonstrated against a reference S. aureus strain as well as phenotypically diverse isolates expressing clinically important methicillin-resistant (MRSA), vancomycin-intermediate (VISA), and heterogeneous VISA (hVISA) phenotypes. The cell wall precursor lipid II was shown to play an essential role in telavancin-induced depolarization. This was demonstrated both in competition binding experiments with exogenous D-Ala-D-Ala-containing ligand and in experiments with cells expressing altered levels of lipid II. Finally, monitoring of the optical density of S. aureus cultures exposed to telavancin showed that cell lysis does not occur during the time course in which membrane depolarization and bactericidal activity are observed. Taken together, these data indicate that telavancin's membrane mechanism requires interaction with lipid II, a high-affinity target that mediates binding to the bacterial membrane. The targeted interaction with lipid II and the consequent disruption of both peptidoglycan synthesis and membrane barrier function provide a mechanistic basis for the improved antibacterial properties of telavancin relative to those of vancomycin.
Collapse
|
433
|
Bauke Albada H, Arnusch CJ, Branderhorst HM, Verel AM, Janssen WTM, Breukink E, de Kruijff B, Pieters RJ, Liskamp RMJ. Potential scorpionate antibiotics: targeted hydrolysis of lipid II containing model membranes by vancomycin-TACzyme conjugates and modulation of their antibacterial activity by Zn-ions. Bioorg Med Chem Lett 2009; 19:3721-4. [PMID: 19524434 DOI: 10.1016/j.bmcl.2009.05.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/15/2009] [Accepted: 05/20/2009] [Indexed: 11/18/2022]
Abstract
The antibiotic vancomycin-that binds lipid II in the bacterial cell membrane-was conjugated to a mono- and tetravalent mimic of the tris-histidine catalytic triad of metalloenzymes. Targeted hydrolysis by the conjugate was observed using model membranes containing lipid II, and in vitro MIC-values of the targeted mimic constructs could be modulated by Zn-ions.
Collapse
Affiliation(s)
- H Bauke Albada
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
434
|
van Dam V, Olrichs N, Breukink E. Specific labeling of peptidoglycan precursors as a tool for bacterial cell wall studies. Chembiochem 2009; 10:617-24. [PMID: 19173317 DOI: 10.1002/cbic.200800678] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Because of its importance for bacterial cell survival, the bacterial cell wall is an attractive target for new antibiotics in a time of great demand for new antibiotic compounds. Therefore, more knowledge about the diverse processes related to bacterial cell wall synthesis is needed. The cell wall is located on the exterior of the cell and consists mainly of peptidoglycan, a large macromolecule built up from a three-dimensional network of aminosugar strands interlinked with peptide bridges. The subunits of peptidoglycan are synthesized inside the cell before they are transported to the exterior in order to be incorporated into the growing peptidoglycan. The high flexibility of the cell wall synthesis machinery towards unnatural derivatives of these subunits enables research on the bacterial cell wall using labeled compounds. This review highlights the high potential of labeled cell wall precursors in various areas of cell wall research. Labeled precursors can be used in investigating direct cell wall-antibiotic interactions and in cell wall synthesis and localization studies. Moreover, these compounds can provide a powerful tool in the elucidation of the cell wall proteome, the "wallosome," and thus, might provide new targets for antibiotics.
Collapse
Affiliation(s)
- Vincent van Dam
- Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | | | | |
Collapse
|
435
|
|
436
|
Maher S, Vilk G, Kelleher F, Lajoie G, McClean S. Chemical Modification of the Carboxyl Terminal of Nisin A with Biotin does not Abolish Antimicrobial Activity Against the Indicator Organism, Kocuria rhizophila. Int J Pept Res Ther 2009. [DOI: 10.1007/s10989-009-9179-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
437
|
McIntosh JA, Donia MS, Schmidt EW. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 2009; 26:537-59. [PMID: 19642421 PMCID: PMC2975598 DOI: 10.1039/b714132g] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Ribosomally synthesized bacterial natural products rival the nonribosomal peptides in their structural and functional diversity. The last decade has seen substantial progress in the identification and characterization of biosynthetic pathways leading to ribosomal peptide natural products with new and unusual structural motifs. In some of these cases, the motifs are similar to those found in nonribosomal peptides, and many are constructed by convergent or even paralogous enzymes. Here, we summarize the major structural and biosynthetic categories of ribosomally synthesized bacterial natural products and, where applicable, compare them to their homologs from nonribosomal biosynthesis.
Collapse
Affiliation(s)
- John A. McIntosh
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| | - Mohamed S. Donia
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East Rm 201, Salt Lake City, UT 84112 USA
| |
Collapse
|
438
|
Arnusch CJ, Bonvin AMJJ, Verel AM, Jansen WTM, Liskamp RMJ, de Kruijff B, Pieters RJ, Breukink E. The vancomycin-nisin(1-12) hybrid restores activity against vancomycin resistant Enterococci. Biochemistry 2009; 47:12661-3. [PMID: 18989934 DOI: 10.1021/bi801597b] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipid II is a crucial component in bacterial cell wall synthesis [Breukink, E., et al. (1999) Science 286, 2361-2364]. It is the target of a number of important antibiotics, which include vancomycin and nisin [Breukink, E., and de Kruijff, B. (2006) Nat. Rev. Drug Discovery 5, 321-332]. Here we show that a hybrid antibiotic that consists of vancomycin and nisin fragments is significantly more active than the separate fragments against vancomycin resistant entercocci (VRE). Three different hybrids were synthesized using click chemistry and compared. Optimal spacer lengths and connection points were predicted using computer modeling.
Collapse
Affiliation(s)
- Christopher J Arnusch
- Department of Chemical Biology and Organic Chemistry, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
439
|
Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob Agents Chemother 2009; 53:1964-73. [PMID: 19273681 DOI: 10.1128/aac.01382-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nisin is a 34-residue antibacterial peptide produced by Lactococcus lactis that is active against a wide range of gram-positive bacteria. In non-nisin-producing L. lactis, nisin resistance could be conferred by a specific nisin resistance gene (nsr), which encodes a 35-kDa nisin resistance protein (NSR). However, the mechanism underlying NSR-mediated nisin resistance is poorly understood. Here we demonstrated that the protein without the predicted N-terminal signal peptide sequence, i.e., NSRSD, could proteolytically inactivate nisin in vitro by removing six amino acids from the carboxyl "tail" of nisin. The truncated nisin (nisin(1-28)) displayed a markedly reduced affinity for the cell membrane and showed significantly diminished pore-forming potency in the membrane. A 100-fold reduction of bactericidal activity was detected for nisin(1-28) in comparison to that for the intact nisin. In vivo analysis indicated that NSR localized on the cell membrane and endowed host strains with nisin resistance by degrading nisin as NSRSD did in vitro, whereas NSRSD failed to confer resistance upon the host strain. In conclusion, we showed that NSR is a nisin-degrading protease. This NSR-mediated proteolytic cleavage represents a novel mechanism for nisin resistance in non-nisin-producing L. lactis.
Collapse
|
440
|
Wilson-Stanford S, Kalli A, Håkansson K, Kastrantas J, Orugunty RS, Smith L. Oxidation of lanthionines renders the lantibiotic nisin inactive. Appl Environ Microbiol 2009; 75:1381-7. [PMID: 19114522 PMCID: PMC2648158 DOI: 10.1128/aem.01864-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 12/22/2008] [Indexed: 11/20/2022] Open
Abstract
The peptide antibiotic nisin A belongs to the group of antibiotics called lantibiotics. They are classified as lantibiotics because they contain the structural group lanthionine. Lanthionines are composed of a single sulfur atom that is linked to the beta-carbons of two alanine moieties. These sulfur atoms are vulnerable to environmental oxidation. A mild oxidation reaction was performed on nisin A to determine the relative effects it would have on bioactivity. High-mass-accuracy Fourier transform ion cyclotron resonance mass spectrometry data revealed the addition of seven, eight, and nine oxygens. These additions correspond to the five lanthionines, two methionines, and two histidines that would be susceptible to oxidation. Subsequent bioassays revealed that the oxidized form of nisin A had a complete loss of bactericidal activity. In a competition study, the oxidized nisin did not appear to have an antagonistic affect on the bioactivity of nisin A, since the addition of an equal molar concentration of the oxidized variant did not have an influence on the bactericidal activity of the native antibiotic. Electron microscopy data revealed that the oxidized forms were still capable of assembling into large circular complexes, demonstrating that oxidation does not disrupt the lateral assembly mechanism of the antibiotic. Affinity thin-layer chromatography and fluorescence microscopy experiments suggested that the loss of activity is due to the inability of the oxidized form of nisin to bind to the cell wall precursor lipid II. Given the loss of bioactivity following oxidation, oxidation should be an important factor to consider in future production, purification, pharmacokinetic, and pharmacodynamic studies.
Collapse
Affiliation(s)
- Shawanda Wilson-Stanford
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | | | | | | | | | | |
Collapse
|
441
|
The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans. J Bacteriol 2009; 191:2973-84. [PMID: 19251860 DOI: 10.1128/jb.01563-08] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Maintaining cell envelope integrity is critical for bacterial survival, including bacteria living in a complex and dynamic environment such as the human oral cavity. Streptococcus mutans, a major etiological agent of dental caries, uses two-component signal transduction systems (TCSTSs) to monitor and respond to various environmental stimuli. Previous studies have shown that the LiaSR TCSTS in S. mutans regulates virulence traits such as acid tolerance and biofilm formation. Although not examined in streptococci, homologs of LiaSR are widely disseminated in Firmicutes and function as part of the cell envelope stress response network. We describe here liaSR and its upstream liaF gene in the cell envelope stress tolerance of S. mutans strain UA159. Transcriptional analysis established liaSR as part of the pentacistronic liaFSR-ppiB-pnpB operon. A survey of cell envelope antimicrobials revealed that mutants deficient in one or all of the liaFSR genes were susceptible to Lipid II cycle interfering antibiotics and to chemicals that perturbed the cell membrane integrity. These compounds induced liaR transcription in a concentration-dependent manner. Notably, under bacitracin stress conditions, the LiaFSR signaling system was shown to induce transcription of several genes involved in membrane protein synthesis, peptidoglycan biosynthesis, envelope chaperone/proteases, and transcriptional regulators. In the absence of an inducer such as bacitracin, LiaF repressed LiaR-regulated expression, whereas supplementing cultures with bacitracin resulted in derepression of liaSR. While LiaF appears to be an integral component of the LiaSR signaling cascade, taken collectively, we report a novel role for LiaFSR in sensing cell envelope stress and preserving envelope integrity in S. mutans.
Collapse
|
442
|
Draper LA, Grainger K, Deegan LH, Cotter PD, Hill C, Ross RP. Cross-immunity and immune mimicry as mechanisms of resistance to the lantibiotic lacticin 3147. Mol Microbiol 2009; 71:1043-54. [PMID: 19183281 DOI: 10.1111/j.1365-2958.2008.06590.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lantibiotics are antimicrobial peptides that possess great potential as clinical therapeutic agents. These peptides exhibit many beneficial traits and in many cases the emergence of resistance is extremely rare. In contrast, producers of lantibiotics synthesize dedicated immunity proteins to provide self-protection. These proteins have very specific activities and cross-immunity is rare. However, producers of two peptide lantibiotics, such as lacticin 3147, face the unusual challenge of exposure to two active peptides (alpha and beta). Here, in addition to establishing the contribution of LtnI and LtnFE to lacticin 3147 immunity, investigations were carried out to determine if production of a closely related lantibiotic (i.e. staphylococcin C55) or possession of LtnI/LtnFE homologues could provide protection. Here we establish that not only are staphylococcin C55 producers cross-immune to lacticin 3147, and therefore represent a natural repository of Staphylococcus aureus strains that are protected against lacticin 3147, but that functional immunity homologues are also produced by strains of Bacillus licheniformis and Enterococcus faecium. This result raises the spectre of resistance through immune mimicry, i.e. the emergence of lantibiotic-resistant strains from the environment resulting from the possession/acquisition of immunity gene homologues. These phenomena will have to be considered carefully when developing lantibiotics for clinical application.
Collapse
|
443
|
Alkene/Alkane-Bridged Mimics of the Lantibiotic Nisin: Toward Novel Peptide-Based Antibiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 611:533-4. [DOI: 10.1007/978-0-387-73657-0_233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
|
444
|
Natural products in drug discovery: present status and perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:13-27. [PMID: 20047031 DOI: 10.1007/978-1-4419-1132-2_2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural products and their derivatives have been and continue to be rich sources for drug discovery. However, natural products are not drugs. They are produce in nature and through biological assays they are identified as leads, which become candidates for drug development. More than 60% of the drugs that are in the market derive from natural sources. During the last two decades, research aimed at exploiting natural products as a resource has seriously declined. This is in part due to the development of new technologies such as combinatorial chemistry, metagenomics and high-throughput screening. However, the new drug discovery approaches did not fulfilled the initial expectations. This has lead to a renewed interest in natural products, determined by the urgent need for new drugs, in particular to fight against infections caused by multi-resistant pathogens.
Collapse
|
445
|
Pattabiraman VR, McKinnie SMK, Vederas JC. Solid-supported synthesis and biological evaluation of the lantibiotic peptide bis(desmethyl) lacticin 3147 A2. Angew Chem Int Ed Engl 2008; 47:9472-5. [PMID: 18937239 DOI: 10.1002/anie.200802919] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
446
|
Swain SM, Singh C, Arul V. Inhibitory activity of probiotics Streptococcus phocae PI80 and Enterococcus faecium MC13 against Vibriosis in shrimp Penaeus monodon. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9939-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
447
|
Martin NI. Concise Preparation of Tetra-orthogonally Protected (2S,6R)-Lanthionines. J Org Chem 2008; 74:946-9. [DOI: 10.1021/jo802415c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathaniel I. Martin
- Department of Medicinal Chemistry and Chemical Biology, University of Utrecht, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| |
Collapse
|
448
|
Pattabiraman V, McKinnie S, Vederas J. Solid-Supported Synthesis and Biological Evaluation of the Lantibiotic Peptide Bis(desmethyl) Lacticin 3147 A2. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
449
|
Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J Bacteriol 2008; 191:625-31. [PMID: 19011036 DOI: 10.1128/jb.00932-08] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis can persist in macrophage phagosomes that acidify to a pH of approximately 4.5 after activation of the macrophage with gamma interferon. How the bacterium resists the low pH of the acidified phagosome is incompletely understood. A screen of 10,100 M. tuberculosis transposon mutants for mutants hypersensitive to pH 4.5 led to the discovery of 21 genes whose disruption attenuated survival of M. tuberculosis at a low pH (41). Here, we show that acid-sensitive M. tuberculosis mutants with transposon insertions in Rv2136c, Rv2224c, ponA2, and lysX were hypersensitive to antibiotics, sodium dodecyl sulfate, heat shock, and reactive oxygen and nitrogen intermediates, indicating that acid resistance can be associated with protection against other forms of stress. The Rv2136c mutant was impaired in intrabacterial pH homeostasis and unable to maintain a neutral intrabacterial pH in activated macrophages. The Rv2136c, Rv2224c, and ponA2 mutants were attenuated in mice, with the Rv2136c mutant displaying the most severe level of attenuation. Pathways utilized by M. tuberculosis for acid resistance and intrabacterial pH maintenance are potential targets for chemotherapy.
Collapse
|
450
|
Smith L, Hillman J. Therapeutic potential of type A (I) lantibiotics, a group of cationic peptide antibiotics. Curr Opin Microbiol 2008; 11:401-8. [PMID: 18848642 DOI: 10.1016/j.mib.2008.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/14/2008] [Accepted: 09/15/2008] [Indexed: 11/17/2022]
Abstract
Type A (I) lantibiotics are cationic antimicrobial peptides that have a potential usefulness in treating infectious diseases. They are known to have a potent and broad spectrum of activity, an insignificant cytotoxicity, and demonstrated efficacy in animal infection models, suggesting therapeutic potential. In this review, topics pertaining to their basic structure, mode of bactericidal activity, pharmacology, and methods of manufacture are described.
Collapse
Affiliation(s)
- Leif Smith
- Mississippi State University, Department of Biological Sciences, Mississippi State, MS 39762, USA.
| | | |
Collapse
|