401
|
Tozaki-Saitoh H, Tsuda M, Inoue K. Role of purinergic receptors in CNS function and neuroprotection. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:495-528. [PMID: 21586368 DOI: 10.1016/b978-0-12-385526-8.00015-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purinergic receptor family contains some of the most abundant receptors in living organisms. A growing body of evidence indicates that extracellular nucleotides play important roles in the regulation of neuronal and glial functions in the nervous system through purinergic receptors. Nucleotides are released from or leaked through nonexcitable cells and neurons during normal physiological and pathophysiological conditions. Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system (CNS), participate in the synaptic processes, and mediate intercellular communications between neuron and gila and between glia and other glia. Glial cells in the CNS are classified into astrocytes, oligodendrocytes, and microglia. Astrocytes express many types of purinergic receptors, which are integral to their activation. Astrocytes release adenosine triphosphate (ATP) as a "gliotransmitter" that allows communication with neurons, the vascular walls of capillaries, oligodendrocytes, and microglia. Oligodendrocytes are myelin-forming cells that construct insulating layers of myelin sheets around axons, and using purinergic receptor signaling for their development and for myelination. Microglia also express many types of purinergic receptors and are known to function as immunocompetent cells in the CNS. ATP and other nucleotides work as "warning molecules" especially by activating microglia in pathophysiological conditions. Studies on purinergic signaling could facilitate the development of novel therapeutic strategies for disorder of the CNS.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi, Fukuoka, Japan
| | | | | |
Collapse
|
402
|
Wolf C, Rosefort C, Fallah G, Kassack MU, Hamacher A, Bodnar M, Wang H, Illes P, Kless A, Bahrenberg G, Schmalzing G, Hausmann R. Molecular determinants of potent P2X2 antagonism identified by functional analysis, mutagenesis, and homology docking. Mol Pharmacol 2010; 79:649-61. [PMID: 21191044 DOI: 10.1124/mol.110.068700] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
P2X2 receptors are members of the ATP-gated P2X family of cation channels, and they participate in neurotransmission in sympathetic ganglia and interneurons. Here, we identified 7,7'-(carbonylbis(imino-3,1-phenylenecarbonylimino-3,1-(4-methyl-phenylene)carbonylimino))bis(1-methoxy-naphthalene-3,6-disulfonic acid) tetrasodium salt (NF770) as a nanomolar-potent competitive P2X2 receptor antagonist within a series of 139 suramin derivatives. Three structural determinants contributed to the inhibition of P2X2 receptors by NF770: 1) a "large urea" structure with two symmetric phenylenecarbonylimino groups; 2) attachment of the naphthalene moiety in position 7,7'; and 3) the specific position of two sulfonic acid groups (3,3'; 6,6') and of one methoxy group (1,1') at the naphthalene moiety. This structure-activity relationship was interpreted using a rat P2X2 homology model based on the crystal structure of the closed zebrafish P2X4 receptor. Docking of the suramin derivatives into the modeled ATP-binding pocket provides a uniform explanation for the observed differences in inhibitory potencies. Changes in the chemical structure that increase the inhibitory potency of the suramin derivatives improved the spatial orientation within the ATP-binding pocket to allow for stronger polar interactions of functional groups with Gly72, Glu167, or Arg290. Gly72 is responsible for the orientation of the methoxy group close to Arg290 or Glu167. Combined mutational and functional analysis confirmed that residues Gly72 and Glu167 are as important for ATP binding as Arg290, the ATP-binding role of which has been shown in previous studies. The in silico prediction of Gly72 and Glu167 as ATP-binding residues strongly supports the validity of our homology docking.
Collapse
Affiliation(s)
- Christian Wolf
- Department of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Abstract
Purinergic receptors are important for the regulation of inflammation, muscle contraction, neurotransmission and nociception. Extracellular ATP and its metabolites are the main ligands for these receptors. Occasional reports on beneficial results of ATP administration in human and animal studies have suggested the bioavailability of oral ATP supplements. We investigated whether prolonged daily intake of oral ATP is indeed bioavailable. Thirty-two healthy subjects were randomised to receive 0, 250, 1250 or 5000 mg ATP per d for 28 d by means of enteric-coated pellets. In addition, on days 0 and 28, all thirty-two subjects received 5000 mg ATP to determine whether prolonged administration would induce adaptations in the bioavailability of ATP. ATP supplementation for 4 weeks did not lead to changes in blood or plasma ATP concentrations. Of all ATP metabolites, only plasma uric acid levels increased significantly after the administration of 5000 mg of ATP. Prolonged administration of ATP was safe as evidenced from liver and kidney parameters. We conclude that oral administration of ATP only resulted in increased uric acid concentrations. On the basis of these findings, we seriously question the claimed efficacy of oral ATP at dosages even lower than that used in the present study.
Collapse
|
404
|
Ceruti S, Viganò F, Boda E, Ferrario S, Magni G, Boccazzi M, Rosa P, Buffo A, Abbracchio MP. Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 2010; 59:363-78. [PMID: 21264945 DOI: 10.1002/glia.21107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/12/2010] [Indexed: 12/13/2022]
Abstract
The P2Y-like receptor GPR17 is expressed by adult neural progenitor cells, suggesting a role in lineage determination. Here, we characterized GPR17 expression and function in mouse cortical primary astrocytes/precursor cell cultures. GPR17 is expressed by a subpopulation of oligodendrocyte precursor cells (OPCs), but not by astrocytes. This expression pattern was also confirmed in vivo. In vitro, GPR17 expression was markedly influenced by culturing conditions. In the presence of growth factors (GFs), no significant GPR17 expression was found. When cultures were shifted to a differentiating medium, a dramatic, time-dependent increase in the number of highly branched GPR17-positive cells was observed. Under these conditions, GPR17 was induced in the totality of O4-positive immature oligodendrocytes. Instead, in cultures originally grown in the absence of GFs, GPR17 was already expressed in morphologically more mature OPCs. Shifting of these cultures to differentiating conditions induced GPR17 only in a subpopulation of O4-positive cells. Under both culture protocols, appearance of more mature CNPase- and MBP-positive cells was associated to a progressive loss of GPR17. GPR17 expression also sensitized cells to adenine nucleotide-induced cytotoxicity, whereas activation with uracil nucleotides promoted differentiation towards a more mature phenotype. We suggest that GFs may keep OPCs in a less differentiated stage by restraining GPR17 expression, and that, under permissive conditions, GPR17 contributes to OPCs differentiation. However, upon high extracellular adenine nucleotide concentrations, as during trauma and ischemia, GPR17 sensitizes cells to cytotoxicity. This double-edged sword role may be exploited to unveil new therapeutic approaches to acute and chronic brain disorders.
Collapse
Affiliation(s)
- Stefania Ceruti
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Weber FC, Esser PR, Müller T, Ganesan J, Pellegatti P, Simon MM, Zeiser R, Idzko M, Jakob T, Martin SF. Lack of the purinergic receptor P2X(7) results in resistance to contact hypersensitivity. ACTA ACUST UNITED AC 2010; 207:2609-19. [PMID: 21059855 PMCID: PMC2989767 DOI: 10.1084/jem.20092489] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Engagement of P2X7 on mouse dendritic cells, presumably by ATP released in response to contact allergen, is needed for IL-1β production and the sensitization phase of contact hypersensitivity. Sensitization to contact allergens requires activation of the innate immune system by endogenous danger signals. However, the mechanisms through which contact allergens activate innate signaling pathways are incompletely understood. In this study, we demonstrate that mice lacking the adenosine triphosphate (ATP) receptor P2X7 are resistant to contact hypersensitivity (CHS). P2X7-deficient dendritic cells fail to induce sensitization to contact allergens and do not release IL-1β in response to lipopolysaccharide (LPS) and ATP. These defects are restored by pretreatment with LPS and alum in an NLRP3- and ASC-dependent manner. Whereas pretreatment of wild-type mice with P2X7 antagonists, the ATP-degrading enzyme apyrase or IL-1 receptor antagonist, prevents CHS, IL-1β injection restores CHS in P2X7-deficient mice. Thus, P2X7 is a crucial receptor for extracellular ATP released in skin in response to contact allergens. The lack of P2X7 triggering prevents IL-1β release, which is an essential step in the sensitization process. Interference with P2X7 signaling may be a promising strategy for the prevention of allergic contact dermatitis.
Collapse
Affiliation(s)
- Felix C Weber
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: an update. ACTA ACUST UNITED AC 2010; 6:31-42. [PMID: 20604978 DOI: 10.1017/s1740925x10000086] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of adenosine-5'-triphosphate (ATP) and of the ligand-gated P2X3 receptor in neuronal dorsal root ganglia (DRG) pain transmission is relatively well established. Much less is known about the purinergic system in trigeminal ganglia (TG), which are involved in certain types of untreatable neuropathic and inflammatory pain, as well as in migraine. Emerging data suggest that purinergic metabotropic P2Y receptors on both neurons and satellite glial cells (SGCs) may also participate in both physiological and pathological pain development. Here, we provide an updated literature review on the role of purinergic signaling in sensory ganglia, with special emphasis on P2Y receptors on SGCs. We also provide new original data showing a time-dependent downregulation of P2Y2 and P2Y4 receptor expression and function in purified SGCs cultures from TG, in comparison with primary mixed neuron-SGCs cultures. These data highlight the importance of the neuron-glia cross-talk in determining the SGCs phenotype. Finally, we show that, in mixed TG cultures, both adenine and guanosine induce intracellular calcium transients in neurons but not in SGCs, suggesting that also these purinergic-related molecules can participate in pain signaling. These findings may have relevant implications for the development of new therapeutic strategies for chronic pain treatment.
Collapse
|
407
|
Varani K, Maniero S, Vincenzi F, Targa M, Stefanelli A, Maniscalco P, Martini F, Tognon M, Borea PA. A₃ receptors are overexpressed in pleura from patients with mesothelioma and reduce cell growth via Akt/nuclear factor-κB pathway. Am J Respir Crit Care Med 2010; 183:522-30. [PMID: 20870754 DOI: 10.1164/rccm.201006-0980oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RATIONALE A strong link has been established between exposure to asbestos and increased risk for pleural malignant mesothelioma (MM). Adenosine plays a key role in inflammatory processes and cancer, where it is involved in the regulation of cell death and proliferation. OBJECTIVES The primary aim of this study was to investigate the presence of adenosine receptors (ARs) in human MM pleura (MMP) and healthy mesothelial pleura (HMP). To shed some light on the interaction between adenosine and MM, the presence and functionality of ARs were explored in human healthy mesothelial cells (HMC) and in malignant mesothelioma cells (MMC). METHODS ARs were analyzed by using reverse transcriptase-polymerase chain reaction, Western blotting, and saturation binding assays. HMC were treated with crocidolite asbestos, which is the principal risk factor for MM. The role of A₃ ARs on these cellular models, evaluating cAMP production, Akt phosphorylation, and nuclear factor (NF)-κB activation, was investigated. The dual effect of A₃AR stimulation on healthy and cancer cell growth was studied by means of proliferation, apoptosis, and cytotoxicity assays. MEASUREMENTS AND MAIN RESULTS A₃AR was up-regulated by 2.5-fold (P < 0.01) in MMP when compared with HMP. Stimulation of A₃ARs decreased proliferation and exerted a cytotoxic and proapoptotic effect on MMC and on HMC exposed to asbestos and tumor necrosis factor-α, but not on HMC with an involvement of the deregulation of Akt/NF-κB cell survival pathway. CONCLUSIONS These new findings suggest that A₃AR could represent a pharmacological target to prevent tumor development after asbestos exposure and to treat full-blown MM.
Collapse
Affiliation(s)
- Katia Varani
- Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
408
|
Stockand JD, Mironova E, Bugaj V, Rieg T, Insel PA, Vallon V, Peti-Peterdi J, Pochynyuk O. Purinergic inhibition of ENaC produces aldosterone escape. J Am Soc Nephrol 2010; 21:1903-11. [PMID: 20813869 DOI: 10.1681/asn.2010040377] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying "aldosterone escape," which refers to the excretion of sodium (Na(+)) during high Na(+) intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na(+) channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na(+) intake in mice. Physiologic concentrations of ATP decreased ENaC activity in a dosage-dependent manner. P2Y(2)(-/-) mice, which lack the purinergic receptor, had significantly less increased Na(+) excretion than wild-type mice in response to high-Na(+) intake. Exogenous deoxycorticosterone acetate and deletion of the P2Y(2) receptor each modestly increased the resistance of ENaC to changes in Na(+) intake; together, they markedly increased resistance. Under the latter condition, ENaC could not respond to changes in Na(+) intake. In contrast, as a result of aldosterone escape, wild-type mice had increased Na(+) excretion in response to high-Na(+) intake regardless of the presence of high deoxycorticosterone acetate. These data suggest that control of ENaC by purinergic signaling is necessary for aldosterone escape.
Collapse
Affiliation(s)
- James D Stockand
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | | | |
Collapse
|
409
|
De Simone R, Niturad CE, De Nuccio C, Ajmone-Cat MA, Visentin S, Minghetti L. TGF-β and LPS modulate ADP-induced migration of microglial cells through P2Y1 and P2Y12 receptor expression. J Neurochem 2010; 115:450-9. [PMID: 20681951 DOI: 10.1111/j.1471-4159.2010.06937.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleotides act as early signals for microglial recruitment to sites of CNS injury. As microglial motility and activation can be influenced by several local factors at the site of the lesion, we investigated the effects of interferon-gamma, lipopolysaccharide (LPS) or transforming growth factor-β (TGF-β) addition to mixed glial cell cultures, on microglial migration in response to ADP, P2Y12 and P2Y1 mRNA expression as well as on the expression of an array of genes associated with the process of microglial activation. First, we demonstrated, by pharmacological inhibition and by using small interfering RNAs, that in addition to P2Y12, P2Y1 is involved in ADP-stimulated microglial migration. The ability of specific agonists to induce Ca(2+) mobilization further confirmed the expression of functional P2Y receptors in microglia. Then, we found that migratory capability and expression of both P2Y receptors were abrogated in microglial cells from LPS-stimulated mixed glial cultures, while TGF-β increased ADP-induced migration and the expression of P2Y12 and P2Y1 receptors. Interferon-gamma did not influence receptor expression or microglial migration. Finally, the patterns of gene expression induced in microglia by LPS or TGF-β treatment of mixed glial cultures were clearly distinct. LPS induced a set of classical pro-inflammatory genes, whereas TGF-β increased the expression of genes associated with atypical microglial phenotype, namely arginase-1 and TGF-β genes. These results imply that both P2Y1 and P2Y12 may guide microglia toward the lesion. They also suggest that the modulation of microglial purinergic receptors expression by local factors, through direct and/or astrocyte-mediated actions, may represent a novel mechanism affecting neuroinflammatory response.
Collapse
Affiliation(s)
- Roberta De Simone
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
410
|
Nair A, Simonetti M, Birsa N, Ferrari MD, van den Maagdenberg AMJM, Giniatullin R, Nistri A, Fabbretti E. Familial hemiplegic migraine Ca(v)2.1 channel mutation R192Q enhances ATP-gated P2X3 receptor activity of mouse sensory ganglion neurons mediating trigeminal pain. Mol Pain 2010; 6:48. [PMID: 20735819 PMCID: PMC2940876 DOI: 10.1186/1744-8069-6-48] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/24/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The R192Q mutation of the CACNA1A gene, encoding for the α1 subunit of voltage-gated P/Q Ca2+ channels (Ca(v)2.1), is associated with familial hemiplegic migraine-1. We investigated whether this gain-of-function mutation changed the structure and function of trigeminal neuron P2X3 receptors that are thought to be important contributors to migraine pain. RESULTS Using in vitro trigeminal sensory neurons of a mouse genetic model knockin for the CACNA1A R192Q mutation, we performed patch clamp recording and intracellular Ca2+ imaging that showed how these knockin ganglion neurons generated P2X3 receptor-mediated responses significantly larger than wt neurons. These enhanced effects were reversed by the Ca(v)2.1 blocker ω-agatoxin. We, thus, explored intracellular signalling dependent on kinases and phosphatases to understand the molecular regulation of P2X3 receptors of knockin neurons. In such cells we observed strong activation of CaMKII reversed by ω-agatoxin treatment. The CaMKII inhibitor KN-93 blocked CaMKII phosphorylation and the hyperesponsive P2X3 phenotype. Although no significant difference in membrane expression of knockin receptors was found, serine phosphorylation of knockin P2X3 receptors was constitutively decreased and restored by KN-93. No change in threonine or tyrosine phosphorylation was detected. Finally, pharmacological inhibitors of the phosphatase calcineurin normalized the enhanced P2X3 receptor responses of knockin neurons and increased their serine phosphorylation. CONCLUSIONS The present results suggest that the CACNA1A mutation conferred a novel molecular phenotype to P2X3 receptors of trigeminal ganglion neurons via CaMKII-dependent activation of calcineurin that selectively impaired the serine phosphorylation state of such receptors, thus potentiating their effects in transducing trigeminal nociception.
Collapse
Affiliation(s)
- Asha Nair
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
411
|
Increased uric acid levels in drug-naïve subjects with bipolar disorder during a first manic episode. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:819-21. [PMID: 20206224 PMCID: PMC3008668 DOI: 10.1016/j.pnpbp.2010.02.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/24/2010] [Accepted: 02/26/2010] [Indexed: 11/21/2022]
Abstract
Recent evidence suggests that purinergic system dysfunction may play a role in the pathophysiology and therapeutics of bipolar disorder (BPD). Uric acid is a key nitrogenous end product of purine metabolism. In addition to being a potential marker of treatment response, high levels of uric acid may represent a state marker during mania. In this study, we assessed the presence of purinergic dysfunction in 20 treatment-naïve first episode patients with BPD who were experiencing a manic episode. Patients were matched with 24 healthy controls. We found that acutely manic patients had significantly higher levels of plasma uric acid (4.85+/-1.60 mg/dL) compared to healthy controls (2.96+/-0.63 mg/dL, p<0.001; F=28.1). No association between uric acid levels with severity of manic symptoms was observed. These results support the role of purinergic system dysfunction in BPD early in the course of illness, and suggest that this phenomenon is not the result of chronicity or medication exposure. Overall, our findings suggest a novel mechanism in the pathophysiology of BPD.
Collapse
|
412
|
Novak I, Jans IM, Wohlfahrt L. Effect of P2X(7) receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands. J Physiol 2010; 588:3615-27. [PMID: 20643770 DOI: 10.1113/jphysiol.2010.190017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purinergic P2X(7) receptors are expressed in different cell types where they have varied functions, including regulation of cell survival. The P2X(7) receptors are also expressed in exocrine glands, but their integrated role in secretion is unclear. The aim of our study was to determine whether the P2X(7) receptors affect fluid secretion in pancreas, salivary glands and tear glands. We monitored gland secretions in in vivo preparations of wild-type and P2X(7)(-/-) (Pfizer) mice stimulated with pilocarpine. In cell preparations from pancreas, parotid and lacrimal glands we measured ATP release and intracellular Ca(2+) activity using Fura-2. The data showed that pancreatic secretion and salivary secretions were reduced in P2X(7)(-/-) mice, and in contrast, tear secretion was increased in P2X(7)(-/-) mice. The secretory phenotype was also dependent on the sex of the animal, such that males were more dependent on the P2X(7) receptor expression. ATP release in all cell preparations could be elicited by carbachol and other agonists, and this was independent of the P2X(7) receptor expression. ATP and carbachol increased intracellular Ca(2+) activity, but responses depended on the gland type, presence of the P2X(7) receptor and the sex of the animal. Together, these results demonstrate that cholinergic stimulation leads to release of ATP that can via P2X(7) receptors up-regulate pancreatic and salivary secretion but down-regulate tear secretion. Our data also indicate that there is an interaction between purinergic and cholinergic receptor signalling and that function of the P2X(7) receptor is suppressed in females. We conclude that the P2X(7) receptors are important in short-term physiological regulation of exocrine gland secretion.
Collapse
Affiliation(s)
- Ivana Novak
- Department of Biology, August Krogh Building, Universitetsparken 13, University of Copenhagen, DK 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
413
|
Purinergic receptor-mediated morphological changes in microglia are transient and independent from inflammatory cytokine release. Eur J Pharmacol 2010; 643:202-10. [PMID: 20621081 DOI: 10.1016/j.ejphar.2010.06.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 06/01/2010] [Accepted: 06/24/2010] [Indexed: 01/01/2023]
Abstract
Microglia are commonly described as existing in resting or active states based on morphology or level of cytokine production. Extracellular ATP is a physiologically-relevant activator of microglia, which express a number of purinergic receptors. As P2Y(12) has been linked to chemotaxis, we used a panel of purinergic compounds to understand the role of ATP receptors in morphological transformation and correlate this with TNFalpha production. We quantified activation of cultured microglia with LPS or purinergic receptor agonists by using automated image analysis of cell morphology and CD11b expression and correlated this with TNFalpha release measured by ELISA. Treatment with both ATP and the P2Y(12) receptor agonist, 2-methylthio adenosine diphosphate (2MeSADP), caused a transient increase in CD11b expression (EC(50)=1.2 microM and 187 nM, respectively) and a reduction in process count that reversed within 90 min later. These changes were not accompanied by the release of TNFalpha. Forskolin, IBMX, and pertussis toxin inhibited these changes, but the PLC inhibitor, U73122, did not. 2MeSAMP blocked the ATP response, while AP4A blocked the 2MeSADP response, implicating P2Y(12/13). Microglia activation by LPS also caused an increase in CD11b expression and a reduction in process count; however, in contrast to activation by ATP, morphological transformation was accompanied by a concentration-dependent increase in TNFalpha secretion These data demonstrate that morphological transformation and TNFalpha release are separable events mediated by different, or non-convergent pathways and that although ATP can initiate morphological changes, additional factors are required to maintain activation over sustained periods.
Collapse
|
414
|
Frizzo JK, Cardoso MP, de Assis AM, Perry ML, Volonté C, Frizzo ME. Effects of acute perinatal asphyxia in the rat hippocampus. Cell Mol Neurobiol 2010; 30:683-92. [PMID: 20099024 DOI: 10.1007/s10571-009-9492-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/27/2009] [Indexed: 12/12/2022]
Abstract
In the present work, we have used a rat animal model to study the early effects of intrauterine asphyxia occurring no later than 60 min following the cesarean-delivery procedure. Transitory hypertonia accompanied by altered posture was observed in asphyxiated pups, which also showed appreciably increased lactate values in plasma and hippocampal tissues. Despite this, there was no difference in terms of either cell viability or metabolic activities such as oxidation of lactate, glucose, and glycine in the hippocampus of those fetuses submitted to perinatal asphyxia with respect to normoxic animals. Moreover, a significant decrease in glutamate, but not GABA uptake was observed in the hippocampus of asphyctic pups. Since intense ATP signaling especially through P2X(7) purinergic receptors can lead to excitotoxicity, a feature which initiates neurotransmission failure in experimental paradigms relevant to ischemia, here we assessed the expression level of the P2X(7) receptor in the paradigm of perinatal asphyxia. A three-fold increase in P2X(7) protein was transiently observed in hippocampus immediately following asphyxia. Nevertheless, further studies are needed to delineate whether the P2X(7) receptor subtype is involved in the pathogenesis, contributing to ongoing brain injury after intrapartum asphyxia. In that case, new pharmacologic intervention strategies providing neuroprotection during the reperfusion phase of injury might be identified.
Collapse
Affiliation(s)
- Juliana Karl Frizzo
- Fondazione Santa Lucia, Neurobiology Unit, CNR/Fondazione Santa Lucia, 65 Via del Fosso di Fiorano, 00143 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
415
|
Ohsawa K, Irino Y, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S. P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP. Glia 2010; 58:790-801. [PMID: 20091784 DOI: 10.1002/glia.20963] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microglia are the primary immune surveillance cells in the brain, and when activated they play critical roles in inflammatory reactions and tissue repair in the damaged brain. Microglia rapidly extend their processes toward the damaged areas in response to stimulation of the metabotropic ATP receptor P2Y(12) by ATP released from damaged tissue. This chemotactic response is a highly important step that enables microglia to function properly at normal and pathological sites in the brain. To investigate the molecular pathways that underlie microglial process extension, we developed a novel method of modeling microglial process extension that uses transwell chambers in which the insert membrane is coated with collagen gel. In this study, we showed that ATP increased microglial adhesion to collagen gel, and that the ATP-induced process extension and increase in microglial adhesion were inhibited by integrin blocking peptides, RGD, and a functional blocking antibody against integrin-beta1. An immunoprecipitation analysis with an antibody against the active form of integrin-beta1 showed that P2Y(12) mediated the integrin-beta1 activation by ATP. In addition, time-lapse imaging of EGFP-labeled microglia in mice hippocampal slices showed that RGD inhibited the directional process extension toward the nucleotide source, and immunohistochemical staining showed that integrin-beta1 accumulated in the tips of the microglial processes in rat hippocampal slices stimulated with ADP. These findings indicate that ATP induces the integrin-beta1 activation in microglia through P2Y(12) and suggest that the integrin-beta1 activation is involved in the directional process extension by microglia in brain tissue.
Collapse
Affiliation(s)
- Keiko Ohsawa
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
416
|
Dale N, Frenguelli BG. Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 2010; 7:160-79. [PMID: 20190959 PMCID: PMC2769001 DOI: 10.2174/157015909789152146] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/15/2009] [Accepted: 05/01/2009] [Indexed: 12/17/2022] Open
Abstract
Eighty years ago Drury & Szent-Györgyi described the actions of adenosine, AMP (adenylic acid) and ATP (pyrophosphoric or diphosphoric ester of adenylic acid) on the mammalian cardiovascular system, skeletal muscle, intestinal and urinary systems. Since then considerable insight has been gleaned on the means by which these compounds act, not least of which in the distinction between the two broad classes of their respective receptors, with their many subtypes, and the ensuing diversity in cellular consequences their activation invokes. These myriad actions are of course predicated on the release of the purines into the extracellular milieu, but, surprisingly, there is still considerable ambiguity as to how this occurs in various physiological and pathophysiological conditions. In this review we summarise the release of ATP and adenosine during seizures and cerebral ischemia and discuss mechanisms by which the purines adenosine and ATP may be released from cells in the CNS under these conditions.
Collapse
Affiliation(s)
- Nicholas Dale
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
417
|
Vlajkovic SM, Housley GD, Thorne PR. Adenosine and the auditory system. Curr Neuropharmacol 2010; 7:246-56. [PMID: 20190966 PMCID: PMC2769008 DOI: 10.2174/157015909789152155] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/03/2009] [Accepted: 03/20/2009] [Indexed: 02/06/2023] Open
Abstract
Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | | | | |
Collapse
|
418
|
Gandelman M, Peluffo H, Beckman JS, Cassina P, Barbeito L. Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 2010; 7:33. [PMID: 20534165 PMCID: PMC2901222 DOI: 10.1186/1742-2094-7-33] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 06/09/2010] [Indexed: 02/01/2023] Open
Abstract
Background During pathology of the nervous system, increased extracellular ATP acts both as a cytotoxic factor and pro-inflammatory mediator through P2X7 receptors. In animal models of amyotrophic lateral sclerosis (ALS), astrocytes expressing superoxide dismutase 1 (SOD1G93A) mutations display a neuroinflammatory phenotype and contribute to disease progression and motor neuron death. Here we studied the role of extracellular ATP acting through P2X7 receptors as an initiator of a neurotoxic phenotype that leads to astrocyte-mediated motor neuron death in non-transgenic and SOD1G93A astrocytes. Methods We evaluated motor neuron survival after co-culture with SOD1G93A or non-transgenic astrocytes pretreated with agents known to modulate ATP release or P2X7 receptor. We also characterized astrocyte proliferation and extracellular ATP degradation. Results Repeated stimulation by ATP or the P2X7-selective agonist BzATP caused astrocytes to become neurotoxic, inducing death of motor neurons. Involvement of P2X7 receptor was further confirmed by Brilliant blue G inhibition of ATP and BzATP effects. In SOD1G93A astrocyte cultures, pharmacological inhibition of P2X7 receptor or increased extracellular ATP degradation with the enzyme apyrase was sufficient to completely abolish their toxicity towards motor neurons. SOD1G93A astrocytes also displayed increased ATP-dependent proliferation and a basal increase in extracellular ATP degradation. Conclusions Here we found that P2X7 receptor activation in spinal cord astrocytes initiated a neurotoxic phenotype that leads to motor neuron death. Remarkably, the neurotoxic phenotype of SOD1G93A astrocytes depended upon basal activation the P2X7 receptor. Thus, pharmacological inhibition of P2X7 receptor might reduce neuroinflammation in ALS through astrocytes.
Collapse
|
419
|
Nam HW, Lee MR, Hinton DJ, Choi DS. Reduced effect of NMDA glutamate receptor antagonist on ethanol-induced ataxia and striatal glutamate levels in mice lacking ENT1. Neurosci Lett 2010; 479:277-81. [PMID: 20570605 DOI: 10.1016/j.neulet.2010.05.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/25/2010] [Indexed: 12/26/2022]
Abstract
Alcohol-sensitive type 1 equilibrative nucleotide transporter (ENT1) is known to regulate glutamate signaling in the striatum as well as ethanol intoxication. However, it was unclear whether altered extracellular glutamate levels in ENT1(-/-) mice contribute to ethanol-induced behavioral changes. Here we report that altered glutamate signaling in ENT1(-/-) mice is implicated in the ethanol-induced locomotion and ataxia by NMDA receptor antagonist, CGP37849. ENT1(-/-) mice appear less intoxicated following sequential treatment with CGP37849 and ethanol, compared to ENT1(+/+) littermates on the rotarod. These results indicate that inhibiting NMDA glutamate receptors is critical to regulate the response and susceptibility of alcohol related behaviors. Interestingly, a microdialysis experiment showed that the ventral striatum of ENT1(-/-) mice is less sensitive to the glutamate-reducing effect of the NMDA receptor antagonist compared to the dorsal striatum. Our findings suggest that differential glutamate neurotransmission in the striatum regulates ethanol intoxication.
Collapse
Affiliation(s)
- Hyung Wook Nam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
420
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
421
|
Varani K, Vincenzi F, Tosi A, Targa M, Masieri FF, Ongaro A, De Mattei M, Massari L, Borea PA. Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytes. Br J Pharmacol 2010; 160:101-15. [PMID: 20331607 PMCID: PMC2860211 DOI: 10.1111/j.1476-5381.2010.00667.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/11/2009] [Accepted: 12/23/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Adenosine is an endogenous modulator, interacting with four G-protein coupled receptors (A(1), A(2A), A(2B) and A(3)) and acts as a potent inhibitor of inflammatory processes in several tissues. So far, the functional effects modulated by adenosine receptors on human synoviocytes have not been investigated in detail. We evaluated mRNA, the protein levels, the functional role of adenosine receptors and their pharmacological modulation in human synoviocytes. EXPERIMENTAL APPROACH mRNA, Western blotting, saturation and competition binding experiments, cyclic AMP, p38 mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-kappaB activation, tumour necrosis factor alpha (TNF-alpha) and interleukin-8 (IL-8) release were assessed in human synoviocytes isolated from patients with osteoarthritis. KEY RESULTS mRNA and protein for A(1), A(2A), A(2B) and A(3) adenosine receptors are expressed in human synoviocytes. Standard adenosine agonists and antagonists showed affinity values in the nanomolar range and were coupled to stimulation or inhibition of adenylyl cyclase. Activation of A(2A) and A(3) adenosine receptors inhibited p38 MAPK and NF-kappaB pathways, an effect abolished by selective adenosine antagonists. A(2A) and A(3) receptor agonists decreased TNF-alpha and IL-8 production. The phosphoinositide 3-kinase or G(s) pathways were involved in the functional responses of A(3) or A(2A) adenosine receptors. Synoviocyte A(1) and A(2B) adenosine receptors were not implicated in the inflammatory process whereas stimulation of A(2A) and A(3) adenosine receptors was closely associated with a down-regulation of the inflammatory status. CONCLUSIONS AND IMPLICATIONS These results indicate that A(2A) and A(3) adenosine receptors may represent a potential target in therapeutic modulation of joint inflammation.
Collapse
Affiliation(s)
- K Varani
- Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Equilibrative nucleoside transporter 2 regulates associative learning and synaptic function in Drosophila. J Neurosci 2010; 30:5047-57. [PMID: 20371825 DOI: 10.1523/jneurosci.6241-09.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nucleoside transporters are evolutionarily conserved proteins that are essential for normal cellular function. In the present study, we examined the role of equilibrative nucleoside transporter 2 (ent2) in Drosophila. Null mutants of ent2 are lethal during late larval/early pupal stages, indicating that ent2 is essential for normal development. Hypomorphic mutant alleles of ent2, however, are viable and exhibit reduced associative learning. We additionally used RNA interference to knock down ent2 expression in specific regions of the CNS and show that ent2 is required in the alpha/beta lobes of the mushroom bodies and the antennal lobes. To determine whether the observed behavioral defects are attributable to defects in synaptic transmission, we examined transmitter release at the larval neuromuscular junction (NMJ). Excitatory junction potentials were significantly elevated in ent2 mutants, whereas paired-pulse plasticity was reduced. We also observed an increase in stimulus dependent calcium influx in the presynaptic terminal. The defects observed in calcium influx and transmitter release probability at the NMJ were rescued by introducing an adenosine receptor mutant allele (AdoR(1)) into the ent2 mutant background. The results of the present study provide the first evidence of a role for ent2 function in Drosophila and suggest that the observed defects in associative learning and synaptic function may be attributable to changes in adenosine receptor activation.
Collapse
|
423
|
Leung L, Cahill CM. TNF-alpha and neuropathic pain--a review. J Neuroinflammation 2010; 7:27. [PMID: 20398373 PMCID: PMC2861665 DOI: 10.1186/1742-2094-7-27] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 04/16/2010] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) was discovered more than a century ago, and its known roles have extended from within the immune system to include a neuro-inflammatory domain in the nervous system. Neuropathic pain is a recognized type of pathological pain where nociceptive responses persist beyond the resolution of damage to the nerve or its surrounding tissue. Very often, neuropathic pain is disproportionately enhanced in intensity (hyperalgesia) or altered in modality (hyperpathia or allodynia) in relation to the stimuli. At time of this writing, there is as yet no common consensus about the etiology of neuropathic pain - possible mechanisms can be categorized into peripheral sensitization and central sensitization of the nervous system in response to the nociceptive stimuli. Animal models of neuropathic pain based on various types of nerve injuries (peripheral versus spinal nerve, ligation versus chronic constrictive injury) have persistently implicated a pivotal role for TNF-α at both peripheral and central levels of sensitization. Despite a lack of success in clinical trials of anti-TNF-α therapy in alleviating the sciatic type of neuropathic pain, the intricate link of TNF-α with other neuro-inflammatory signaling systems (e.g., chemokines and p38 MAPK) has indeed inspired a systems approach perspective for future drug development in treating neuropathic pain.
Collapse
Affiliation(s)
- Lawrence Leung
- Centre for Neurosciences Studies, 18, Stuart Street, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
424
|
Single nucleotide polymorphisms that were identified in affective mood disorders affect ATP-activated P2X7 receptor functions. J Psychiatr Res 2010; 44:347-55. [PMID: 19931869 DOI: 10.1016/j.jpsychires.2009.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/09/2009] [Accepted: 10/12/2009] [Indexed: 01/08/2023]
Abstract
Genetic linkage studies have previously identified many single non-synonymous nucleotide polymorphisms (SNPs) in the human P2RX7 gene in individuals with affective mood disorders. The P2RX7 gene encodes the P2X(7) receptor (P2X(7)R) that operates as an ATP-activated Ca(2+)-permeable cationic channel and induces formation of a large pore, the two functional properties that are critical for the physiological and pathological roles of the receptor. The current knowledge regarding the effects of SNPs on the P2X(7)R functional properties, which is indispensable to help elucidate the disease mechanism, is limited. In this study, we introduced by site-directed mutagenesis twelve SNP mutations in the human P2X(7) receptor that were previously identified in or associated with affective mood disorders, expressed the resultant mutants in human embryonic kidney cells, and characterized their functional properties by electrophysiology. All mutations except Q460R gave rise to profound effects on the P2X(7)R function. G150R, E186K and I568N conferred complete loss of function. V76A, R117W, L191P, T357S and E496A resulted in strong impairment of, whereas H155Y and A348T caused significant increase in, both ATP-activated ion channel function and pore formation. Q521H reduced the receptor's sensitivity to extracellular Ca(2+) inhibition. An atomic structure model of the human P2X(7)R, based on the crystal structure of the zebrafish P2X(4) receptor, suggests that the SNP mutational effects may result from changes in subunit interaction, agonist binding and/or channel gating. These results provide essential knowledge for a better understanding of the relationships between human P2RX7 SNPs and associated pathologies as well as the receptor structure-function relationships.
Collapse
|
425
|
Friedle SA, Curet MA, Watters JJ. Recent patents on novel P2X(7) receptor antagonists and their potential for reducing central nervous system inflammation. ACTA ACUST UNITED AC 2010; 5:35-45. [PMID: 19705995 DOI: 10.2174/157488910789753530] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 07/13/2009] [Indexed: 01/24/2023]
Abstract
Inflammation arises in the CNS from a number of neurodegenerative and oncogenic disorders, as well as from ischemic and traumatic brain injuries. These pathologies give rise to increased levels of extracellular adenine nucleotides which, via activation of a variety of cell surface P2 purinergic receptors, influence the inflammatory activities of responding immune cells. One P2 receptor subtype in particular, the P2X(7) receptor, potentiates the release of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta) from macrophage-like cells. It is also thought to contribute to secondary brain injury by inducing neuronal cell death. Therefore, antagonism of this receptor could have significant therapeutic impact on all disorders, not just CNS, to which excessive inflammatory activities contribute. The use of currently available P2X(7) receptor antagonists for the treatment of CNS inflammation has been limited to the generally non-selective antagonists PPADS, oxidized ATP, Brilliant Blue G, suramin, calmidizolium, and KN-62. However, the recent patents and development of novel P2X(7) receptor antagonists, as discussed in this review, will provide new tools both for clinical and research purposes. Here we discuss compounds for which patents have been applied since 2006, from the following categories: benzamide inhibitors, bicycloheteroaryl compounds, acylhdranzine antagonists, biaromatic P2X(7) antagonists, heterocyclic compounds and amide derivatives, and aromatic amine antagonists.
Collapse
Affiliation(s)
- Scott A Friedle
- Program in Cellular and Molecular Biology and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
426
|
Giordani RB, Weizenmann M, Rosemberg DB, De Carli GA, Bogo MR, Zuanazzi JAS, Tasca T. Trichomonas vaginalis nucleoside triphosphate diphosphohydrolase and ecto-5'-nucleotidase activities are inhibited by lycorine and candimine. Parasitol Int 2010; 59:226-31. [PMID: 20176129 DOI: 10.1016/j.parint.2010.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/03/2010] [Accepted: 02/08/2010] [Indexed: 12/19/2022]
Abstract
Drug discovery from plants plays an important role in the pharmaceutical therapy field and the alkaloids lycorine and candimine are candidates for this purpose. Trichomonas vaginalis is a parasite that infects the human urogenital tract and causes trichomonosis, the most prevalent non-viral sexually transmitted disease. Ecto-nucleotidases including nucleoside triphosphate diphosphohydrolase (NTPDase) members, which hydrolyses extracellular ATP (adenosine triphosphate) and ADP (adenosine diphosphate), and ecto-5'-nucleotidase, which hydrolyses AMP (adenosine monophosphate), have been characterized in T. vaginalis. Because purine nucleotides are released from cells under physiological and stress conditions, the goal of this study was to evaluate the effect of lycorine and candimine on T. vaginalis NTPDase and ecto-5'-nculeotidase activities. The alkaloids (50 to 250microM) were tested against both long-term-grown and clinical isolates. Specific enzymatic activities were expressed as nmolPi released/min/mg protein. The effect of both alkaloids at NTPDase A and B expression levels was investigated. When the alkaloids were added directly to the reaction mixture, no effect on ATP, ADP or AMP hydrolysis was observed. NTPDase and ecto-5'-nucleotidase activities were strongly inhibited by candimine and lycorine on 24h-treated parasites. This effect was abolished when 24-treated parasites were innoculated in a culture medium without alkaloid. Transcript levels of NTPDase A or B were not altered by the alkaloids. Considering the cytotoxic and proinflammatory roles of ATP besides the anti-inflammatory effects of adenosine, the regulation of extracellular nucleotide levels could be relevant in increasing susceptibility of T. vaginalis to host immune response in the presence of lycorine and candimine.
Collapse
Affiliation(s)
- Raquel B Giordani
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
427
|
Vizi ES, Fekete A, Karoly R, Mike A. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 2010; 160:785-809. [PMID: 20136842 DOI: 10.1111/j.1476-5381.2009.00624.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Beyond direct synaptic communication, neurons are able to talk to each other without making synapses. They are able to send chemical messages by means of diffusion to target cells via the extracellular space, provided that the target neurons are equipped with high-affinity receptors. While synaptic transmission is responsible for the 'what' of brain function, the 'how' of brain function (mood, attention, level of arousal, general excitability, etc.) is mainly controlled non-synaptically using the extracellular space as communication channel. It is principally the 'how' that can be modulated by medicine. In this paper, we discuss different forms of non-synaptic transmission, localized spillover of synaptic transmitters, local presynaptic modulation and tonic influence of ambient transmitter levels on the activity of vast neuronal populations. We consider different aspects of non-synaptic transmission, such as synaptic-extrasynaptic receptor trafficking, neuron-glia communication and retrograde signalling. We review structural and functional aspects of non-synaptic transmission, including (i) anatomical arrangement of non-synaptic release sites, receptors and transporters, (ii) intravesicular, intra- and extracellular concentrations of neurotransmitters, as well as the spatiotemporal pattern of transmitter diffusion. We propose that an effective general strategy for efficient pharmacological intervention could include the identification of specific non-synaptic targets and the subsequent development of selective pharmacological tools to influence them.
Collapse
Affiliation(s)
- E S Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
428
|
Clark G, Torres J, Finlayson S, Guan X, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ. Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. PLANT PHYSIOLOGY 2010; 152:1073-83. [PMID: 20018604 PMCID: PMC2815863 DOI: 10.1104/pp.109.147637] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/08/2009] [Indexed: 05/20/2023]
Abstract
Ectoapyrase enzymes remove the terminal phosphate from extracellular nucleoside tri- and diphosphates. In Arabidopsis (Arabidopsis thaliana), two ectoapyrases, AtAPY1 and AtAPY2, have been implicated as key modulators of growth. In fibers of cotton (Gossypium hirsutum), transcript levels for GhAPY1 and GhAPY2, two closely related ectoapyrases that have high sequence similarity to AtAPY1 and AtAPY2, are up-regulated when fibers enter their rapid growth phase. In an ovule culture system, fibers release ATP as they grow, and when their ectoapyrase activity is blocked by the addition of polyclonal anti-apyrase antibodies or by two different small molecule inhibitors, the medium ATP level rises and fiber growth is suppressed. High concentrations of the poorly hydrolyzable nucleotides ATPgammaS and ADPbetaS applied to the medium inhibit fiber growth, and low concentrations of them stimulate growth, but treatment with adenosine 5'-O-thiomonophosphate causes no change in the growth rate. Both the inhibition and stimulation of growth by applied nucleotides can be blocked by an antagonist that blocks purinoceptors in animal cells, and by adenosine. Treatment of cotton ovule cultures with ATPgammaS induces increased levels of ethylene, and two ethylene antagonists, aminovinylglycine and silver nitrate, block both the growth stimulatory and growth inhibitory effects of applied nucleotides. In addition, the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, lowers the concentration of nucleotide needed to promote fiber growth. These data indicate that ectoapyrases and extracellular nucleotides play a significant role in regulating cotton fiber growth and that ethylene is a likely downstream component of the signaling pathway.
Collapse
|
429
|
Iqbal J, Knowles AF, Müller CE. Development of a microbioreactor with ecto-nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) immobilized on a polyacrylamide-coated capillary at the outlet. J Chromatogr A 2010; 1217:600-4. [DOI: 10.1016/j.chroma.2009.11.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/28/2009] [Accepted: 11/30/2009] [Indexed: 11/29/2022]
|
430
|
Walters ET, Moroz LL. Molluscan memory of injury: evolutionary insights into chronic pain and neurological disorders. BRAIN, BEHAVIOR AND EVOLUTION 2009; 74:206-18. [PMID: 20029184 PMCID: PMC2855280 DOI: 10.1159/000258667] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molluscan preparations have yielded seminal discoveries in neuroscience, but the experimental advantages of this group have not, until now, been complemented by adequate molecular or genomic information for comparisons to genetically defined model organisms in other phyla. The recent sequencing of the transcriptome and genome of Aplysia californica, however, will enable extensive comparative studies at the molecular level. Among other benefits, this will bring the power of individually identifiable and manipulable neurons to bear upon questions of cellular function for evolutionarily conserved genes associated with clinically important neural dysfunction. Because of the slower rate of gene evolution in this molluscan lineage, more homologs of genes associated with human disease are present in Aplysia than in leading model organisms from Arthropoda (Drosophila) or Nematoda (Caenorhabditis elegans). Research has hardly begun in molluscs on the cellular functions of gene products that in humans are associated with neurological diseases. On the other hand, much is known about molecular and cellular mechanisms of long-term neuronal plasticity. Persistent nociceptive sensitization of nociceptors in Aplysia displays many functional similarities to alterations in mammalian nociceptors associated with the clinical problem of chronic pain. Moreover, in Aplysia and mammals the same cell signaling pathways trigger persistent enhancement of excitability and synaptic transmission following noxious stimulation, and these highly conserved pathways are also used to induce memory traces in neural circuits of diverse species. This functional and molecular overlap in distantly related lineages and neuronal types supports the proposal that fundamental plasticity mechanisms important for memory, chronic pain, and other lasting alterations evolved from adaptive responses to peripheral injury in the earliest neurons. Molluscan preparations should become increasingly useful for comparative studies across phyla that can provide insight into cellular functions of clinically important genes.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Tex. 77030, USA.
| | | |
Collapse
|
431
|
Siqueira IR, Elsner VR, Rilho LS, Bahlis MG, Bertoldi K, Rozisky JR, Batasttini AMO, Torres ILDS. A neuroprotective exercise protocol reduces the adenine nucleotide hydrolysis in hippocampal synaptosomes and serum of rats. Brain Res 2009; 1316:173-80. [PMID: 19968974 DOI: 10.1016/j.brainres.2009.11.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/25/2009] [Accepted: 11/29/2009] [Indexed: 01/28/2023]
Abstract
Regular and moderate exercise has been considered as an interesting neuroprotective strategy. However, the molecular mechanisms by which physical exercise alters brain function are unclear. Purinergic signaling seems to modulate the pathophysiology of ischemic neuronal damage, since it has been described a neuroprotective activity of adenosine and a dual role of ATP. In the present study, we investigated the effect of daily moderate intensity exercise on ectonucleotidase activities in synaptosomes from hippocampus and the soluble nucleotidases from blood serum of rats. Adult male Wistar rats were assigned to non-exercised (sedentary) group and exercised during 20-min sessions on different programs. The effects of physical activity on hydrolysis of ATP, ADP and AMP were assayed in the synaptosomal fraction obtained from the hippocampus and serum approximately 16 h after the last training session. Our data demonstrated that a neuroprotective exercise protocol, daily 20 min of training in treadmill during 2 weeks, diminished significantly the ADP hydrolysis and there is a trend to reduce the ATP hydrolysis in both hippocampal synaptosomes and blood serum of rats. We suggest that the neuroprotective exercise protocol may modulate nucleotidase activities.
Collapse
Affiliation(s)
- Ionara Rodrigues Siqueira
- Unidade de Experimentação Animal, Hospital de Clínicas de Porto Alegre, CEP 90035-903, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
432
|
Mannelli P, Patkar A, Rozen S, Matson W, Krishnan R, Kaddurah- Daouk R. Opioid use affects antioxidant activity and purine metabolism: preliminary results. Hum Psychopharmacol 2009; 24:666-75. [PMID: 19760630 PMCID: PMC3183957 DOI: 10.1002/hup.1068] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE More must be learned about metabolic and biochemical alterations that contribute to the development and expression of drug dependence. Experimental opioid administration influences mechanisms and indices of oxidative stress, such as antioxidant compounds and purine metabolism. We examined perturbations of neurotransmitter-related pathways in opioid dependence (OD). METHODS In this preliminary study, we used a targeted metabolomics platform to explore whether biochemical changes were associated with OD by comparing OD individuals (n = 14) and non-drug users (n = 10). RESULTS OD patients undergoing short-term methadone detoxification showed altered oxidation-reduction activity, as confirmed by higher plasma levels of alpha- and gamma-tocopherol and increased GSH/GSSG ratio. OD individuals had also altered purine metabolism, showing increased concentration of guanine and xanthosine, with decreased guanosine, hypoxanthine and hypoxanthine/xanthine and xanthine/xanthosine ratios. Other drug use in addition to opioids was associated with partly different biochemical changes. CONCLUSIONS This is a preliminary investigation using metabolomics and showing multiple peripheral alterations of metabolic pathways in OD. Further studies should explore the metabolic profile of conditions of opioid abuse, withdrawal and long-term abstinence in relation to agonist and antagonist treatment and investigate biochemical signatures of opioid substances and medications.
Collapse
Affiliation(s)
- Paolo Mannelli
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2218 Elder Street, Durham, NC 27705, USA.
| | - Ashwin Patkar
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Steve Rozen
- Duke-NUS Graduate Medical School Singapore, Singapore
| | - Wayne Matson
- Bedford Veterans Administration Medical Center, Bedford, Massachusetts, USA
| | - Ranga Krishnan
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA,Duke-NUS Graduate Medical School Singapore, Singapore
| | - Rima Kaddurah- Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA,Correspondence to: R. K. Daouk, Center for Pharmacometabolomics, Duke University Medical Center, Durham, NC 27705, USA. Tel: 919-684-2611. Fax: (919) 681-7668.
| |
Collapse
|
433
|
Pain and purinergic signaling. ACTA ACUST UNITED AC 2009; 63:222-32. [PMID: 19931560 DOI: 10.1016/j.brainresrev.2009.11.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 01/12/2023]
Abstract
A growing body of evidence indicates that extracellular nucleotides play important roles in the regulation of neuronal and glial functions in the nervous system through P2 purinoceptors. P2 purinoceptors are divided into two families, ionotropic receptors (P2X) and metabotropic receptors (P2Y). P2X receptors (seven types; P2X1-P2X7) contain intrinsic pores that open by binding with ATP, and P2Y receptors (eight types; P2Y1, 2, 4, 6, 11, 12, 13 and 14) are activated by nucleotides and couple to intracellular second-messenger systems through heterotrimeric G-proteins. Nucleotides are released or leaked from non-excitable cells as well as neurons in physiological and pathophysiological conditions. Studies have shown that microglia, a type of glial cells known as resident macrophages in the CNS, express several subtypes of P2X and P2Y receptors, and these receptors play a key role in pain signaling in the spinal cord under pathological conditions such as by peripheral nerve injury (called neuropathic pain). Within the spinal dorsal horn, peripheral nerve injury leads to a progressive series of changes in microglia including morphological hypertrophy of the cell body and proliferation, which are considered indicative of activation. These activated microglia upregulate expression of P2X/Y receptors (e.g., P2X4 and P2Y12). Importantly, pharmacological, molecular and genetic manipulations of the function or expression of these microglial molecules strongly suppress neuropathic pain. We expect that further investigation to determine how ATP signaling via P2X receptors participates in the pathogenesis of chronic pain will lead to a better understanding of the molecular mechanisms of pathological pain and provide clues for the development of new therapeutic drugs.
Collapse
|
434
|
|
435
|
Characterization of endogenous calcium responses in neuronal cell lines. Biochem Pharmacol 2009; 79:908-20. [PMID: 19883631 DOI: 10.1016/j.bcp.2009.10.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 11/23/2022]
Abstract
An increasing number of putative therapeutic targets have been identified in recent years for the treatment of neuronal pathophysiologies including pain, epilepsy, stroke and schizophrenia. Many of these targets signal through calcium (Ca(2+)), either by directly facilitating Ca(2+) influx through an ion channel, or through activation of G proteins that couple to intracellular Ca(2+) stores or voltage-gated Ca(2+) channels. Immortalized neuronal cell lines are widely used models to study neuropharmacology. However, systematic pharmacological characterization of the receptors and ion channels expressed in these cell lines is lacking. In this study, we systematically assessed endogenous Ca(2+) signaling in response to addition of agonists at potential therapeutic targets in a range of cell lines of neuronal origin (ND7/23, SH-SY5Y, 50B11, F11 and Neuro2A cells) as well as HEK293 cells, a cell line commonly used for over-expression of receptors and ion channels. This study revealed a remarkable diversity of endogenous Ca(2+) responses in these cell lines, with one or more cell lines responding to addition of trypsin, bradykinin, ATP, nicotine, acetylcholine, histamine and neurotensin. Subtype specificity of these responses was inferred from agonist potency and the effect of receptor subtype specific antagonist. Surprisingly, HEK293 and SH-SY5Y cells responded to the largest number of agonists with potential roles in neuronal signaling. These findings have implications for the heterologous expression of neuronal receptors and ion channels in these cell lines, and highlight the potential of neuron-derived cell lines for the study of a range of endogenously expressed receptors and ion channels that signal through Ca(2+).
Collapse
|
436
|
Popova M, Asatryan L, Ostrovskaya O, Wyatt LR, Li K, Alkana RL, Davies DL. A point mutation in the ectodomain-transmembrane 2 interface eliminates the inhibitory effects of ethanol in P2X4 receptors. J Neurochem 2009; 112:307-17. [PMID: 19878433 DOI: 10.1111/j.1471-4159.2009.06460.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ATP-gated P2X4 receptors (P2X4R) are abundantly expressed in the CNS. However, little is known about the molecular targets for ethanol action in P2X4Rs. The current investigation tested the hypothesis that the ectodomain-transmembrane (TM) interface contains residues that are important for the action of ethanol in P2X4Rs. Wild type (WT) and mutant P2X4R were expressed in Xenopus oocytes. ATP concentration-response curves and ethanol (10-200 mM)-induced changes in ATP EC(10)-gated currents were determined using two-electrode voltage clamp (-70 mV). Alanine substitution at the ectodomain-TM1 interface (positions 50-61) resulted in minimal changes in ethanol response. On the other hand, alanine substitution at the ectodomain-TM2 interface (positions 321-337) identified two key residues (D331 and M336) that significantly reduced ethanol inhibition of ATP-gated currents without causing marked changes in ATP I(max), EC(50), or Hill's slope. Other amino acid substitutions at positions 331 and 336 significantly altered or eliminated the modulatory effects of ethanol. Linear regression analyses revealed a significant relationship between hydropathy and polarity, but not molecular volume/molecular weight of the residues at these two positions. The results support the proposed hypothesis and represent an important step toward developing ethanol-insensitive receptors for investigating the role of P2X4Rs in mediating behavioral effects of ethanol.
Collapse
Affiliation(s)
- Maya Popova
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
437
|
Fischer W, Nörenberg W, Franke H, Schaefer M, Illes P. Increase of intracellular Ca2+ by P2Y but not P2X receptors in cultured cortical multipolar neurons of the rat. J Comp Neurol 2009; 516:343-59. [PMID: 19655384 DOI: 10.1002/cne.22079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The expression and functionality of P2X/P2Y receptor subtypes in multipolar nonpyramidal neurons of mixed cortical cell cultures were investigated by means of immunocytochemistry and fura-2 microfluorimetry. The morphological studies revealed that most of the neurons are immunoreactive for GABA and express a range of P2X/P2Y receptors, predominantly of the P2X(2,4,6) and P2Y(1,2) subtypes. P2X(1) and P2X(7) receptor immunoreactivity (IR) was found on thin axon-like processes and presynaptic structures, respectively. Application of ATP caused a small concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in most investigated neurons, whereas only about the half of these cells responded to 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP), ADPbetaS, 2MeSADP, or 2MeSATP and even fewer cells to UTP. In contrast, alpha,beta-meATP, UDP, and UDP-glucose failed to produce any [Ca2+]i signaling. The response to ATP itself was inhibited by pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Reactive Blue 2, 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179), and suramin (300 microM) as well as by a cyclopiazonic acid-induced depletion of intracellular Ca2+ stores. A Ca2+-free external medium tended to decrease the ATP-induced [Ca2+]i transients, although this action did not reach statistical significance. Various blockers of voltage-sensitive Ca2+ channels and the gap junction inhibitor carbenoxolone did not interfere with the effect of ATP, whereas a combination of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased it. Cross-desensitization experiments between ADPbetaS or UTP and ATP suggested that ATP acts on the one hand via P2Y(1,2) receptors and on the other hand by additional signaling mechanisms. These mechanisms may involve the release of glutamate (which in consequence activates ionotropic glutamate receptors) and the entry of Ca2+ via store-operated Ca2+ channels. Evidence for the presence of functional P2X receptors, in particular P2X(7), remains elusive.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, Leipzig D-04107, Germany.
| | | | | | | | | |
Collapse
|
438
|
Varani K, Vincenzi F, Tosi A, Gessi S, Casetta I, Granieri G, Fazio P, Leung E, MacLennan S, Granieri E, Borea PA. A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson's disease. FASEB J 2009; 24:587-98. [PMID: 19776336 DOI: 10.1096/fj.09-141044] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The antagonistic interaction between adenosine and dopamine receptors could have important pathophysiological and therapeutic implications in Parkinson's disease (PD). The primary aim of this study was to investigate the expression, affinity, and density of A(1), A(2A), A(2B), and A(3) adenosine receptors (ARs) and D(2) dopamine receptors (D(2)Rs) in PD. An increase in A(2A)AR density in putamen was found. The presence and functionality of ARs in human lymphocyte and neutrophil membranes from patients with PD revealed a specific A(2A)AR alteration compared with healthy subjects. A statistically significant linear correlation among the A(2A)AR density, functionality, or tumor necrosis factor-alpha (TNF-alpha) levels and Unified Parkinson's Disease Rating Scale (UPDRS) motor score was reported. Adenosine concentration and TNF-alpha levels were increased in plasma of patients with PD. In rat adrenal pheochromocytoma (PC12) cells, a widely useful model, adenosine antagonists decreased dopamine uptake, and an opposite effect was mediated by A(2A) agonists. This is the first report showing the presence of an A(2A)AR alteration in putamen in PD that mirrors a similar up-regulation in human peripheral blood cells. Moreover, the correlation found between A(2A)AR density or A(2A) agonist potency and UPDRS motor score highlights the central role of A(2A)ARs in the pharmacological treatment of PD.
Collapse
Affiliation(s)
- Katia Varani
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, via Fossato di Mortara 17-19 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Volpini R, Mishra RC, Kachare DD, Dal Ben D, Lambertucci C, Antonini I, Vittori S, Marucci G, Sokolova E, Nistri A, Cristalli G. Adenine-based acyclic nucleotides as novel P2X3 receptor ligands. J Med Chem 2009; 52:4596-603. [PMID: 19606867 DOI: 10.1021/jm900131v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new series of acyclic nucleotides based on the adenine skeleton and bearing in 9-position a phosphorylated four carbon chain has been synthesized. Various substituents were introduced in 2-position of the adenine core. The new compounds were evaluated on rat P2X3 receptors, using patch clamp recording from HEK transfected cells and the full P2X3 agonist alpha,beta-meATP as reference compound. The results suggest that certain acyclic nucleotides, in particular compounds 28 and 29, are endowed with modest partial agonism on P2X3 receptors. This is an interesting property that can depress the function of P2X3 receptors, whose activation is believed to be involved in a number of chronic pain conditions including neuropathic pain and migraine. In fact, the new acyclic nucleotides are able to persistently block (by desensitization) P2X3 receptor activity after a brief, modest activation, yet leaving the ability of sensory neurons to mediate responses to standard painful stimuli via a lower level of signaling.
Collapse
Affiliation(s)
- Rosaria Volpini
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Boison D, Stewart KA. Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation. Biochem Pharmacol 2009; 78:1428-37. [PMID: 19682439 DOI: 10.1016/j.bcp.2009.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 01/16/2023]
Abstract
Epilepsy is a common seizure disorder affecting approximately 70 million people worldwide. Current pharmacotherapy is neuron-centered, frequently accompanied by intolerable side effects, and fails to be effective in about one third of patients. Therefore, new therapeutic concepts are needed. Recent research suggests an astrocytic basis of epilepsy, presenting the possibility of novel therapeutic targets. In particular, dysfunction of the astrocyte-controlled, endogenous, adenosine-based seizure control system of the brain is implicated in seizure generation. Thus, astrogliosis - a pathological hallmark of the epileptic brain - is associated with upregulation of the adenosine-removing enzyme adenosine kinase (ADK), resulting in focal adenosine deficiency. Both astrogliotic upregulation of ADK in epilepsy and transgenic overexpression of ADK are associated with seizures, and inhibition of ADK prevents seizures in a mouse model of pharmacoresistant epilepsy. These findings link adenosine deficiency with seizures and predict that adenosine augmentation therapies (AATs) will likely be effective in preventing seizures. Given the wide-spread systemic and central side effects of systemically administered AATs, focal AATs (i.e., limited to the astrogliotic lesion) are a necessity. This Commentary will discuss the pharmacological rationale for the development of focal AATs. Additionally, several AAT strategies will be discussed: (1) adenosine released from silk-based brain implants; (2) adenosine released from locally implanted encapsulated cells; (3) adenosine released from stem cell-derived brain implants; and (4) adenosine augmenting gene therapies. Finally, new developments and therapeutic challenges in using focal AATs for epilepsy therapy will critically be evaluated.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| | | |
Collapse
|
441
|
Katayama T, Ito M, Kaneko S, Satoh M, Uehara T, Minami M. Reciprocal regulation of ATPgammaS-induced monocyte chemoattractant protein-1 production by ERK and p38 MAP kinases in rat corticostriatal slice cultures. J Neurosci Res 2009; 87:1573-81. [PMID: 19125410 DOI: 10.1002/jnr.21982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1, CCL2) is a well-defined chemokine implicated in the pathology of various neurodegenerative diseases and brain injuries, such as Alzheimer's disease, multiple sclerosis, stroke, and traumatic injury. We investigated the effect of the activation of P2 purinoceptors on MCP-1 production in rat corticostriatal slice cultures. Treatment with adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), a hydrolysis-resistant adenosine triphosphate (ATP) analog, induced MCP-1 production in astrocytes. The induction was in a concentration-dependent manner and was antagonized by a P2 purinoceptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid. The inhibition of an extracellular signal-regulated kinase (ERK) pathway by PD98059 and U0126 significantly suppressed ATPgammaS-induced MCP-1 mRNA expression and protein production, while inhibition of c-Jun N-terminal kinase by SP600125 resulted in the partial suppression. Conversely, SB203580, a p38 mitogen-activated protein (MAP) kinase inhibitor, significantly enhanced ATPgammaS-induced MCP-1 production. Similar effects of ERK and p38 MAP kinase inhibitors on MCP-1 production were observed in the slices stimulated by ATP and BzATP. These results demonstrate that astrocytic MCP-1 production induced by P2 purinoceptor stimulation is reciprocally regulated by ERK and p38 MAP kinases in the organotypic slice cultures.
Collapse
Affiliation(s)
- Takahiro Katayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
442
|
Das A, Zhou Y, Ivanov AA, Carter RL, Harden TK, Jacobson KA. Enhanced potency of nucleotide-dendrimer conjugates as agonists of the P2Y14 receptor: multivalent effect in G protein-coupled receptor recognition. Bioconjug Chem 2009; 20:1650-9. [PMID: 19572637 DOI: 10.1021/bc900206g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P2Y(14) receptor is a G protein-coupled receptor activated by uridine-5'-diphosphoglucose and other nucleotide sugars that modulates immune function. Covalent conjugation of P2Y(14) receptor agonists to PAMAM (polyamidoamine) dendrimers enhanced pharmacological activity. Uridine-5'-diphosphoglucuronic acid (UDPGA) and its ethylenediamine adduct were suitable functionalized congeners for coupling to several generations (G2.5-6) of dendrimers (both terminal carboxy and amino). Prosthetic groups, including biotin for avidin complexation, a chelating group for metal complexation (and eventual magnetic resonance imaging), and a fluorescent moiety, also were attached with the eventual goals of molecular detection and characterization of the P2Y(14) receptor. The activities of conjugates were assayed in HEK293 cells stably expressing the human P2Y(14) receptor. A G3 PAMAM conjugate containing 20 bound nucleotide moieties (UDPGA) was 100-fold more potent (EC(50) 2.4 nM) than the native agonist uridine-5'-diphosphoglucose. A molecular model of this conjugate docked in the human P2Y(14) receptor showed that the nucleotide-substituted branches could extend far beyond the dimensions of the receptor and be available for multivalent docking to receptor aggregates. Larger dendrimer carriers and greater loading favored higher potency. A similar conjugate of G6 with 147 out of 256 amino groups substituted with UDPGA displayed an EC(50) value of 0.8 nM. Thus, biological activity was either retained or dramatically enhanced in the multivalent dendrimer conjugates in comparison with monomeric P2Y(14) receptor agonists, depending on size, degree of substitution, terminal functionality, and attached prosthetic groups.
Collapse
Affiliation(s)
- Arijit Das
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
443
|
Labrousse VF, Costes L, Aubert A, Darnaudéry M, Ferreira G, Amédée T, Layé S. Impaired interleukin-1beta and c-Fos expression in the hippocampus is associated with a spatial memory deficit in P2X(7) receptor-deficient mice. PLoS One 2009; 4:e6006. [PMID: 19547756 PMCID: PMC2695542 DOI: 10.1371/journal.pone.0006006] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 05/27/2009] [Indexed: 11/18/2022] Open
Abstract
Recent evidence suggests that interleukin-1beta (IL-1beta), which was originally identified as a proinflammatory cytokine, is also required in the brain for memory processes. We have previously shown that IL-1beta synthesis in the hippocampus is dependent on P2X(7) receptor (P2X(7)R), which is an ionotropic receptor of ATP. To substantiate the role of P2X(7)R in both brain IL-1beta expression and memory processes, we examined the induction of IL-1beta mRNA expression in the hippocampus of wild-type (WT) and homozygous P2X(7) receptor knockout mice (P2X(7)R(-/-)) following a spatial memory task. The spatial recognition task induced both IL-1beta mRNA expression and c-Fos protein activation in the hippocampus of WT but not of P2X(7)R(-/-) mice. Remarkably, P2X(7)R(-/-) mice displayed spatial memory impairment in a hippocampal-dependant task, while their performances in an object recognition task were unaltered. Taken together, our results show that P2X(7)R plays a critical role in spatial memory processes and the associated hippocampal IL-1beta mRNA synthesis and c-Fos activation.
Collapse
Affiliation(s)
- Virginie F. Labrousse
- Psychoneuroimmunologie, Nutrition et Génétique (PsyNuGen), INRA UMR 1286, CNRS UMR 5226, Université de Bordeaux, Bordeaux, France
| | - Laurence Costes
- Psychoneuroimmunologie, Nutrition et Génétique (PsyNuGen), INRA UMR 1286, CNRS UMR 5226, Université de Bordeaux, Bordeaux, France
| | - Agnès Aubert
- Psychoneuroimmunologie, Nutrition et Génétique (PsyNuGen), INRA UMR 1286, CNRS UMR 5226, Université de Bordeaux, Bordeaux, France
| | - Muriel Darnaudéry
- Psychoneuroimmunologie, Nutrition et Génétique (PsyNuGen), INRA UMR 1286, CNRS UMR 5226, Université de Bordeaux, Bordeaux, France
- NEUROSTRESS EA 4347, “Université Lille Nord de France”, Villeneuve d'Ascq, France
| | - Guillaume Ferreira
- Psychoneuroimmunologie, Nutrition et Génétique (PsyNuGen), INRA UMR 1286, CNRS UMR 5226, Université de Bordeaux, Bordeaux, France
- Laboratoire Comportement, Neurobiologie et Adaptation, INRA UMR 85, CNRS UMR 6175, Université de Tours, Nouzilly, France
| | - Thierry Amédée
- Psychoneuroimmunologie, Nutrition et Génétique (PsyNuGen), INRA UMR 1286, CNRS UMR 5226, Université de Bordeaux, Bordeaux, France
| | - Sophie Layé
- Psychoneuroimmunologie, Nutrition et Génétique (PsyNuGen), INRA UMR 1286, CNRS UMR 5226, Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
444
|
Gunosewoyo H, Coster MJ, Bennett MR, Kassiou M. Purinergic P2X(7) receptor antagonists: Chemistry and fundamentals of biological screening. Bioorg Med Chem 2009; 17:4861-5. [PMID: 19540765 DOI: 10.1016/j.bmc.2009.05.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
The purinergic P2X(7) receptor is a unique member of the ATP-gated P2X family. This receptor has been implicated in numerous diseases and many structurally diverse ligands have been discovered via high throughput screening. This perspective will attempt to highlight some of the most recent key findings in both the biology and chemistry.
Collapse
|
445
|
Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 2009; 5:28. [PMID: 19515262 PMCID: PMC2704200 DOI: 10.1186/1744-8069-5-28] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/11/2009] [Indexed: 12/14/2022] Open
Abstract
A growing body of evidence indicates that P2X receptors (P2XRs), a family of ligand-gated cation channels activated by extracellular ATP, play an important role in pain signaling. In contrast to the role of the P2X3R subtype that has been extensively studied, the precise roles of others among the seven P2XR subtypes (P2X1R-P2X7R) remain to be determined because of a lack of sufficiently powerful tools to specifically block P2XR signaling in vivo. In the present study, we investigated the behavioral phenotypes of a line of mice in which the p2rx4 gene was disrupted in a series of acute and chronic pain assays. While p2rx4-/- mice showed no major defects in pain responses evoked by acute noxious stimuli and local tissue damage or in motor function as compared with wild-type mice, these mice displayed reduced pain responses in two models of chronic pain (inflammatory and neuropathic pain). In a model of chronic inflammatory pain developed by intraplantar injection of complete Freund's adjuvant (CFA), p2rx4-/- mice exhibited attenuations of pain hypersensitivity to innocuous mechanical stimuli (tactile allodynia) and also of the CFA-induced swelling of the hindpaw. A most striking phenotype was observed in a test of neuropathic pain: tactile allodynia caused by an injury to spinal nerve was markedly blunted in p2rx4-/- mice. By contrast, pain hypersensitivity to a cold stimulus (cold allodynia) after the injury was comparable in wild-type and p2rx4-/- mice. Together, these findings reveal a predominant contribution of P2X4R to nerve injury-induced tactile allodynia and, to the lesser extent, peripheral inflammation. Loss of P2X4R produced no defects in acute physiological pain or tissue damaged-induced pain, highlighting the possibility of a therapeutic benefit of blocking P2X4R in the treatment of chronic pain, especially tactile allodynia after nerve injury.
Collapse
|
446
|
D'Arco M, Giniatullin R, Leone V, Carloni P, Birsa N, Nair A, Nistri A, Fabbretti E. The C-terminal Src inhibitory kinase (Csk)-mediated tyrosine phosphorylation is a novel molecular mechanism to limit P2X3 receptor function in mouse sensory neurons. J Biol Chem 2009; 284:21393-401. [PMID: 19509283 DOI: 10.1074/jbc.m109.023051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
On sensory neurons, sensitization of P2X(3) receptors gated by extracellular ATP contributes to chronic pain. We explored the possibility that receptor sensitization may arise from down-regulation of an intracellular signal negatively controlling receptor function. In view of the structural modeling between the Src region phosphorylated by the C-terminal Src inhibitory kinase (Csk) and the intracellular C terminus domain of the P2X(3) receptor, we investigated how Csk might regulate receptor activity. Using HEK cells and the in vitro kinase assay, we observed that Csk directly phosphorylated the tyrosine 393 residue of the P2X(3) receptor and strongly inhibited receptor currents. On mouse trigeminal sensory neurons, the role of Csk was tightly controlled by the extracellular level of nerve growth factor, a known algogen. Furthermore, silencing endogenous Csk in HEK or trigeminal cells potentiated P2X(3) receptor responses, confirming constitutive Csk-mediated inhibition. The present study provides the first demonstration of an original molecular mechanism responsible for negative control over P2X(3) receptor function and outlines a potential new target for trigeminal pain suppression.
Collapse
Affiliation(s)
- Marianna D'Arco
- Neurobiology Sector and Italian Institute of Technology Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
447
|
Yu FX, Goh SR, Dai RP, Luo Y. Adenosine-containing molecules amplify glucose signaling and enhance txnip expression. Mol Endocrinol 2009; 23:932-42. [PMID: 19246513 PMCID: PMC5419282 DOI: 10.1210/me.2008-0383] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 02/19/2009] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cells sense extracellular glucose concentrations via diverse mechanisms to regulate the expression of genes involved in metabolic control. One such example is the tight correlation between the expression of thioredoxin-interacting protein (Txnip) and extracellular glucose levels. In this report, we show that the transcription of the Txnip gene is induced by adenosine-containing molecules, of which an intact adenosine moiety is necessary and sufficient. Txnip promoter contains a carbohydrate response element, which mediates the induction of Txnip expression by these molecules in a glucose-dependent manner. Max-like protein X and MondoA are transcription factors previously shown to stimulate glucose-dependent Txnip expression and are shown here to convey stimulatory signals from extracellular adenosine-containing molecules to the Txnip promoter. The regulatory role of these molecules may be exerted via amplifying glucose signaling. Hence, this revelation may pave the way for interventions aimed toward metabolic disorders resulting from abnormal glucose homeostasis.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | | | | | | |
Collapse
|
448
|
Differential ectonucleotidase expression in human bladder cancer cell lines. Urol Oncol 2009; 28:260-7. [PMID: 19372055 DOI: 10.1016/j.urolonc.2009.01.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 01/22/2023]
Abstract
Bladder cancer is the most prevalent tumor in the genitourinary tract. Nucleotides are important molecules that regulate many pathophysiological functions in the extracellular space. Studies have revealed evidence of a relationship between purinergic signaling and urothelial malignancies. Nucleotide-mediated signaling is controlled by a highly efficient enzymatic cascade, which includes the members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDases), ectonucleotide pyrophosphatase/phosphodiesterase (E-NPPs), ecto-alkaline phosphatases, and ecto-5'-nucleotidase/CD73. In an attempt to identify possible differential expression of ectonucleotidases during bladder cancer progression, a comparative analysis between RT4 (grade 1) and T24 (grade 3) bladder cancer cell lines was performed. In RT4 cells, the hydrolysis of tri- and diphosphate nucleosides was higher than monophosphonucleosides. T24 cells, however, presented the opposite profile, a low level of hydrolysis of tri- and diphosphate nucleosides and a high level of hydrolysis of monophosphates. Phosphodiesterase activity was negligible in both cell lines at physiological pH, indicating that these enzymes are not active under our assay conditions, although they are expressed in both cell lines. The T24 cells expressed NTPDase5 mRNA, while the RT4 cells expressed NTPDase3 and NTPDase5 mRNA. Both cell lines expressed ecto-5'-nucleotidase/CD73 mRNA. The present work describes, for the first time, the differential pattern of ectonucleotidases in the more malignant bladder cancer cells compared with cells derived from an early stage of bladder cancer. Our results open new avenues for research into the physiological roles of this family of enzymes and their possible therapeutic potential in bladder cancer.
Collapse
|
449
|
Point mutation in the mouse P2X7 receptor affects intercellular calcium waves in astrocytes. ASN Neuro 2009; 1:AN20090001. [PMID: 19570022 PMCID: PMC2695581 DOI: 10.1042/an20090001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purinergic P2 receptors and gap junctions are two groups of proteins involved in the transmission of ICWs (intercellular calcium waves) between astrocytes. The extent to which ICWs spread among these glial cells depends on the amount of ATP released, which can occur through membrane channels, as well as other pathways. Our previous studies have shown that the pore-forming P2X7R (P2X7 receptor) contributes to the amplification of ICW spread by providing sites of ATP release through Panx1 (Pannexin1) channels. To gain insight into the signal transduction events mediating this response we compared the properties of the P2X7R-Panx1 complex in astrocytes from a mouse strain (C57Bl/6) containing a naturally occurring point mutation (P451L) in the C-terminus of the P2X7R to that of non-mutated receptors (Balb/C mice). Electrophysiological, biochemical, pharmacological and fluorescence imaging techniques revealed that the P451L mutation located in the SH3 domain (a Src tyrosine kinase-binding site) of the C-terminus of the P2X7R attenuates Panx1 currents, ATP release and the distance of ICW spread between astrocytes. Similar results were obtained when using the Src tyrosine inhibitor (PP2) and a membrane-permeant peptide spanning the P451L mutation of the P2X7R of the C57Bl6 astrocytes. These results support the participation of a tyrosine kinase of the Src family in the initial steps mediating the opening of Panx1 channels following P2X7R stimulation and in the transmission of calcium signals among astrocytes.
Collapse
|
450
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|