401
|
McKernan R, Watt FM. What is the point of large-scale collections of human induced pluripotent stem cells? Nat Biotechnol 2014; 31:875-7. [PMID: 24104747 PMCID: PMC3825502 DOI: 10.1038/nbt.2710] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
402
|
Themistocleous AC, Ramirez JD, Serra J, Bennett DLH. The clinical approach to small fibre neuropathy and painful channelopathy. Pract Neurol 2014; 14:368-79. [PMID: 24778270 PMCID: PMC4251302 DOI: 10.1136/practneurol-2013-000758] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Small fibre neuropathy (SFN) is characterised by structural injury selectively affecting small diameter sensory and/or autonomic axons. The clinical presentation is dominated by pain. SFN complicates a number of common diseases such as diabetes mellitus and is likely to be increasingly encountered. The diagnosis of SFN is demanding as clinical features can be vague and nerve conduction studies normal. New diagnostic techniques, in particular measurement of intraepidermal nerve fibre density, have significantly improved the diagnostic efficiency of SFN. Management is focused on the treatment of the underlying cause and analgesia, as there is no neuroprotective therapy. A recent and significant advance is the finding that a proportion of cases labelled as idiopathic SFN are in fact associated with gain of function mutations of the voltage-gated sodium channels Nav1.7 and Nav1.8 (encoded by the genes SCN9A and SCN10A, respectively). There is a further group of heritable painful conditions in which gain of function mutations in ion channels alter excitability of sensory neurones but do not cause frank axon degeneration; these include mutations in Nav1.7 (causing erythromelalgia and paroxysmal extreme pain disorder) and TRPA1 (resulting in familial episodic pain disorder). These conditions are exceptionally rare but have provided great insight into the nociceptive system as well as yielding potential analgesic drug targets. In patients with no pre-existing risk factor, the investigation of an underlying cause of SFN should be systematic and appropriate for the patient population. In this review, we focus on how to incorporate recent developments in the diagnosis and pathophysiology of SFN into clinical practice.
Collapse
Affiliation(s)
| | - Juan D Ramirez
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, Oxfordshire, UK
| | - Jordi Serra
- Neuroscience Technologies, Parc Científic de Barcelona, Barcelona, Spain Department of Neurology, MC Mutual, Barcelona, Spain
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, Oxfordshire, UK
| |
Collapse
|
403
|
Abstract
The paralytic agent (+)-saxitoxin (STX), most commonly associated with oceanic red tides and shellfish poisoning, is a potent inhibitor of electrical conduction in cells. Its nefarious effects result from inhibition of voltage-gated sodium channels (Na(V)s), the obligatory proteins responsible for the initiation and propagation of action potentials. In the annals of ion channel research, the identification and characterization of Na(V)s trace to the availability of STX and an allied guanidinium derivative, tetrodotoxin. The mystique of STX is expressed in both its function and form, as this uniquely compact dication boasts more heteroatoms than carbon centers. This Review highlights both the chemistry and chemical biology of this fascinating natural product, and offers a perspective as to how molecular design and synthesis may be used to explore Na(V) structure and function.
Collapse
Affiliation(s)
- Arun P Thottumkara
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
| | | | | |
Collapse
|
404
|
|
405
|
Al-Minshawy SM, El-Mazary AAM. An Egyptian child with erythromelalgia responding to a new line of treatment: a case report and review of the literature. J Med Case Rep 2014; 8:69. [PMID: 24568362 PMCID: PMC3943265 DOI: 10.1186/1752-1947-8-69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022] Open
Abstract
Introduction Erythromelalgia is a rare clinical syndrome characterized by episodic erythema, warmth and intense burning pain, which commonly involves the extremities. For those affected, this disorder may lead to significant long-term morbidity. Unfortunately, to date, no definitive therapy is available. This case report describes an Egyptian child with primary erythromelalgia that manifested at an early age and showed partial response to therapy with cetirizine hydrochloride. This anecdotal case report may have a diagnostic value for clinicians who have not seen this disorder. Case presentation A 34-month-old previously healthy right-handed Hamitic boy without any significant past medical history presented at the age of 2 years with episodic bilateral pain in his feet. His mother reported associated warmth and erythema localized to his feet that never extended beyond his ankle joints. This pain is triggered by exertion and/or warm temperature exposure and is relieved by cooling measures. The diagnosis of erythromelalgia was made based on the patient’s medical history and a thorough physical examination during the episodes. No evidence of local or systemic infection was present. Other causes for the symptoms were excluded by a negative extensive diagnostic work-up. Our patient did not respond to ibuprofen (15mg/kg/dose) three times a day but partial improvement with the oral non-sedating antihistaminic cetirizine hydrochloride (2.5mg/kg/once daily) was observed. When the child stopped cetirizine hydrochloride for 1 month as a test, the symptoms became aggravated and were relieved when cetirizine therapy was restarted. Cetirizine hydrochloride had not previously been reported to have this effect in children with erythromelalgia. Conclusions Erythromelalgia is a clinical syndrome of which the etiology, diagnosis and management are controversial. We describe a case of a 34-month-old Egyptian child with primary erythromelalgia that manifested at an early age. We believe that this is the first Egyptian case report of this kind in the literature. Partial response of this patient to cetirizine hydrochloride may grant us a new clue to understanding this mysterious condition.
Collapse
|
406
|
Chen X, Sun W, Gianaris NG, Riley AM, Cummins TR, Fehrenbacher JC, Obukhov AG. Furanocoumarins are a novel class of modulators for the transient receptor potential vanilloid type 1 (TRPV1) channel. J Biol Chem 2014; 289:9600-10. [PMID: 24569998 DOI: 10.1074/jbc.m113.536862] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Furanocoumarin imperatorin is the major active component of Angelica dahurica root extracts, widely used in traditional medicine to treat headache, toothache, and orbital eye pain. In this study, we investigated the mechanisms that may underlie the pain-relieving effects of the compound. We found that imperatorin significantly inhibited formalin- and capsaicin-induced nocifensive responses but did not alter baseline thermal withdrawal thresholds in the rat. We established that imperatorin is a weak agonist of TRPV1, a channel implicated in detecting several noxious stimuli, exhibiting a 50% effective concentration (EC50) of 12.6 ± 3.2 μM. A specific TRPV1 antagonist, JNJ-17203212 (0.5 μM), potently inhibited imperatorin-induced TRPV1 activation. Site-directed mutagenesis studies revealed that imperatorin most likely acted via a site adjacent to or overlapping with the TRPV1 capsaicin-binding site. TRPV1 recovery from desensitization was delayed in the presence of imperatorin. Conversely, imperatorin sensitized TRPV1 to acid activation but did not affect the current amplitude and/or the activation-inactivation properties of Na(v)1.7, a channel important for transmission of nociceptive information. Thus, our data indicate that furanocoumarins represent a novel group of TRPV1 modulators that may become important lead compounds in the drug discovery process aimed at developing new treatments for pain management.
Collapse
Affiliation(s)
- Xingjuan Chen
- From the Departments of Cellular and Integrative Physiology and
| | | | | | | | | | | | | |
Collapse
|
407
|
Waxman SG, Zamponi GW. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci 2014; 17:153-63. [DOI: 10.1038/nn.3602] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022]
|
408
|
Eberhardt M, Nakajima J, Klinger AB, Neacsu C, Hühne K, O'Reilly AO, Kist AM, Lampe AK, Fischer K, Gibson J, Nau C, Winterpacht A, Lampert A. Inherited pain: sodium channel Nav1.7 A1632T mutation causes erythromelalgia due to a shift of fast inactivation. J Biol Chem 2014; 289:1971-80. [PMID: 24311784 PMCID: PMC3900947 DOI: 10.1074/jbc.m113.502211] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/26/2013] [Indexed: 11/06/2022] Open
Abstract
Inherited erythromelalgia (IEM) causes debilitating episodic neuropathic pain characterized by burning in the extremities. Inherited "paroxysmal extreme pain disorder" (PEPD) differs in its clinical picture and affects proximal body areas like the rectal, ocular, or jaw regions. Both pain syndromes have been linked to mutations in the voltage-gated sodium channel Nav1.7. Electrophysiological characterization shows that IEM-causing mutations generally enhance activation, whereas mutations leading to PEPD alter fast inactivation. Previously, an A1632E mutation of a patient with overlapping symptoms of IEM and PEPD was reported (Estacion, M., Dib-Hajj, S. D., Benke, P. J., Te Morsche, R. H., Eastman, E. M., Macala, L. J., Drenth, J. P., and Waxman, S. G. (2008) NaV1.7 Gain-of-function mutations as a continuum. A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28, 11079-11088), displaying a shift of both activation and fast inactivation. Here, we characterize a new mutation of Nav1.7, A1632T, found in a patient suffering from IEM. Although transfection of A1632T in sensory neurons resulted in hyperexcitability and spontaneous firing of dorsal root ganglia (DRG) neurons, whole-cell patch clamp of transfected HEK cells revealed that Nav1.7 activation was unaltered by the A1632T mutation but that steady-state fast inactivation was shifted to more depolarized potentials. This is a characteristic normally attributed to PEPD-causing mutations. In contrast to the IEM/PEPD crossover mutation A1632E, A1632T failed to slow current decay (i.e. open-state inactivation) and did not increase resurgent currents, which have been suggested to contribute to high-frequency firing in physiological and pathological conditions. Reduced fast inactivation without increased resurgent currents induces symptoms of IEM, not PEPD, in the new Nav1.7 mutation, A1632T. Therefore, persistent and resurgent currents are likely to determine whether a mutation in Nav1.7 leads to IEM or PEPD.
Collapse
Affiliation(s)
- Mirjam Eberhardt
- From the Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitatsstrasse 17, 91054 Erlangen, Germany
- the Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover
| | - Julika Nakajima
- the Department of Human Genetics Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Alexandra B. Klinger
- From the Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitatsstrasse 17, 91054 Erlangen, Germany
| | - Cristian Neacsu
- From the Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitatsstrasse 17, 91054 Erlangen, Germany
| | - Kathrin Hühne
- the Department of Human Genetics Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Andrias O. O'Reilly
- From the Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitatsstrasse 17, 91054 Erlangen, Germany
| | - Andreas M. Kist
- From the Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitatsstrasse 17, 91054 Erlangen, Germany
| | - Anne K. Lampe
- the South East of Scotland Clinical Genetic Service, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Kerstin Fischer
- the Department of Anesthesiology Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Jane Gibson
- the Fife Rheumatic Diseases Unit, Whyteman's Brae Hospital, Kirkcaldy, KY1 2ND, United Kingdom
| | - Carla Nau
- the Department of Anesthesiology Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
- the Department of Anesthesiology and Intensive Care, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany, and
| | - Andreas Winterpacht
- the Department of Human Genetics Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | - Angelika Lampert
- From the Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitatsstrasse 17, 91054 Erlangen, Germany
- the Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Paulwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
409
|
Goldberg YP, Cohen CJ, Namdari R, Price N, Cadieux JA, Young C, Sherrington R, Pimstone SN. Letter to the editor. Pain 2014; 155:837-838. [PMID: 24434731 DOI: 10.1016/j.pain.2014.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/18/2013] [Accepted: 01/08/2014] [Indexed: 12/24/2022]
|
410
|
Lampert A, Korngreen A. Markov Modeling of Ion Channels. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 123:1-21. [DOI: 10.1016/b978-0-12-397897-4.00009-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
411
|
Lewin GR, Lechner SG, Smith ESJ. Nerve growth factor and nociception: from experimental embryology to new analgesic therapy. Handb Exp Pharmacol 2014; 220:251-282. [PMID: 24668476 DOI: 10.1007/978-3-642-45106-5_10] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nerve growth factor (NGF) is central to the development and functional regulation of sensory neurons that signal the first events that lead to pain. These sensory neurons, called nociceptors, require NGF in the early embryo to survive and also for their functional maturation. The long road from the discovery of NGF and its roles during development to the realization that NGF plays a major role in the pathophysiology of inflammatory pain will be reviewed. In particular, we will discuss the various signaling events initiated by NGF that lead to long-lasting thermal and mechanical hyperalgesia in animals and in man. It has been realized relatively recently that humanized function blocking antibodies directed against NGF show remarkably analgesic potency in human clinical trials for painful conditions as varied as osteoarthritis, lower back pain, and interstitial cystitis. Thus, anti-NGF medication has the potential to make a major impact on day-to-day chronic pain treatment in the near future. It is therefore all the more important to understand the precise pathways and mechanisms that are controlled by NGF to both initiate and sustain mechanical and thermal hyperalgesia. Recent work suggests that NGF-dependent regulation of the mechanosensory properties of sensory neurons that signal mechanical pain may open new mechanistic avenues to refine and exploit relevant molecular targets for novel analgesics.
Collapse
Affiliation(s)
- Gary R Lewin
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13122, Berlin, Germany,
| | | | | |
Collapse
|
412
|
Borck G, Kubisch C. Ausgewählte Ionenkanalerkrankungen des peripheren Nervensystems. MED GENET-BERLIN 2013. [DOI: 10.1007/s11825-013-0418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Zusammenfassung
Ionenkanalerkrankungen des peripheren Nervensystems können sich primär als Syndrome mit veränderter Schmerzwahrnehmung oder als periphere Neuropathien manifestieren. Von besonderem Interesse sind die Erkrankungen, die durch Mutationen im SCN9A-Gen verursacht werden, das für den spannungsabhängigen Natriumkanal Nav1.7 kodiert. Während Gain-of-function-Mutationen in SCN9A die erbliche Erythromelalgie und andere seltene Erkrankungen verursachen, die mit starken Schmerzattacken einhergehen, wurden SCN9A-Funktionsverlustmutationen bei Patienten mit kompletter angeborener Schmerzinsensitivität identifiziert. Diese Erkrankungen und die durch Mutationen in TRPV4 („transient receptor potential channel 4“) bedingten Neuropathien, wie skapuloperoneale spinale Muskelatrophie und Charcot-Marie-Tooth-Erkrankung 2C, verdeutlichen die klinische Relevanz der Fehlfunktion von Ionenkanälen nicht nur im zentralen, sondern auch im peripheren Nervensystem.
Collapse
Affiliation(s)
- G. Borck
- Aff1 grid.6582.9 0000000419369748 Institut für Humangenetik Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - C. Kubisch
- Aff1 grid.6582.9 0000000419369748 Institut für Humangenetik Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
413
|
Crystallographic insights into sodium-channel modulation by the β4 subunit. Proc Natl Acad Sci U S A 2013; 110:E5016-24. [PMID: 24297919 DOI: 10.1073/pnas.1314557110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are embedded in a multicomponent membrane signaling complex that plays a crucial role in cellular excitability. Although the mechanism remains unclear, β-subunits modify Nav channel function and cause debilitating disorders when mutated. While investigating whether β-subunits also influence ligand interactions, we found that β4 dramatically alters toxin binding to Nav1.2. To explore these observations further, we solved the crystal structure of the extracellular β4 domain and identified (58)Cys as an exposed residue that, when mutated, eliminates the influence of β4 on toxin pharmacology. Moreover, our results suggest the presence of a docking site that is maintained by a cysteine bridge buried within the hydrophobic core of β4. Disrupting this bridge by introducing a β1 mutation implicated in epilepsy repositions the (58)Cys-containing loop and disrupts β4 modulation of Nav1.2. Overall, the principles emerging from this work (i) help explain tissue-dependent variations in Nav channel pharmacology; (ii) enable the mechanistic interpretation of β-subunit-related disorders; and (iii) provide insights in designing molecules capable of correcting aberrant β-subunit behavior.
Collapse
|
414
|
|
415
|
Abstract
Adequate pain control is still a significant challenge and largely unmet medical need in the 21st century. With many small molecules failing to reach required levels of potency and selectivity, drug discovery is once again turning to nature to replenish pain therapeutic pipelines. Venomous animals are frequently stereotyped as inflictors of pain and distress and have historically been vilified by mankind. Yet, ironically, the very venoms that cause pain when directly injected by the host animal may actually turn out to contain the next generation of analgesics when injected by the clinician. The last 12 months have seen dramatic discoveries of analgesic tools within venoms. Spiders, snakes and even centipedes are yielding peptides with immense therapeutic potential. Significant advances are also taking place in delivery methods that can improve bioavailability and pharmacokinetics of these exciting natural resources. Turning proteinaceous venom into pharmaceutical liquid gold is the goal of venomics and the focus of this article.
Collapse
Affiliation(s)
- Steven A Trim
- Venomtech Ltd, Kent Enterprise Hub, University of Kent, Canterbury, UK
| | - Carol M Trim
- Venomtech Ltd, Kent Enterprise Hub, University of Kent, Canterbury, UK
| |
Collapse
|
416
|
Xu J, Chu KL, Zhu CZ, Niforatos W, Swensen A, Searle X, Lee L, Jarvis MF, McGaraughty S. A mixed Ca2+ channel blocker, A-1264087, utilizes peripheral and spinal mechanisms to inhibit spinal nociceptive transmission in a rat model of neuropathic pain. J Neurophysiol 2013; 111:394-404. [PMID: 24155005 DOI: 10.1152/jn.00463.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-, T- and P/Q-type voltage-gated Ca(2+) channels are critical for regulating neurotransmitter release and cellular excitability and have been implicated in mediating pathological nociception. A-1264087 is a novel state-dependent blocker of N-, T- and P/Q-type channels. In the present studies, A-1264087 blocked (IC50 = 1.6 μM) rat dorsal root ganglia N-type Ca(2+) in a state-dependent fashion. A-1264087 (1, 3 and 10 mg/kg po) dose-dependently reduced mechanical allodynia in rats with a spinal nerve ligation (SNL) injury. A-1264087 (4 mg/kg iv) inhibited both spontaneous and mechanically evoked activity of spinal wide dynamic range (WDR) neurons in SNL rats but had no effect in uninjured rats. The inhibitory effect on WDR neurons remained in spinally transected SNL rats. Injection of A-1264087 (10 nmol/0.5 μl) into the spinal cord reduced both spontaneous and evoked WDR activity in SNL rats. Application of A-1264087 (300 nmol/20 μl) into the receptive field on the hindpaw attenuated evoked but not spontaneous firing of WDR neurons. Using electrical stimulation, A-1264087 (4 mg/kg iv) inhibited Aδ- and C-fiber evoked responses and after-discharge of WDR neurons in SNL rats. These effects by A-1264087 were not present in uninjured rats. A-1264087 moderately attenuated WDR neuron windup in both uninjured and SNL rats. In summary, these results indicate that A-1264087 selectively inhibited spinal nociceptive transmission in sensitized states through both peripheral and central mechanisms.
Collapse
Affiliation(s)
- Jun Xu
- Neuroscience Research, AbbVie, North Chicago, Illinos
| | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Bird EV, Christmas CR, Loescher AR, Smith KG, Robinson PP, Black JA, Waxman SG, Boissonade FM. Correlation of Nav1.8 and Nav1.9 sodium channel expression with neuropathic pain in human subjects with lingual nerve neuromas. Mol Pain 2013; 9:52. [PMID: 24144460 PMCID: PMC4016210 DOI: 10.1186/1744-8069-9-52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022] Open
Abstract
Background Voltage-gated sodium channels Nav1.8 and Nav1.9 are expressed preferentially in small diameter sensory neurons, and are thought to play a role in the generation of ectopic activity in neuronal cell bodies and/or their axons following peripheral nerve injury. The expression of Nav1.8 and Nav1.9 has been quantified in human lingual nerves that have been previously injured inadvertently during lower third molar removal, and any correlation between the expression of these ion channels and the presence or absence of dysaesthesia investigated. Results Immunohistochemical processing and quantitative image analysis revealed that Nav1.8 and Nav1.9 were expressed in human lingual nerve neuromas from patients with or without symptoms of dysaesthesia. The level of Nav1.8 expression was significantly higher in patients reporting pain compared with no pain, and a significant positive correlation was observed between levels of Nav1.8 expression and VAS scores for the symptom of tingling. No significant differences were recorded in the level of expression of Nav1.9 between patients with or without pain. Conclusions These results demonstrate that Nav1.8 and Nav1.9 are present in human lingual nerve neuromas, with significant correlations between the level of expression of Nav1.8 and symptoms of pain. These data provide further evidence that changes in expression of Nav1.8 are important in the development and/or maintenance of nerve injury-induced pain, and suggest that Nav1.8 may be a potential therapeutic target.
Collapse
Affiliation(s)
- Emma V Bird
- Academic Unit of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
418
|
Black J, Waxman S. Noncanonical Roles of Voltage-Gated Sodium Channels. Neuron 2013; 80:280-91. [DOI: 10.1016/j.neuron.2013.09.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 12/19/2022]
|
419
|
Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 2013; 110:17534-9. [PMID: 24082113 DOI: 10.1073/pnas.1306285110] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss-of-function mutations in the human voltage-gated sodium channel NaV1.7 result in a congenital indifference to pain. Selective inhibitors of NaV1.7 are therefore likely to be powerful analgesics for treating a broad range of pain conditions. Herein we describe the identification of µ-SLPTX-Ssm6a, a unique 46-residue peptide from centipede venom that potently inhibits NaV1.7 with an IC50 of ∼25 nM. µ-SLPTX-Ssm6a has more than 150-fold selectivity for NaV1.7 over all other human NaV subtypes, with the exception of NaV1.2, for which the selectivity is 32-fold. µ-SLPTX-Ssm6a contains three disulfide bonds with a unique connectivity pattern, and it has no significant sequence homology with any previously characterized peptide or protein. µ-SLPTX-Ssm6a proved to be a more potent analgesic than morphine in a rodent model of chemical-induced pain, and it was equipotent with morphine in rodent models of thermal and acid-induced pain. This study establishes µ-SPTX-Ssm6a as a promising lead molecule for the development of novel analgesics targeting NaV1.7, which might be suitable for treating a wide range of human pain pathologies.
Collapse
|
420
|
Abstract
Chronic pain, a frequently neglected problem, is treated with different classes of drugs. Current agents are limited by incomplete efficacy and dose-limiting side-effects. Knowledge of pain processing implicates multiple concurrent mechanisms of nociceptive transmission and modulation. Thus, synergistic interactions of drug combinations might provide superior analgesia and fewer side-effects than monotherapy by targeting of multiple mechanisms. Several trials in neuropathic pain, fibromyalgia, arthritis, and other disorders have assessed various two-drug combinations containing antidepressants, anticonvulsants, non-steroidal anti-inflammatories, opioids, and other agents. In some trials, combined treatment showed superiority over monotherapy, but in others improved benefit or tolerability was not seen. Escalating efforts to develop novel analgesics that surpass the efficacy of current treatments have not yet been successful; therefore, combination therapy remains an important beneficial strategy. Methodological improvements in future translational research efforts are needed to maximise the potential of combination pharmacotherapy for pain.
Collapse
|
421
|
Modulation of mononuclear phagocyte inflammatory response by liposome-encapsulated voltage gated sodium channel inhibitor ameliorates myocardial ischemia/reperfusion injury in rats. PLoS One 2013; 8:e74390. [PMID: 24069305 PMCID: PMC3777990 DOI: 10.1371/journal.pone.0074390] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/31/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Emerging evidence shows that anti-inflammatory strategies targeting inflammatory monocyte subset could reduce excessive inflammation and improve cardiovascular outcomes. Functional expression of voltage-gated sodium channels (VGSCs) have been demonstrated in monocytes and macrophages. We hypothesized that mononuclear phagocyte VGSCs are a target for monocyte/macrophage phenotypic switch, and liposome mediated inhibition of mononuclear phagocyte VGSC may attenuate myocardial ischemia/reperfusion (I/R) injury and improve post-infarction left ventricular remodeling. METHODOLOGY/PRINCIPAL FINDINGS Thin film dispersion method was used to prepare phenytoin (PHT, a non-selective VGSC inhibitor) entrapped liposomes. Pharmacokinetic study revealed that the distribution and elimination half-life of PHT entrapped liposomes were shorter than those of free PHT, indicating a rapid uptake by mononuclear phagocytes after intravenous injection. In rat peritoneal macrophages, several VGSC α subunits (NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaVX, Scn1b, Scn3b and Scn4b) and β subunits were expressed at mRNA level, and PHT could suppress lipopolysaccharide induced M1 polarization (decreased TNF-α and CCL5 expression) and facilitate interleukin-4 induced M2 polarization (increased Arg1 and TGF-β1 expression). In vivo study using rat model of myocardial I/R injury, demonstrated that PHT entrapped liposome could partially suppress I/R injury induced CD43+ inflammatory monocyte expansion, along with decreased infarct size and left ventricular fibrosis. Transthoracic echocardiography and invasive hemodynamic analysis revealed that PHT entrapped liposome treatment could attenuate left ventricular structural and functional remodeling, as shown by increased ejection fraction, reduced end-systolic and end-diastolic volume, as well as an amelioration of left ventricular systolic (+dP/dt max) and diastolic (-dP/dt min) functions. CONCLUSIONS/SIGNIFICANCE Our work for the first time demonstrates the therapeutic potential of VGSC antagonism via liposome mediated monocyte/macrophage targeting in acute phase after myocardial I/R injury. These results suggest that VGSCs in mononuclear phagocyte system might be a novel target for immunomodulation and treatment of myocardial I/R injury.
Collapse
|
422
|
Leipold E, Liebmann L, Korenke GC, Heinrich T, Gießelmann S, Baets J, Ebbinghaus M, Goral RO, Stödberg T, Hennings JC, Bergmann M, Altmüller J, Thiele H, Wetzel A, Nürnberg P, Timmerman V, De Jonghe P, Blum R, Schaible HG, Weis J, Heinemann SH, Hübner CA, Kurth I. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 2013; 45:1399-404. [DOI: 10.1038/ng.2767] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022]
|
423
|
Rahman W, Dickenson AH. Voltage gated sodium and calcium channel blockers for the treatment of chronic inflammatory pain. Neurosci Lett 2013; 557 Pt A:19-26. [PMID: 23941888 DOI: 10.1016/j.neulet.2013.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 01/16/2023]
Abstract
The inflammatory response is a natural response of the body that occurs immediately following tissue damage, which may be due to injury, infection or disease. The acute inflammatory response is an essential mechanism that promotes healing and a key aspect is the ensuing pain, which warns the subject to protect the site of injury. Thus, it is common to see a zone of primary sensitization as well as consequential central sensitization that generally, is maintained by a peripheral drive from the zone of tissue injury. Inflammation associated with chronic pain states, such as rheumatoid and osteoarthritis, cancer and migraine etc. is deleterious to health and often debilitating for the patient. Thus there is a large unmet clinical need. The mechanisms underlying both acute and chronic inflammatory pain are extensive and complex, involving a diversity of cell types, receptors and proteins. Among these the contribution of voltage gated sodium and calcium channels on peripheral nociceptors is critical for nociceptive transmission beyond the peripheral transducers and changes in their distribution, accumulation, clustering and functional activities have been linked to both inflammatory and neuropathic pain. The latter has been the main area for trials and use of drugs that modulate ion channels such as carbamazepine and gabapentin, but given the large peripheral drive that follows tissue damage, there is a clear rationale for blocking voltage gated sodium and calcium channels in these pain states. It has been hypothesized that pain of inflammatory origin may evolve into a condition that resembles neuropathic pain, but mixed pains such as low back pain and cancer pain often include elements of both pain states. This review considers the therapeutic potential for sodium and calcium channel blockers for the treatment of chronic inflammatory pain states.
Collapse
Affiliation(s)
- Wahida Rahman
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
424
|
Blass B. Heteroaryl sodium channel inhibitors. ACS Med Chem Lett 2013; 4:686-7. [PMID: 24900731 DOI: 10.1021/ml4002166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Benjamin Blass
- Temple University School of Pharmacy , 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
425
|
Black JA, Hoeijmakers JGJ, Faber CG, Merkies ISJ, Waxman SG. NaV1.7: stress-induced changes in immunoreactivity within magnocellular neurosecretory neurons of the supraoptic nucleus. Mol Pain 2013; 9:39. [PMID: 23924059 PMCID: PMC3750570 DOI: 10.1186/1744-8069-9-39] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023] Open
Abstract
Background NaV1.7 is preferentially expressed, at relatively high levels, in peripheral neurons, and is often referred to as a “peripheral” sodium channel, and NaV1.7-specific blockers are under study as potential pain therapeutics which might be expected to have minimal CNS side effects. However, occasional reports of patients with NaV1.7 gain-of-function mutations and apparent hypothalamic dysfunction have appeared. The two sodium channels previously studied within the rat hypothalamic supraoptic nucleus, NaV1.2 and NaV1.6, display up-regulated expression in response to osmotic stress. Results Here we show that NaV1.7 is present within vasopressin-producing neurons and oxytocin-producing neurons within the rat hypothalamus, and demonstrate that the level of Nav1.7 immunoreactivity is increased in these cells in response to osmotic stress. Conclusions NaV1.7 is present within neurosecretory neurons of rat supraoptic nucleus, where the level of immunoreactivity is dynamic, increasing in response to osmotic stress. Whether NaV1.7 levels are up-regulated within the human hypothalamus in response to environmental factors or stress, and whether NaV1.7 plays a functional role in human hypothalamus, is not yet known. Until these questions are resolved, the present findings suggest the need for careful assessment of hypothalamic function in patients with NaV1.7 mutations, especially when subjected to stress, and for monitoring of hypothalamic function as NaV1.7 blocking agents are studied.
Collapse
Affiliation(s)
- Joel A Black
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
426
|
Heimann D, Lötsch J, Hummel T, Doehring A, Oertel BG. Linkage between increased nociception and olfaction via a SCN9A haplotype. PLoS One 2013; 8:e68654. [PMID: 23874707 PMCID: PMC3707874 DOI: 10.1371/journal.pone.0068654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND AIMS Mutations reducing the function of Nav1.7 sodium channels entail diminished pain perception and olfactory acuity, suggesting a link between nociception and olfaction at ion channel level. We hypothesized that if such link exists, it should work in both directions and gain-of-function Nav1.7 mutations known to be associated with increased pain perception should also increase olfactory acuity. METHODS SCN9A variants were assessed known to enhance pain perception and found more frequently in the average population. Specifically, carriers of SCN9A variants rs41268673C>A (P610T; n = 14) or rs6746030C>T (R1150W; n = 21) were compared with non-carriers (n = 40). Olfactory function was quantified by assessing odor threshold, odor discrimination and odor identification using an established olfactory test. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (punctate and blunt mechanical pressure, heat and electrical stimuli). RESULTS The number of carried alleles of the non-mutated SCN9A haplotype rs41268673C/rs6746030C was significantly associated with the comparatively highest olfactory threshold (0 alleles: threshold at phenylethylethanol dilution step 12 of 16 (n = 1), 1 allele: 10.6±2.6 (n = 34), 2 alleles: 9.5±2.1 (n = 40)). The same SCN9A haplotype determined the pain threshold to blunt pressure stimuli (0 alleles: 21.1 N/m(2), 1 allele: 29.8±10.4 N/m(2), 2 alleles: 33.5±10.2 N/m(2)). CONCLUSIONS The findings established a working link between nociception and olfaction via Nav1.7 in the gain-of-function direction. Hence, together with the known reduced olfaction and pain in loss-of-function mutations, a bidirectional genetic functional association between nociception and olfaction exists at Nav1.7 level.
Collapse
Affiliation(s)
- Dirk Heimann
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany
| | - Alexandra Doehring
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Bruno G. Oertel
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| |
Collapse
|
427
|
Dustrude ET, Wilson SM, Ju W, Xiao Y, Khanna R. CRMP2 protein SUMOylation modulates NaV1.7 channel trafficking. J Biol Chem 2013; 288:24316-31. [PMID: 23836888 DOI: 10.1074/jbc.m113.474924] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated sodium channel (NaV) trafficking is incompletely understood. Post-translational modifications of NaVs and/or auxiliary subunits and protein-protein interactions have been posited as NaV-trafficking mechanisms. Here, we tested if modification of the axonal collapsin response mediator protein 2 (CRMP2) by a small ubiquitin-like modifier (SUMO) could affect NaV trafficking; CRMP2 alters the extent of NaV slow inactivation conferred by the anti-epileptic (R)-lacosamide, implying NaV-CRMP2 functional coupling. Expression of a CRMP2 SUMOylation-incompetent mutant (CRMP2-K374A) in neuronal model catecholamine A differentiated (CAD) cells did not alter lacosamide-induced NaV slow inactivation compared with CAD cells expressing wild type CRMP2. Like wild type CRMP2, CRMP2-K374A expressed robustly in CAD cells. Neurite outgrowth, a canonical CRMP2 function, was moderately reduced by the mutation but was still significantly higher than enhanced GFP-transfected cortical neurons. Notably, huwentoxin-IV-sensitive NaV1.7 currents, which predominate in CAD cells, were significantly reduced in CAD cells expressing CRMP2-K374A. Increasing deSUMOylation with sentrin/SUMO-specific protease SENP1 or SENP2 in wild type CRMP2-expressing CAD cells decreased NaV1.7 currents. Consistent with a reduction in current density, biotinylation revealed a significant reduction in surface NaV1.7 levels in CAD cells expressing CRMP2-K374A; surface NaV1.7 expression was also decreased by SENP1 + SENP2 overexpression. Currents in HEK293 cells stably expressing NaV1.7 were reduced by CRMP2-K374A in a manner dependent on the E2-conjugating enzyme Ubc9. No decrement in current density was observed in HEK293 cells co-expressing CRMP2-K374A and NaV1.1 or NaV1.3. Diminution of sodium currents, largely NaV1.7, was recapitulated in sensory neurons expressing CRMP2-K374A. Our study elucidates a novel regulatory mechanism that utilizes CRMP2 SUMOylation to choreograph NaV1.7 trafficking.
Collapse
Affiliation(s)
- Erik T Dustrude
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
428
|
O'Neill J, McMahon SB, Undem BJ. Chronic cough and pain: Janus faces in sensory neurobiology? Pulm Pharmacol Ther 2013; 26:476-85. [PMID: 23831712 DOI: 10.1016/j.pupt.2013.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Both chronic cough and chronic pain are critical clinical issues in which a large number of patients remain unsatisfied with available treatments. These conditions have considerable effects on sufferers' quality of life, who often show co-morbidities such as anxiety and depression. There is therefore a pressing need to find new effective therapies. The basic neurobiological mechanisms and pathologies of these two conditions show substantial homologies. However, whilst chronic pain has received a great deal of attention over the last few decades, the same cannot be said for the neurological underpinnings of chronic cough. There is a substantial literature around mechanisms of chronic pain which is likely to be useful in advancing knowledge about the pathologies of chronic cough. Here we compare the basic pain and cough pathways, in addition to the clinical features and possible pathophysiologies of each; including mechanisms of peripheral and central sensitisation which may underlie symptoms such as hyperalgesia and allodynia, and hypertussitvity and allotussivity. Due to the substantial overlap that emerges, it is likely that therapies may be effective over both areas.
Collapse
Affiliation(s)
- Jessica O'Neill
- Neuroscience, Physiology and Pharmacology, University College London, UK. Jessica.o'
| | | | | |
Collapse
|
429
|
Sikandar S, Dickenson A. II. No need for translation when the same language is spoken. Br J Anaesth 2013; 111:3-6. [DOI: 10.1093/bja/aet210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
430
|
Shipton EA. Skin matters: identifying pain mechanisms and predicting treatment outcomes. Neurol Res Int 2013; 2013:329364. [PMID: 23766902 PMCID: PMC3674740 DOI: 10.1155/2013/329364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/21/2023] Open
Abstract
The skin acts as a complex sensory organ. The emerging new data on peripheral pain mechanisms from within the skin is presented. This data has led to new insights into the potential pain mechanisms for various pain conditions including neuropathic pain (from small fiber neuropathies) and Complex Regional Pain Syndrome. The somatosensory neurons that innervate our skin constantly update our brains on the objects and environmental factors that surround us. Cutaneous sensory neurons expressing nociceptive receptors such as transient receptor potential vanilloid 1 channels and voltage-gated sodium channels are critical for pain transmission. Epidermal cells (such as keratinocytes, Langerhans cells, and Merkel cells) express sensor proteins and neuropeptides; these regulate the neuroimmunocutaneous system and participate in nociception and neurogenic inflammation. In the past two decades, there has been widespread use of modalities such as punch skin biopsies, quantitative sensory testing, and laser-evoked potentials to evaluate small caliber nerve fibers. This paper explores these laboratory techniques as well as the phenomenon of small fiber neuropathy. Treatment using transdermal drug delivery is discussed. There is potential for these findings to predict treatment outcomes in clinical practice and to develop new therapies for different pain conditions. These findings should enhance the physician's ability to evaluate and treat diverse types of pain.
Collapse
Affiliation(s)
- Edward A. Shipton
- Department of Anesthesia, University of Otago, P.O. Box 4345, Christchurch 8041, New Zealand
| |
Collapse
|
431
|
Waxman SG. Painful Na-channelopathies: an expanding universe. Trends Mol Med 2013; 19:406-9. [PMID: 23664154 DOI: 10.1016/j.molmed.2013.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/16/2023]
Abstract
The universe of painful Na-channelopathies--human disorders caused by mutations in voltage-gated sodium channels--has recently expanded in three dimensions. We now know that mutations of sodium channels cause not only rare genetic 'model disorders' such as inherited erythromelalgia and channelopathy-associated insensitivity to pain but also common painful neuropathies. We have learned that mutations of NaV1.8, as well as mutations of NaV1.7, can cause painful Na-channelopathies. Moreover, recent studies combining atomic level structural models and pharmacogenomics suggest that the goal of genomically guided pain therapy may not be unrealistic.
Collapse
Affiliation(s)
- Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
432
|
Yang Y, Estacion M, Dib-Hajj SD, Waxman SG. Molecular architecture of a sodium channel S6 helix: radial tuning of the voltage-gated sodium channel 1.7 activation gate. J Biol Chem 2013; 288:13741-7. [PMID: 23536180 DOI: 10.1074/jbc.m113.462366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In-frame deletion mutation (Del-L955) in NaV1.7 sodium channel from a kindred with erythromelalgia hyperpolarizes activation. RESULTS Del-L955 twists the S6 helix, displacing the Phe960 activation gate. Replacement of Phe960 at the correct helical position depolarizes activation. CONCLUSION Radial tuning of the activation gate is critical to the activation of NaV1.7 channel. SIGNIFICANCE Structural modeling guided electrophysiology reveals the functional importance of radial tuning of the S6 segment. Voltage-gated sodium (NaV) channels are membrane proteins that consist of 24 transmembrane segments organized into four homologous domains and are essential for action potential generation and propagation. Although the S6 helices of NaV channels line the ion-conducting pore and participate in channel activation, their functional architecture is incompletely understood. Our recent studies show that a naturally occurring in-frame deletion mutation (Del-L955) of NaV1.7 channel, identified in individuals with a severe inherited pain syndrome (inherited erythromelalgia) causes a substantial hyperpolarizing shift of channel activation. Here we took advantage of this deletion mutation to understand the role of the S6 helix in the channel activation. Based on the recently published structure of a bacterial NaV channel (NaVAb), we modeled the WT and Del-L955 channel. Our structural model showed that Del-L955 twists the DII/S6 helix, shifting location and radial orientation of the activation gate residue (Phe(960)). Hypothesizing that these structural changes produce the shift of channel activation of Del-L955 channels, we restored a phenylalanine in wild-type orientation by mutating Ser(961) (Del-L955/S961F), correcting activation by ∼10 mV. Correction of the displaced Phe(960) (F960S) together with introduction of the rescuing activation gate residue (S961F) produced an additional ∼6-mV restoration of activation of the mutant channel. A simple point mutation in the absence of a twist (L955A) did not produce a radial shift and did not hyperpolarize activation. Our results demonstrate the functional importance of radial tuning of the sodium channel S6 helix for the channel activation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|