401
|
Zhang W, Li S, Zhou A, Song H, Cui Z, Du L. Recent Advances and Perspectives in Lithium-Sulfur Pouch Cells. Molecules 2021; 26:molecules26216341. [PMID: 34770750 PMCID: PMC8588347 DOI: 10.3390/molecules26216341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
Lithium–sulfur batteries (LSBs) are considered one of the most promising candidates for next-generation energy storage owing to their large energy capacity. Tremendous effort has been devoted to overcoming the inherent problems of LSBs to facilitate their commercialization, such as polysulfide shuttling and dendritic lithium growth. Pouch cells present additional challenges for LSBs as they require greater electrode active material utilization, a lower electrolyte–sulfur ratio, and more mechanically robust electrode architectures to ensure long-term cycling stability. In this review, the critical challenges facing practical Li–S pouch cells that dictate their energy density and long-term cyclability are summarized. Strategies and perspectives for every major pouch cell component—cathode/anode active materials and electrode construction, separator design, and electrolyte—are discussed with emphasis placed on approaches aimed at improving the reversible electrochemical conversion of sulfur and lithium anode protection for high-energy Li–S pouch cells.
Collapse
Affiliation(s)
- Weifeng Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (W.Z.); (S.L.); (H.S.); (Z.C.)
| | - Shulian Li
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (W.Z.); (S.L.); (H.S.); (Z.C.)
| | - Aijun Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313002, China;
| | - Huiyu Song
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (W.Z.); (S.L.); (H.S.); (Z.C.)
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (W.Z.); (S.L.); (H.S.); (Z.C.)
| | - Li Du
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (W.Z.); (S.L.); (H.S.); (Z.C.)
- Correspondence:
| |
Collapse
|
402
|
Zhao L, Zheng L, Li X, Wang H, Lv LP, Chen S, Sun W, Wang Y. Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48913-48922. [PMID: 34609129 DOI: 10.1021/acsami.1c15441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potassium ion batteries (PIBs) are expected to become the next large-scale energy storage candidates due to its low cost and abundant resources. And the covalent organic framework (COF), with designable periodic organic structure and ability to organize redox active groups predictably, has been considering as the promising organic electrode candidate for PIB. Herein, we report the facile synthesis of the cyano-COF with Co coordination via a facile microwave digestion reaction and its application in the high-energy potassium ion batteries for the first time. The obtained COF-Co material exhibits the enhanced π-π accumulation and abundant defects originated from the Co interaction with the two-dimensional layered sheet structure of COF, which are beneficial for its energy-storage application. Adopted as the inorganic-metal boosted organic electrode for PIBs, the COF-Co with Co coordination can promote the formation of the π-K+ interaction, which could lead to the activation of aromatic rings for potassium-ion storage. Besides, the porous two-dimensional layered structure of COF-Co with abundant defects can also promote the shortened diffusion distance of ion/electron with promoted K+ insertion/extraction ability. Enhanced cycling stability with large reversible capacity (371 mAh g-1 after 400 cycles at 100 mA g-1) and good rate properties (105 mAh g-1 at 2000 mA g-1) have been achieved for the COF-Co electrode.
Collapse
Affiliation(s)
- Lu Zhao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Lu Zheng
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Xiaopeng Li
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Han Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Li-Ping Lv
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Shuangqiang Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Weiwei Sun
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
403
|
Kong W, Zhang J, Wong D, Yang W, Yang J, Schulz C, Liu X. Tailoring Co3d and O2p Band Centers to Inhibit Oxygen Escape for Stable 4.6 V LiCoO 2 Cathodes. Angew Chem Int Ed Engl 2021; 60:27102-27112. [PMID: 34668282 DOI: 10.1002/anie.202112508] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/09/2022]
Abstract
High-voltage LiCoO2 delivers a high capacity but sharp fading is a critical issue, and the capacity decay mechanism is also poorly understood. Herein, we clarify that the escape of surface oxygen and Li-insulator Co3 O4 formation are the main causes for the capacity fading of 4.6 V LiCoO2 . We propose the inhibition of the oxygen escape for achieving stable 4.6 V LiCoO2 by tailoring the Co3d and O2p band center and enlarging their band gap with MgF2 doping. This enhances the ionicity of the Co-O bond and the redox activity of Co and improves cation migration reversibility. The inhibition of oxygen escape suppresses the formation of Li-insulator Co3 O4 and maintains the surface structure integrity. Mg acts as a pillar, providing a stable and enlarged channel for fast Li+ intercalation/extraction. The modulated LiCoO2 shows almost zero strain and achieves a record capacity retention at 4.6 V: 92 % after 100 cycles at 1C and 86.4 % after 1000 cycles at 5C.
Collapse
Affiliation(s)
- Weijin Kong
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jicheng Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deniz Wong
- Helmholtz-Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Wenyun Yang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Jinbo Yang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Christian Schulz
- Helmholtz-Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
404
|
Cao C, Liang F, Zhang W, Liu H, Liu H, Zhang H, Mao J, Zhang Y, Feng Y, Yao X, Ge M, Tang Y. Commercialization-Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102233. [PMID: 34350695 DOI: 10.1002/smll.202102233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Indexed: 05/07/2023]
Abstract
Current lithium-ion battery technology is approaching the theoretical energy density limitation, which is challenged by the increasing requirements of ever-growing energy storage market of electric vehicles, hybrid electric vehicles, and portable electronic devices. Although great progresses are made on tailoring the electrode materials from methodology to mechanism to meet the practical demands, sluggish mass transport, and charge transfer dynamics are the main bottlenecks when increasing the areal/volumetric loading multiple times to commercial level. Thus, this review presents the state-of-the-art developments on rational design of the commercialization-driven electrodes for lithium batteries. First, the basic guidance and challenges (such as electrode mechanical instability, sluggish charge diffusion, deteriorated performance, and safety concerns) on constructing the industry-required high mass loading electrodes toward commercialization are discussed. Second, the corresponding design strategies on cathode/anode electrode materials with high mass loading are proposed to overcome these challenges without compromising energy density and cycling durability, including electrode architecture, integrated configuration, interface engineering, mechanical compression, and Li metal protection. Finally, the future trends and perspectives on commercialization-driven electrodes are offered. These design principles and potential strategies are also promising to be applied in other energy storage and conversion systems, such as supercapacitors, and other metal-ion batteries.
Collapse
Affiliation(s)
- Chunyan Cao
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Fanghua Liang
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Hongchao Liu
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Hui Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Haifeng Zhang
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Jiajun Mao
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yu Feng
- State Key Laboratory of Clean and Efficient Coal Utilization, Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
405
|
Li H, Wang H, Xu Z, Wang K, Ge M, Gan L, Zhang Y, Tang Y, Chen S. Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103679. [PMID: 34580989 DOI: 10.1002/smll.202103679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
As one of the most efficient electrochemical energy storage devices, the energy density of lithium-ion batteries (LIBs) has been extensively improved in the past several decades. However, with increased energy density, the safety risk of LIBs becomes higher too. The frequently occurred battery accidents worldwide remind us that safeness is a crucial requirement for LIBs, especially in environments with high safety concerns like airplanes and military platforms. It is generally recognized that the catastrophic thermal runaway (TR) event is the major cause of LIBs related accidents. Tremendous efforts have been devoted to coping with the TR concerns in LIBs, and thus enhance battery safety. This review first gives an introduction to the fundamentals of LIBs and the origins of safety issues. Then, the authors summarize the recent advances to improve the safety of LIBs with a unique focus on thermal-responsive and fire-resistant materials. Finally, a perspective is proposed to guide future research directions in this field. It is anticipated this review will stimulate inspiration and arouse extensive studies on further improvement in battery safety.
Collapse
Affiliation(s)
- Heng Li
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Huibo Wang
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Zhu Xu
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Kexuan Wang
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Mingzheng Ge
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| | - Lin Gan
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, Joint Key Laboratory of the Ministry of Education, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, P. R. China
| |
Collapse
|
406
|
Suo G, Musab Ahmed S, Cheng Y, Zhang J, Li Z, Hou X, Yang Y, Ye X, Feng L, Zhang L, Yu Q. Heterostructured CoS 2/CuCo 2S 4@N-doped carbon hollow sphere for potassium-ion batteries. J Colloid Interface Sci 2021; 608:275-283. [PMID: 34626974 DOI: 10.1016/j.jcis.2021.09.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Potassium ions batteries (PIBs) have been regarded as a promising choice for electrical energy storage technology due to the wide distribution of potassium resources. However, developing low-cost and robust earth-rich anode materials is still a major challenge for the practical and scalable usage of PIBs. Herein, for the first time, we developed nitrogen doped carbon coating CoS2/CuCo2S4 heterostructure (CoS2/CuCo2S4@NCs) hollow spheres and evaluated as anode for PIBs. The CoS2 and CuCo2S4 heterostructure interface could generate a built-in electric field, which can fasten electrons transportation. The nanostructures could shorten the diffusion length of K+ and provide large surface area to contact with electrolytes. Furthermore, the inner hollow sphere morphology along with the carbon layer could accommodate the volume expansion during cycling. What's more, the N-doped carbon could increase the conductivity of the anodes. Benefitting from the above features, the CoS2/CuCo2S4@NCs displays an outstanding rate capability (309 mAh g-1 at 500 mA g-1 after 250 cycles) and a long-term cycling life (112 mAh g-1 at 1000 mA g-1 after 1000 cycles) in ether-based electrolyte. Conversion reaction mechanism in CoS2/CuCo2S4@NCs anode is also revealed through ex situ XRD characterizations. This work provides a practical direction for investigating metal sulfides as anode for PIBs.
Collapse
Affiliation(s)
- Guoquan Suo
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Syed Musab Ahmed
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Cheng
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaqi Zhang
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zongyou Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaojiang Hou
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanling Yang
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaohui Ye
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lei Feng
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Li Zhang
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiyao Yu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
407
|
Kong S, Zhang X, Jin B, Guo X, Zhang G, Huang H, Xiang X, Cheng K. FeNb 2O 6/reduced graphene oxide composites with intercalation pseudo-capacitance enabling ultrahigh energy density for lithium-ion capacitors. RSC Adv 2021; 11:32248-32257. [PMID: 35495531 PMCID: PMC9041944 DOI: 10.1039/d1ra03198h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Lithium-ion capacitors (LICs), which combine the characteristics of lithium-ion batteries and supercapacitors, have been well studied recently. Extensive efforts are devoted to developing fast Li+ insertion/deintercalation anode materials to overcome the discrepancy in kinetics between battery-type anodes and capacitive cathodes. Herein, we design a FeNb2O6/reduced graphene oxide (FNO/rGO) hybrid material as a fast-charge anode that provides a solution to the aforementioned issue. The synergetic combination of FeNb2O6, whose unique structure promotes fast electron transport, and highly conductive graphene shortens the Li+ diffusion pathways and enhances structural stability, leading to excellent electrochemical performance of the FNO/rGO anode, including a high capacity (770 mA h g−1 at 0.05 A g−1) and long cycle stability (95.3% capacitance retention after 500 cycles). Furthermore, the FNO/rGO//ACs LIC achieves an ultrahigh energy density of 135.6 W h kg−1 (at 2000 W kg−1) with a wide working potential window from 0.01 to 4 V and remarkable cycling performance (88.5% capacity retention after 5000 cycles at 2 A g−1). FeNb2O6/reduced graphene oxide (FNO/rGO) hybrid material as a fast charge anode for LICs that provides a solution to overcome the discrepancy in kinetics between battery-type anodes and capacitive cathodes.![]()
Collapse
Affiliation(s)
- Shuying Kong
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Chong Qing 404100 China
| | - Xu Zhang
- School of Materials Science and Engineering, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, North Minzu University Yinchuan 750021 China
| | - Binbin Jin
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Chong Qing 404100 China
| | - Xiaogang Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Chong Qing 404100 China
| | - Guoqing Zhang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Chong Qing 404100 China
| | - Huisheng Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Chong Qing 404100 China
| | - Xinzhu Xiang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Chong Qing 404100 China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
408
|
Hernandez-Martinez AR. Poly(2-Hydroxyethyl methacrylate-co-N,N-dimethylacrylamide)-Coated Quartz Crystal Microbalance Sensor: Membrane Characterization and Proof of Concept. Gels 2021; 7:151. [PMID: 34698146 PMCID: PMC8544454 DOI: 10.3390/gels7040151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Application-oriented hydrogel properties can be obtained by modifying the synthesis conditions of the materials. The purpose of this study is to achieve customized properties for sensing applications of hydrogel membranes based on poly(2-hydroxyethyl methacrylate), HEMA and N,N-dimethylacrylamide, DMAa. Copolymer p(HEMA-co-DMAa) hydrogels were prepared by varying the DMAa monomer ratio from 0-100% in 20% increments. Hydrogel membranes were characterized by attenuated infrared spectroscopy. Swelling and sorption were evaluated using cation solutions. Copolymers were also synthesized on the gold surface of quartz crystal microbalances (QCM) as coating membranes. A proof of concept was conducted for approaching the design and development of QCM sensors based on P(DMAa-co-HEMA)-membranes. Results showed that the water and ion adsorption capacity of hydrogel membranes increased with higher DMAa content. Membranes are not selective to a specific location but did show different transport features with each cation. The QCM coated with the selected membrane presented linear relationships between resonance frequency and ions concentration in solution (10-120 ppm). As a consequence, hydrogel membranes obtained are promising for the development of future biosensing devices.
Collapse
Affiliation(s)
- Angel Ramon Hernandez-Martinez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Queretaro 76230, Queretaro, Mexico
| |
Collapse
|
409
|
Li4Mn5O12 Cathode for Both 3 V and 4 V Lithium-ion Batteries. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
410
|
Huang S, Huang X, Huang Y, He X, Zhuo H, Chen S. Rational Design of Effective Binders for LiFePO 4 Cathodes. Polymers (Basel) 2021; 13:3146. [PMID: 34578047 PMCID: PMC8473138 DOI: 10.3390/polym13183146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Polymer binders are critical auxiliary additives to Li-ion batteries that provide adhesion and cohesion for electrodes to maintain conductive networks upon charge/discharge processes. Therefore, polymer binders become interconnected electrode structures affecting electrochemical performances, especially in LiFePO4 cathodes with one-dimensional Li+ channels. In this paper, recent improvements in the polymer binders used in the LiFePO4 cathodes of Li-ion batteries are reviewed in terms of structural design, synthetic methods, and working mechanisms. The polymer binders were classified into three types depending on their effects on the performances of LiFePO4 cathodes. The first consisted of PVDF and related composites, and the second relied on waterborne and conductive binders. Profound insights into the ability of binder structures to enhance cathode performance were discovered. Overcoming the bottleneck shortage originating from olivine structure LiFePO4 using efficient polymer structures is discussed. We forecast design principles for the polymer binders used in the high-performance LiFePO4 cathodes of Li-ion batteries. Finally, perspectives on the application of future binder designs for electrodes with poor conductivity are presented to provide possible design directions for chemical structures.
Collapse
Affiliation(s)
- Shu Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China;
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Xiaoting Huang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Youyuan Huang
- Shenzhen BTR New Material Group Co., Ltd., High-Tech Industrial Park, Xitian, Gongming Town, Guangming New District, Shenzhen 518106, China; (Y.H.); (X.H.)
| | - Xueqin He
- Shenzhen BTR New Material Group Co., Ltd., High-Tech Industrial Park, Xitian, Gongming Town, Guangming New District, Shenzhen 518106, China; (Y.H.); (X.H.)
| | - Haitao Zhuo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Shaojun Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
411
|
Ju Z, Yuan H, Sheng O, Liu T, Nai J, Wang Y, Liu Y, Tao X. Cryo‐Electron Microscopy for Unveiling the Sensitive Battery Materials. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Zhijin Ju
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Huadong Yuan
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Ouwei Sheng
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Tiefeng Liu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Jianwei Nai
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yao Wang
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yujing Liu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Xinyong Tao
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
412
|
Jing F, Pei J, Zhou Y, Qin Z, Cong B, Hua K, Chen G. Hierarchical MnV 2O 4 double-layer hollow sandwich nanosheets confined by N-doped carbon layer as anode for high performance lithium-ion batteries. J Colloid Interface Sci 2021; 607:538-545. [PMID: 34520901 DOI: 10.1016/j.jcis.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Binary transition metal oxides, especially vanadate metal oxides, are highly desirable for lithium-ion batteries (LIBs) anode materials due to their low-budget and high theoretical lithium storage capacity. However, low conductivity and poor cycle stability caused by volume changes during charge and discharge limit their grid-scale applications. Herein, a novel spinel MnV2O4 double-layer hollow sandwich nanosheets enclosed in N-doped porous carbon layer (MnV2O4/NC) was efficiently synthesized in 5 min by microwave-assisted and in-situ pyrolysis the coated polydopamine. MnV2O4/NC shows the superior performance as anode for LIBs with a specific capacities of 760 mA h g-1 at 1000 mA g-1 and outstanding of cycling stability with a specific capacities of 525.5 mA h g-1 after 1000 cycles even at 5000 mA g-1, respectively, which due to its unique double-layer hollow sandwich microstructure, mixed lithium storage mechanism and in-situ coating of nitrogen-doped carbon layer.
Collapse
Affiliation(s)
- Fengyang Jing
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jian Pei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Yumin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Zhongzheng Qin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Bowen Cong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Ke Hua
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Gang Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
413
|
Wang C, Huang Y, Lu Y, Pan H, Xu BB, Sun W, Yan M, Jiang Y. Reversible Magnesium Metal Anode Enabled by Cooperative Solvation/Surface Engineering in Carbonate Electrolytes. NANO-MICRO LETTERS 2021; 13:195. [PMID: 34523042 PMCID: PMC8440703 DOI: 10.1007/s40820-021-00716-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Magnesium metal anode holds great potentials toward future high energy and safe rechargeable magnesium battery technology due to its divalent redox and dendrite-free nature. Electrolytes based on Lewis acid chemistry enable the reversible Mg plating/stripping, while they fail to match most cathode materials toward high-voltage magnesium batteries. Herein, reversible Mg plating/stripping is achieved in conventional carbonate electrolytes enabled by the cooperative solvation/surface engineering. Strongly electronegative Cl from the MgCl2 additive of electrolyte impairs the Mg…O = C interaction to reduce the Mg2+ desolvation barrier for accelerated redox kinetics, while the Mg2+-conducting polymer coating on the Mg surface ensures the facile Mg2+ migration and the effective isolation of electrolytes. As a result, reversible plating and stripping of Mg is demonstrated with a low overpotential of 0.7 V up to 2000 cycles. Moreover, benefitting from the wide electrochemical window of carbonate electrolytes, high-voltage (> 2.0 V) rechargeable magnesium batteries are achieved through assembling the electrode couple of Mg metal anode and Prussian blue-based cathodes. The present work provides a cooperative engineering strategy to promote the application of magnesium anode in carbonate electrolytes toward high energy rechargeable batteries.
Collapse
Affiliation(s)
- Caiyun Wang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, People's Republic of China
| | - Yao Huang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, People's Republic of China
| | - Yunhao Lu
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, People's Republic of China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
| | - Mi Yan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, Zhejiang, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| |
Collapse
|
414
|
Cao Z, Zheng X, Qu Q, Huang Y, Zheng H. Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode-Electrolyte Interphase. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103178. [PMID: 34342925 DOI: 10.1002/adma.202103178] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Silicon (Si) anodes are advantageous for application in lithium-ion batteries in terms of their high theoretical capacity (4200 mAh g-1 ), appropriate operating voltage (<0.4 V vs Li/Li+ ), and earth-abundancy. Nevertheless, a large volume change of Si particles emerges with cycling, triggering unceasing breakage/re-formation of the solid-electrolyte interphase (SEI) and thereby the fast capacity degradation in traditional carbonate-based electrolytes. Herein, it is demonstrated that superior cyclability of Si anode is achievable using a nonflammable ether-based electrolyte with fluoroethylene carbonate and lithium oxalyldifluoroborate dual additives. By forming a high-modulus SEI rich in fluoride (F) and boron (B) species, a high initial Coulombic efficiency of 90.2% is attained in Si/Li cells, accompanied with a low capacity-fading rate of only 0.0615% per cycle (discharge capacity of 2041.9 mAh g-1 after 200 cycles). Full cells pairing the unmodified Si anode with commercial LiFePO4 (≈13.92 mg cm-2 ) and LiNi0.5 Mn0.3 Co0.2 O2 (≈17.9 mg cm-2 ) cathodes further show extended service life to 150 and 60 cycles, respectively, demonstrating the superior cathode-compatibility realized with a thin and F, B-rich cathode electrolyte interface. This work offers an easily scalable approach in developing high-performance Si-based batteries through Si/electrolyte interphase regulation.
Collapse
Affiliation(s)
- Zhang Cao
- College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xueying Zheng
- Institute of New Energy for Vehicles, Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Qunting Qu
- College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yunhui Huang
- Institute of New Energy for Vehicles, Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Honghe Zheng
- College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
415
|
Shen X, Zhang R, Wang S, Chen X, Zhao C, Kuzmina E, Karaseva E, Kolosnitsyn V, Zhang Q. The dynamic evolution of aggregated lithium dendrites in lithium metal batteries. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
416
|
Fang L, Bahlawane N, Sun W, Pan H, Xu BB, Yan M, Jiang Y. Conversion-Alloying Anode Materials for Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101137. [PMID: 34331406 DOI: 10.1002/smll.202101137] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 06/13/2023]
Abstract
The past decade has witnessed a rapidly growing interest toward sodium ion battery (SIB) for large-scale energy storage in view of the abundance and easy accessibility of sodium resources. Key to addressing the remaining challenges and setbacks and to translate lab science into commercializable products is the development of high-performance anode materials. Anode materials featuring combined conversion and alloying mechanisms are one of the most attractive candidates, due to their high theoretical capacities and relatively low working voltages. The current understanding of sodium-storage mechanisms in conversion-alloying anode materials is presented here. The challenges faced by these materials in SIBs, and the corresponding improvement strategies, are comprehensively discussed in correlation with the resulting electrochemical behavior. Finally, with the guidance and perspectives, a roadmap toward the development of advanced conversion-alloying materials for commercializable SIBs is created.
Collapse
Affiliation(s)
- Libin Fang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Naoufal Bahlawane
- Material Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ben Bin Xu
- Smart Materials and Surfaces Lab, Mechanical Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mi Yan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
417
|
Liu J, Ben M, Liu A, Liu J, Wang S, Zhang J. Highly elastic cobweb-like SiO/CNF composites with reconstructed heterostructure for high-efficient lithium storage. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
418
|
|
419
|
Wang Q, Liu B, Shen Y, Wu J, Zhao Z, Zhong C, Hu W. Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101111. [PMID: 34196478 PMCID: PMC8425877 DOI: 10.1002/advs.202101111] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 05/19/2023]
Abstract
With the low redox potential of -3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g-1 , lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium-ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high-energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium-anode modification are presented to inspire innovation of lithium anode.
Collapse
Affiliation(s)
- Qingyu Wang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Bin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Yuanhao Shen
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Jingkun Wu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Zequan Zhao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou119077China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou119077China
| |
Collapse
|
420
|
Surface Modification and Functional Structure Space Design to Improve the Cycle Stability of Silicon Based Materials as Anode of Lithium Ion Batteries. COATINGS 2021. [DOI: 10.3390/coatings11091047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Silicon anode is considered as one of the candidates for graphite replacement due to its highest known theoretical capacity and abundant reserve on earth. However, poor cycling stability resulted from the “volume effect” in the continuous charge-discharge processes become the biggest barrier limiting silicon anodes development. To avoid the resultant damage to the silicon structure, some achievements have been made through constructing the structured space and pore design, and the cycling stability of the silicon anode has been improved. Here, progresses on designing nanostructured materials, constructing buffered spaces, and modifying surfaces/interfaces are mainly discussed and commented from spatial structure and pore generation for volumetric stress alleviation, ions transport, and electrons transfer improvement to screen out the most effective optimization strategies for development of silicon based anode materials with good property.
Collapse
|
421
|
|
422
|
Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview. ENERGIES 2021. [DOI: 10.3390/en14175220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding the aging mechanism for lithium-ion batteries (LiBs) is crucial for optimizing the battery operation in real-life applications. This article gives a systematic description of the LiBs aging in real-life electric vehicle (EV) applications. First, the characteristics of the common EVs and the lithium-ion chemistries used in these applications are described. The battery operation in EVs is then classified into three modes: charging, standby, and driving, which are subsequently described. Finally, the aging behavior of LiBs in the actual charging, standby, and driving modes are reviewed, and the influence of different working conditions are considered. The degradation mechanisms of cathode, electrolyte, and anode during those processes are also discussed. Thus, a systematic analysis of the aging mechanisms of LiBs in real-life EV applications is achieved, providing practical guidance, methods to prolong the battery life for users, battery designers, vehicle manufacturers, and material recovery companies.
Collapse
|
423
|
Wang X, Li G, Han Y, Wang F, Chu J, Cai T, Wang B, Song Z. Facile Synthesis of Polyphenothiazine as a High-Performance p-Type Cathode for Rechargeable Lithium Batteries. CHEMSUSCHEM 2021; 14:3174-3181. [PMID: 34101379 DOI: 10.1002/cssc.202101008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Indexed: 06/12/2023]
Abstract
p-Type electroactive polymers are promising cathodes for dual-ion batteries but cost-effective candidates are still lacking. In this study, the p-type polymer polyphenothiazine (PPTZ) is synthesized by a facile one-step oxidation polymerization from the low-cost phenothiazine (PTZ) monomer. As a cathode for rechargeable lithium batteries, PPTZ shows superior electrochemical performance to previously reported PTZ-based polymers with complicated structures and syntheses. For example, PPTZ has a high reversible capacity of 157 mAh g-1 within 2.5-4.3 V vs. Li+ /Li with an average discharge voltage of 3.5 V, and a high capacity retention of 77 % after 500 cycles. The highly reversible one-electron redox mechanism of PPTZ is also investigated in detail by electrochemical testing, ex situ FT-IR and X-ray photoelectron spectroscopy, and DFT calculations. PPTZ has the potential to serve as an attractive p-type cathode material for practical applications and the facile synthesis may be also extended to other polymer cathodes based on N-heteroaromatic units.
Collapse
Affiliation(s)
- Xuezhen Wang
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Gaofeng Li
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yan Han
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Feng Wang
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Chu
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Taotao Cai
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Baoshan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhiping Song
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
424
|
Huang K, Bi S, Kurt B, Xu C, Wu L, Li Z, Feng G, Zhang X. Regulation of SEI Formation by Anion Receptors to Achieve Ultra‐Stable Lithium‐Metal Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kangsheng Huang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Sheng Bi
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Barış Kurt
- Faculty of Education Department of Sciences Muş Alparslan University Muş Turkey
| | - Chengyang Xu
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Langyuan Wu
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Guang Feng
- State Key Laboratory of Coal Combustion School of Energy and Power Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| |
Collapse
|
425
|
Huang K, Bi S, Kurt B, Xu C, Wu L, Li Z, Feng G, Zhang X. Regulation of SEI Formation by Anion Receptors to Achieve Ultra-Stable Lithium-Metal Batteries. Angew Chem Int Ed Engl 2021; 60:19232-19240. [PMID: 34028155 DOI: 10.1002/anie.202104671] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/10/2021] [Indexed: 11/11/2022]
Abstract
Despite high specific capacity (3860 mAh g-1 ), the utilization of Li-metal anodes in rechargeable batteries are still hampered due to their insufficient cyclability. Herein, we report an anion-receptor-mediated carbonate electrolyte with improved performance and can ameliorate the solid electrolyte interphase (SEI) composition comparing to the blank electrolyte. It demonstrates a high average Coulombic efficiency (97.94 %) over 500 cycles in the Li/Cu cell at a capacity of 1 mAh cm-2 . Raman spectrum and molecular modelling further clarify the screening effects of the anion receptor on the Li+ -PF6 - ion coupling that results in the enhanced ion dynamics. The X-ray photoelectron spectroscopy (XPS) distinguishes the disparities in the SEI components of the developed electrolyte and the blank one, which is rationalized by the molecular insights of the Li-metal/electrolyte interface. Thus, we prepare a 2.5 Ah prototype pouch cell, exhibiting a high energy density (357 Wh kg-1 ) with 90.90 % capacity retention over 50 cycles.
Collapse
Affiliation(s)
- Kangsheng Huang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Sheng Bi
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Barış Kurt
- Faculty of Education, Department of Sciences, Muş Alparslan University, Muş, Turkey
| | - Chengyang Xu
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Langyuan Wu
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.,Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
426
|
Vapour phase conversion of metal oxalates to metal phosphide nanostructures and their use as anode in rechargeable Li, Na and K-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
427
|
Song S, Zhu M, Xiong Y, Wen Y, Nie M, Meng X, Zheng A, Yang Y, Dai Y, Sun L, Yin K. Mechanical Failure Mechanism of Silicon-Based Composite Anodes under Overdischarging Conditions Based on Finite Element Analysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34157-34167. [PMID: 34255477 DOI: 10.1021/acsami.1c07123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Overdischarge is a severe safety issue that can induce severe mechanical failure of electrode materials in lithium-ion batteries. A considerable volume change of silicon-based composite anodes undoubtedly further aggravates the mechanical failure. However, the mechanical failure mechanism of silicon-based composite anodes under overdischarging conditions still lacks in-depth understanding despite many efforts paid under normal charging conditions. Herein, we have modeled and tracked the mechanical failure evolution of silicon/carbon nanofibers, a typical silicon-based anode, under overdischarging conditions based on the finite element simulation, with derived optimization strategies of optimal Young's modulus and stable microstructure. The severe contact damage between silicon nanoparticles and carbon nanofibers, which causes larger shedding and breakage risks, has been found to contribute to mechanical failure. To improve the electrode stability, an optimal Young's modulus interval ranging from ∼75 to ∼150 GPa is found. Furthermore, increasing the embedding depth of silicon nanoparticles in carbon nanofibers has proven to be an effective strategy for improving electrochemical stability due to the faster lithium salt diffusion and more uniform current density distribution, which was further verified by the experimental capacity retention ratio of carbon-coated silicon and silicon/carbon nanofibers (84 vs 75% after 100 cycles). Our results provide meaningful insights into the mechanical failure of silicon-based composite anodes during overdischarging, giving reasonable guidance for electrode safety designs and performance optimization.
Collapse
Affiliation(s)
- Shugui Song
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Mingyun Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Yuwei Xiong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Yifeng Wen
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Meng Nie
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Anqi Zheng
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Yongqiang Yang
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu), Jiangsu Province Special Equipment Safety Supervision Inspection Institute, Wuxi, Jiangsu 214174, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|
428
|
Lingua G, Grysan P, Vlasov PS, Verge P, Shaplov AS, Gerbaldi C. Unique Carbonate-Based Single Ion Conducting Block Copolymers Enabling High-Voltage, All-Solid-State Lithium Metal Batteries. Macromolecules 2021; 54:6911-6924. [PMID: 34475591 PMCID: PMC8397401 DOI: 10.1021/acs.macromol.1c00981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Indexed: 01/08/2023]
Abstract
Safety and high-voltage operation are key metrics for advanced, solid-state energy storage devices to power low- or zero-emission HEV or EV vehicles. In this study, we propose the modification of single-ion conducting polyelectrolytes by designing novel block copolymers, which combine one block responsible for high ionic conductivity and the second block for improved mechanical properties and outstanding electrochemical stability. To synthesize such block copolymers, the ring opening polymerization (ROP) of trimethylene carbonate (TMC) monomer by the RAFT-agent having a terminal hydroxyl group is used. It allows for the preparation of a poly(carbonate) macro-RAFT precursor that is subsequently applied in RAFT copolymerization of lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide and poly(ethylene glycol) methyl ether methacrylate. The resulting single-ion conducting block copolymers show improved viscoelastic properties, good thermal stability (T onset up to 155 °C), sufficient ionic conductivity (up to 3.7 × 10-6 S cm-1 at 70 °C), and high lithium-ion transference number (0.91) to enable high power. Excellent plating/stripping ability with resistance to dendrite growth and outstanding electrochemical stability window (exceeding 4.8 V vs Li+/Li at 70 °C) are also achieved, along with enhanced compatibility with composite cathodes, both LiNiMnCoO2 - NMC and LiFePO4 - LFP, as well as the lithium metal anode. Lab-scale truly solid-state Li/LFP and Li/NMC lithium-metal cells assembled with the single-ion copolymer electrolyte demonstrate reversible and very stable cycling at 70 °C delivering high specific capacity (up to 145 and 118 mAh g-1, respectively, at a C/20 rate) and proper operation even at a higher current regime. Remarkably, the addition of a little amount of propylene carbonate (∼8 wt %) allows for stable, highly reversible cycling at a higher C-rate. These results represent an excellent achievement for a truly single-ion conducting solid-state polymer electrolyte, placing the obtained ionic block copolymers on top of polyelectrolytes with highest electrochemical stability and potentially enabling safe, practical Li-metal cells operating at high-voltage.
Collapse
Affiliation(s)
- Gabriele Lingua
- GAME
Lab, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
- National
Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze 50121, Italy
| | - Patrick Grysan
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Petr S. Vlasov
- Department
of Macromolecular Chemistry, Saint-Petersburg
State University, Universitetsky pr. 26, Saint Petersburg 198504, Russia
| | - Pierre Verge
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Alexander S. Shaplov
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Claudio Gerbaldi
- GAME
Lab, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
- National
Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze 50121, Italy
| |
Collapse
|
429
|
Affiliation(s)
| | | | - Wolfgang H. Binder
- Martin‐Luther‐Universität Halle‐Wittenberg Makromolekulare Chemie Fakultät Naturwissenschaften II Von‐Danckelmann‐Platz 4 D‐06120 Halle
| |
Collapse
|
430
|
Incentivizing Innovation: The Causal Role of Government Subsidies on Lithium-Ion Battery Research and Development. SUSTAINABILITY 2021. [DOI: 10.3390/su13158309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Governments design and implement policies to achieve a variety of goals, but perhaps none are as pressing as shifting national economies away from non-renewable fuels and towards more sustainable, environmentally-friendly technologies. To incentivize such transitions, governments provide subsidies to private and public companies to innovate, i.e., to engage in research and development (R&D) to develop those technologies. However, the question of the companies is using government subsidies (GS) to perform R&D and its answer determines the effectiveness of government policies. Consequently, this paper seeks to answer this question through investigating Chinese lithium-ion battery (LiB) firms and the GS they receive through novel usage of information flow (IF). Hausman tests, fixed- and random-effects models confirmed a weak, though positive correlation between GS and R&D as determined by patent output (PO), but interestingly, observations of IF intimated that GS also affected other variables such as net profit (NP) and main business income (MBI). This suggests that firms are being awarded GS for higher PO, but a corresponding increase in R&D and its expected growth in company performance is not occurring. Thus, it is suggested that performance variables other than PO be used as firms may ab (use) this metric to apply for more GS, rather than performing R&D that leads to technological breakthroughs.
Collapse
|
431
|
Gan H, Li S, Zhang Y, Yu L, Wang J, Xue Z. Mechanically Strong and Electrochemically Stable Single-Ion Conducting Polymer Electrolytes Constructed from Hydrogen Bonding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8270-8280. [PMID: 34210143 DOI: 10.1021/acs.langmuir.1c01035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, composite membranes based on a single-ion conducting polymer electrolyte (SIPE) and poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) were prepared by an electrospinning technology. The SIPE with hydrogen bonding was obtained via reversible addition-fragmentation chain transfer (RAFT) copolymerization of 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)ethyl methacrylate (UPyMA), poly(ethylene glycol) methyl ether methacrylate (PEGMA), and lithium 4-styrenesulfonyl (phenylsulfonyl) imide (SSPSILi). The obtained composite membrane exhibited a highly porous network structure, superior thermal stability (>300 °C), and high mechanical strength (17.3 MPa). The fabricated SIPE/PVDF-HFP composite membrane without lithium salts possessed a high ionic conductivity of 2.78 × 10-5 S cm-1 at 30 °C, excellent compatibility with the lithium metal electrode, and high lithium-ion transference number (0.89). The symmetric Li//Li cell exhibited a superior cycle performance without short circuit, indicating the generation of a stable interface between SIPE and the lithium metal electrode during the process of lithium plating/stripping, which could inhibit lithium dendrite growth in lithium metal batteries (LMBs). The Li//LiFePO4 cell also exhibited superior cycle life and excellent rate capability at 60 or 25 °C. In consequence, the composite membrane exhibits a considerable future prospect for advanced LMBs.
Collapse
Affiliation(s)
- Huihui Gan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqiao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liping Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jirong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
432
|
Huang Y, Ding R, Ying D, Yan T, Huang Y, Tan C, Sun X, Gao P, Liu E. Vacant Manganese-Based Perovskite Fluorides@Reduced Graphene Oxides for Na-Ion Storage with Pseudocapacitive Conversion/Insertion Dual Mechanisms. Chemistry 2021; 27:9954-9960. [PMID: 33913593 DOI: 10.1002/chem.202101043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 11/10/2022]
Abstract
Na-ion capacitors (NICs) and Na-based dual-ion batteries (Na-DIBs) have been considered to be promising alternatives to traditional lithium-ion batteries (LIBs) because of the abundance and low cost of the Na-ion, but their energy density, power density and life cycle are limited. Herein, dual-vacancy (including K+ and F- vacancies) perovskite fluoride K0.86 MnF2.69 @reduced graphene oxide (rGO; recorded as Mn-G) as anode for NICs and Na-DIBs has been developed. The special conversion/intercalation dual Na-ion energy storage mechanism and pseudocapacitive dynamics are analyzed in detail. The Mn-G//AC NICs and Mn-G//KS6 Na-DIBs delivered a maximum energy density of 92.7 and 187.6 W h kg-1 , a maximum power density of 20.2 and 21.12 kW kg-1 , and long cycle performance of 61.3 and 68.4 % after 1000 cycles at 5 A g-1 , respectively. Moreover, Mn-G//AC NICs and Mn-G//KS6 Na-DIBs can work well over a wide range of temperatures (-20 to 40 °C). These results make it competitive in Na-ion storage applications with high energy/power density over a wide temperature range.
Collapse
Affiliation(s)
- Yongfa Huang
- College of Chemistry, Xiangtan University (XTU), Xiangtan, Hunan, 411105 (P.R., China
| | - Rui Ding
- College of Chemistry, Xiangtan University (XTU), Xiangtan, Hunan, 411105 (P.R., China
| | - Danfeng Ying
- College of Chemistry, Xiangtan University (XTU), Xiangtan, Hunan, 411105 (P.R., China
| | - Tong Yan
- College of Chemistry, Xiangtan University (XTU), Xiangtan, Hunan, 411105 (P.R., China
| | - Yuxi Huang
- College of Chemistry, Xiangtan University (XTU), Xiangtan, Hunan, 411105 (P.R., China
| | - Caini Tan
- College of Chemistry, Xiangtan University (XTU), Xiangtan, Hunan, 411105 (P.R., China
| | - Xiujuan Sun
- College of Chemistry, Xiangtan University (XTU), Xiangtan, Hunan, 411105 (P.R., China
| | - Ping Gao
- College of Chemistry, Xiangtan University (XTU), Xiangtan, Hunan, 411105 (P.R., China
| | - Enhui Liu
- College of Chemistry, Xiangtan University (XTU), Xiangtan, Hunan, 411105 (P.R., China
| |
Collapse
|
433
|
Kwon DS, Kim HJ, Shim J. Dendrite-Suppressing Polymer Materials for Safe Rechargeable Metal Battery Applications: From the Electro-Chemo-Mechanical Viewpoint of Macromolecular Design. Macromol Rapid Commun 2021; 42:e2100279. [PMID: 34216409 DOI: 10.1002/marc.202100279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Indexed: 11/06/2022]
Abstract
Metal batteries have been emerging as next-generation battery systems by virtue of ultrahigh theoretical specific capacities and low reduction potentials of metallic anodes. However, significant concerns regarding the uncontrolled metallic dendrite growth accompanied by safety hazards and short lifespan have impeded practical applications of metal batteries. Although a great deal of effort has been pursued to highlight the thermodynamic origin of dendrite growth and a variety of experimental methodologies for dendrite suppression, the roles of polymer materials in suppressing the dendrite growth have been underestimated. This review aims to give a state-of-the-art overview of contemporary dendrite-suppressing polymer materials from the electro-chemo-mechanical viewpoint of macromolecular design, including i) homogeneous distribution of metal ion flux, ii) mechanical blocking of metal dendrites, iii) tailoring polymer structures, and iv) modulating the physical configuration of polymer membranes. Judiciously tailoring electro-chemo-mechanical properties of polymer materials provides virtually unlimited opportunities to afford safe and high-performance metal battery systems by resolving problematic dendrite issues. Transforming these rational design strategies into building dendrite-suppressing polymer materials and exploiting them towards polymer electrolytes, separators, and coating materials hold the key to realizing safe, dendrite-free, and long-lasting metal battery systems.
Collapse
Affiliation(s)
- Da-Sol Kwon
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hee Joong Kim
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, 55455-0132, USA
| | - Jimin Shim
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
434
|
Sui Y, Shi Z, Hu Y, Zhang X, Wu X, Wu L. A pre-oxidation strategy to improve architecture stability and electrochemical performance of Na 2MnPO 4F particles-embedded carbon nanofibers. J Colloid Interface Sci 2021; 603:430-439. [PMID: 34197991 DOI: 10.1016/j.jcis.2021.06.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
The rational design of an excellent architecture for active materials combined with carbon matrix is of particular importanceto obtain flexible electrode material with high electrochemical properties. Well-designed nanofibers possess unique 3D network structure, which can significantly improve the electron/ion transportation and supplies sufficient active sites for Li+/Na+ insertion. Electrospinning-carbonization technology is a popular strategy to prepare nanofibers with active material embedded in carbon. It is found that the architecture of nanofibers tended to be wrecked and destroyed during the carbonization process without pre-oxidation treatment. In this study, we prepared Na2MnPO4F particles embedded in carbon nanofibers (Na2MnPO4F/C) using PVP as carbon source and investigated the strengthen mechanism of pre-oxidation on their architecture. The experiment and simulation results demonstrate that, without pre-oxidation, the main chain of PVP is severely ruptured during the carbonization procedure, consequently leads to fractured architecture of Na2MnPO4F/C nanofibers. In contrast, with pre-oxidation treatment, a long-chain and heat-resistance structured carbon matrix formed, and Na2MnPO4F/C nanofibers with stable architecture and improved electrochemical performance can be achieved. This study demonstrates a promising guide to construct carbon based nanofiber electrodes with stable architecture and high electrochemical performance.
Collapse
Affiliation(s)
- Yulei Sui
- School of Iron and Steel, Soochow University, Suzhou 215000, China
| | - Zhihao Shi
- School of Iron and Steel, Soochow University, Suzhou 215000, China
| | - Yong Hu
- School of Iron and Steel, Soochow University, Suzhou 215000, China
| | - Xiaoping Zhang
- School of Iron and Steel, Soochow University, Suzhou 215000, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ling Wu
- School of Iron and Steel, Soochow University, Suzhou 215000, China.
| |
Collapse
|
435
|
Hu Y, Qin Z, Cong B, Pei J, Sun S, Chen G. Sn and Na Co‐doping to Suppress Voltage Decay of Li‐rich Layered Oxide. ChemElectroChem 2021. [DOI: 10.1002/celc.202100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yongyuan Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Zhongzheng Qin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Bowen Cong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Jian Pei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Shanfu Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Gang Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
436
|
Chen B, Wang D, Zhang B, Zhong X, Liu Y, Sheng J, Zhang Q, Zou X, Zhou G, Cheng HM. Engineering the Active Sites of Graphene Catalyst: From CO 2 Activation to Activate Li-CO 2 Batteries. ACS NANO 2021; 15:9841-9850. [PMID: 34033458 DOI: 10.1021/acsnano.1c00756] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As one of the CO2 capture and utilization technologies, Li-CO2 batteries have attracted special interest in the application of carbon neutral. However, the design and fabrication of a low-cost high-efficiency cathode catalyst for reversible Li2CO3 formation and decomposition remains challenging. Here, guided by theoretical calculations, CO2 was utilized to activate the catalytic activity of conventional nitrogen-doped graphene, in which pyridinic-N and pyrrolic-N have a high total content (72.65%) and have a high catalytic activity in both CO2 reduction and evolution reactions, thus activating the reversible conversion of Li2CO3 formation and decomposition. As a result, the designed cathode has a low voltage gap of 2.13 V at 1200 mA g-1 and long-life cycling stability with a small increase in the voltage gap of 0.12 V after 170 cycles at 500 mA g-1. Our work suggests a way to design metal-free catalysts with high activity that can be used to activate the performance of Li-CO2 batteries.
Collapse
Affiliation(s)
- Biao Chen
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Dashuai Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Biao Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Xiongwei Zhong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yingqi Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Jinzhi Sheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Qi Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, People's Republic of China
| |
Collapse
|
437
|
Li Z, Tian Z, Zhang C, Wang F, Ye C, Han F, Tan J, Liu J. An AlCl 3 coordinating interlayer spacing in microcrystalline graphite facilitates ultra-stable and high-performance sodium storage. NANOSCALE 2021; 13:10468-10477. [PMID: 34076651 DOI: 10.1039/d1nr01660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal chloride-intercalated graphite intercalation compounds (MC-GICs) show a perfect sandwich structure with high electronic conductivity and chemical stability, but there are few applications for MC-GICs in anode materials of sodium ion batteries (SIBs). Herein, we selected a splendid host microcrystalline graphite (MG) to synthesize an AlCl3 intercalated MG intercalation compound (AlCl3-MGIC) anode material and demonstrated that it is suitable for SIBs via electrolyte optimization. The AlCl3-MGIC electrode is primarily compared in four electrolytes. Sodium storage is proposed for co-intercalation and conversion reactions by simultaneously selecting a compatible NaPF6/diethylene glycol dimethyl ether (DEGDME) electrolyte. As a result, the AlCl3-MGIC anode delivers a specific capacity of 202 mA h g-1 at a current density of 0.2 A g-1 after 100 cycles and still exhibits a satisfactory capacity of 198 mA h g-1 after 900 cycles. Density functional theory calculations further illustrate that DEGDME solvent molecules offer moderate adsorption energy to sodium ions that guarantees structure stabilization of GICs during repeated cycling. This work provides a theoretical basis for designing sodium ion storage with a graphite layered structure and unveiling the prospects of MC-GIC materials as high-performance anodes.
Collapse
Affiliation(s)
- Zheng Li
- School of Metallurgy and Environment, Central South University, Changsha 410082, China.
| | - Zhongliang Tian
- School of Metallurgy and Environment, Central South University, Changsha 410082, China.
| | - Chengzhi Zhang
- Ji Hua Laboratory, Foshan, Guangdong 528000, China. and Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Fei Wang
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China and Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chong Ye
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fei Han
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jun Tan
- Ji Hua Laboratory, Foshan, Guangdong 528000, China.
| | - Jinshui Liu
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
438
|
Yang H, Deng B, Jing X, Li W, Wang D. Direct recovery of degraded LiCoO 2 cathode material from spent lithium-ion batteries: Efficient impurity removal toward practical applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 129:85-94. [PMID: 34044320 DOI: 10.1016/j.wasman.2021.04.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Regenerating cathode material from spent lithium-ion batteries (LIBs) permits an effective approach to resolve resource shortage and environmental pollution in the increasing battery industry. Directly renovating the spent cathode materials is a promising way, but it is still challenging to efficiently remove all of the complex impurities (such as binder, carbon black, graphite and current collectors) without destroying the material structure in the electrode. Herein, a facile strategy to directly remove these impurities and simultaneously repair the degraded LiCoO2 by a target healing method is reported. Specifically, by using an optimized molten salt system of LiOH-KOH (molar ratio of 3:7) where LiNO3 and O2 both serve as oxidants, the impurities can be completely removed, while the structure, composition and morphology of degraded LiCoO2 can be successfully repaired to commercial level based on a two-stage heating process (300 °C for 8 h and 500 °C for 16 h, respectively), resulting in a high recovery rate of approximately 100% for cathode material. More importantly, the regenerated LiCoO2 exhibits a high reversible capacity, good cycling stability and excellent rate capability, which are comparable with commercial LiCoO2. This work demonstrates an efficient approach to recycle and reuse advanced energy materials.
Collapse
Affiliation(s)
- Huimeng Yang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China
| | - Bowen Deng
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Jing
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China
| | - Wei Li
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China.
| | - Dihua Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resources and Energy, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
439
|
Zhang H, Peng J, Wang J, Ren Y, Zeng W, Chen L. Fabrication of a Sandwich‐like VS
4
‐Graphene Composite via Self‐assembly for Highly Stable Lithium‐ion Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hao Zhang
- Innovation Center of Environmental and Energy Photocatalysis Hunan Key Laboratory of Applied Environmental Photocatalysis Hunan Collaborative Changsha University Changsha 410002 P.R. China
| | - Jiawen Peng
- Innovation Center of Environmental and Energy Photocatalysis Hunan Key Laboratory of Applied Environmental Photocatalysis Hunan Collaborative Changsha University Changsha 410002 P.R. China
| | - Junpeng Wang
- Innovation Center of Environmental and Energy Photocatalysis Hunan Key Laboratory of Applied Environmental Photocatalysis Hunan Collaborative Changsha University Changsha 410002 P.R. China
| | - Yuanyuan Ren
- Innovation Center of Environmental and Energy Photocatalysis Hunan Key Laboratory of Applied Environmental Photocatalysis Hunan Collaborative Changsha University Changsha 410002 P.R. China
| | - Wenjie Zeng
- Innovation Center of Environmental and Energy Photocatalysis Hunan Key Laboratory of Applied Environmental Photocatalysis Hunan Collaborative Changsha University Changsha 410002 P.R. China
| | - Liang Chen
- Innovation Center of Environmental and Energy Photocatalysis Hunan Key Laboratory of Applied Environmental Photocatalysis Hunan Collaborative Changsha University Changsha 410002 P.R. China
| |
Collapse
|
440
|
Yang HS, Kim D, Kim Y, Lee YJ, Lee KT. Nonpolar Solvent‐based Electrolytes with a Quasi‐Solid‐State Redox Reaction for Lithium‐Sulfur Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hong Sun Yang
- School of Chemical and Biological Engineering, Institute of Chemical Processes Research Institute of Advanced Materials, Institute of Engineering Research Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Dong‐Min Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes Research Institute of Advanced Materials, Institute of Engineering Research Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Youngjin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes Research Institute of Advanced Materials, Institute of Engineering Research Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Young Joo Lee
- Institute of Inorganic and Applied Chemistry University of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Kyu Tae Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes Research Institute of Advanced Materials, Institute of Engineering Research Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
441
|
Guo L, Xin C, Gao J, Zhu J, Hu Y, Zhang Y, Li J, Fan X, Li Y, Li H, Qiu J, Zhou W. The Electrolysis of Anti‐Perovskite Li
2
OHCl for Prelithiation of High‐Energy‐Density Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lulu Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Chen Xin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Jian Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Jianxun Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Yiming Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Junpeng Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Xiulin Fan
- School of Materials Science and Engineering Zhejiang University Hangzhou 310058 China
| | - Yutao Li
- Science and Engineering Program & Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
| | - Hong Li
- Key Laboratory for Renewable Energy Beijing Key Laboratory for New Energy Materials and Devices Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Jieshan Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Weidong Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
442
|
Zhang B, Wang W, Liang L, Xu Z, Li X, Qiao S. Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
443
|
Lan Y, Liu Y, Li J, Chen D, He G, Parkin IP. Natural Clay-Based Materials for Energy Storage and Conversion Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004036. [PMID: 34105287 PMCID: PMC8188194 DOI: 10.1002/advs.202004036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Indexed: 05/03/2023]
Abstract
Among various energy storage and conversion materials, functionalized natural clays display significant potentials as electrodes, electrolytes, separators, and nanofillers in energy storage and conversion devices. Natural clays have porous structures, tunable specific surface areas, remarkable thermal and mechanical stabilities, abundant reserves, and cost-effectiveness. In addition, natural clays deliver the advantages of high ionic conductivity and hydrophilicity, which are beneficial properties for solid-state electrolytes. This review article provides an overview toward the recent advancements in natural clay-based energy materials. First, it comprehensively summarizes the structure, classification, and chemical modification methods of natural clays to make them suitable in energy storage and conversion devices. Then, the particular attention is focused on the application of clays in the fields of lithium-ion batteries, lithium-sulfur batteries, zinc-ion batteries, chloride-ion batteries, supercapacitors, solar cells, and fuel cells. Finally, the possible future research directions are provided for natural clays as energy materials. This review aims at facilitating the rapid developments of natural clay-based energy materials through a fruitful discussion from inorganic and materials chemistry aspects, and also promotes the broad sphere of clay-based materials for other utilization, such as effluent treatment, heavy metal removal, and environmental remediation.
Collapse
Affiliation(s)
- Ye Lan
- Department of ChemistryUniversity College London20 Gordon Street, WC1H 0AJLondonUK
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Yiyang Liu
- Department of ChemistryUniversity College London20 Gordon Street, WC1H 0AJLondonUK
| | - Jianwei Li
- Department of ChemistryUniversity College London20 Gordon Street, WC1H 0AJLondonUK
| | - Dajun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Guanjie He
- Department of ChemistryUniversity College London20 Gordon Street, WC1H 0AJLondonUK
- School of ChemistryUniversity of LincolnBrayford PoolLincolnLN6 7TSUK
| | - Ivan P. Parkin
- Department of ChemistryUniversity College London20 Gordon Street, WC1H 0AJLondonUK
| |
Collapse
|
444
|
Guo L, Xin C, Gao J, Zhu J, Hu Y, Zhang Y, Li J, Fan X, Li Y, Li H, Qiu J, Zhou W. The Electrolysis of Anti-Perovskite Li 2 OHCl for Prelithiation of High-Energy-Density Batteries. Angew Chem Int Ed Engl 2021; 60:13013-13020. [PMID: 33720494 DOI: 10.1002/anie.202102605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 11/10/2022]
Abstract
Anti-perovskite type Li2 OHCl was previously studied as a solid-state Li+ conductor. Here, we report that the Li2 OHCl can be electrolyzed at 3.3 V or 4.0 V, with the creation of O2 /HCl gases and the release of 2 equiv. Li+ via two different decomposition routes, depending on the acidity of electrolyte. In the electrolyte with trace acid, the Li2 OHCl is oxidized at a constant voltage of 3.3 V. In neutral electrolyte, the oxidization of Li2 OHCl starts at 4.0 V, but the produced HCl will increase the acidity of electrolyte and lead to a voltage drop to 3.3 V for the electrolysis of Li2 OHCl. The electrolysis of Li2 OHCl delivers a lithium releasing capacity as high as 810 mAh g-1 , with an equivalent Li-deposition or Li-intercalation on anode, making it a promising candidate as a Li reservoir for prelithiation of anode. Using Li2 OHCl as the lithium source, silicon-carbon (Si@C) composite anode can be effectively prelithiated. The full cells composed of LiNi0.8 Mn0.1 Co0.1 O2 (NMC811) cathode and prelithiated Si@C anode exhibited increased capacities with the increment of prelithiation dosages.
Collapse
Affiliation(s)
- Lulu Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Xin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jian Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianxun Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiming Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junpeng Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiulin Fan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yutao Li
- Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hong Li
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jieshan Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weidong Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
445
|
Bridges CA, Martins ML, Jafta CJ, Sun XG, Paranthaman MP, Liu J, Dai S, Mamontov E. Dynamics of Emim + in [Emim][TFSI]/LiTFSI Solutions as Bulk and under Confinement in a Quasi-liquid Solid Electrolyte. J Phys Chem B 2021; 125:5443-5450. [PMID: 34003647 DOI: 10.1021/acs.jpcb.1c02383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quasi-liquid solid electrolytes are a promising alternative for next-generation Li batteries. These systems combine the safety of solid electrolytes with the desired properties of liquids and are typically formed by solutions of Li salts in ionic liquids incorporated into solid matrices. Here, we present a fundamental understanding of the transport properties in solutions of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]), either in bulk form or incorporated in a boron nitride (BN) matrix. We performed a series of quasi-elastic neutron scattering experiments that, given the high incoherent neutron scattering cross section of hydrogen, allowed us to focus on the Emim+ dynamics. First, [Emim][TFSI]/LiTFSI solutions (0.5 and 2.5 mol·kg-1) were investigated and we show how the increase in the concentration reduces the Emim+ mobility and increases the activation energy of their long-range motions. Then, the 0.5 mol·kg-1 solution was incorporated into the BN matrix and we report that the diffusivities of the Emim+ cations that remain mobile under confinement are highly accelerated in comparison with the bulk sample and the activation energy of these motions is drastically reduced. We present the experimental evidence that this effect is related to the content of the Emim+ cations immobilized near the surfaces of the BN pores.
Collapse
Affiliation(s)
- C A Bridges
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - M L Martins
- Neutron Scattering Division, Oak Ridge National Laboratory, P.O. Box 2008 MS6455, Oak Ridge, Tennessee 37831, United States
| | - C J Jafta
- Electrification and Energy Infrastructures, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - X G Sun
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - M P Paranthaman
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - J Liu
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - S Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, P.O. Box 2008 MS6455, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
446
|
Guo S, Yang H, Liu M, Feng X, Gao Y, Bai Y, Wu C. Al-Storage Behaviors of Expanded Graphite as High-Rate and Long-Life Cathode Materials for Rechargeable Aluminum Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22549-22558. [PMID: 33945253 DOI: 10.1021/acsami.1c04466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rational design and synthesis of capable cathode materials with low cost that can exhibit good electrochemical performance are key to the development of rechargeable aluminum batteries (RABs). In this article, we have developed low-cost expanded graphite as typical cathode materials for high-performance RABs in pouch cells. Remarkably, the commercial expanded graphite can show high-rate performance, long-term cyclic life, and high energy density (64 Wh kg-1 based on a whole pouch cell). In particular, it delivers a high capacity of 111 mAh g-1 at a current density of 2 A g-1 after 300 cycles and 61.1 mAh g-1 at a high current density of 50 A g-1 after 10 000 cycles. The high-rate performance is derived from the rapid kinetic enhancement caused by the chemisorption-involved-intercalation pseudocapacitance effect. Further, a series of facile electrochemical means are used to confirm the intercalation (1.5-2.4 V)-adsorption mechanism (0.5-1.5 V) of expanded graphite. This work can provide significant support for further understanding the Al-storage behaviors of graphite materials in RABs.
Collapse
Affiliation(s)
- Shuainan Guo
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haoyi Yang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mingquan Liu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Feng
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yaning Gao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| |
Collapse
|
447
|
Han L, Zhang X, Li J, Huang H, Xu X, Liu X, Yang Z, Xu M, Pan L. Enhanced energy storage of aqueous zinc-carbon hybrid supercapacitors via employing alkaline medium and B, N dual doped carbon cathode. J Colloid Interface Sci 2021; 599:556-565. [PMID: 33964700 DOI: 10.1016/j.jcis.2021.04.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Zinc-based energy storage systems (zinc-air, zinc-nickel and zinc-ion batteries and zinc-ion hybrid supercapacitors (ZHSs) are considered as promising power sources for wide applications from personal electronic devices to electric vehicles. However, these systems, especially the Zn-based hybrid supercapacitors, display unsatisfying power density and energy density, which should be enhanced for their large-scale applications. In this work, aqueous alkaline zinc-carbon hybrid supercapacitors (A-ZCHS) were designed, consisting of B, N dual doped carbon cathode, Zn anode and KOH electrolyte. The B, N dual doped carbon was prepared via thermal treatment of metal-organic frameworks and boric acid, which exhibits abundant hierarchical pore structure (micropore, mesopore and macropore) and suitable defect construction, promoting ion diffusion/charge transfer and providing more rapid surface pseudocapacitance reaction. More obviously, when the optimized B, N dual doped carbon was used as cathode in A-ZCHS and ZHS, more capacitive charge storage and rapider electrochemical kinetics can be observed in A-ZCHS than in ZHS. Therefore, the optimized A-ZCHS displays a high energy density of 115.7 Wh kg-1 at the power density of 711.6 W kg-1 with excellent stability, which is much better than most of ZHSs reported previously. The A-ZCHS should be a promising candidate for energy storage applications.
Collapse
Affiliation(s)
- Lu Han
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, PR China
| | - Xinlu Zhang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, PR China
| | - Junfeng Li
- College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Hailong Huang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, PR China.
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xinjuan Liu
- Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Zhongli Yang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, PR China
| | - Min Xu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, PR China.
| | - Likun Pan
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
448
|
Jiang S, Wu H, Yin J, Wei Z, Wu J, Wei L, Gao D, Xu X, Gao Y. Benzoic Anhydride as a Bifunctional Electrolyte Additive for Hydrogen Fluoride Capture and Robust Film Construction over High-Voltage Li-Ion Batteries. CHEMSUSCHEM 2021; 14:2067-2075. [PMID: 33539031 DOI: 10.1002/cssc.202100061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Indexed: 06/12/2023]
Abstract
High-voltage LiNi0.8 Co0.1 Mn0.1 O2 (NCM811)-based Li-ion batteries (LIBs) with enhanced performance can be achieved by properly tailoring the electrolyte systems. Benzoic anhydride (BA) was proposed here as a promising bifunctional electrolyte additive that can not only construct a robust cathode-electrolyte interface (CEI) film on the electrode surface but also capture HF/H2 O in the electrolyte effectively. Compared to the cell without the BA additive, the capacity of Li/NCM811 half-cell with 1.0 wt % BA was increased from 128.5 to 149.6 mAh g-1 after 200 cycles at 1 C between 3.0 and 4.3 V. Even at a higher cut-off voltage of 4.5 V, the BA-containing Li/NCM811 half-cell delivered a capacity retention of 69 % after 200 cycles, much higher than that of the half-cell without the additive (56 %). Both theoretical calculation and experimental results verified that the BA additive could be preferentially oxidized to form a stable interface film with high conductivity that protected the NCM811 cathode and suppressed the decomposition of the electrolyte.
Collapse
Affiliation(s)
- Sen Jiang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Rd. 18, Hangzhou, 310014, P. R. China
| | - Haihua Wu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Rd. 18, Hangzhou, 310014, P. R. China
| | - Junying Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Rd. 18, Hangzhou, 310014, P. R. China
- College of Chemical Engineering and Safety, Binzhou University, Huanghe Five Rd. 391, Binzhou, 256600, P. R. China
| | - Zhihua Wei
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Rd. 18, Hangzhou, 310014, P. R. China
| | - Jiahao Wu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Rd. 18, Hangzhou, 310014, P. R. China
| | - Lai Wei
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Rd. 18, Hangzhou, 310014, P. R. China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Rd. 457, Dalian, 116023, P. R. China
| | - Xin Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Rd. 18, Hangzhou, 310014, P. R. China
| | - Yunfang Gao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Rd. 18, Hangzhou, 310014, P. R. China
| |
Collapse
|
449
|
Cao X, Gao A, Hou JT, Yi T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
450
|
Guo S, Feng Y, Wang L, Jiang Y, Yu Y, Hu X. Architectural Engineering Achieves High-Performance Alloying Anodes for Lithium and Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005248. [PMID: 33734598 DOI: 10.1002/smll.202005248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Tremendous efforts have been dedicated to the development of high-performance electrochemical energy storage devices. The development of lithium- and sodium-ion batteries (LIBs and SIBs) with high energy densities is urgently needed to meet the growing demands for portable electronic devices, electric vehicles, and large-scale smart grids. Anode materials with high theoretical capacities that are based on alloying storage mechanisms are at the forefront of research geared towards high-energy-density LIBs or SIBs. However, they often suffer from severe pulverization and rapid capacity decay due to their huge volume change upon cycling. So far, a wide variety of advanced materials and electrode structures are developed to improve the long-term cyclability of alloying-type materials. This review provides fundamentals of anti-pulverization and cutting-edge concepts that aim to achieve high-performance alloying anodes for LIBs/SIBs from the viewpoint of architectural engineering. The recent progress on the effective strategies of nanostructuring, incorporation of carbon, intermetallics design, and binder engineering is systematically summarized. After that, the relationship between architectural design and electrochemical performance as well as the related charge-storage mechanisms is discussed. Finally, challenges and perspectives of alloying-type anode materials for further development in LIB/SIB applications are proposed.
Collapse
Affiliation(s)
- Songtao Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Libin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingjun Jiang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|