401
|
E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A 2016; 113:10998-1003. [PMID: 27621446 DOI: 10.1073/pnas.1602754113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial pyruvate dehydrogenase (PDH) complex (PDC) acts as a central metabolic node that mediates pyruvate oxidation and fuels the tricarboxylic acid cycle to meet energy demand. Here, we reveal another level of regulation of the pyruvate oxidation pathway in mammals implicating the E4 transcription factor 1 (E4F1). E4F1 controls a set of four genes [dihydrolipoamide acetlytransferase (Dlat), dihydrolipoyl dehydrogenase (Dld), mitochondrial pyruvate carrier 1 (Mpc1), and solute carrier family 25 member 19 (Slc25a19)] involved in pyruvate oxidation and reported to be individually mutated in human metabolic syndromes. E4F1 dysfunction results in 80% decrease of PDH activity and alterations of pyruvate metabolism. Genetic inactivation of murine E4f1 in striated muscles results in viable animals that show low muscle PDH activity, severe endurance defects, and chronic lactic acidemia, recapitulating some clinical symptoms described in PDC-deficient patients. These phenotypes were attenuated by pharmacological stimulation of PDH or by a ketogenic diet, two treatments used for PDH deficiencies. Taken together, these data identify E4F1 as a master regulator of the PDC.
Collapse
|
402
|
Ambrus A, Wang J, Mizsei R, Zambo Z, Torocsik B, Jordan F, Adam-Vizi V. Structural alterations induced by ten disease-causing mutations of human dihydrolipoamide dehydrogenase analyzed by hydrogen/deuterium-exchange mass spectrometry: Implications for the structural basis of E3 deficiency. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2098-2109. [PMID: 27544700 DOI: 10.1016/j.bbadis.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023]
Abstract
Pathogenic amino acid substitutions of the common E3 component (hE3) of the human alpha-ketoglutarate dehydrogenase and the pyruvate dehydrogenase complexes lead to severe metabolic diseases (E3 deficiency), which usually manifest themselves in cardiological and/or neurological symptoms and often cause premature death. To date, 14 disease-causing amino acid substitutions of the hE3 component have been reported in the clinical literature. None of the pathogenic protein variants has lent itself to high-resolution structure elucidation by X-ray or NMR. Hence, the structural alterations of the hE3 protein caused by the disease-causing mutations and leading to dysfunction, including the enhanced generation of reactive oxygen species by selected disease-causing variants, could only be speculated. Here we report results of an examination of the effects on the protein structure of ten pathogenic mutations of hE3 using hydrogen/deuterium-exchange mass spectrometry (HDX-MS), a new and state-of-the-art approach of solution structure elucidation. On the basis of the results, putative structural and mechanistic conclusions were drawn regarding the molecular pathogenesis of each disease-causing hE3 mutation addressed in this study.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
| | - Junjie Wang
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | - Reka Mizsei
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsofia Zambo
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary
| | - Beata Torocsik
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ, USA.
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
403
|
Zimmer AD, Walbrecq G, Kozar I, Behrmann I, Haan C. Phosphorylation of the pyruvate dehydrogenase complex precedes HIF-1-mediated effects and pyruvate dehydrogenase kinase 1 upregulation during the first hours of hypoxic treatment in hepatocellular carcinoma cells. HYPOXIA 2016; 4:135-145. [PMID: 27800515 PMCID: PMC5085306 DOI: 10.2147/hp.s99044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pyruvate dehydrogenase complex (PDC) is an important gatekeeper enzyme connecting glycolysis to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, it has a strong impact on the glycolytic flux as well as the metabolic phenotype of a cell. PDC activity is regulated via reversible phosphorylation of three serine residues on the pyruvate dehydrogenase (PDH) E1α subunit. Phosphorylation of any of these residues by the PDH kinases (PDKs) leads to a strong decrease in PDC activity. Under hypoxia, the inactivation of the PDC has been described to be dependent on the hypoxia-inducible factor 1 (HIF-1)-induced PDK1 protein upregulation. In this study, we show in two hepatocellular carcinoma cell lines (HepG2 and JHH-4) that, during the adaptation to hypoxia, PDH is already phosphorylated at time points preceding HIF-1-mediated transcriptional events and PDK1 protein upregulation. Using siRNAs and small molecule inhibitor approaches, we show that this inactivation of PDC is independent of HIF-1α expression but that the PDKs need to be expressed and active. Furthermore, we show that reactive oxygen species might be important for the induction of this PDH phosphorylation since it correlates with the appearance of an altered redox state in the mitochondria and is also inducible by H2O2 treatment under normoxic conditions. Overall, these results show that neither HIF-1 expression nor PDK1 upregulation is necessary for the phosphorylation of PDH during the first hours of the adaptation to hypoxia.
Collapse
Affiliation(s)
| | - Geoffroy Walbrecq
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Ines Kozar
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Iris Behrmann
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Claude Haan
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
404
|
Bouitbir J, Haegler P, Singh F, Joerin L, Felser A, Duthaler U, Krähenbühl S. Impaired Exercise Performance and Skeletal Muscle Mitochondrial Function in Rats with Secondary Carnitine Deficiency. Front Physiol 2016; 7:345. [PMID: 27559315 PMCID: PMC4978712 DOI: 10.3389/fphys.2016.00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023] Open
Abstract
Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP), a carnitine analog inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats. Methods: Male Sprague Dawley rats were treated daily with water (control rats; n = 12) or with 20 mg/100 g body weight THP (n = 12) via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion. Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (–24%) and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption) was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected. Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle.
Collapse
Affiliation(s)
- Jamal Bouitbir
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland; Swiss Centre of Applied Human ToxicologyBasel, Switzerland
| | - Patrizia Haegler
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland
| | - François Singh
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland; Fédération de Médecine Translationelle, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France
| | - Lorenz Joerin
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland
| | - Andrea Felser
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland
| | - Urs Duthaler
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland
| | - Stephan Krähenbühl
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland; Swiss Centre of Applied Human ToxicologyBasel, Switzerland
| |
Collapse
|
405
|
Chae YC, Vaira V, Caino MC, Tang HY, Seo JH, Kossenkov AV, Ottobrini L, Martelli C, Lucignani G, Bertolini I, Locatelli M, Bryant KG, Ghosh JC, Lisanti S, Ku B, Bosari S, Languino LR, Speicher DW, Altieri DC. Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming. Cancer Cell 2016; 30:257-272. [PMID: 27505672 PMCID: PMC5131882 DOI: 10.1016/j.ccell.2016.07.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 03/04/2016] [Accepted: 07/01/2016] [Indexed: 01/02/2023]
Abstract
Hypoxia is a universal driver of aggressive tumor behavior, but the underlying mechanisms are not completely understood. Using a phosphoproteomics screen, we now show that active Akt accumulates in the mitochondria during hypoxia and phosphorylates pyruvate dehydrogenase kinase 1 (PDK1) on Thr346 to inactivate the pyruvate dehydrogenase complex. In turn, this pathway switches tumor metabolism toward glycolysis, antagonizes apoptosis and autophagy, dampens oxidative stress, and maintains tumor cell proliferation in the face of severe hypoxia. Mitochondrial Akt-PDK1 signaling correlates with unfavorable prognostic markers and shorter survival in glioma patients and may provide an "actionable" therapeutic target in cancer.
Collapse
Affiliation(s)
- Young Chan Chae
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Valentina Vaira
- Istituto Nazionale Genetica Molecolare "Romeo and Enrica Invernizzi", Milan 20122, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - M Cecilia Caino
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Jae Ho Seo
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy; Institute for Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan 20090, Italy
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Giovanni Lucignani
- Department of Health Sciences, University of Milan, Milan 20142, Italy; Department of Diagnostic Services, Unit of Nuclear Medicine, San Paolo Hospital, Milan 20142, Italy
| | - Irene Bertolini
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Marco Locatelli
- Division of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Kelly G Bryant
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Jagadish C Ghosh
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sofia Lisanti
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Bonsu Ku
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Silvano Bosari
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Lucia R Languino
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David W Speicher
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA; Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
406
|
Hagmann A, Hunkeler M, Stuttfeld E, Maier T. Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans. Structure 2016; 24:1227-1236. [DOI: 10.1016/j.str.2016.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/04/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
|
407
|
Masini T, Birkaya B, van Dijk S, Mondal M, Hekelaar J, Jäger M, Terwisscha van Scheltinga AC, Patel MS, Hirsch AKH, Moman E. Furoates and thenoates inhibit pyruvate dehydrogenase kinase 2 allosterically by binding to its pyruvate regulatory site. J Enzyme Inhib Med Chem 2016; 31:170-175. [PMID: 27435185 PMCID: PMC5553292 DOI: 10.1080/14756366.2016.1201812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022] Open
Abstract
The last decade has witnessed the reawakening of cancer metabolism as a therapeutic target. In particular, inhibition of pyruvate dehydrogenase kinase (PDK) holds remarkable promise. Dichloroacetic acid (DCA), currently undergoing clinical trials, is a unique PDK inhibitor in which it binds to the allosteric pyruvate site of the enzyme. However, the safety of DCA as a drug is compromised by its neurotoxicity, whereas its usefulness as an investigative tool is limited by the high concentrations required to exert observable effects in cell culture. Herein, we report the identification - by making use of saturation-transfer difference NMR spectroscopy, enzymatic assays and computational methods - of furoate and thenoate derivatives as allosteric pyruvate-site-binding PDK2 inhibitors. This work substantiates the pyruvate regulatory pocket as a druggable target.
Collapse
Affiliation(s)
- Tiziana Masini
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Barbara Birkaya
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA 14214
| | - Simon van Dijk
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Milon Mondal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Johan Hekelaar
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Manuel Jäger
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Anke C. Terwisscha van Scheltinga
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Mulchand S. Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA 14214
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Edelmiro Moman
- Molecular Design Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- RCSI Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
408
|
Li A, Zhang Y, Zhao Z, Wang M, Zan L. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene. PLoS One 2016; 11:e0157445. [PMID: 27379520 PMCID: PMC4933360 DOI: 10.1371/journal.pone.0157445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 05/31/2016] [Indexed: 01/15/2023] Open
Abstract
The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5’-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5’-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5’-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle.
Collapse
Affiliation(s)
- Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yaran Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Mingming Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- * E-mail:
| |
Collapse
|
409
|
Complex genetic findings in a female patient with pyruvate dehydrogenase complex deficiency: Null mutations in the PDHX gene associated with unusual expression of the testis-specific PDHA2 gene in her somatic cells. Gene 2016; 591:417-24. [PMID: 27343776 DOI: 10.1016/j.gene.2016.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 06/14/2016] [Accepted: 06/19/2016] [Indexed: 11/20/2022]
Abstract
Human pyruvate dehydrogenase complex (PDC) catalyzes a key step in the generation of cellular energy and is composed by three catalytic elements (E1, E2, E3), one structural subunit (E3-binding protein), and specific regulatory elements, phosphatases and kinases (PDKs, PDPs). The E1α subunit exists as two isoforms encoded by different genes: PDHA1 located on Xp22.1 and expressed in somatic tissues, and the intronless PDHA2 located on chromosome 4 and only detected in human spermatocytes and spermatids. We report on a young adult female patient who has PDC deficiency associated with a compound heterozygosity in PDHX encoding the E3-binding protein. Additionally, in the patient and in all members of her immediate family, a full-length testis-specific PDHA2 mRNA and a 5'UTR-truncated PDHA1 mRNA were detected in circulating lymphocytes and cultured fibroblasts, being both mRNAs translated into full-length PDHA2 and PDHA1 proteins, resulting in the co-existence of both PDHA isoforms in somatic cells. Moreover, we observed that DNA hypomethylation of a CpG island in the coding region of PDHA2 gene is associated with the somatic activation of this gene transcription in these individuals. This study represents the first natural model of the de-repression of the testis-specific PDHA2 gene in human somatic cells, and raises some questions related to the somatic activation of this gene as a potential therapeutic approach for most forms of PDC deficiency.
Collapse
|
410
|
The dynamic organization of fungal acetyl-CoA carboxylase. Nat Commun 2016; 7:11196. [PMID: 27073141 PMCID: PMC4833862 DOI: 10.1038/ncomms11196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control. Acetyl-CoA carboxylases are central regulatory hubs of fatty acid metabolism and are important targets for drug development in obesity and cancer. Here, the authors demonstrate that the regulation of these highly dynamic enzymes in fungi is governed by a mechanism based on phosphorylation-dependent conformational variability.
Collapse
|
411
|
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases. Int J Mol Sci 2016; 17:340. [PMID: 26959013 PMCID: PMC4813202 DOI: 10.3390/ijms17030340] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 01/04/2023] Open
Abstract
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery.
Collapse
|
412
|
Kennerson ML, Kim EJ, Siddell A, Kidambi A, Kim SM, Hong YB, Hwang SH, Chung KW, Choi BO. X-linked Charcot-Marie-Tooth disease type 6 (CMTX6) patients with a p.R158H mutation in the pyruvate dehydrogenase kinase isoenzyme 3 gene. J Peripher Nerv Syst 2016; 21:45-51. [DOI: 10.1111/jns.12160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/09/2016] [Accepted: 01/18/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Marina L. Kennerson
- Northcott Neuroscience Laboratory; ANZAC Research Institute & Sydney Medical School University of Sydney; Sydney Australia
- Molecular Medicine Laboratory; Concord Hospital; Sydney Australia
| | - Eun J. Kim
- Department of Neurology, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
- Neuroscience Center; Samsung Medical Center; Seoul Korea
| | - Anna Siddell
- Northcott Neuroscience Laboratory; ANZAC Research Institute & Sydney Medical School University of Sydney; Sydney Australia
| | - Aditi Kidambi
- Northcott Neuroscience Laboratory; ANZAC Research Institute & Sydney Medical School University of Sydney; Sydney Australia
| | - Sung M. Kim
- Department of Biological Sciences; Kongju National University; Gongju Korea
| | - Young B. Hong
- Stem Cell & Regenerative Medicine Center; Kongju National University; Gongju Korea
- Neuroscience Center; Samsung Medical Center; Seoul Korea
| | - Sun H. Hwang
- Department of Neurology, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Ki W. Chung
- Department of Biological Sciences; Kongju National University; Gongju Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
- Stem Cell & Regenerative Medicine Center; Kongju National University; Gongju Korea
- Neuroscience Center; Samsung Medical Center; Seoul Korea
| |
Collapse
|
413
|
Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci U S A 2016; 113:E1673-82. [PMID: 26862173 DOI: 10.1073/pnas.1519650113] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are major suppliers of cellular energy through nutrients oxidation. Little is known about the mechanisms that enable mitochondria to cope with changes in nutrient supply and energy demand that naturally occur throughout the day. To address this question, we applied MS-based quantitative proteomics on isolated mitochondria from mice killed throughout the day and identified extensive oscillations in the mitochondrial proteome. Remarkably, the majority of cycling mitochondrial proteins peaked during the early light phase. We found that rate-limiting mitochondrial enzymes that process lipids and carbohydrates accumulate in a diurnal manner and are dependent on the clock proteins PER1/2. In this conjuncture, we uncovered daily oscillations in mitochondrial respiration that peak during different times of the day in response to different nutrients. Notably, the diurnal regulation of mitochondrial respiration was blunted in mice lacking PER1/2 or on a high-fat diet. We propose that PERIOD proteins optimize mitochondrial metabolism to daily changes in energy supply/demand and thereby, serve as a rheostat for mitochondrial nutrient utilization.
Collapse
|
414
|
Aguilar E, Marin de Mas I, Zodda E, Marin S, Morrish F, Selivanov V, Meca-Cortés Ó, Delowar H, Pons M, Izquierdo I, Celià-Terrassa T, de Atauri P, Centelles JJ, Hockenbery D, Thomson TM, Cascante M. Metabolic Reprogramming and Dependencies Associated with Epithelial Cancer Stem Cells Independent of the Epithelial-Mesenchymal Transition Program. Stem Cells 2016; 34:1163-76. [PMID: 27146024 DOI: 10.1002/stem.2286] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022]
Abstract
In solid tumors, cancer stem cells (CSCs) can arise independently of epithelial-mesenchymal transition (EMT). In spite of recent efforts, the metabolic reprogramming associated with CSC phenotypes uncoupled from EMT is poorly understood. Here, by using metabolomic and fluxomic approaches, we identify major metabolic profiles that differentiate metastatic prostate epithelial CSCs (e-CSCs) from non-CSCs expressing a stable EMT. We have found that the e-CSC program in our cellular model is characterized by a high plasticity in energy substrate metabolism, including an enhanced Warburg effect, a greater carbon and energy source flexibility driven by fatty acids and amino acid metabolism and an essential reliance on the proton buffering capacity conferred by glutamine metabolism. An analysis of transcriptomic data yielded a metabolic gene signature for our e-CSCs consistent with the metabolomics and fluxomics analyses that correlated with tumor progression and metastasis in prostate cancer and in 11 additional cancer types. Interestingly, an integrated metabolomics, fluxomics, and transcriptomics analysis allowed us to identify key metabolic players regulated at the post-transcriptional level, suggesting potential biomarkers and therapeutic targets to effectively forestall metastasis. Stem Cells 2016;34:1163-1176.
Collapse
Affiliation(s)
- Esther Aguilar
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona, Spain
| | - Igor Marin de Mas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona, Spain
| | - Erika Zodda
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona, Spain.,Department of Cell Biology, Molecular Biology Institute, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona, Spain
| | | | - Vitaly Selivanov
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona, Spain
| | - Óscar Meca-Cortés
- Department of Cell Biology, Molecular Biology Institute, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Hossain Delowar
- Department of Cell Biology, Molecular Biology Institute, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Mònica Pons
- Department of Cell Biology, Molecular Biology Institute, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Inés Izquierdo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona, Spain
| | - Toni Celià-Terrassa
- Department of Cell Biology, Molecular Biology Institute, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Pedro de Atauri
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona, Spain
| | - Josep J Centelles
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona, Spain
| | - David Hockenbery
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Timothy M Thomson
- Department of Cell Biology, Molecular Biology Institute, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona, Spain
| |
Collapse
|
415
|
Chen R, Xiao M, Gao H, Chen Y, Li Y, Liu Y, Zhang N. Identification of a novel mitochondrial interacting protein of C1QBP using subcellular fractionation coupled with CoIP-MS. Anal Bioanal Chem 2016; 408:1557-64. [DOI: 10.1007/s00216-015-9228-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/03/2015] [Accepted: 11/27/2015] [Indexed: 12/22/2022]
|
416
|
Characterization and application of monoclonal antibodies against Mycoplasma hyorhinis pyruvate dehydrogenase E1 complex subunit alpha. Appl Microbiol Biotechnol 2016; 100:3587-97. [PMID: 26743652 DOI: 10.1007/s00253-015-7263-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Mycoplasma hyorhinis is commonly found in the respiratory tract of pigs and is the etiological agent of polyserositis. The metabolic enzymes of M. hyorhinis may play important roles in host-pathogen interactions. We immunized BALB/c mice with sodium deoxycholate-extracted antigens (DOC-Ags) and screened 10 hybridomas that secreted antibodies against various M. hyorhinis proteins. Pyruvate dehydrogenase E1 complex subunit alpha (PDHA) was identified as the protein that reacted with five of the 10 monoclonal antibodies (mAbs). Sequence analysis indicated that PDHA was highly conserved among M. hyorhinis strains, but not among other mycoplasmas. We predicted the three-dimensional structure of PDHA and identified three epitopes ((277)RTEEEEK(283), (299)KDKKYITDE(307), and (350)LKEQKQHAKDY(360)). The mAb 1H12 we generated was used to detect M. hyorhinis PDHA in vitro and in piglets infected with M. hyorhinis. We observed that PDHA was mainly located in the epithelial cells of the lungs. Our results indicate that the mAbs we generated could be used to further investigate the structure and function of M. hyorhinis PDHA. In addition, they could be used in the differential diagnosis of M. hyorhinis and other mycoplasmas.
Collapse
|
417
|
Abstract
Sirtuin-family deacylases promote health and longevity in mammals. The sirtuin SIRT5 localizes predominantly to the mitochondrial matrix. SIRT5 preferentially removes negatively charged modifications from its target lysines: succinylation, malonylation, and glutarylation. It regulates protein substrates involved in glucose oxidation, ketone body formation, ammonia detoxification, fatty acid oxidation, and ROS management. Like other sirtuins, SIRT5 has recently been linked with neoplasia. Therefore, targeting SIRT5 pharmacologically could conceivably provide new avenues for treatment of metabolic disease and cancer, necessitating development of SIRT5-selective modulators. Here we describe the generation of SIRT5 bacterial expression plasmids, and their use to express and purify catalytically active and inactive forms of SIRT5 protein from E. coli. Additionally, we describe an approach to assay the catalytic activity of purified SIRT5, potentially useful for identification and validation of SIRT5-specific modulators.
Collapse
|
418
|
Moxley MA, Beard DA, Bazil JN. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum. J Biol Chem 2015; 291:2712-30. [PMID: 26644471 DOI: 10.1074/jbc.m115.676619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 12/11/2022] Open
Abstract
Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD(+)/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD(+) activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat.
Collapse
Affiliation(s)
- Michael A Moxley
- From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel A Beard
- From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jason N Bazil
- From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
419
|
Ambrus A, Nemeria NS, Torocsik B, Tretter L, Nilsson M, Jordan F, Adam-Vizi V. Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components. Free Radic Biol Med 2015; 89:642-50. [PMID: 26456061 PMCID: PMC4684775 DOI: 10.1016/j.freeradbiomed.2015.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/18/2015] [Accepted: 10/03/2015] [Indexed: 01/25/2023]
Abstract
Individual recombinant components of pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes (PDHc, OGDHc) of human and Escherichia coli (E. coli) origin were expressed and purified from E. coli with optimized protocols. The four multienzyme complexes were each reconstituted under optimal conditions at different stoichiometric ratios. Binding stoichiometries for the highest catalytic efficiency were determined from the rate of NADH generation by the complexes at physiological pH. Since some of these complexes were shown to possess 'moonlighting' activities under pathological conditions often accompanied by acidosis, activities were also determined at pH 6.3. As reactive oxygen species (ROS) generation by the E3 component of hOGDHc is a pathologically relevant feature, superoxide generation by the complexes with optimal stoichiometry was measured by the acetylated cytochrome c reduction method in both the forward and the reverse catalytic directions. Various known affectors of physiological activity and ROS production, including Ca(2+), ADP, lipoylation status or pH, were investigated. The human complexes were also reconstituted with the most prevalent human pathological mutant of the E3 component, G194C and characterized; isolated human E3 with the G194C substitution was previously reported to have an enhanced ROS generating capacity. It is demonstrated that: i. PDHc, similarly to OGDHc, is able to generate ROS and this feature is displayed by both the E. coli and human complexes, ii. Reconstituted hPDHc generates ROS at a significantly higher rate as compared to hOGDHc in both the forward and the reverse reactions when ROS generation is calculated for unit mass of their common E3 component, iii. The E1 component or E1-E2 subcomplex generates significant amount of ROS only in hOGDHc; iv. Incorporation of the G194C variant of hE3, the result of a disease-causing mutation, into reconstituted hOGDHc and hPDHc indeed leads to a decreased activity of both complexes and higher ROS generation by only hOGDHc and only in its reverse reaction.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, the State University, Newark, NJ 07102, USA
| | - Beata Torocsik
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Laszlo Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Mattias Nilsson
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Frank Jordan
- Department of Chemistry, Rutgers, the State University, Newark, NJ 07102, USA
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
420
|
Monaghan RM, Whitmarsh AJ. Mitochondrial Proteins Moonlighting in the Nucleus. Trends Biochem Sci 2015; 40:728-735. [DOI: 10.1016/j.tibs.2015.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 01/11/2023]
|
421
|
Ryan ZC, Craig TA, Folmes CD, Wang X, Lanza IR, Schaible NS, Salisbury JL, Nair KS, Terzic A, Sieck GC, Kumar R. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. J Biol Chem 2015; 291:1514-28. [PMID: 26601949 DOI: 10.1074/jbc.m115.684399] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 12/16/2022] Open
Abstract
Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeffrey L Salisbury
- Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | | | | | | | - Rajiv Kumar
- From the Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
422
|
Schofield MM, Jain S, Porat D, Dick GJ, Sherman DH. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ Microbiol 2015; 17:3964-75. [PMID: 26013440 PMCID: PMC4618771 DOI: 10.1111/1462-2920.12908] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 11/26/2022]
Abstract
Ecteinascidin 743 (ET-743, Yondelis) is a clinically approved chemotherapeutic natural product isolated from the Caribbean mangrove tunicate Ecteinascidia turbinata. Researchers have long suspected that a microorganism may be the true producer of the anticancer drug, but its genome has remained elusive due to our inability to culture the bacterium in the laboratory using standard techniques. Here, we sequenced and assembled the complete genome of the ET-743 producer, Candidatus Endoecteinascidia frumentensis, directly from metagenomic DNA isolated from the tunicate. Analysis of the ∼ 631 kb microbial genome revealed strong evidence of an endosymbiotic lifestyle and extreme genome reduction. Phylogenetic analysis suggested that the producer of the anti-cancer drug is taxonomically distinct from other sequenced microorganisms and could represent a new family of Gammaproteobacteria. The complete genome has also greatly expanded our understanding of ET-743 production and revealed new biosynthetic genes dispersed across more than 173 kb of the small genome. The gene cluster's architecture and its preservation demonstrate that the drug is likely essential to the interactions of the microorganism with its mangrove tunicate host. Taken together, these studies elucidate the lifestyle of a unique, and pharmaceutically important microorganism and highlight the wide diversity of bacteria capable of making potent natural products.
Collapse
Affiliation(s)
- Michael M. Schofield
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Daphne Porat
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - David H. Sherman
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Departments of Medicinal Chemistry and Chemistry, University of Michigan, Ann Arbor, USA
| |
Collapse
|
423
|
Findlay JA, Hamilton DL, Ashford MLJ. BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid. Front Cell Neurosci 2015; 9:382. [PMID: 26483636 PMCID: PMC4589671 DOI: 10.3389/fncel.2015.00382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.
Collapse
Affiliation(s)
- John A Findlay
- Division of Cardiovascular and Diabetes Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee Dundee, UK
| | - David L Hamilton
- Division of Cardiovascular and Diabetes Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee Dundee, UK
| | - Michael L J Ashford
- Division of Cardiovascular and Diabetes Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee Dundee, UK
| |
Collapse
|
424
|
Johnson MDL, Echlin H, Dao TH, Rosch JW. Characterization of NAD salvage pathways and their role in virulence in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2015; 161:2127-36. [PMID: 26311256 DOI: 10.1099/mic.0.000164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NAD is a necessary cofactor present in all living cells. Some bacteria cannot de novo synthesize NAD and must use the salvage pathway to import niacin or nicotinamide riboside via substrate importers NiaX and PnuC, respectively. Although homologues of these two importers and their substrates have been identified in other organisms, limited data exist in Streptococcus pneumoniae, specifically, on its effect on overall virulence. Here, we sought to characterize the substrate specificity of NiaX and PnuC in Str. pneumoniae TIGR4 and the contribution of these proteins to virulence of the pathogen. Although binding affinity of each importer for nicotinamide mononucleotide may overlap, we found NiaX to specifically import nicotinamide and nicotinic acid, and PnuC to be primarily responsible for nicotinamide riboside import. Furthermore, a pnuC mutant is completely attenuated during both intranasal and intratracheal infections in mice. Taken together, these findings underscore the importance of substrate salvage in pneumococcal pathogenesis and indicate that PnuC could potentially be a viable small-molecule therapeutic target to alleviate disease progression in the host.
Collapse
Affiliation(s)
- Michael D L Johnson
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Haley Echlin
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Tina H Dao
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
425
|
DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans. J Proteomics 2015; 126:131-9. [DOI: 10.1016/j.jprot.2015.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 12/27/2022]
|
426
|
Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 2015; 21:805-21. [PMID: 26039447 DOI: 10.1016/j.cmet.2015.05.014] [Citation(s) in RCA: 954] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetyl-coenzyme A (acetyl-CoA) is a central metabolic intermediate. The abundance of acetyl-CoA in distinct subcellular compartments reflects the general energetic state of the cell. Moreover, acetyl-CoA concentrations influence the activity or specificity of multiple enzymes, either in an allosteric manner or by altering substrate availability. Finally, by influencing the acetylation profile of several proteins, including histones, acetyl-CoA controls key cellular processes, including energy metabolism, mitosis, and autophagy, both directly and via the epigenetic regulation of gene expression. Thus, acetyl-CoA determines the balance between cellular catabolism and anabolism by simultaneously operating as a metabolic intermediate and as a second messenger.
Collapse
Affiliation(s)
- Federico Pietrocola
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| |
Collapse
|
427
|
Ji X, Li Z, Chen H, Li J, Tian H, Li Z, Gao X, Xiang Q, Su Z, Huang Y, Zhang Q. Cytotoxic mechanism related to dihydrolipoamide dehydrogenase in Leydig cells exposed to heavy metals. Toxicology 2015; 334:22-32. [PMID: 25981801 DOI: 10.1016/j.tox.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Heavy metals are common environmental toxicants with adverse effects on steroid biosynthesis. The importance of mitochondria has been recognized in cytotoxic mechanism of heavy metals on Leydig cells these years. But it is still poorly known. Our previous study reported that dihydrolipoamide dehydrogenase (DLD) located on the mitochondria was significantly decreased in Leydig cells exposed to cadmium, which suggested that DLD might be involved in the cytotoxic effects. Therefore, the altered expression of DLD was validated in rats and R2C cells exposed to cadmium, manganese and lead, and the role of DLD in the steroid synthesis pathway cAMP/PKA-ERK1/2 was investigated in this study. With a low expression of DLD, heavy metals dramatically reduced the levels of steroid hormone by inhibiting the activation of cAMP/PKA, PKC signaling pathway and the steroidogenic enzymes StAR, CYP11A1 and 3β-HSD. After knockdown of DLD in R2C cells, progesterone synthesis was reduced by 40%, and the intracellular concentration of cAMP, protein expression of StAR, 3β-HSD, PKA, and the phosphorylation of ERK1/2 were also decreased. These results highlight that DLD is down-regulation and related to steroid biosynthesis in Leyig cells exposed to heavy metals; cAMP/PKA act as downstream effector molecules of DLD, which activate phosphorylation of ERK1/2 to initiate the steroidogenesis.
Collapse
Affiliation(s)
- Xunmin Ji
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhiliang Li
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Hongxia Chen
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Junqi Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, 510632, China
| | - Huajian Tian
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Zengli Li
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Xuejuan Gao
- Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zhijian Su
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.
| | - Qihao Zhang
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
428
|
Kumar S, Lombard DB. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal 2015; 22:1060-77. [PMID: 25545135 PMCID: PMC4389911 DOI: 10.1089/ars.2014.6213] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Maintenance of metabolic homeostasis is critical for cellular and organismal health. Proper regulation of mitochondrial functions represents a crucial element of overall metabolic homeostasis. Mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5) play pivotal roles in promoting this homeostasis by regulating numerous aspects of mitochondrial metabolism in response to environmental stressors. RECENT ADVANCES New work has illuminated multiple links between mitochondrial sirtuins and cancer. SIRT5 has been shown to regulate the recently described post-translational modifications succinyl-lysine, malonyl-lysine, and glutaryl-lysine. An understanding of these modifications is still in its infancy. Enumeration of SIRT3 and SIRT5 targets via advanced proteomic techniques promises to dramatically enhance insight into functions of these proteins. CRITICAL ISSUES In this review, we highlight the roles of mitochondrial sirtuins and their targets in cellular and organismal metabolic homeostasis. Furthermore, we discuss emerging roles for mitochondrial sirtuins in suppressing and/or promoting tumorigenesis, depending on the cellular and molecular context. FUTURE DIRECTIONS Currently, hundreds of potential SIRT3 and SIRT5 molecular targets have been identified in proteomic experiments. Future studies will need to validate the major targets of these enzymes, and elucidate how acetylation and/or acylation modulate their functionality. A great deal of interest exists in targeting sirtuins pharmacologically; this endeavor will require development of sirtuin-specific modulators (activators and inhibitors) as potential treatments for cancer and metabolic disease.
Collapse
Affiliation(s)
- Surinder Kumar
- 1 Department of Pathology, University of Michigan , Ann Arbor, Michigan
| | | |
Collapse
|
429
|
Frisard MI, Wu Y, McMillan RP, Voelker KA, Wahlberg KA, Anderson AS, Boutagy N, Resendes K, Ravussin E, Hulver MW. Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle. Metabolism 2015; 64:416-27. [PMID: 25528444 PMCID: PMC4501015 DOI: 10.1016/j.metabol.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We have previously demonstrated that activation of toll-like receptor 4 (TLR4) in skeletal muscle results in an increased reliance on glucose as an energy source and a concomitant decrease in fatty acid oxidation under basal conditions. Herein, we examined the effects of lipopolysaccharide (LPS), the primary ligand for TLR4, on mitochondrial oxygen consumption in skeletal muscle cell culture and mitochondria isolated from rodent skeletal muscle. MATERIALS/METHODS Skeletal muscle cell cultures were exposed to LPS and oxygen consumption was assessed using a Seahorse Bioscience extracellular flux analyzer. Mice were also exposed to LPS and oxygen consumption was assessed in mitochondria isolated from skeletal muscle. RESULTS Acute LPS exposure resulted in significant reductions in Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP)-stimulated maximal respiration (state 3u) and increased oligomycin induced state 4 (state 4O) respiration in C2C12 and human primary myotubes. These findings were observed in conjunction with increased mRNA of uncoupling protein 3 (UCP3), superoxide dismutase 2 (SOD2), and pyruvate dehydrogenase activity. The LPS-mediated changes in substrate oxidation and maximal mitochondrial respiration were prevented in the presence of the antioxidants N-acetylcysteine and catalase, suggesting a potential role of reactive oxygen species in mediating these effects. Mitochondria isolated from red gastrocnemius and quadriceps femoris muscle from mice injected with LPS also demonstrated reduced respiratory control ratio (RCR), and ADP- and FCCP-stimulated respiration. CONCLUSION LPS exposure in skeletal muscle alters mitochondrial oxygen consumption and substrate preference, which is absent when antioxidants are present.
Collapse
Affiliation(s)
- Madlyn I Frisard
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060; The Metabolic Phenotyping Core at Virginia Tech, Blacksburg, VA, USA, 24060; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA. USA, 24060
| | - Yaru Wu
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060; The Metabolic Phenotyping Core at Virginia Tech, Blacksburg, VA, USA, 24060
| | - Kevin A Voelker
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060
| | - Kristin A Wahlberg
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060
| | - Angela S Anderson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060
| | - Nabil Boutagy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA. USA, 24060
| | - Kyle Resendes
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060
| | - Eric Ravussin
- John S McIlhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA, 70808
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA, 24060; The Metabolic Phenotyping Core at Virginia Tech, Blacksburg, VA, USA, 24060; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA. USA, 24060.
| |
Collapse
|
430
|
Samish I, Bourne PE, Najmanovich RJ. Achievements and challenges in structural bioinformatics and computational biophysics. Bioinformatics 2014; 31:146-50. [PMID: 25488929 PMCID: PMC4271151 DOI: 10.1093/bioinformatics/btu769] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Motivation: The field of structural bioinformatics and computational biophysics has undergone a revolution in the last 10 years. Developments that are captured annually through the 3DSIG meeting, upon which this article reflects. Results: An increase in the accessible data, computational resources and methodology has resulted in an increase in the size and resolution of studied systems and the complexity of the questions amenable to research. Concomitantly, the parameterization and efficiency of the methods have markedly improved along with their cross-validation with other computational and experimental results. Conclusion: The field exhibits an ever-increasing integration with biochemistry, biophysics and other disciplines. In this article, we discuss recent achievements along with current challenges within the field. Contact:Rafael.Najmanovich@USherbrooke.ca
Collapse
Affiliation(s)
- Ilan Samish
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel, Ort Braude College, Karmiel, 2161002, Israel, Office of the Director, National Institutes of Health, Bethesda, MD 20814, USA and Department of Biochemistry, University of Sherbrooke, Sherbrooke, J1H 5N4, Canada Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel, Ort Braude College, Karmiel, 2161002, Israel, Office of the Director, National Institutes of Health, Bethesda, MD 20814, USA and Department of Biochemistry, University of Sherbrooke, Sherbrooke, J1H 5N4, Canada
| | - Philip E Bourne
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel, Ort Braude College, Karmiel, 2161002, Israel, Office of the Director, National Institutes of Health, Bethesda, MD 20814, USA and Department of Biochemistry, University of Sherbrooke, Sherbrooke, J1H 5N4, Canada
| | - Rafael J Najmanovich
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel, Ort Braude College, Karmiel, 2161002, Israel, Office of the Director, National Institutes of Health, Bethesda, MD 20814, USA and Department of Biochemistry, University of Sherbrooke, Sherbrooke, J1H 5N4, Canada
| |
Collapse
|
431
|
Durinck S, Stawiski EW, Pavía-Jiménez A, Modrusan Z, Kapur P, Jaiswal BS, Zhang N, Toffessi-Tcheuyap V, Nguyen TT, Pahuja KB, Chen YJ, Saleem S, Chaudhuri S, Heldens S, Jackson M, Peña-Llopis S, Guillory J, Toy K, Ha C, Harris CJ, Holloman E, Hill HM, Stinson J, Rivers CS, Janakiraman V, Wang W, Kinch LN, Grishin NV, Haverty PM, Chow B, Gehring JS, Reeder J, Pau G, Wu TD, Margulis V, Lotan Y, Sagalowsky A, Pedrosa I, de Sauvage FJ, Brugarolas J, Seshagiri S. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat Genet 2014; 47:13-21. [PMID: 25401301 DOI: 10.1038/ng.3146] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/24/2014] [Indexed: 12/17/2022]
Abstract
To further understand the molecular distinctions between kidney cancer subtypes, we analyzed exome, transcriptome and copy number alteration data from 167 primary human tumors that included renal oncocytomas and non-clear cell renal cell carcinomas (nccRCCs), consisting of papillary (pRCC), chromophobe (chRCC) and translocation (tRCC) subtypes. We identified ten significantly mutated genes in pRCC, including MET, NF2, SLC5A3, PNKD and CPQ. MET mutations occurred in 15% (10/65) of pRCC samples and included previously unreported recurrent activating mutations. In chRCC, we found TP53, PTEN, FAAH2, PDHB, PDXDC1 and ZNF765 to be significantly mutated. Gene expression analysis identified a five-gene set that enabled the molecular classification of chRCC, renal oncocytoma and pRCC. Using RNA sequencing, we identified previously unreported gene fusions, including ACTG1-MITF fusion. Ectopic expression of the ACTG1-MITF fusion led to cellular transformation and induced the expression of downstream target genes. Finally, we observed upregulation of the anti-apoptotic factor BIRC7 in MiTF-high RCC tumors, suggesting a potential therapeutic role for BIRC7 inhibitors.
Collapse
Affiliation(s)
- Steffen Durinck
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA.,Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Eric W Stawiski
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA.,Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Andrea Pavía-Jiménez
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zora Modrusan
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Payal Kapur
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bijay S Jaiswal
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Na Zhang
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Vanina Toffessi-Tcheuyap
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thong T Nguyen
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Kanika Bajaj Pahuja
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Ying-Jiun Chen
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Sadia Saleem
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Subhra Chaudhuri
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Sherry Heldens
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Marlena Jackson
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Samuel Peña-Llopis
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph Guillory
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Karen Toy
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Connie Ha
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Corissa J Harris
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Eboni Holloman
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Haley M Hill
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeremy Stinson
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | | | | | - Weiru Wang
- Structural Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Lisa N Kinch
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Nick V Grishin
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Peter M Haverty
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Bernard Chow
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Julian S Gehring
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Jens Reeder
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Gregoire Pau
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Thomas D Wu
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Vitaly Margulis
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yair Lotan
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Arthur Sagalowsky
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Pedrosa
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Frederic J de Sauvage
- Molecular Oncology Department, Genentech, Inc., South San Francisco, California, USA
| | - James Brugarolas
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Somasekar Seshagiri
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
432
|
Olayanju B, Hampsey JJ, Hampsey M. Genetic analysis of the Warburg effect in yeast. Adv Biol Regul 2014; 57:185-92. [PMID: 25446884 DOI: 10.1016/j.jbior.2014.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/20/2023]
Abstract
We recently discovered that the Warburg effect, defined by the dramatically enhanced metabolism of glucose to pyruvate, even in well-oxygenated cancer cells, can occur as a consequence of mutations that enhance lipid biosynthesis at the expense of respiratory capacity. Specifically, mutations in the E1 subunit of either of two respiratory enzymes, pyruvate dehydrogenase (PDC) or α-ketoglutarate dehydrogenase (KGDC), change substrate specificity from the 3-carbon α-ketoacid pyruvate, or the 5-carbon α-ketoacid α-ketoglutarate, to the 4-carbon α-ketoacid oxaloacetate (OADC). These mutations result in OADC-catalyzed synthesis of malonyl-CoA (MaCoA), the essential precursor of all fatty acids. These mutants arose as spontaneous suppressors of a yeast acc1(cs) cold-sensitive mutation encoding an altered form of AcCoA carboxylase (Acc1) that fails to produce MaCoA at the restrictive temperature (16 °C). Notably, these suppressors are respiratory defective as a result of the same nuclear mutations that suppress acc1(cs). These mutants also suppress sensitivity to Soraphen A, a potent inhibitor of Acc1 activity, at normal temperature (30 °C). To our knowledge, OADC activity has never been identified in eukaryotic cells. Our results offer a novel perspective on the Warburg effect: the reprogramming of energy metabolism in cancer cells as a consequence of mutational impairment of respiration to meet the fatty acid requirements of rapidly proliferating cells. We suggest OADC activity is a common feature of cancer cells and represents a novel target for the development of chemotherapeutics.
Collapse
Affiliation(s)
- Bola Olayanju
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - James Jensen Hampsey
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael Hampsey
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
433
|
Galeffi F, Shetty PK, Sadgrove MP, Turner DA. Age-related metabolic fatigue during low glucose conditions in rat hippocampus. Neurobiol Aging 2014; 36:982-92. [PMID: 25443286 DOI: 10.1016/j.neurobiolaging.2014.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 09/03/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022]
Abstract
Previous reports have indicated that with aging, intrinsic brain tissue changes in cellular bioenergetics may hamper the brain's ability to cope with metabolic stress. Therefore, we analyzed the effects of age on neuronal sensitivity to glucose deprivation by monitoring changes in field excitatory postsynaptic potentials (fEPSPs), tissue Po2, and NADH fluorescence imaging in the CA1 region of hippocampal slices obtained from F344 rats (1-2, 3-6, 12-20, and >22 months). Forty minutes of moderate low glucose (2.5 mM) led to approximately 80% decrease of fEPSP amplitudes and NADH decline in all 4 ages that reversed after reintroduction of 10 mM glucose. However, tissue slices from 12 to 20 months and >22-month-old rats were more vulnerable to low glucose: fEPSPs decreased by 50% on average 8 minutes faster compared with younger slices. Tissue oxygen utilization increased after onset of 2.5 mM glucose in all ages of tissue slices, which persisted for 40 minutes in younger tissue slices. But, in older tissue slices the increased oxygen utilization slowly faded and tissue Po2 levels increased toward baseline values after approximately 25 minutes of glucose deprivation. In addition, with age the ability to regenerate NADH after oxidation was diminished. The NAD(+)/NADH ratio remained relatively oxidized after low glucose, even during recovery. In young slices, glycogen levels were stable throughout the exposure to low glucose. In contrast, with aging utilization of glycogen stores was increased during low glucose, particularly in hippocampal slices from >22 months old rats, indicating both inefficient metabolism and increased demand for glucose. Lactate addition (20 mM) improved oxidative metabolism by directly supplementing the mitochondrial NADH pool and maintained fEPSPs in young as well as aged tissue slices, indicating that inefficient metabolism in the aging tissue can be improved by directly enhancing NADH regeneration.
Collapse
Affiliation(s)
- Francesca Galeffi
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC, USA; Research and Surgery Services, Durham VAMC, Durham NC, USA.
| | - Pavan K Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC, USA; Research and Surgery Services, Durham VAMC, Durham NC, USA
| | - Matthew P Sadgrove
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC, USA; Research and Surgery Services, Durham VAMC, Durham NC, USA
| | - Dennis A Turner
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC, USA; Research and Surgery Services, Durham VAMC, Durham NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
434
|
[Gynecologic examinations]. Cancers (Basel) 1965; 10:cancers10020040. [PMID: 29385093 PMCID: PMC5836072 DOI: 10.3390/cancers10020040] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/24/2022] Open
Abstract
Tumours contain a small number of treatment-resistant cancer stem cells (CSCs), and it is through these that tumour regrowth originates at secondary sites, thus rendering CSCs an attractive target for treatment. Cancer cells adapt cellular metabolism for aggressive proliferation. Tumour cells use less efficient glycolysis for the production of ATP and increasing tumour mass, instead of oxidative phosphorylation (OXPHOS). CSCs show distinct metabolic shift and, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. Since Wnt signalling promotes glycolysis and tumour growth, we investigated the effect of the Wnt antagonist secreted frizzled-related protein 4 (sFRP4) on CSC metabolism. We demonstrate that sFRP4 has a prominent role in basal glucose uptake in CSCs derived from breast and prostate tumour cell lines. We show that sFRP4 treatment on CSCs isolated with variable glucose content induces metabolic reprogramming by relocating metabolic flux to glycolysis or OXPHOS. Altogether, sFRP4 treatment compromises cell proliferation and critically affects cell survival mechanisms such as viability, glucose transporters, pyruvate conversion, mammalian target of rapamycin, and induces CSC apoptosis under conditions of variable glucose content. Our findings provide the feasibility of using sFRP4 to inhibit CSC survival in order to induce metabolic reprogramming in vivo.
Collapse
|