401
|
Mutations in genes encoding sorting nexins alter production of intracellular and extracellular proteases in Aspergillus nidulans. Genetics 2009; 181:1239-47. [PMID: 19204378 DOI: 10.1534/genetics.108.095315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
XprG, a putative p53-like transcriptional activator, regulates production of extracellular proteases in response to nutrient limitation and may also have a role in programmed cell death. To identify genes that may be involved in the XprG regulatory pathway, xprG2 revertants were isolated and shown to carry mutations in genes which we have named sogA-C (suppressors of xprG). The translocation breakpoint in the sogA1 mutant was localized to a homolog of Saccharomyces cerevisiae VPS5 and mapping data indicated that sogB was tightly linked to a VPS17 homolog. Complementation of the sogA1 and sogB1 mutations and identification of nonsense mutations in the sogA2 and sogB1 alleles confirmed the identification. Vps17p and Vps5p are part of a complex involved in sorting of vacuolar proteins in yeast and regulation of cell-surface receptors in mammals. Protease zymograms indicate that mutations in sogA-C permit secretion of intracellular proteases, as in S. cerevisiae vps5 and vps17 mutants. In contrast to S. cerevisiae, the production of intracellular protease was much higher in the mutants. Analysis of serine protease gene expression suggests that an XprG-independent mechanism for regulation of extracellular protease gene expression in response to carbon starvation exists and is activated in the pseudorevertants.
Collapse
|
402
|
Abstract
Retrograde transport, in which proteins and lipids are shuttled between endosomes and biosynthetic/secretory compartments such as the Golgi apparatus, is crucial for a diverse range of cellular functions. Mechanistic studies that explore the molecular machinery involved in this retrograde trafficking route are shedding light on the functions of transport proteins and are providing fresh insights into possible new therapeutic directions.
Collapse
Affiliation(s)
- Ludger Johannes
- CNRS UMR144, Centre de Recherche, Traffic, Signaling, and Delivery Laboratory, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
403
|
Field MC, Lumb JH, Adung'a VO, Jones NG, Engstler M. Chapter 1 Macromolecular Trafficking and Immune Evasion in African Trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:1-67. [DOI: 10.1016/s1937-6448(09)78001-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
404
|
Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, Heck AJR, Raposo G, van der Sluijs P, Bonifacino JS. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. ACTA ACUST UNITED AC 2008; 183:513-26. [PMID: 18981234 PMCID: PMC2575791 DOI: 10.1083/jcb.200804048] [Citation(s) in RCA: 411] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The retromer complex mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network (TGN). Mammalian retromer is composed of a sorting nexin (SNX) dimer that binds to phosphatidylinositol 3-phosphate–enriched endosomal membranes and a vacuolar protein sorting (Vps) 26/29/35 trimer that participates in cargo recognition. The mammalian SNX dimer is necessary but not sufficient for recruitment of the Vps26/29/35 trimer to membranes. In this study, we demonstrate that the guanosine triphosphatase Rab7 contributes to this recruitment. The Vps26/29/35 trimer specifically binds to Rab7–guanosine triphosphate (GTP) and localizes to Rab7-containing endosomal domains. Interference with Rab7 function causes dissociation of the Vps26/29/35 trimer but not the SNX dimer from membranes. This blocks retrieval of mannose 6-phosphate receptors to the TGN and impairs cathepsin D sorting. Rab5-GTP does not bind to the Vps26/29/35 trimer, but perturbation of Rab5 function causes dissociation of both the SNX and Vps26/29/35 components from membranes through inhibition of a pathway involving phosphatidylinositol 3-kinase. These findings demonstrate that Rab5 and Rab7 act in concert to regulate retromer recruitment to endosomes.
Collapse
Affiliation(s)
- Raul Rojas
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Sorting of lysosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:605-14. [PMID: 19046998 DOI: 10.1016/j.bbamcr.2008.10.016] [Citation(s) in RCA: 624] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/07/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Lysosomes are composed of soluble and transmembrane proteins that are targeted to lysosomes in a signal-dependent manner. The majority of soluble acid hydrolases are modified with mannose 6-phosphate (M6P) residues, allowing their recognition by M6P receptors in the Golgi complex and ensuing transport to the endosomal/lysosomal system. Other soluble enzymes and non-enzymatic proteins are transported to lysosomes in an M6P-independent manner mediated by alternative receptors such as the lysosomal integral membrane protein LIMP-2 or sortilin. Sorting of cargo receptors and lysosomal transmembrane proteins requires sorting signals present in their cytosolic domains. These signals include dileucine-based motifs, DXXLL or [DE]XXXL[LI], and tyrosine-based motifs, YXXØ, which interact with components of clathrin coats such as GGAs or adaptor protein complexes. In addition, phosphorylation and lipid modifications regulate signal recognition and trafficking of lysosomal membrane proteins. The complex interaction of both luminal and cytosolic signals with recognition proteins guarantees the specific and directed transport of proteins to lysosomes.
Collapse
|
406
|
McCormick PJ, Dumaresq-Doiron K, Pluviose AS, Pichette V, Tosato G, Lefrancois S. Palmitoylation controls recycling in lysosomal sorting and trafficking. Traffic 2008; 9:1984-97. [PMID: 18817523 PMCID: PMC3500849 DOI: 10.1111/j.1600-0854.2008.00814.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For the efficient trafficking of lysosomal proteins, the cationic-dependent and -independent mannose 6-phosphate receptors and sortilin must bind cargo in the Golgi apparatus, be packaged into clathrin-coated trafficking vesicles and traffic to the endosomes. Once in the endosomes, the receptors release their cargo into the endosomal lumen and recycle back to the Golgi for another round of trafficking, a process that requires retromer. In this study, we demonstrate that palmitoylation is required for the efficient retrograde trafficking of sortilin, and the cationic-independent mannose 6-phosphate as palmitoylation-deficient receptors remain trapped in the endosomes. Importantly, we also show that palmitoylation is required for receptor interaction with retromer as nonpalmitoylated receptor did not interact with retromer. In addition, we have identified DHHC-15 as the palmitoyltransferase responsible for this modification. In summary, we have shown the functional significance of palmitoylation in lysosomal receptor sorting and trafficking.
Collapse
Affiliation(s)
- Peter J. McCormick
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karine Dumaresq-Doiron
- Centre de recherché, de l'Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Canada H1T 2M4
| | - Anne-Sophie Pluviose
- Centre de recherché, de l'Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Canada H1T 2M4
| | - Vincent Pichette
- Centre de recherché, de l'Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Canada H1T 2M4
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephane Lefrancois
- Centre de recherché, de l'Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Canada H1T 2M4
| |
Collapse
|
407
|
Gao X, Nagawa S, Wang G, Yang Z. Cell polarity signaling: focus on polar auxin transport. MOLECULAR PLANT 2008; 1:899-909. [PMID: 19825591 PMCID: PMC2902905 DOI: 10.1093/mp/ssn069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polar auxin transport, which is required for the formation of auxin gradients and directional auxin flows that are critical for plant pattern formation, morphogenesis, and directional growth response to vectorial cues, is mediated by polarized sub-cellular distribution of PIN-FORMED Proteins (PINs, auxin efflux carriers), AUX1/AUX1-like proteins (auxin influx facilitators), and multidrug resistance P-glycoproteins (MDR/PGP). Polar localization of these proteins is controlled by both developmental and environmental cues. Recent studies have revealed cellular (endocytosis, transcytosis, and endosomal sorting and recycling) and molecular (PINOID kinase, protein phosphatase 2A) mechanisms underlying the polar distribution of these auxin transport proteins. Both TIR1-mediated auxin signaling and TIR1-independent auxin-mediated endocytosis have been shown to regulate polar PIN localization and auxin flow, implicating auxin as a self-organizing signal in directing polar transport and directional flows.
Collapse
Affiliation(s)
- Xiaowei Gao
- Key Laboratory of Arid and Grassland Agroeology at Lanzhou University, Ministry of Education, Lanzhou 730000, China
- CAU–UCR Joint Center for Biological Science, China Agricultural University, Beijing 100094, China
| | - Shingo Nagawa
- Center for Plant Cell Biology and Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
| | - Genxuan Wang
- College of Life Science, Zhejiang University, Hangzhou 310029, China
| | - Zhenbiao Yang
- CAU–UCR Joint Center for Biological Science, China Agricultural University, Beijing 100094, China
- Center for Plant Cell Biology and Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
- To whom correspondence should be addressed. E-mail , fax 9011-886-2-2651-6234, tel. 951-827-7351
| |
Collapse
|
408
|
Affiliation(s)
- Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
409
|
Strochlic TI, Schmiedekamp BC, Lee J, Katzmann DJ, Burd CG. Opposing activities of the Snx3-retromer complex and ESCRT proteins mediate regulated cargo sorting at a common endosome. Mol Biol Cell 2008; 19:4694-706. [PMID: 18768754 PMCID: PMC2575174 DOI: 10.1091/mbc.e08-03-0296] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 08/13/2008] [Accepted: 08/27/2008] [Indexed: 12/27/2022] Open
Abstract
Endocytosed proteins are either delivered to the lysosome to be degraded or are exported from the endosomal system and delivered to other organelles. Sorting of the Saccharomyces cerevisiae reductive iron transporter, composed of the Fet3 and Ftr1 proteins, in the endosomal system is regulated by available iron; in iron-starved cells, Fet3-Ftr1 is sorted by Snx3/Grd19 and retromer into a recycling pathway that delivers it back to the plasma membrane, but when starved cells are exposed to iron, Fet3-Ftr1 is targeted to the lysosome-like vacuole and is degraded. We report that iron-induced endocytosis of Fet3-Ftr1 is independent of Fet3-Ftr1 ubiquitylation, and after endocytosis, degradation of Fet3-Ftr1 is mediated by the multivesicular body (MVB) sorting pathway. In mutant cells lacking any component of the ESCRT protein-dependent MVB sorting machinery, the Rsp5 ubiquitin ligase, or in wild-type cells expressing Fet3-Ftr1 lacking cytosolic lysyl ubiquitin acceptor sites, Fet3-Ftr1 is constitutively sorted into the recycling pathway independent of iron status. In the presence and absence of iron, Fet3-Ftr1 transits an endosomal compartment where a subunit of the MVB sorting receptor (Vps27), Snx3/Grd19, and retromer proteins colocalize. We propose that this endosome is where Rsp5 ubiquitylates Fet3-Ftr1 and where the recycling and degradative pathways diverge.
Collapse
Affiliation(s)
- Todd I. Strochlic
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Briana C. Schmiedekamp
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Jacqueline Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - David J. Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Christopher G. Burd
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| |
Collapse
|
410
|
Abstract
The retromer is a heteropentameric complex that associates with the cytosolic face of endosomes and mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network. The mammalian retromer complex comprises a sorting nexin dimer composed of a still undefined combination of SNX1, SNX2, SNX5 and SNX6, and a cargo-recognition trimer composed of Vps26, Vps29 and Vps35. The SNX subunits contain PX and BAR domains that allow binding to PI(3)P enriched, highly curved membranes of endosomal vesicles and tubules, while Vps26, Vps29 and Vps35 have arrestin, phosphoesterase and alpha-solenoid folds, respectively. Recent studies have implicated retromer in a broad range of physiological, developmental and pathological processes, underscoring the critical nature of retrograde transport mediated by this complex.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, Building 18T/Room 101, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
411
|
Woodman PG, Futter CE. Multivesicular bodies: co-ordinated progression to maturity. Curr Opin Cell Biol 2008; 20:408-14. [PMID: 18502633 PMCID: PMC2577128 DOI: 10.1016/j.ceb.2008.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/28/2008] [Accepted: 04/02/2008] [Indexed: 11/22/2022]
Abstract
Multivesicular endosomes/bodies (MVBs) sort endocytosed proteins to different destinations. Many lysosomally directed membrane proteins are sorted onto intralumenal vesicles, whilst recycling proteins remain on the perimeter membrane from where they are removed via tubular extensions. MVBs move to the cell centre during this maturation process and, when all recycling proteins have been removed, fuse with lysosomes. Recent advances have identified endosomal-sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways in intralumenal vesicle formation and mechanisms for sorting recycling cargo into tubules. Cytoskeletal motors, through interactions with these machineries and by regulating MVB movement, help to co-ordinate events leading to a mature, fusion-competent MVB.
Collapse
Affiliation(s)
- Philip G Woodman
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Clare E Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| |
Collapse
|
412
|
Robinson DG, Jiang L, Schumacher K. The endosomal system of plants: charting new and familiar territories. PLANT PHYSIOLOGY 2008; 147:1482-92. [PMID: 18678740 PMCID: PMC2492610 DOI: 10.1104/pp.108.120105] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/05/2008] [Indexed: 05/18/2023]
Affiliation(s)
- David G Robinson
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
413
|
Kim E, Lee JW, Baek DC, Lee SR, Kim MS, Kim SH, Imakawa K, Chang KT. Identification of novel retromer complexes in the mouse testis. Biochem Biophys Res Commun 2008; 375:16-21. [PMID: 18656452 DOI: 10.1016/j.bbrc.2008.07.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/16/2008] [Indexed: 11/19/2022]
Abstract
A family of vacuolar protein sorting (Vps) proteins, which are components of mammalian retromer complex, has been studied in the mouse. Vps26a is known as a retromer component that plays an important role in embryonic development: however, its cell-type expression and precise role remain to be elucidated. In this study, we identified a new isoform of Vps26a, called Vps26aT, which was expressed specifically in the mouse testis. Diverse expression patterns of Vps26 variants in mouse tissues were determined by Western blot and RT-PCR analyses, and the direct interaction of Vps26aT with Vps35 was also demonstrated by immunoprecipitation and pull-down assay using antibodies raised against each Vps component. Our results revealed that the retromer complex could be formed from different Vps26 isoforms in a tissue-specific manner, resulting in more than two types of the retromer complex, including the Vps26a-Vps29-Vps35, Vps26aT-Vps29-Vps35, and Vps26b-Vps29-Vps35 complexes in mouse tissues.
Collapse
Affiliation(s)
- Ekyune Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, 685-1 Yangcheong-ri, Ochang-eup, Chung-buk 363-883, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
414
|
Chapuy B, Tikkanen R, Mühlhausen C, Wenzel D, von Figura K, Höning S. AP-1 and AP-3 Mediate Sorting of Melanosomal and Lysosomal Membrane Proteins into Distinct Post-Golgi Trafficking Pathways. Traffic 2008; 9:1157-72. [DOI: 10.1111/j.1600-0854.2008.00745.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
415
|
Kanamori T, Inoue T, Sakamoto T, Gengyo-Ando K, Tsujimoto M, Mitani S, Sawa H, Aoki J, Arai H. Beta-catenin asymmetry is regulated by PLA1 and retrograde traffic in C. elegans stem cell divisions. EMBO J 2008; 27:1647-57. [PMID: 18497747 PMCID: PMC2396877 DOI: 10.1038/emboj.2008.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/28/2008] [Indexed: 12/17/2022] Open
Abstract
Asymmetric division is an important property of stem cells. In Caenorhabditis elegans, the Wnt/beta-catenin asymmetry pathway determines the polarity of most asymmetric divisions. The Wnt signalling components such as beta-catenin localize asymmetrically to the cortex of mother cells to produce two distinct daughter cells. However, the molecular mechanism to polarize them remains to be elucidated. Here, we demonstrate that intracellular phospholipase A(1) (PLA(1)), a poorly characterized lipid-metabolizing enzyme, controls the subcellular localizations of beta-catenin in the terminal asymmetric divisions of epithelial stem cells (seam cells). In mutants of ipla-1, a single C. elegans PLA(1) gene, cortical beta-catenin is delocalized and the asymmetry of cell-fate specification is disrupted in the asymmetric divisions. ipla-1 mutant phenotypes are rescued by expression of ipla-1 in seam cells in a catalytic activity-dependent manner. Furthermore, our genetic screen utilizing ipla-1 mutants reveals that reduction of endosome-to-Golgi retrograde transport in seam cells restores normal subcellular localization of beta-catenin to ipla-1 mutants. We propose that membrane trafficking regulated by ipla-1 provides a mechanism to control the cortical asymmetry of beta-catenin.
Collapse
Affiliation(s)
- Takahiro Kanamori
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Cellular Biochemistry, RIKEN, Saitama, Japan
| | - Takao Inoue
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Taro Sakamoto
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Keiko Gengyo-Ando
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | | | - Shohei Mitani
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Hitoshi Sawa
- Laboratory for Cell Fate Decision, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Junken Aoki
- Department of Molecular & Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
416
|
Bujny MV, Ewels PA, Humphrey S, Attar N, Jepson MA, Cullen PJ. Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. J Cell Sci 2008; 121:2027-36. [PMID: 18505799 DOI: 10.1242/jcs.018432] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium replicate within host cells in a specialized membrane-bound compartment, the Salmonella-containing vacuole (SCV). Interaction of SCVs with the host endocytic network is modulated by bacterial effectors, some of which, such as SigD/SopB, manipulate the level of endosomal phosphoinositides. Here, we establish that at early stages of Salmonella infection, sorting nexin-1 (SNX1) - a host phosphoinositide-binding protein that normally associates with early endosomes and regulates transport to the trans-Golgi network (TGN) - undergoes a rapid and transient translocation to bacterial entry sites, an event promoted by SigD/SopB. Recruitment of SNX1 to SCVs results in the formation of extensive, long-range tubules that we have termed ;spacious vacuole-associated tubules'. Formation of these tubules is coupled with size reduction of vacuoles and the removal of TGN-resident cargo. SNX1 suppression perturbs intracellular progress of bacteria, resulting in a delayed replication. We propose that SNX1 is important in tubular-based re-modeling of nascent SCVs and, in doing so, regulates intracellular bacterial progression and replication.
Collapse
Affiliation(s)
- Miriam V Bujny
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
417
|
Amessou M, Popoff V, Yelamos B, Saint-Pol A, Johannes L. Measuring retrograde transport to the trans-Golgi network. ACTA ACUST UNITED AC 2008; Chapter 15:Unit 15.10. [PMID: 18228477 DOI: 10.1002/0471143030.cb1510s32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recently described retrograde transport route is a highly selective pathway that allows some internalized molecules to reach the trans-Golgi network from early/recycling endosomes, bypassing the recycling route to the plasma membrane and the late endocytic pathway. The non-toxic receptor-binding B-subunit of bacterial Shiga toxin has played an important role in the discovery and molecular dissection of membrane trafficking at the early/recycling endosomes-TGN interface. This unit describes several recent methods for quantitative biochemical and morphological analysis of retrograde transport. The sulfation assay permits the detection and quantification of cargo protein transport from endosomes to the TGN, describing how sulfation-site peptides can be chemically coupled to cargo proteins. Furthermore, a variant of the sulfation assay on permeabilized cells is presented. The chemical crosslinking theme is extended to horseradish peroxidase for the ultrastructural study of the Shiga toxin-containing early/recycling endosomes by whole mount analysis. Finally, an endocytosis assay describes concomitant analysis of cellular uptake of Shiga toxin and transferrin.
Collapse
|
418
|
Griffith J, Mari M, De Mazière A, Reggiori F. A cryosectioning procedure for the ultrastructural analysis and the immunogold labelling of yeast Saccharomyces cerevisiae. Traffic 2008; 9:1060-72. [PMID: 18429928 DOI: 10.1111/j.1600-0854.2008.00753.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Yeast Saccharomyces cerevisiae has been a crucial model system for the study of a multitude of cellular processes because of its amenability to genetics, molecular biology and biochemical procedures. By contrast, the morphological analysis of this organism by immunoelectron microscopy (IEM) has remained in a primordial phase preventing researchers to routinely incorporate this technique into their investigations. Here, in addition to simple but detailed protocols to perform conventional electron microscopy (EM) on plastic embedded sections, we present a new IEM procedure adapted from the Tokuyasu method to prepare cryosections from mildly fixed cells. This novel approach allows an excellent cell preservation and the negatively stained membranes create superb contrast that leads to a unique resolution of the yeast morphology. This, plus the optimal preservation of the epitopes, permits combined localization studies with a fine resolution of protein complexes, vesicular carriers and organelles at an ultrastructural level. Importantly, we also show that this cryo-immunogold protocol can be combined with high-pressure freezing and therefore cryofixation can be employed if difficulties are encountered to immobilize a particular structure with chemical fixation. This new IEM technique will be a valuable tool for the large community of scientists using yeast as a model system, in particular for those studying membrane transport and dynamics.
Collapse
Affiliation(s)
- Janice Griffith
- Department of Cell Biology, University Medical Centre Utrecht, 3584 CX Utrecht, the Netherlands
| | | | | | | |
Collapse
|
419
|
Schluter C, Lam KK, Brumm J, Wu BW, Saunders M, Stevens TH, Bryan J, Conibear E. Global analysis of yeast endosomal transport identifies the vps55/68 sorting complex. Mol Biol Cell 2008; 19:1282-94. [PMID: 18216282 PMCID: PMC2291407 DOI: 10.1091/mbc.e07-07-0659] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 01/09/2008] [Accepted: 01/15/2008] [Indexed: 12/21/2022] Open
Abstract
Endosomal transport is critical for cellular processes ranging from receptor down-regulation and retroviral budding to the immune response. A full understanding of endosome sorting requires a comprehensive picture of the multiprotein complexes that orchestrate vesicle formation and fusion. Here, we use unsupervised, large-scale phenotypic analysis and a novel computational approach for the global identification of endosomal transport factors. This technique effectively identifies components of known and novel protein assemblies. We report the characterization of a previously undescribed endosome sorting complex that contains two well-conserved proteins with four predicted membrane-spanning domains. Vps55p and Vps68p form a complex that acts with or downstream of ESCRT function to regulate endosomal trafficking. Loss of Vps68p disrupts recycling to the TGN as well as onward trafficking to the vacuole without preventing the formation of lumenal vesicles within the MVB. Our results suggest the Vps55/68 complex mediates a novel, conserved step in the endosomal maturation process.
Collapse
Affiliation(s)
- Cayetana Schluter
- *Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Karen K.Y. Lam
- *Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jochen Brumm
- Department of Statistics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z2, Canada; and
| | - Bella W. Wu
- *Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Matthew Saunders
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229
| | - Tom H. Stevens
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229
| | - Jennifer Bryan
- Department of Statistics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z2, Canada; and
| | - Elizabeth Conibear
- *Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
420
|
Pérez-Victoria FJ, Mardones GA, Bonifacino JS. Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes. Mol Biol Cell 2008; 19:2350-62. [PMID: 18367545 DOI: 10.1091/mbc.e07-11-1189] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biosynthetic sorting of acid hydrolases to lysosomes relies on transmembrane, mannose 6-phosphate receptors (MPRs) that cycle between the TGN and endosomes. Herein we report that maintenance of this cycling requires the function of the mammalian Golgi-associated retrograde protein (GARP) complex. Depletion of any of the three GARP subunits, Vps52, Vps53, or Vps54, by RNAi impairs sorting of the precursor of the acid hydrolase, cathepsin D, to lysosomes and leads to its secretion into the culture medium. As a consequence, lysosomes become swollen, likely due to a buildup of undegraded materials. Missorting of cathepsin D in GARP-depleted cells results from accumulation of recycling MPRs in a population of light, small vesicles downstream of endosomes. These vesicles might correspond to intermediates in retrograde transport from endosomes to the TGN. Depletion of GARP subunits also blocks the retrograde transport of the TGN protein, TGN46, and the B subunit of Shiga toxin. These observations indicate that the mammalian GARP complex plays a general role in the delivery of retrograde cargo into the TGN. We also report that a Vps54 mutant protein in the Wobbler mouse strain is active in retrograde transport, thus explaining the viability of these mutant mice.
Collapse
Affiliation(s)
- F Javier Pérez-Victoria
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
421
|
Korolchuk VI, Schütz MM, Gómez-Llorente C, Rocha J, Lansu NR, Collins SM, Wairkar YP, Robinson IM, O'Kane CJ. Drosophila Vps35 function is necessary for normal endocytic trafficking and actin cytoskeleton organisation. J Cell Sci 2008; 120:4367-76. [PMID: 18057029 DOI: 10.1242/jcs.012336] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify novel proteins required for receptor-mediated endocytosis, we have developed an RNAi-based screening method in Drosophila S2 cells, based on uptake of a scavenger receptor ligand. Some known endocytic proteins are essential for endocytosis in this assay, including clathrin and alpha-adaptin; however, other proteins important for synaptic vesicle endocytosis are not required. In a small screen for novel endocytic proteins, we identified the Drosophila homologue of Vps35, a component of the retromer complex, involved in endosome-to-Golgi trafficking. Loss of Vps35 inhibits scavenger receptor ligand endocytosis, and causes mislocalisation of a number of receptors and endocytic proteins. Vps35 has tumour suppressor properties because its loss leads to overproliferation of blood cells in larvae. Its loss also causes signalling defects at the neuromuscular junction, including upregulation of TGFbeta/BMP signalling and excessive formation of synaptic terminals. Vps35 negatively regulates actin polymerisation, and genetic interactions suggest that some of the endocytic and signalling defects of vps35 mutants are due to this function.
Collapse
Affiliation(s)
- Viktor I Korolchuk
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
422
|
Pavelka M, Neumüller J, Ellinger A. Retrograde traffic in the biosynthetic-secretory route. Histochem Cell Biol 2008; 129:277-88. [PMID: 18270728 PMCID: PMC2248610 DOI: 10.1007/s00418-008-0383-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 02/04/2023]
Abstract
In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments' balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations.
Collapse
Affiliation(s)
- Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, Austria.
| | | | | |
Collapse
|
423
|
Abstract
During the tail end of the 20th century, a "golden period" in Alzheimer disease (AD) research, many of the pathogenic molecules of the autosomal dominant form of the disease were isolated. These molecular defects, however, do not exist in "sporadic" late-onset AD, the form of the disease that accounts for more than 95% of all cases. Pinpointing the pathogenic molecules of late-onset AD has, therefore, become an urgent goal, both for understanding disease mechanisms and for opening up novel therapeutic avenues. The retromer sorting pathway transports cargo along the endosome-trans-Golgi network, and retromer defects were first implicated in late-onset AD by a study that combined brain imaging with microarray. A range of studies have confirmed that defects in this pathway can play a pathogenic role in the disease. Herein, these findings will be reviewed, the details of the retromer sorting pathway will be discussed, and a biological model that can account for the disease's regional selectivity will be elaborated.
Collapse
Affiliation(s)
- Scott A Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
424
|
Collins BM, Norwood SJ, Kerr MC, Mahony D, Seaman MNJ, Teasdale RD, Owen DJ. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 2008; 9:366-79. [PMID: 18088321 DOI: 10.1111/j.1600-0854.2007.00688.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retromer is a heteromeric protein complex with important roles in endosomal membrane trafficking, most notably in the retrograde transport of lysosomal hydrolase receptors from endosomes to the Golgi. The core of retromer is composed of three subunits vacuolar protein sorting (Vps)35, Vps26 and Vps29, and in mammals, there are two paralogues of the medium subunit Vps26A and Vps26B. We find that both Vps26A and Vps26B bind to Vps35/Vps29 with nanomolar affinity and compete for a single-binding site to define distinct retromer complexes in vitro and in vivo. We have determined the crystal structure of mouse Vps26B and compare this structure with that of Vps26A. Vps26 proteins have a striking similarity to the arrestin family of proteins that regulate the signalling and endocytosis of G-protein-coupled receptors, although we observe that surface residues involved in arrestin function are not conserved in Vps26. Using structure-based mutagenesis, we show that both Vps26A and Vps26B are incorporated into retromer complexes through binding of Vps35 to a highly conserved surface patch within the C-terminal subdomain and that this interaction is required for endosomal recruitment of the proteins.
Collapse
Affiliation(s)
- Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
425
|
Atkins KM, Thomas L, Youker RT, Harriff MJ, Pissani F, You H, Thomas G. HIV-1 Nef binds PACS-2 to assemble a multikinase cascade that triggers major histocompatibility complex class I (MHC-I) down-regulation: analysis using short interfering RNA and knock-out mice. J Biol Chem 2008; 283:11772-84. [PMID: 18296443 DOI: 10.1074/jbc.m707572200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus, type 1, negative factor (Nef) initiates down-regulation of cell-surface major histocompatibility complex-I (MHC-I) by assembling an Src family kinase (SFK)-ZAP70/Syk-phosphoinositide 3-kinase (PI3K) cascade through the sequential actions of two sites, Nef EEEE(65) and PXXP(75). The internalized MHC-I molecules are then sequestered in endosomal compartments by a process requiring Nef Met(20). How Nef assembles the multikinase cascade to trigger the MHC-I down-regulation pathway is unknown. Here we report that EEEE(65)-dependent binding to the sorting protein PACS-2 targets Nef to the paranuclear region, enabling PXXP(75) to bind and activate a trans-Golgi network (TGN)-localized SFK. This SFK then phosphorylates ZAP-70 to recruit class I PI3K by interaction with the p85 C-terminal Src homology 2 domain. Using splenocytes and embryonic fibroblasts from PACS-2(-/-) mice, we confirm genetically that Nef requires PACS-2 to localize to the paranuclear region and assemble the multikinase cascade. Moreover, genetic loss of PACS-2 or inhibition of class I PI3K prevents Nef-mediated MHC-I down-regulation, demonstrating that short interfering RNA knockdown of PACS-2 phenocopies the gene knock-out. This PACS-2-dependent targeting pathway is not restricted to Nef, because PACS-2 is also required for trafficking of an endocytosed cation-independent mannose 6-phosphate receptor reporter from early endosomes to the TGN. Together, these results demonstrate PACS-2 is required for Nef action and sorting of itinerant membrane cargo in the TGN/endosomal system.
Collapse
|
426
|
van Meel E, Klumperman J. Imaging and imagination: understanding the endo-lysosomal system. Histochem Cell Biol 2008; 129:253-66. [PMID: 18274773 PMCID: PMC2248605 DOI: 10.1007/s00418-008-0384-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 01/08/2023]
Abstract
Lysosomes are specialized compartments for the degradation of endocytosed and intracellular material and essential regulators of cellular homeostasis. The importance of lysosomes is illustrated by the rapidly growing number of human disorders related to a defect in lysosomal functioning. Here, we review current insights in the mechanisms of lysosome biogenesis and protein sorting within the endo-lysosomal system. We present increasing evidence for the existence of parallel pathways for the delivery of newly synthesized lysosomal proteins directly from the trans-Golgi network (TGN) to the endo-lysosomal system. These pathways are either dependent or independent of mannose 6-phosphate receptors and likely involve multiple exits for lysosomal proteins from the TGN. In addition, we discuss the different endosomal intermediates and subdomains that are involved in sorting of endocytosed cargo. Throughout our review, we highlight some examples in the literature showing how imaging, especially electron microscopy, has made major contributions to our understanding of the endo-lysosomal system today.
Collapse
Affiliation(s)
- Eline van Meel
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, AZU G02.525, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Judith Klumperman
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, AZU G02.525, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| |
Collapse
|
427
|
Ganley IG, Espinosa E, Pfeffer SR. A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. ACTA ACUST UNITED AC 2008; 180:159-72. [PMID: 18195106 PMCID: PMC2213607 DOI: 10.1083/jcb.200707136] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the Golgi after delivering lysosomal enzymes to the endocytic pathway. This process requires Rab9 guanosine triphosphatase (GTPase) and the putative tether GCC185. We show in human cells that a soluble NSF attachment protein receptor (SNARE) complex comprised of syntaxin 10 (STX10), STX16, Vti1a, and VAMP3 is required for this MPR transport but not for the STX6-dependent transport of TGN46 or cholera toxin from early endosomes to the Golgi. Depletion of STX10 leads to MPR missorting and hypersecretion of hexosaminidase. Mouse and rat cells lack STX10 and, thus, must use a different target membrane SNARE for this process. GCC185 binds directly to STX16 and is competed by Rab6. These data support a model in which the GCC185 tether helps Rab9-bearing transport vesicles deliver their cargo to the trans-Golgi and suggest that Rab GTPases can regulate SNARE–tether interactions. Importantly, our data provide a clear molecular distinction between the transport of MPRs and TGN46 to the trans-Golgi.
Collapse
Affiliation(s)
- Ian G Ganley
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
428
|
Yamazaki M, Shimada T, Takahashi H, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I. Arabidopsis VPS35, a retromer component, is required for vacuolar protein sorting and involved in plant growth and leaf senescence. PLANT & CELL PHYSIOLOGY 2008; 49:142-56. [PMID: 18222962 DOI: 10.1093/pcp/pcn006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The retromer complex is responsible for retrograde transport, which is coordinated with anterograde transport in the secretory pathway including vacuolar protein sorting. Yeast VPS35 is a component of the retromer complex that is essential for recognition of specific cargo molecules. The physiological function of VPS35 has not been determined in vacuolar protein sorting in higher organisms. Arabidopsis thaliana has three VPS35 homologs designated VPS35a, VPS35b and VPS35c. We isolated four vps35 mutants (vps35a-1, vps35b-1, vps35b-2 and vps35c-1) and then generated four double mutants and one triple mutant. vps35a-1 vps35c-1 exhibited no unusual phenotypes. On the other hand, vps35b-1 vps35c-1 and the triple mutant (vps35a-1 vps35b-2 vps35c-1) exhibited severe phenotypes: dwarfism, early leaf senescence and fragmentation of protein storage vacuoles (PSVs). In addition, these mutants mis-sorted storage proteins by secreting them out of the cells and accumulated a higher level of vacuolar sorting receptor (VSR) than the wild type. VPS35 was localized in pre-vacuolar compartments (PVCs), some of which contained VSR. VPS35 was immunoprecipitated with VPS29/MAG1, another component of the retromer complex. Our findings suggest that VPS35, mainly VPS35b, is involved in sorting proteins to PSVs in seeds, possibly by recycling VSR from PVCs to the Golgi complex, and is also involved in plant growth and senescence in vegetative organs.
Collapse
Affiliation(s)
- Misako Yamazaki
- Graduate School of Science, Kyoto University, Kyoto 606-8502 Japan
| | | | | | | | | | | | | |
Collapse
|
429
|
AP-1 and retromer play opposite roles in the trafficking of sortilin between the Golgi apparatus and the lysosomes. Biochem Biophys Res Commun 2008; 366:724-30. [DOI: 10.1016/j.bbrc.2007.12.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 12/03/2007] [Indexed: 11/22/2022]
|
430
|
Steele-Mortimer O. The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol 2008; 11:38-45. [PMID: 18304858 PMCID: PMC2577838 DOI: 10.1016/j.mib.2008.01.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/26/2007] [Accepted: 01/12/2008] [Indexed: 10/22/2022]
Abstract
Salmonella pathogenesis is dependent on its ability to invade and replicate within host cells. Following invasion the bacteria remain within a modified phagosome known as the Salmonella-containing vacuole (SCV), within which they will survive and replicate. Invasion and SCV biogenesis are dependent on two Type III secretion systems, T3SS1 and T3SS2, which are used to translocate distinct cohorts of bacterial effector proteins into the host cell. Elucidating the roles of individual effector proteins in SCV biogenesis has proven difficult but several distinct themes are now emerging and it is apparent that SCV biogenesis is an extremely dynamic process involving; extensive membrane remodeling, interactions with the endolysosomal pathway, actin rearrangements and microtubule-based movement and tubule extension.
Collapse
Affiliation(s)
- Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
431
|
A novel immunodetection screen for vacuolar defects identifies a unique allele of VPS35 in S. cerevisiae. Mol Cell Biochem 2008; 311:121-36. [PMID: 18224426 DOI: 10.1007/s11010-008-9703-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 01/10/2008] [Indexed: 12/11/2022]
Abstract
The late endosome and vacuole of yeast Saccharomyces cerevisiae are functionally equivalent to the mammalian late endosome and lysosome. The late endosome is the convergence point of the biosynthetic and endocytic trafficking to the vacuole. Here, we describe a novel immunodetection screen to isolate mutants defective in trafficking the soluble hydrolase carboxypeptidase Y (CPY) at the late endosome to vacuole interface (env mutants). Mutants exhibit vacuolar morphology and endocytosis defects as assayed by electron, fluorescent, and nomarski microscopy. In biochemical assays, they internally accumulate p2CPY in a dense membrane compartment lacking vacuolar properties yet display normal secretion phenotypes. The results suggest vacuolar morphology and function defects that are exclusively at the late endosome/vacuole interface. env mutants define five complementation groups. The first gene of the collection to be cloned, ENV1 is allelic to VPS35 whose established function is in retrograde trafficking from late endosome to trans-Golgi network (TGN). Microscopic, biochemical, and growth analyses establish that env1 is distinct from other alleles of VPS35 in vacuolar morphology, growth characteristics, and internal accumulation of p2CPY. Our results indicate that ENV genes may define new gene functions at the late endosome to vacuole interface.
Collapse
|
432
|
Vergés M. Retromer: multipurpose sorting and specialization in polarized transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:153-98. [PMID: 19081543 DOI: 10.1016/s1937-6448(08)01204-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of lysosomal hydrolases' receptors. A dimer of two sorting nexins-typically, SNX1 and/or SNX2-deforms the membrane and thus cooperates with retromer to ensure cargo sorting. Research in various model organisms indicates that retromer participates in sorting of additional molecules whose proper transport has important repercussions in development and disease. The role of retromer as well as SNXs in endosomal protein (re)cycling and protein targeting to specialized plasma membrane domains in polarized cells adds further complexity and has implications in growth control, the establishment of developmental patterns, cell adhesion, and migration. This chapter will discuss the functions of retromer described in various model systems and will focus on relevant aspects in polarized transport.
Collapse
Affiliation(s)
- Marcel Vergés
- Laboratory of Epithelial Cell Biology, Centro de Investigación Príncipe Felipe, C/E.P. Avda. Autopista del Saler, Valencia, Spain
| |
Collapse
|
433
|
Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM, Lin X. The Retromer Complex Influences Wnt Secretion by Recycling Wntless from Endosomes to the Trans-Golgi Network. Dev Cell 2008; 14:120-31. [PMID: 18160348 DOI: 10.1016/j.devcel.2007.12.003] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/02/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
434
|
Yang PT, Lorenowicz MJ, Silhankova M, Coudreuse DY, Betist MC, Korswagen HC. Wnt Signaling Requires Retromer-Dependent Recycling of MIG-14/Wntless in Wnt-Producing Cells. Dev Cell 2008; 14:140-7. [DOI: 10.1016/j.devcel.2007.12.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/15/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
435
|
Mari M, Bujny MV, Zeuschner D, Geerts WJC, Griffith J, Petersen CM, Cullen PJ, Klumperman J, Geuze HJ. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 2007; 9:380-93. [PMID: 18088323 DOI: 10.1111/j.1600-0854.2007.00686.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mannose-6-phosphate receptors (MPRs) transport lysosomal hydrolases from the trans Golgi network (TGN) to endosomes. Recently, the multi-ligand receptor sortilin has also been implicated in this transport, but the transport carriers involved herein have not been identified. By quantitative immuno-electron microscopy, we localized endogenous sortilin of HepG2 cells predominantly to the TGN and endosomes. In the TGN, sortilin colocalized with MPRs in the same clathrin-coated vesicles. In endosomes, sortilin and MPRs concentrated in sorting nexin 1 (SNX1)-positive buds and vesicles. SNX1 depletion by small interfering RNA resulted in decreased pools of sortilin in the TGN and an increase in lysosomal degradation. These data indicate that sortilin and MPRs recycle to the TGN in SNX1-dependent carriers, which we named endosome-to-TGN transport carriers (ETCs). Notably, ETCs emerge from early endosomes (EE), lack recycling plasma membrane proteins and by three-dimensional electron tomography exhibit unique structural features. Hence, ETCs are distinct from hitherto described EE-derived membranes involved in recycling. Our data emphasize an important role of EEs in recycling to the TGN and indicate that different, specialized exit events occur on the same EE vacuole.
Collapse
Affiliation(s)
- Muriel Mari
- Cell Microscopy Center, Department of Cell Biology, Institute of Biomembranes, University Medical Centre (UMC) Utrecht, AZU Rm G02.525, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Gokool S, Tattersall D, Seaman MNJ. EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval. Traffic 2007; 8:1873-1886. [PMID: 17868075 DOI: 10.1111/j.1600-0854.2007.00652.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endosome-to-Golgi retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR) requires the function of the retromer complex. Retromer is localized to endosomes and comprises two distinct sub complexes: the vacuolar protein sorting 35/29/26 sub complex that binds cargo and the sorting nexin (SNX)1/2 sub complex that tubulates endosomal membranes. To identify up- or down-stream regulatory factors of retromer, a comparative proteomic strategy was employed. Protein profiles of endosomally enriched membranes, from either wild-type or retromer-deficient mouse cells, were compared to identify proteins with either elevated or reduced expression levels. Eps15 homology domain-containing protein-1 (EHD1) was identified in endosomally enriched membrane fractions from retromer-deficient cells and was found to be approximately threefold upregulated in the absence of retromer. EHD1 is localized to tubular and vesicular endosomes, partially colocalizes with retromer and is associated with retromer in vivo. Mutation of the nucleotide-binding P-loop of EHD1 results in a dominant-negative effect upon retromer localization and endosome-to-Golgi retrieval, while loss of EHD1 expression by RNA interference destabilizes SNX1-positive tubules and inhibits endosome-to-Golgi retrieval. The interaction between EHD1 and retromer and the requirement for EHD1 to stabilize SNX1-tubules establish EHD1 as a novel facilitating component of endosome-to-Golgi retrieval.
Collapse
Affiliation(s)
- Suzanne Gokool
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| | - Daniel Tattersall
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| | - Matthew N J Seaman
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
| |
Collapse
|
437
|
Restrepo R, Zhao X, Peter H, Zhang BY, Arvan P, Nothwehr SF. Structural features of vps35p involved in interaction with other subunits of the retromer complex. Traffic 2007; 8:1841-1853. [PMID: 17892535 PMCID: PMC2504507 DOI: 10.1111/j.1600-0854.2007.00659.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The penta-subunit retromer complex of yeast mediates selective retrieval of membrane proteins from the prevacuolar endosome to the trans Golgi network. In this study, we set out to generate a panel of vps35 dominant-negative mutants that disrupt retromer-mediated cargo sorting. Mapping of the mutations revealed two types of alterations leading to dominant-negative behavior of the 944-amino acid protein: (i) mutations at or near the R(98) residue or (ii) C-terminal truncations exemplified by a nonsense mutation at codon 733. Both could be suppressed by overexpression of wild-type Vps35p, suggesting that these dominant-negative mutants compete for interactions with other retromer subunits. Interestingly, Vps35-R(98)W expression destabilized Vps26p while having no effect on Vps29p stability, while Vps35-Q(733)* expression affected Vps29p stability but had no effect on Vps26p. Measurement of Vps35/Vps26 and Vps35/Vps29 pairwise associations by coimmunoprecipitation in the presence or absence of other retromer subunits indicated that the R(98) residue, which is part of a conserved PRLYL motif, is critical for Vps35p binding to Vps26p, while both R(98) and residues 733-944 are needed for efficient binding to Vps29p.
Collapse
Affiliation(s)
- Ricardo Restrepo
- Division of Biological Sciences, 401 Tucker Hall, University of Missouri, Columbia, MO 65211, USA
| | - Xiang Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 5560 MSRB2, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Harald Peter
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Bao-yan Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 5560 MSRB2, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 5560 MSRB2, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Steven F. Nothwehr
- Division of Biological Sciences, 401 Tucker Hall, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
438
|
Zhao X, Nothwehr S, Lara-Lemus R, Zhang BY, Peter H, Arvan P. Dominant-negative behavior of mammalian Vps35 in yeast requires a conserved PRLYL motif involved in retromer assembly. Traffic 2007; 8:1829-1840. [PMID: 17916227 PMCID: PMC2532708 DOI: 10.1111/j.1600-0854.2007.00658.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The retromer protein complex assists in recycling selected integral membrane proteins from endosomes to the trans Golgi network. One protein subcomplex (Vps35p, Vps26p and Vps29p) combines with a second (Vps17p and Vps5p) to form a coat involved in sorting and budding of endosomal vesicles. Yeast Vps35p (yVps35) exhibits similarity to human Vps35 (hVps35), especially in a completely conserved PRLYL motif contained within an amino-terminal domain. Companion studies indicate that an R(98)W mutation in yVps35 causes defective retromer assembly in Saccharomyces cerevisiae. Herein, we find that the expression of hVps35 in yeast confers dominant-negative vacuolar proenzyme secretion and defective secretory proprotein processing. The mutant phenotype appears to be driven by hVps35 competing with endogenous yVps35, becoming incorporated into defective retromer complexes and causing proteasomal degradation of endogenous Vps26 and Vps29. Increased expression of yVps35 displaces some hVps35 to a 100 000 x g supernatant and suppresses the dominant-negative phenotype. Remarkably, mutation of the conserved R(107)W of hVps35 displaces some of the protein to the 100 000 x g supernatant, slows protein turnover and restores stability of Vps26p and Vps29p and completely abrogates dominant-negative trafficking behavior. We show that hVps35 coprecipitates Vps26, whereas the R(107)W mutant does not. In pancreatic beta cells, the R(107)W mutant shifts hVps35 from peripheral endosomes to a juxtanuclear compartment, affecting both mannose phosphate receptors and insulin. These data underscore importance of the Vps35 PRLYL motif in retromer subcomplex interactions and function.
Collapse
Affiliation(s)
- Xiang Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 5560 MSRB2, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Steven Nothwehr
- Division of Biological Sciences, University of Missouri, 401 Tucker Hall, Columbia, MO 65211, USA
| | - Roberto Lara-Lemus
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 5560 MSRB2, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Bao-yan Zhang
- Ophthalmology and Visual Sciences, University of Wisconsin Medical School, 406 Science Drive, Madison, WI 53711, USA
| | - Harald Peter
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 5560 MSRB2, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
439
|
Traer CJ, Rutherford AC, Palmer KJ, Wassmer T, Oakley J, Attar N, Carlton JG, Kremerskothen J, Stephens DJ, Cullen PJ. SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat Cell Biol 2007; 9:1370-80. [PMID: 17994011 DOI: 10.1038/ncb1656] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 09/26/2007] [Indexed: 12/22/2022]
Abstract
SNX-BAR proteins are a sub-family of sorting nexins implicated in endosomal sorting. Here, we establish that through its phox homology (PX) and Bin-Amphiphysin-Rvs (BAR) domains, sorting nexin-4 (SNX4) is associated with tubular and vesicular elements of a compartment that overlaps with peripheral early endosomes and the juxtanuclear endocytic recycling compartment (ERC). Suppression of SNX4 perturbs transport between these compartments and causes lysosomal degradation of the transferrin receptor (TfnR). Through an interaction with KIBRA, a protein previously shown to bind dynein light chain 1, we establish that SNX4 associates with the minus end-directed microtubule motor dynein. Although suppression of KIBRA and dynein perturbs early endosome-to-ERC transport, TfnR sorting is maintained. We propose that by driving membrane tubulation, SNX4 coordinates iterative, geometric-based sorting of the TfnR with the long-range transport of carriers from early endosomes to the ERC. Finally, these data suggest that by associating with molecular motors, SNX-BAR proteins may coordinate sorting with carrier transport between donor and recipient membranes.
Collapse
Affiliation(s)
- Colin J Traer
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Gokool S, Tattersall D, Reddy J, Seaman M. Identification of a conserved motif required for Vps35p/Vps26p interaction and assembly of the retromer complex. Biochem J 2007; 408:287-95. [PMID: 17696874 PMCID: PMC2267345 DOI: 10.1042/bj20070555] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/01/2007] [Accepted: 08/13/2007] [Indexed: 11/17/2022]
Abstract
The retromer complex is a conserved cytoplasmic coat complex that mediates the endosome-to-Golgi retrieval of vacuole/lysosome hydrolase receptors in yeast and mammals. The recognition of cargo proteins by the retromer is performed by the Vps35p/VPS35 (where Vps is vacuolar protein sorting) component, which together with Vps26p/VPS26 and Vps29p/VPS29, forms the cargo-selective subcomplex. In this report, we have identified a highly-conserved region of Vps35p/VPS35 that is essential for the interaction with Vps26p/VPS26 and for assembly of the retromer complex. Mutation of residues within the conserved region results in Vps35p/VPS35 mutants, which cannot bind to Vps26p/VPS26 and are not efficiently targeted to the endosomal membrane. These data implicate Vps26p/VPS26 in regulating Vps35p/VPS35 membrane association and therefore suggest a role for Vps26p/VPS26 in cargo recognition.
Collapse
Key Words
- assembly
- endosome
- membrane
- recruitment
- retromer
- sorting
- 3-at, 3-amino-1,2,4-triazole
- cimpr, cation-independent mannose 6-phosphate receptor
- cpy, carboxypeptidase y
- est, expressed sequence tag
- gfp, green fluorescent protein
- image consortium, integrated molecular analysis of genomes and their expression consortium [at st. louis, mo, u.s.a., and at the human genome mapping project (hgmp), hinxton hall, cambridge, u.k.]
- ip, immunoprecipitation
- snx, sorting nexin
- tca, trichloroacetic acid
- vps, vacuolar protein sorting
Collapse
Affiliation(s)
- Suzanne Gokool
- University of Cambridge, Cambridge Institute for Medical Research/Department of Clinical Biochemistry, Wellcome Trust/MRC building, Addenbrookes Hospital, Cambridge CB2 0XY, U.K
| | - Daniel Tattersall
- University of Cambridge, Cambridge Institute for Medical Research/Department of Clinical Biochemistry, Wellcome Trust/MRC building, Addenbrookes Hospital, Cambridge CB2 0XY, U.K
| | - Jonathan V. Reddy
- University of Cambridge, Cambridge Institute for Medical Research/Department of Clinical Biochemistry, Wellcome Trust/MRC building, Addenbrookes Hospital, Cambridge CB2 0XY, U.K
| | - Matthew N. J. Seaman
- University of Cambridge, Cambridge Institute for Medical Research/Department of Clinical Biochemistry, Wellcome Trust/MRC building, Addenbrookes Hospital, Cambridge CB2 0XY, U.K
| |
Collapse
|
441
|
Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, Steven AC, Bonifacino JS, Hurley JH. Functional architecture of the retromer cargo-recognition complex. Nature 2007; 449:1063-7. [PMID: 17891154 PMCID: PMC2377034 DOI: 10.1038/nature06216] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 09/04/2007] [Indexed: 02/07/2023]
Abstract
The retromer complex is required for the sorting of acid hydrolases to lysosomes, transcytosis of the polymeric immunoglobulin receptor, Wnt gradient formation, iron transporter recycling and processing of the amyloid precursor protein. Human retromer consists of two smaller complexes: the cargo recognition VPS26-VPS29-VPS35 heterotrimer and a membrane-targeting heterodimer or homodimer of SNX1 and/or SNX2 (ref. 13). Here we report the crystal structure of a VPS29-VPS35 subcomplex showing how the metallophosphoesterase-fold subunit VPS29 (refs 14, 15) acts as a scaffold for the carboxy-terminal half of VPS35. VPS35 forms a horseshoe-shaped, right-handed, alpha-helical solenoid, the concave face of which completely covers the metal-binding site of VPS29, whereas the convex face exposes a series of hydrophobic interhelical grooves. Electron microscopy shows that the intact VPS26-VPS29-VPS35 complex is a stick-shaped, flexible structure, approximately 21 nm long. A hybrid structural model derived from crystal structures, electron microscopy, interaction studies and bioinformatics shows that the alpha-solenoid fold extends the full length of VPS35, and that VPS26 is bound at the opposite end from VPS29. This extended structure presents multiple binding sites for the SNX complex and receptor cargo, and appears capable of flexing to conform to curved vesicular membranes.
Collapse
Affiliation(s)
- Aitor Hierro
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Adriana L. Rojas
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Raul Rojas
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Namita Murthy
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Grégory Effantin
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Andrey V. Kajava
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, University of Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Alasdair C. Steven
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Juan S. Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - James H. Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
442
|
Popoff V, Mardones GA, Tenza D, Rojas R, Lamaze C, Bonifacino JS, Raposo G, Johannes L. The retromer complex and clathrin define an early endosomal retrograde exit site. J Cell Sci 2007; 120:2022-31. [PMID: 17550971 DOI: 10.1242/jcs.003020] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies have indicated a role for clathrin, the clathrin adaptors AP1 and epsinR, and the retromer complex in retrograde sorting from early/recycling endosomes to the trans Golgi network (TGN). However, it has remained unclear whether these protein machineries function on the same or parallel pathways. We show here that clathrin and the retromer subunit Vps26 colocalize at the ultrastructural level on early/recycling endosomes containing Shiga toxin B-subunit, a well-studied retrograde transport cargo. As previously described for clathrin, we find that interfering with Vps26 expression inhibits retrograde transport of the Shiga toxin B-subunit to the TGN. Under these conditions, endosomal tubules that take the Shiga toxin B-subunit out of transferrin-containing early/recycling endosomes appear to be stabilized. This situation differs from that previously described for low-temperature incubation and clathrin-depletion conditions under which Shiga toxin B-subunit labeling was found to overlap with that of the transferrin receptor. In addition, we find that the Shiga toxin B-subunit and the transferrin receptor accumulate close to multivesicular endosomes in clathrin-depleted cells, suggesting that clathrin initiates retrograde sorting on vacuolar early endosomes, and that retromer is then required to process retrograde tubules. Our findings thus establish a role for the retromer complex in retrograde transport of the B-subunit of Shiga toxin, and strongly suggest that clathrin and retromer function in consecutive retrograde sorting steps on early endosomes.
Collapse
Affiliation(s)
- Vincent Popoff
- Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
443
|
Bujny MV, Popoff V, Johannes L, Cullen PJ. The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 2007; 120:2010-21. [PMID: 17550970 DOI: 10.1242/jcs.003111] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammalian retromer complex is a multi-protein complex that regulates retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR) from early endosomes to the trans Golgi network (TGN). It consists of two subcomplexes: a membrane-bound coat comprising sorting nexin-1 (SNX1) and possibly sorting nexin-2 (SNX2), and a cargo-selective subcomplex, composed of VPS26, VPS29 and VPS35. In addition to the retromer, a variety of other protein complexes has been suggested to regulate endosome-to-TGN transport of not only the CI-MPR but a wide range of other cargo proteins. Here, we have examined the role of SNX1 and SNX2 in endosomal sorting of Shiga and cholera toxins, two toxins that undergo endosome-to-TGN transport en route to their cellular targets located within the cytosol. By using small interfering RNA (siRNA)-mediated silencing combined with single-cell fluorescent-toxin-uptake assays and well-established biochemical assays to analyze toxin delivery to the TGN, we have established that suppression of SNX1 leads to a significant reduction in the efficiency of endosome-to-TGN transport of the Shiga toxin B-subunit. Furthermore, we show that for the B subunit of cholera toxin, retrograde endosome-to-TGN transport is less reliant upon SNX1. Overall, our data establish a role for SNX1 in the endosome-to-TGN transport of Shiga toxin and are indicative for a fundamental difference between endosomal sorting of Shiga and cholera toxins into endosome-to-TGN retrograde transport pathways.
Collapse
Affiliation(s)
- Miriam V Bujny
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
444
|
Lieu ZZ, Derby MC, Teasdale RD, Hart C, Gunn P, Gleeson PA. The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network. Mol Biol Cell 2007; 18:4979-91. [PMID: 17914056 PMCID: PMC2096601 DOI: 10.1091/mbc.e07-06-0622] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Retrograde transport pathways from early/recycling endosomes to the trans-Golgi network (TGN) are poorly defined. We have investigated the role of TGN golgins in retrograde trafficking. Of the four TGN golgins, p230/golgin-245, golgin-97, GCC185, and GCC88, we show that GCC88 defines a retrograde transport pathway from early endosomes to the TGN. Depletion of GCC88 in HeLa cells by interference RNA resulted in a block in plasma membrane-TGN recycling of two cargo proteins, TGN38 and a CD8 mannose-6-phosphate receptor cytoplasmic tail fusion protein. In GCC88-depleted cells, cargo recycling was blocked in the early endosome. Depletion of GCC88 dramatically altered the TGN localization of the t-SNARE syntaxin 6, a syntaxin required for endosome to TGN transport. Furthermore, the transport block in GCC88-depleted cells was rescued by syntaxin 6 overexpression. Internalized Shiga toxin was efficiently transported from endosomes to the Golgi of GCC88-depleted cells, indicating that Shiga toxin and TGN38 are internalized by distinct retrograde transport pathways. These findings have identified an essential role for GCC88 in the localization of TGN fusion machinery for transport from early endosomes to the TGN, and they have allowed the identification of a retrograde pathway which differentially selects TGN38 and mannose-6-phosphate receptor from Shiga toxin.
Collapse
Affiliation(s)
- Zi Zhao Lieu
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Merran C. Derby
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Rohan D. Teasdale
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Charles Hart
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Priscilla Gunn
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Paul A. Gleeson
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| |
Collapse
|
445
|
Müller J, Mettbach U, Menzel D, Samaj J. Molecular dissection of endosomal compartments in plants. PLANT PHYSIOLOGY 2007; 145:293-304. [PMID: 17911648 PMCID: PMC2048727 DOI: 10.1104/pp.107.102863] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/31/2007] [Indexed: 05/17/2023]
Affiliation(s)
- Jens Müller
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
446
|
Abstract
Lysosomes are dynamic organelles that receive and degrade macromolecules from the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Live-cell imaging has shown that fusion with lysosomes occurs by both transient and full fusion events, and yeast genetics and mammalian cell-free systems have identified much of the protein machinery that coordinates these fusion events. Many pathogens that hijack the endocytic pathways to enter cells have evolved mechanisms to avoid being degraded by the lysosome. However, the function of lysosomes is not restricted to protein degradation: they also fuse with the plasma membrane during cell injury, as well as having more specialized secretory functions in some cell types.
Collapse
Affiliation(s)
- J Paul Luzio
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK.
| | | | | |
Collapse
|
447
|
Nielsen MS, Gustafsen C, Madsen P, Nyengaard JR, Hermey G, Bakke O, Mari M, Schu P, Pohlmann R, Dennes A, Petersen CM. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol Cell Biol 2007; 27:6842-51. [PMID: 17646382 PMCID: PMC2099242 DOI: 10.1128/mcb.00815-07] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SorLA/LR11 (250 kDa) is the largest and most composite member of the Vps10p-domain receptors, a family of type 1 proteins preferentially expressed in neuronal tissue. SorLA binds several ligands, including neurotensin, platelet-derived growth factor-bb, and lipoprotein lipase, and via complex-formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its cytoplasmic tail mediates efficient Golgi body-endosome transport, as well as AP-2 complex-dependent endocytosis. Functional sorting sites were mapped to an acidic cluster-dileucine-like motif and to a GGA binding site in the C terminus. Experiments in permanently or transiently AP-1 mu1-chain-deficient cells established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are engaged in retraction of the receptor from endosomes.
Collapse
Affiliation(s)
- Morten S Nielsen
- The MIND-Center, Department of Medical Biochemistry, Ole Worms Allé, Bldg 1170, University of Aarhus, 8000, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Seaman MNJ. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J Cell Sci 2007; 120:2378-89. [PMID: 17606993 DOI: 10.1242/jcs.009654] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cation-independent mannose 6-phosphate receptor (CIMPR) cycles between the trans-Golgi network (TGN) and endosomes to mediate sorting of lysosomal hydrolases. The endosome-to-TGN retrieval of the CIMPR requires the retromer complex. Genetic, biochemical and structural data support the hypothesis that the retromer can directly bind to the tail of the CIMPR, to sort the CIMPR into vesicles and tubules for retrieval to the TGN. Presently, however, no known retromer sorting motif in the tail of the CIMPR has been identified. Using CD8-reporter proteins carrying the cytoplasmic tail of the CIMPR we have systematically dissected the CIMPR tail to identify a novel, conserved aromatic-containing sorting motif that is critical for the endosome-to-TGN retrieval of the CIMPR and for the interaction with retromer and the clathrin adaptor AP-1.
Collapse
Affiliation(s)
- Matthew N J Seaman
- University of Cambridge, Cambridge Institute for Medical Research/Clinical Biochemistry, Wellcome Trust/MRC building, Addenbrookes Hospital, Cambridge, CB2 0XY, UK.
| |
Collapse
|
449
|
Paul MJ, Frigerio L. Coated vesicles in plant cells. Semin Cell Dev Biol 2007; 18:471-8. [PMID: 17693105 DOI: 10.1016/j.semcdb.2007.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/04/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
Coated vesicles represent vital transport intermediates in all eukaryotic cells. While the basic mechanisms of membrane exchange are conserved through the kingdoms, the unique topology of the plant endomembrane system is mirrored by several differences in the genesis, function and regulation of coated vesicles. Efforts to unravel the complex network of proteins underlying the behaviour of these vesicles have recently benefited from the application in planta of several molecular tools used in mammalian systems, as well as from advances in imaging technology and the ongoing analysis of the Arabidopsis genome. In this review, we provide an overview of the roles of coated vesicles in plant cells and highlight salient new developments in the field.
Collapse
Affiliation(s)
- Matthew J Paul
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
450
|
Strochlic TI, Setty TG, Sitaram A, Burd CG. Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. ACTA ACUST UNITED AC 2007; 177:115-25. [PMID: 17420293 PMCID: PMC2064116 DOI: 10.1083/jcb.200609161] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p–Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p–Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p–Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.
Collapse
Affiliation(s)
- Todd I Strochlic
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|