401
|
Briant K, Koay YH, Otsuka Y, Swanton E. ERAD of proteins containing aberrant transmembrane domains requires ubiquitylation of cytoplasmic lysine residues. J Cell Sci 2015; 128:4112-25. [PMID: 26446255 PMCID: PMC4712780 DOI: 10.1242/jcs.171215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022] Open
Abstract
Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8TMD*), or the native transmembrane domain but a misfolded luminal domain (CD8LUM*). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8TMD* from the ER membrane during ERAD, whereas CD8LUM* continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8LUM*. Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues. Summary: Proteins containing defective transmembrane domains are removed from the endoplasmic reticulum through a specific mechanism that depends upon the ubiquitylation of cytoplasmic lysine residues.
Collapse
Affiliation(s)
- Kit Briant
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yee-Hui Koay
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yuka Otsuka
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Eileithyia Swanton
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
402
|
Webster BM, Lusk CP. Border Safety: Quality Control at the Nuclear Envelope. Trends Cell Biol 2015; 26:29-39. [PMID: 26437591 DOI: 10.1016/j.tcb.2015.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/27/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
The unique biochemical identity of the nuclear envelope confers its capacity to establish a barrier that protects the nuclear compartment and directly contributes to nuclear function. Recent work uncovered quality control mechanisms employing the endosomal sorting complexes required for transport (ESCRT) machinery and a new arm of endoplasmic reticulum-associated protein degradation (ERAD) to counteract the unfolding, damage, or misassembly of nuclear envelope proteins and ensure the integrity of the nuclear envelope membranes. Moreover, cells have the capacity to recognize and triage defective nuclear pore complexes to prevent their inheritance and preserve the longevity of progeny. These mechanisms serve to highlight the diverse strategies used by cells to maintain nuclear compartmentalization; we suggest they mitigate the progression and severity of diseases associated with nuclear envelope malfunction such as the laminopathies.
Collapse
|
403
|
Fernández A, Ordóñez R, Reiter RJ, González-Gallego J, Mauriz JL. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 2015. [PMID: 26201382 DOI: 10.1111/jpi.12264] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) is a dynamic organelle that participates in a number of cellular functions by controlling lipid metabolism, calcium stores, and proteostasis. Under stressful situations, the ER environment is compromised, and protein maturation is impaired; this causes misfolded proteins to accumulate and a characteristic stress response named unfolded protein response (UPR). UPR protects cells from stress and contributes to cellular homeostasis re-establishment; however, during prolonged ER stress, UPR activation promotes cell death. ER stressors can modulate autophagy which in turn, depending of the situation, induces cell survival or death. Interactions of different autophagy- and apoptosis-related proteins and also common signaling pathways have been found, suggesting an interplay between these cellular processes, although their dynamic features are still unknown. A number of pathologies including metabolic, neurodegenerative and cardiovascular diseases, cancer, inflammation, and viral infections are associated with ER stress, leading to a growing interest in targeting components of the UPR as a therapeutic strategy. Melatonin has a variety of antioxidant, anti-inflammatory, and antitumor effects. As such, it modulates apoptosis and autophagy in cancer cells, neurodegeneration and the development of liver diseases as well as other pathologies. Here, we review the effects of melatonin on the main ER stress mechanisms, focusing on its ability to regulate the autophagic and apoptotic processes. As the number of studies that have analyzed ER stress modulation by this indole remains limited, further research is necessary for a better understanding of the crosstalk between ER stress, autophagy, and apoptosis and to clearly delineate the mechanisms by which melatonin modulates these responses.
Collapse
Affiliation(s)
- Anna Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Raquel Ordóñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
404
|
Lannoo N, Van Damme EJM. Review/N-glycans: The making of a varied toolbox. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:67-83. [PMID: 26398792 DOI: 10.1016/j.plantsci.2015.06.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 05/23/2023]
Abstract
Asparagine (N)-linked protein glycosylation is one of the most crucial, prevalent, and complex co- and post-translational protein modifications. It plays a pivotal role in protein folding, quality control, and endoplasmic reticulum (ER)-associated degradation (ERAD) as well as in protein sorting, protein function, and in signal transduction. Furthermore, glycosylation modulates many important biological processes including growth, development, morphogenesis, and stress signaling processes. As a consequence, aberrant or altered N-glycosylation is often associated with reduced fitness, diseases, and disorders. The initial steps of N-glycan synthesis at the cytosolic side of the ER membrane and in the lumen of the ER are highly conserved. In contrast, the final N-glycan processing in the Golgi apparatus is organism-specific giving rise to a wide variety of carbohydrate structures. Despite our vast knowledge on N-glycans in yeast and mammals, the modus operandi of N-glycan signaling in plants is still largely unknown. This review will elaborate on the N-glycosylation biosynthesis pathway in plants but will also critically assess how N-glycans are involved in different signaling cascades, either active during normal development or upon abiotic and biotic stresses.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Lab Biochemistry and Glycobiology, Department Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
405
|
Zhang T, Xu Y, Liu Y, Ye Y. gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum. Mol Biol Cell 2015; 26:4438-50. [PMID: 26424800 PMCID: PMC4666138 DOI: 10.1091/mbc.e15-06-0354] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/22/2015] [Indexed: 11/16/2022] Open
Abstract
The functional relationship between mammalian ubiquitin ligase gp78 and Hrd1 was studied. Hrd1 is one of the essential retrotranslocation regulators conserved in yeast and mammalian cells, whereas gp78 serves an assisting role downstream of Hrd1 and possibly other ubiquitin ligases in mammalian cells. Eukaryotic cells eliminate misfolded proteins from the endoplasmic reticulum (ER) via a conserved process termed ER-associated degradation (ERAD). Central regulators of the ERAD system are membrane-bound ubiquitin ligases, which are thought to channel misfolded proteins through the ER membrane during retrotranslocation. Hrd1 and gp78 are mammalian ubiquitin ligases homologous to Hrd1p, an ubiquitin ligase essential for ERAD in Saccharomyces cerevisiae. However, the functional relevance of these proteins to Hrd1p is unclear. In this paper, we characterize the gp78-containing ubiquitin ligase complex and define its functional interplay with Hrd1 using biochemical and recently developed CRISPR-based genetic tools. Our data show that transient inactivation of the gp78 complex by short hairpin RNA–mediated gene silencing causes significant stabilization of both luminal and membrane ERAD substrates, but unlike Hrd1, which plays an essential role in retrotranslocation and ubiquitination of these ERAD substrates, knockdown of gp78 does not affect either of these processes. Instead, gp78 appears to act downstream of Hrd1 to promote ERAD via cooperation with the BAG6 chaperone complex. We conclude that the Hrd1 complex forms an essential retrotranslocation module that is evolutionarily conserved, but the mammalian ERAD system uses additional ubiquitin ligases to assist Hrd1 during retrotranslocation.
Collapse
Affiliation(s)
- Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yanfen Liu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
406
|
EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:12205-10. [PMID: 26371323 DOI: 10.1073/pnas.1511724112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabidopsis ethyl methanesulfonate-mutagenized brassinosteroid-insensitive 1 suppressor 7 (EBS7) gene encodes an ER membrane-localized ERAD component that is highly conserved in land plants. Loss-of-function ebs7 mutations prevent ERAD of brassinosteroid insensitive 1-9 (bri1-9) and bri1-5, two ER-retained mutant variants of the cell-surface receptor for brassinosteroids (BRs). As a result, the two mutant receptors accumulate in the ER and consequently leak to the plasma membrane, resulting in the restoration of BR sensitivity and phenotypic suppression of the bri1-9 and bri1-5 mutants. EBS7 accumulates under ER stress, and its mutations lead to hypersensitivity to ER and salt stresses. EBS7 interacts with the ER membrane-anchored ubiquitin ligase Arabidopsis thaliana HMG-CoA reductase degradation 1a (AtHrd1a), one of the central components of the Arabidopsis ERAD machinery, and an ebs7 mutation destabilizes AtHrd1a to reduce polyubiquitination of bri1-9. Taken together, our results uncover a plant-specific component of a plant ERAD pathway and also suggest its likely biochemical function.
Collapse
|
407
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
408
|
He K, Ravindran MS, Tsai B. A bacterial toxin and a nonenveloped virus hijack ER-to-cytosol membrane translocation pathways to cause disease. Crit Rev Biochem Mol Biol 2015; 50:477-88. [PMID: 26362261 DOI: 10.3109/10409238.2015.1085826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A dedicated network of cellular factors ensures that proteins translocated into the endoplasmic reticulum (ER) are folded correctly before they exit this compartment en route to other cellular destinations or for secretion. When proteins misfold, selective ER-resident enzymes and chaperones are recruited to rectify the protein-misfolding problem in order to maintain cellular proteostasis. However, when a protein becomes terminally misfolded, it is ejected into the cytosol and degraded by the proteasome via a pathway called ER-associated degradation (ERAD). Strikingly, toxins and viruses can hijack elements of the ERAD pathway to access the host cytosol and cause infection. This review focuses on emerging data illuminating the molecular mechanisms by which these toxic agents co-opt the ER-to-cytosol translocation process to cause disease.
Collapse
Affiliation(s)
- Kaiyu He
- a Department of Cell and Developmental Biology , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Madhu Sudhan Ravindran
- a Department of Cell and Developmental Biology , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Billy Tsai
- a Department of Cell and Developmental Biology , University of Michigan Medical School , Ann Arbor , MI , USA
| |
Collapse
|
409
|
Abstract
The unfolded protein response (UPR) is a stress response of the endoplasmic reticulum (ER) to a disturbance in protein folding. The so-called ER stress sensors PERK, IRE1 and ATF6 play a central role in the initiation and regulation of the UPR. The accumulation of misfolded and aggregated proteins is a common characteristic of neurodegenerative diseases. With the discovery of the basic machinery of the UPR, the idea was born that the UPR or part of its machinery could be involved in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion disease. Over the last decade, the UPR has been addressed in an increasing number of studies on neurodegeneration. The involvement of the UPR has been investigated in human neuropathology across different neurological diseases, as well as in cell and mouse models for neurodegeneration. Studies using different disease models display discrepancies on the role and function of the UPR during neurodegeneration, which can often be attributed to differences in methodology. In this review, we will address the importance of investigation of human brain material for the interpretation of the role of the UPR in neurological diseases. We will discuss evidence for UPR activation in neurodegenerative diseases, and the methodology to study UPR activation and its connection to brain pathology will be addressed. More recently, the UPR is recognized as a target for drug therapy for treatment and prevention of neurodegeneration, by inhibiting the function of specific mediators of the UPR. Several preclinical studies have shown a proof-of-concept for this approach targeting the machinery of UPR, in particular the PERK pathway, in different models for neurodegeneration and have yielded paradoxical results. The promises held by these observations will need further support by clarification of the observed differences between disease models, as well as increased insight obtained from human neuropathology.
Collapse
|
410
|
Peng M, Ostrovsky J, Kwon YJ, Polyak E, Licata J, Tsukikawa M, Marty E, Thomas J, Felix CA, Xiao R, Zhang Z, Gasser DL, Argon Y, Falk MJ. Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease. Hum Mol Genet 2015; 24:4829-47. [PMID: 26041819 PMCID: PMC4527487 DOI: 10.1093/hmg/ddv207] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/29/2015] [Accepted: 06/01/2015] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial respiratory chain (RC) disease therapies directed at intra-mitochondrial pathology are largely ineffective. Recognizing that RC dysfunction invokes pronounced extra-mitochondrial transcriptional adaptations, particularly involving dysregulated translation, we hypothesized that translational dysregulation is itself contributing to the pathophysiology of RC disease. Here, we investigated the activities, and effects from direct inhibition, of a central translational regulator (mTORC1) and its downstream biological processes in diverse genetic and pharmacological models of RC disease. Our data identify novel mechanisms underlying the cellular pathogenesis of RC dysfunction, including the combined induction of proteotoxic stress, the ER stress response and autophagy. mTORC1 inhibition with rapamycin partially ameliorated renal disease in B6.Pdss2(kd/kd) mice with complexes I-III/II-III deficiencies, improved viability and mitochondrial physiology in gas-1(fc21) nematodes with complex I deficiency, and rescued viability across a variety of RC-inhibited human cells. Even more effective was probucol, a PPAR-activating anti-lipid drug that we show also inhibits mTORC1. However, directly inhibiting mTORC1-regulated downstream activities yielded the most pronounced and sustained benefit. Partial inhibition of translation by cycloheximide, or of autophagy by lithium chloride, rescued viability, preserved cellular respiratory capacity and induced mitochondrial translation and biogenesis. Cycloheximide also ameliorated proteotoxic stress via a uniquely selective reduction of cytosolic protein translation. RNAseq-based transcriptome profiling of treatment effects in gas-1(fc21) mutants provide further evidence that these therapies effectively restored altered translation and autophagy pathways toward that of wild-type animals. Overall, partially inhibiting cytosolic translation and autophagy offer novel treatment strategies to improve health across the diverse array of human diseases whose pathogenesis involves RC dysfunction.
Collapse
Affiliation(s)
- Min Peng
- Division of Human Genetics, Department of Pediatrics and Department of Genetics and
| | | | | | | | - Joseph Licata
- Division of Human Genetics, Department of Pediatrics and
| | - Mai Tsukikawa
- Division of Human Genetics, Department of Pediatrics and
| | - Eric Marty
- Division of Human Genetics, Department of Pediatrics and
| | - Jeffrey Thomas
- Division of Cell Pathology, Department of Pathology, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA and
| | - Carolyn A Felix
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rui Xiao
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Yair Argon
- Division of Cell Pathology, Department of Pathology, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA and
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics and
| |
Collapse
|
411
|
Chang PC, Tsai HW, Chiang MT, Huang PL, Shyue SK, Chau LY. TRC8 downregulation contributes to the development of non-alcoholic steatohepatitis by exacerbating hepatic endoplasmic reticulum stress. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2339-51. [PMID: 26319415 DOI: 10.1016/j.bbadis.2015.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 01/23/2023]
Abstract
Endoplasmic reticulum (ER) stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). TRC8 is an ER-resident E3 ligase with roles in modulating lipid and protein biosynthesis. In this study we showed that TRC8 expression was downregulated in steatotic livers of patients and mice fed with a high fat diet (HFD) or a methionine and choline deficient (MCD) diet. To investigate the impact of TRC8 downregulation on steatosis and the progression to non-alcoholic steatohepatitis (NASH), we placed TRC8 knockout (KO) mice and wild type (WT) controls on a HFD or MCD diet and the severities of steatosis and NASH developed were compared. We found that TRC8 deficiency did not significantly affect diet-induced steatosis. Nevertheless, MCD diet-induced NASH as characterized by hepatocyte death, inflammation and fibrosis were exacerbated in TRC8-KO mice. The hepatic ER stress response, as evidenced by increased eIF2α phosphorylation and expression of ATF4 and CHOP, and the level of activated caspase 3, an apoptosis indicator, were augmented by TRC8 deficiency. The hepatic ER stress and NASH induced in mice could be ameliorated by adenovirus-mediated hepatic TRC8 overexpression. Mechanistically, we found that TRC8 deficiency augmented lipotoxic-stress-induced unfolded protein response in hepatocytes by attenuating the arrest of protein translation and the misfolded protein degradation. These findings disclose a crucial role of TRC8 in the maintenance of ER protein homeostasis and its downregulation in steatotic liver contributes to the progression of NAFLD.
Collapse
Affiliation(s)
- Po-Chiao Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng-Kung University Hospital, Tainan, Taiwan.
| | - Ming-Tsai Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Pei-Ling Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Lee-Young Chau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
412
|
Cavieres VA, González A, Muñoz VC, Yefi CP, Bustamante HA, Barraza RR, Tapia-Rojas C, Otth C, Barrera MJ, González C, Mardones GA, Inestrosa NC, Burgos PV. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS One 2015; 10:e0136313. [PMID: 26308941 PMCID: PMC4550396 DOI: 10.1371/journal.pone.0136313] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/02/2015] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) peptide. We have previously shown that the compound tetrahydrohyperforin (IDN5706) prevents accumulation of Aβ species in an in vivo model of AD, however the mechanism that explains this reduction is not well understood. We show herein that IDN5706 decreases the levels of ER degradation enhancer, mannosidase alpha-like 1 (EDEM1), a key chaperone related to endoplasmic-reticulum-associated degradation (ERAD). Moreover, we observed that low levels of EDEM1 correlated with a strong activation of autophagy, suggesting a crosstalk between these two pathways. We observed that IDN5706 perturbs the glycosylation and proteolytic processing of the amyloid precursor protein (APP), resulting in the accumulation of immature APP (iAPP) in the endoplasmic reticulum. To investigate the contribution of autophagy, we tested the effect of IDN5706 in Atg5-depleted cells. We found that depletion of Atg5 enhanced the accumulation of iAPP in response to IDN5706 by slowing down its degradation. Our findings reveal that IDN5706 promotes degradation of iAPP via the activation of Atg5-dependent autophagy, shedding light on the mechanism that may contribute to the reduction of Aβ production in vivo.
Collapse
Affiliation(s)
- Viviana A. Cavieres
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Alexis González
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Vanessa C. Muñoz
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Claudia P. Yefi
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Hianara A. Bustamante
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Rafael R. Barraza
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola Otth
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - María José Barrera
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos González
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Nibaldo C. Inestrosa
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- * E-mail: (NCI); (PVB)
| | - Patricia V. Burgos
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
- * E-mail: (NCI); (PVB)
| |
Collapse
|
413
|
Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system. Mol Cell Biochem 2015; 409:255-62. [DOI: 10.1007/s11010-015-2529-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/06/2015] [Indexed: 01/13/2023]
|
414
|
Cho Y, Yu CY, Iwasa T, Kanehara K. Heterotrimeric G protein subunits differentially respond to endoplasmic reticulum stress in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e1061162. [PMID: 26237103 PMCID: PMC4883907 DOI: 10.1080/15592324.2015.1061162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/06/2015] [Indexed: 05/23/2023]
Abstract
Canonical heterotrimeric G proteins in eukaryotes are major components that localize at plasma membrane and transmit extracellular stimuli into the cell. Genome of a seed plant Arabidopsis thaliana encodes at least one Gα (GPA1), one Gβ (AGB1), and 3 Gγ (AGG1, AGG2 and AGG3) subunits. The loss-of-function mutations of G protein subunit(s) cause multiple defects in development as well as biotic and abiotic stress responses. However, it remains elusive how these subunits differentially express these defects. Here, we report that Arabidopsis heterotrimeric G protein subunits differentially respond to the endoplasmic reticulum (ER) stress. An isolated homozygous mutant of AGB1, agb1-3, was more sensitive to the tunicamycin-induced ER stress compared to the wild type and the other loss-of-function mutants of G protein subunits. Moreover, ER stress responsive genes were highly expressed in the agb1-3 plant. Our results indicate that AGB1 positively contributes to ER stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Yueh Cho
- Institute of Plant and Microbial Biology, Academia Sinica; Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica; Taipei, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences; National Chung-Hsing University; Taichung, Taiwan
| | - Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica; Taipei, Taiwan
| | | | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica; Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica; Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University; Taichung, Taiwan
- Muroran Institute of Technology; Muroran, Japan
| |
Collapse
|
415
|
Martzoukou O, Karachaliou M, Yalelis V, Leung J, Byrne B, Amillis S, Diallinas G. Oligomerization of the UapA Purine Transporter Is Critical for ER-Exit, Plasma Membrane Localization and Turnover. J Mol Biol 2015; 427:2679-96. [DOI: 10.1016/j.jmb.2015.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
|
416
|
Caramelo JJ, Parodi AJ. A sweet code for glycoprotein folding. FEBS Lett 2015; 589:3379-87. [PMID: 26226420 DOI: 10.1016/j.febslet.2015.07.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022]
Abstract
Glycoprotein synthesis is initiated in the endoplasmic reticulum (ER) lumen upon transfer of a glycan (Glc3Man9GlcNAc2) from a lipid derivative to Asn residues (N-glycosylation). N-Glycan-dependent quality control of glycoprotein folding in the ER prevents exit to Golgi of folding intermediates, irreparably misfolded glycoproteins and incompletely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones (calnexin and calreticulin) that recognize monoglucosylated polymannose protein-linked glycans, lectin-associated oxidoreductase acting on monoglucosylated glycoproteins (ERp57), a glucosyltransferase that creates monoglucosylated epitopes in protein-linked glycans (UGGT) and a glucosidase (GII) that removes the glucose units added by UGGT. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded glycoproteins or in not completely assembled multimeric glycoprotein complexes. Glycoproteins that fail to properly fold are eventually driven to proteasomal degradation in the cytosol following the ER-associated degradation pathway, in which the extent of N-glycan demannosylation by ER mannosidases play a relevant role in the identification of irreparably misfolded glycoproteins.
Collapse
Affiliation(s)
- Julio J Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| | - Armando J Parodi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
417
|
Zhang B, Yang X, Tiberi M. Functional importance of two conserved residues in intracellular loop 1 and transmembrane region 2 of Family A GPCRs: insights from ligand binding and signal transduction responses of D1 and D5 dopaminergic receptor mutants. Cell Signal 2015; 27:2014-25. [PMID: 26186971 DOI: 10.1016/j.cellsig.2015.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022]
Abstract
For many G protein-coupled receptors (GPCRs), the role of the first intracellular loop (IL1) and its connections with adjacent transmembrane (TM) regions have not been investigated. Notably, these regions harbor several polar residues such as Ser and Thr. To begin uncovering how these polar residues may contribute to the structural basis for GPCR functionality, we have designed human D1-class receptor mutants (hD1-ST1 and hD5-ST1) whereby all Ser and Thr of IL1 and IL1/TM2 juncture have been replaced by Ala and Val, respectively. Both ST1 mutants exhibited a loss of dopamine affinity but similar binding properties for inverse agonists compared to their parent receptors. As well, these mutations diminished receptor activation for both subtypes, as indicated by an ablated constitutive activity and a pronounced decrease in dopamine potency. Interestingly, both mutants exhibited enhanced dopamine-mediated maximal stimulation (Emax) of adenylyl cyclase that was at least two-fold higher than wild-type. Point mutations for hD1R revealed that the loss in dopamine affinity and potency was attributed to Thr59, while the enhanced Emax of adenylyl cyclase was directly influenced by Ser65. These two residues are conserved among many Family A GPCRs and have recurring molecular interactions among crystallized structures. As such, their functional roles for IL1 and its transition into TM2 reported herein may also be applicable to other GPCRs. Our work thus potentially highlights a structural role of Thr59 and Ser65 in the formation of critical intramolecular interactions for ligand binding and signal transduction of D1-class dopaminergic receptors.
Collapse
Affiliation(s)
- Boyang Zhang
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada; Departments of Medicine, Cellular & Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Xiaodi Yang
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada; Departments of Medicine, Cellular & Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mario Tiberi
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada; Departments of Medicine, Cellular & Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
418
|
Wang W, Sun Y, Chen S, Zhou X, Wu X, Kong W, Kong W. Impaired unfolded protein response in the degeneration of cochlea cells in a mouse model of age-related hearing loss. Exp Gerontol 2015; 70:61-70. [PMID: 26173054 DOI: 10.1016/j.exger.2015.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/03/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress triggers the unfolded protein response (UPR) to prevent the accumulation of proteins in an aberrant conformation. The UPR can restore homeostasis by upregulating ER chaperones, such as glucose-regulated protein 78kD (GRP78), to refold the incorrectly handled protein, and by degrading the misfolded proteins via the ubiquitin-proteasome and autophagy-lysosome system. ER stress was recently demonstrated to be involved in the pathogenesis of age-related diseases. In this study, we measured the expression levels of GRP78 and ubiquitinated proteins in the cochleae of young C57BL/6 mice and aged mice to assess the capacity of the UPR. The lower expression of GRP78 and the increased number of ubiquitinated proteins observed in the cochleae of aged mice suggested that the capacity of the UPR was impaired and that the cell death pathway was activated. We found a markedly increased expression of the ER-related pro-apoptotic factor C/EBP homologous protein (CHOP) in the cochleae of aged mice, whereas the level of cleaved caspase-12 did not differ between the two groups. In addition, the cleavage of caspase-9, caspase-3 and poly [ADP-ribose] polymerase 1 was significantly increased in the aged cochleae, suggesting the activation of apoptosis in the cochleae resulting from the cross-talk between the ER and mitochondria through CHOP. These results indicated that impaired UPR in the cochleae of aged C57BL/6 mice resulting in ER stress may lead to apoptosis that is dependent on the mitochondrial pathway and that ER stress induced apoptosis may not be mediated by caspase-12.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xingxing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xia Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
419
|
Habeck G, Ebner FA, Shimada-Kreft H, Kreft SG. The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron. ACTA ACUST UNITED AC 2015; 209:261-73. [PMID: 25918226 PMCID: PMC4411271 DOI: 10.1083/jcb.201408088] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Saccharomyces cerevisiae, surprisingly, the transmembrane protein Sbh2, which harbors an intramembrane degron, is a substrate of the ubiquitin-protein ligase Doa10. Aberrant endoplasmic reticulum (ER) proteins are eliminated by ER-associated degradation (ERAD). This process involves protein retrotranslocation into the cytosol, ubiquitylation, and proteasomal degradation. ERAD substrates are classified into three categories based on the location of their degradation signal/degron: ERAD-L (lumen), ERAD-M (membrane), and ERAD-C (cytosol) substrates. In Saccharomyces cerevisiae, the membrane proteins Hrd1 and Doa10 are the predominant ERAD ubiquitin-protein ligases (E3s). The current notion is that ERAD-L and ERAD-M substrates are exclusively handled by Hrd1, whereas ERAD-C substrates are recognized by Doa10. In this paper, we identify the transmembrane (TM) protein Sec61 β-subunit homologue 2 (Sbh2) as a Doa10 substrate. Sbh2 is part of the trimeric Ssh1 complex involved in protein translocation. Unassembled Sbh2 is rapidly degraded in a Doa10-dependent manner. Intriguingly, the degron maps to the Sbh2 TM region. Thus, in contrast to the prevailing view, Doa10 (and presumably its human orthologue) has the capacity for recognizing intramembrane degrons, expanding its spectrum of substrates.
Collapse
Affiliation(s)
- Gregor Habeck
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Felix A Ebner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | - Stefan G Kreft
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
420
|
Schlebach JP, Narayan M, Alford C, Mittendorf KF, Carter BD, Li J, Sanders CR. Conformational Stability and Pathogenic Misfolding of the Integral Membrane Protein PMP22. J Am Chem Soc 2015; 137:8758-68. [PMID: 26102530 PMCID: PMC4507940 DOI: 10.1021/jacs.5b03743] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Despite broad biochemical
relevance, our understanding of the physiochemical
reactions that limit the assembly and cellular trafficking of integral
membrane proteins remains superficial. In this work, we report the
first experimental assessment of the relationship between the conformational
stability of a eukaryotic membrane protein and the degree to which
it is retained by cellular quality control in the secretory pathway.
We quantitatively assessed both the conformational equilibrium and
cellular trafficking of 12 variants of the α-helical membrane
protein peripheral myelin protein 22 (PMP22), the intracellular misfolding
of which is known to cause peripheral neuropathies associated with
Charcot–Marie–Tooth disease (CMT). We show that the
extent to which these mutations influence the energetics of Zn(II)-mediated
PMP22 folding is proportional to the observed reduction in cellular
trafficking efficiency. Strikingly, quantitative analyses also reveal
that the reduction of motor nerve conduction velocities in affected
patients is proportional to the extent of the mutagenic destabilization.
This finding provides compelling evidence that the effects of these
mutations on the energetics of PMP22 folding lie at the heart of the
molecular basis of CMT. These findings highlight conformational stability
as a key factor governing membrane protein biogenesis and suggest
novel therapeutic strategies for CMT.
Collapse
Affiliation(s)
| | | | - Catherine Alford
- #Flow Cytometry Core, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232, United States
| | | | | | - Jun Li
- ⊥Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
421
|
A Floor-Plate Extracellular Protein-Protein Interaction Screen Identifies Draxin as a Secreted Netrin-1 Antagonist. Cell Rep 2015; 12:694-708. [DOI: 10.1016/j.celrep.2015.06.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 04/28/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022] Open
|
422
|
Lencer WI, DeLuca H, Grey MJ, Cho JA. Innate immunity at mucosal surfaces: the IRE1-RIDD-RIG-I pathway. Trends Immunol 2015; 36:401-9. [PMID: 26093676 PMCID: PMC4490948 DOI: 10.1016/j.it.2015.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/25/2022]
Abstract
Recent studies have linked the ER stress sensor IRE1α with the RIG-I pathway, which triggers an inflammatory response upon detection of viral RNAs. In response to ER dysfunction, IRE1α cleaves mRNA into single-strand fragments that lack markers of self, which activate RIG-I. Certain microbial products from mucosal pathogens activate this pathway by binding IRE1α directly, and the discovery that IRE1 is amplified at mucosal surfaces by gene duplication suggests an important role for IRE1 in mucosal immunity. Here, we review evidence in support of this hypothesis, and propose a model wherein IRE1 surveys the integrity of the ER, acting as a guard receptor and a pattern recognition receptor, capable both of sensing cellular stress caused by microbial infection and of responding to pathogens directly.
Collapse
Affiliation(s)
- Wayne I Lencer
- Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA; Harvard Digestive Diseases Center, Boston, MA, USA.
| | - Heidi DeLuca
- Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | - Michael J Grey
- Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | - Jin Ah Cho
- Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA; Harvard Digestive Diseases Center, Boston, MA, USA
| |
Collapse
|
423
|
Heiss S, Puxbaum V, Gruber C, Altmann F, Gasser B, Mattanovich D. Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization. Microbiology (Reading) 2015; 161:1356-68. [DOI: 10.1099/mic.0.000105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
424
|
Martens S, Bachmair A. How cells coordinate waste removal through their major proteolytic pathways. Nat Cell Biol 2015; 17:841-2. [DOI: 10.1038/ncb3198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
425
|
An H, Statsyuk AV. An inhibitor of ubiquitin conjugation and aggresome formation. Chem Sci 2015; 6:5235-5245. [PMID: 28717502 PMCID: PMC5500945 DOI: 10.1039/c5sc01351h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/22/2015] [Indexed: 11/21/2022] Open
Abstract
Proteasome inhibitors have revolutionized the treatment of multiple myeloma, and validated the therapeutic potential of the ubiquitin proteasome system (UPS). It is believed that in part, proteasome inhibitors elicit their therapeutic effect by inhibiting the degradation of misfolded proteins, which is proteotoxic and causes cell death. In spite of these successes, proteasome inhibitors are not effective against solid tumors, thus necessitating the need to explore alternative approaches. Furthermore, proteasome inhibitors lead to the formation of aggresomes that clear misfolded proteins via the autophagy-lysosome degradation pathway. Importantly, aggresome formation depends on the presence of polyubiquitin tags on misfolded proteins. We therefore hypothesized that inhibitors of ubiquitin conjugation should inhibit both degradation of misfolded proteins, and ubiquitin dependent aggresome formation, thus outlining the path forward toward more effective anticancer therapeutics. To explore the therapeutic potential of targeting the UPS to treat solid cancers, we have developed an inhibitor of ubiquitin conjugation (ABP A3) that targets ubiquitin and Nedd8 E1 enzymes, enzymes that are required to maintain the activity of the entire ubiquitin system. We have shown that ABP A3 inhibits conjugation of ubiquitin to intracellular proteins and prevents the formation of cytoprotective aggresomes in A549 lung cancer cells. Furthermore, ABP A3 induces activation of the unfolded protein response and apoptosis. Thus, similar to proteasome inhibitors MG132, bortezomib, and carfilzomib, ABP A3 can serve as a novel probe to explore the therapeutic potential of the UPS in solid and hematological malignancies.
Collapse
Affiliation(s)
- Heeseon An
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Chemistry of Life Processes Institute , Northwestern University , Silverman Hall, 2145 Sheridan Road , Evanston , Illinois 60208 , USA
| | - Alexander V Statsyuk
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Chemistry of Life Processes Institute , Northwestern University , Silverman Hall, 2145 Sheridan Road , Evanston , Illinois 60208 , USA
| |
Collapse
|
426
|
Cheng D, Weckerle A, Yu Y, Ma L, Zhu X, Murea M, Freedman BI, Parks JS, Shelness GS. Biogenesis and cytotoxicity of APOL1 renal risk variant proteins in hepatocytes and hepatoma cells. J Lipid Res 2015; 56:1583-93. [PMID: 26089538 DOI: 10.1194/jlr.m059733] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Two APOL1 gene variants, which likely evolved to protect individuals from African sleeping sickness, are strongly associated with nondiabetic kidney disease in individuals with recent African ancestry. Consistent with its role in trypanosome killing, the pro-death APOL1 protein is toxic to most cells, but its mechanism of cell death is poorly understood and little is known regarding its intracellular trafficking and secretion. Because the liver appears to be the main source of circulating APOL1, we examined its secretory behavior and mechanism of toxicity in hepatoma cells and primary human hepatocytes. APOL1 is poorly secreted in vitro, even in the presence of chemical chaper-ones; however, it is efficiently secreted in wild-type transgenic mice, suggesting that APOL1 secretion has specialized requirements that cultured cells fail to support. In hepatoma cells, inducible expression of APOL1 and its risk variants promoted cell death, with the G1 variant displaying the highest degree of toxicity. To explore the basis for APOL1-mediated cell toxicity, endoplasmic reticulum stress, pyroptosis, autophagy, and apoptosis were examined. Our results suggest that autophagy represents the predominant mechanism of APOL1-mediated cell death. Overall, these results increase our understanding of the basic biology and trafficking behavior of circulating APOL1 from the liver.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| | - Allison Weckerle
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| | - Yi Yu
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| | - Lijun Ma
- Nephrology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Xuewei Zhu
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| | - Mariana Murea
- Nephrology, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - John S Parks
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| | - Gregory S Shelness
- Department of Internal Medicine, Sections on Molecular Medicine Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
427
|
Abascal F, Ezkurdia I, Rodriguez-Rivas J, Rodriguez JM, del Pozo A, Vázquez J, Valencia A, Tress ML. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level. PLoS Comput Biol 2015; 11:e1004325. [PMID: 26061177 PMCID: PMC4465641 DOI: 10.1371/journal.pcbi.1004325] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. Alternative splicing is thought to be one means for generating the protein diversity necessary for the whole range of cellular functions. While the presence of alternatively spliced transcripts in the cell has been amply demonstrated, the same cannot be said for alternatively spliced proteins. The quest for alternative protein isoforms has focused primarily on the analysis of peptides from large-scale mass spectroscopy experiments, but evidence for alternative isoforms has been patchy and contradictory. A careful analysis of the peptide evidence is needed to fully understand the scale of alternative splicing detectable at the protein level. Here we analysed peptides from eight large-scale data sets, identifying just 282 splice events among 12,716 genes. This suggests that most genes have a single dominant isoform. Many of the alternative isoforms that we identified were only subtly different from the main splice variant, and one in five was generated by substitution of homologous exons by swapping one related exon for another. Remarkably, the alternative isoforms generated from homologous exons were highly conserved, first appearing 460 million years ago, and several appear to have tissue-specific roles in the brain and heart. Our results suggest that these particular isoforms are likely to have important cellular roles.
Collapse
Affiliation(s)
- Federico Abascal
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Iakes Ezkurdia
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Rodriguez-Rivas
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jose Manuel Rodriguez
- National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Angela del Pozo
- Instituto de Genetica Medica y Molecular, Hospital Universitario La Paz, Madrid, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Madrid, Spain
| | - Alfonso Valencia
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail: (AV); (MLT)
| | - Michael L. Tress
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail: (AV); (MLT)
| |
Collapse
|
428
|
Mueller S, Wahlander A, Selevsek N, Otto C, Ngwa EM, Poljak K, Frey AD, Aebi M, Gauss R. Protein degradation corrects for imbalanced subunit stoichiometry in OST complex assembly. Mol Biol Cell 2015; 26:2596-608. [PMID: 25995378 PMCID: PMC4501358 DOI: 10.1091/mbc.e15-03-0168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/11/2015] [Indexed: 01/06/2023] Open
Abstract
A combination of SILAC and targeted mass spectrometry provides a sensitive method to measure protein half-lives in yeast. Degradation rates are generally low in wild-type cells; however, ERAD is important to correct for imbalanced subunit stoichiometry. This approach is used to establish an assembly model for the OST complex. Protein degradation is essential for cellular homeostasis. We developed a sensitive approach to examining protein degradation rates in Saccharomyces cerevisiae by coupling a SILAC approach to selected reaction monitoring (SRM) mass spectrometry. Combined with genetic tools, this analysis made it possible to study the assembly of the oligosaccharyl transferase complex. The ER-associated degradation machinery compensated for disturbed homeostasis of complex components by degradation of subunits in excess. On a larger scale, protein degradation in the ER was found to be a minor factor in the regulation of protein homeostasis in exponentially growing cells, but ERAD became relevant when the gene dosage was affected, as demonstrated in heterozygous diploid cells. Hence the alleviation of fitness defects due to abnormal gene copy numbers might be an important function of protein degradation.
Collapse
Affiliation(s)
- Susanne Mueller
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Asa Wahlander
- Functional Genomics Center Zurich, UZH/ETH Zurich, CH-8057 Zurich, Switzerland
| | - Nathalie Selevsek
- Functional Genomics Center Zurich, UZH/ETH Zurich, CH-8057 Zurich, Switzerland
| | - Claudia Otto
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, CH-8092 Zurich, Switzerland
| | - Elsy Mankah Ngwa
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Kristina Poljak
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Alexander D Frey
- Department of Biotechnology and Chemical Technology, Aalto University, FI-00076 Aalto, Finland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Robert Gauss
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
429
|
Abstract
The endosomal sorting complexes required for transport (ESCRT) are best known for their role in sorting ubiquitylated membrane proteins into endosomes. The most ancient component of the ESCRT machinery is ESCRT-III, which is capable of oligomerizing into a helical filament that drives the invagination and scission of membranes aided by the AAA ATPase, Vps4, in several additional subcellular contexts. Our recent study broadens the work of ESCRT-III by identifying its role in a quality control pathway at the nuclear envelope (NE) that ensures the normal biogenesis of nuclear pore complexes (NPCs). Here, we will elaborate on how we envision this mechanism to progress and incorporate ESCRT-III into an emerging model of nuclear pore formation. Moreover, we speculate there are additional roles for the ESCRT-III machinery at the NE that broadly function to ensure its integrity and the maintenance of the nuclear compartment.
Collapse
Key Words
- ERAD, ER-Associated Degradation
- ESCRT, Endosomal Sorting Complexes Required for Transport
- INM, Inner Nuclear Membrane
- LEM, Lap2, Emerin, MAN1
- MVB, Multivesicular Body
- NE, Nuclear Envelope
- NLS, Nuclear Localization Signal
- NPC, Nuclear Pore Complex
- ONM, Outer Nuclear Membrane
- SINC, Storage of Improperly assembled Nuclear pore Complexes
- endosomal sorting complex required for transport
- membrane curvature
- nuclear envelope
- nuclear pore complex
- quality control
Collapse
|
430
|
Xu C, Ng DT. O-mannosylation: The other glycan player of ER quality control. Semin Cell Dev Biol 2015; 41:129-34. [DOI: 10.1016/j.semcdb.2015.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 01/07/2023]
|
431
|
Ramírez S, Claret M. Hypothalamic ER stress: A bridge between leptin resistance and obesity. FEBS Lett 2015; 589:1678-87. [PMID: 25913783 DOI: 10.1016/j.febslet.2015.04.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
The prevalence of obesity has increased worldwide at an alarming rate. However, non-invasive pharmacological treatments remain elusive. Leptin resistance is a general feature of obesity, thus strategies aimed at enhancing the sensitivity to this hormone may constitute an excellent therapeutical approach to counteract current obesity epidemics. Nevertheless, the etiology and neuronal basis of leptin resistance remains an enigma. A recent hypothesis gaining substantial experimental support is that hypothalamic endoplasmic reticulum (ER) stress plays a causal role in the development of leptin resistance and obesity. The objective of this review article is to provide an updated view on current evidence connecting hypothalamic ER stress with leptin resistance. We discuss the experimental findings supporting this hypothesis, as well as the potential causes and underlying mechanisms leading to this metabolic disorder. Understanding these mechanisms may provide key insights into the development of novel intervention approaches.
Collapse
Affiliation(s)
- Sara Ramírez
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marc Claret
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| |
Collapse
|
432
|
Venkatraman Girija U, Furze CM, Gingras AR, Yoshizaki T, Ohtani K, Marshall JE, Wallis AK, Schwaeble WJ, El-Mezgueldi M, Mitchell DA, Moody PCE, Wakamiya N, Wallis R. Molecular basis of sugar recognition by collectin-K1 and the effects of mutations associated with 3MC syndrome. BMC Biol 2015; 13:27. [PMID: 25912189 PMCID: PMC4431178 DOI: 10.1186/s12915-015-0136-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/01/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Collectin-K1 (CL-K1, or CL-11) is a multifunctional Ca(2+)-dependent lectin with roles in innate immunity, apoptosis and embryogenesis. It binds to carbohydrates on pathogens to activate the lectin pathway of complement and together with its associated serine protease MASP-3 serves as a guidance cue for neural crest development. High serum levels are associated with disseminated intravascular coagulation, where spontaneous clotting can lead to multiple organ failure. Autosomal mutations in the CL-K1 or MASP-3 genes cause a developmental disorder called 3MC (Carnevale, Mingarelli, Malpuech and Michels) syndrome, characterised by facial, genital, renal and limb abnormalities. One of these mutations (Gly(204)Ser in the CL-K1 gene) is associated with undetectable levels of protein in the serum of affected individuals. RESULTS In this study, we show that CL-K1 primarily targets a subset of high-mannose oligosaccharides present on both self- and non-self structures, and provide the structural basis for its ligand specificity. We also demonstrate that three disease-associated mutations prevent secretion of CL-K1 from mammalian cells, accounting for the protein deficiency observed in patients. Interestingly, none of the mutations prevent folding or oligomerization of recombinant fragments containing the mutations in vitro. Instead, they prevent Ca(2+) binding by the carbohydrate-recognition domains of CL-K1. We propose that failure to bind Ca(2+) during biosynthesis leads to structural defects that prevent secretion of CL-K1, thus providing a molecular explanation of the genetic disorder. CONCLUSIONS We have established the sugar specificity of CL-K1 and demonstrated that it targets high-mannose oligosaccharides on self- and non-self structures via an extended binding site which recognises the terminal two mannose residues of the carbohydrate ligand. We have also shown that mutations associated with a rare developmental disorder called 3MC syndrome prevent the secretion of CL-K1, probably as a result of structural defects caused by disruption of Ca(2+) binding during biosynthesis.
Collapse
Affiliation(s)
- Umakhanth Venkatraman Girija
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK.
| | - Christopher M Furze
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| | - Alexandre R Gingras
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK.
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093-0726, USA.
| | - Takayuki Yoshizaki
- Department of Microbiology and Immunochemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan.
| | - Katsuki Ohtani
- Department of Microbiology and Immunochemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan.
| | - Jamie E Marshall
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| | - A Katrine Wallis
- Department of Applied Science and Health, Coventry University, Coventry, CV1 5FB, UK.
| | - Wilhelm J Schwaeble
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| | | | - Daniel A Mitchell
- Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry & Warwickshire Coventry, Coventry, CV2 2DX, UK.
| | - Peter C E Moody
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK.
| | - Nobutaka Wakamiya
- Department of Microbiology and Immunochemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, 078-8510, Japan.
| | - Russell Wallis
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
433
|
Wright FA, Lu JP, Sliter DA, Dupré N, Rouleau GA, Wojcikiewicz RJH. A Point Mutation in the Ubiquitin Ligase RNF170 That Causes Autosomal Dominant Sensory Ataxia Destabilizes the Protein and Impairs Inositol 1,4,5-Trisphosphate Receptor-mediated Ca2+ Signaling. J Biol Chem 2015; 290:13948-57. [PMID: 25882839 DOI: 10.1074/jbc.m115.655043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 12/11/2022] Open
Abstract
RNF170 is an endoplasmic reticulum membrane ubiquitin ligase that contributes to the ubiquitination of activated inositol 1,4,5-trisphosphate (IP3) receptors, and also, when point mutated (arginine to cysteine at position 199), causes autosomal dominant sensory ataxia (ADSA), a disease characterized by neurodegeneration in the posterior columns of the spinal cord. Here we demonstrate that this point mutation inhibits RNF170 expression and signaling via IP3 receptors. Inhibited expression of mutant RNF170 was seen in cells expressing exogenous RNF170 constructs and in ADSA lymphoblasts, and appears to result from enhanced RNF170 autoubiquitination and proteasomal degradation. The basis for these effects was probed via additional point mutations, revealing that ionic interactions between charged residues in the transmembrane domains of RNF170 are required for protein stability. In ADSA lymphoblasts, platelet-activating factor-induced Ca(2+) mobilization was significantly impaired, whereas neither Ca(2+) store content, IP3 receptor levels, nor IP3 production were altered, indicative of a functional defect at the IP3 receptor locus, which may be the cause of neurodegeneration. CRISPR/Cas9-mediated genetic deletion of RNF170 showed that RNF170 mediates the addition of all of the ubiquitin conjugates known to become attached to activated IP3 receptors (monoubiquitin and Lys(48)- and Lys(63)-linked ubiquitin chains), and that wild-type and mutant RNF170 have apparently identical ubiquitin ligase activities toward IP3 receptors. Thus, the Ca(2+) mobilization defect seen in ADSA lymphoblasts is apparently not due to aberrant IP3 receptor ubiquitination. Rather, the defect likely reflects abnormal ubiquitination of other substrates, or adaptation to the chronic reduction in RNF170 levels.
Collapse
Affiliation(s)
- Forrest A Wright
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Justine P Lu
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | | | - Nicolas Dupré
- the Neuromuscular and Neurogenetic Disease Clinic, CHU de Québec, Laval University, Quebec City, Quebec G1J 1Z4, Canada, and
| | - Guy A Rouleau
- the Montreal Neurological Institute and Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
434
|
Choi EJ, Yoon SM, Lee S, Lee J. Trp(250) -hK2 is defective in intracellular trafficking and activates the unfolded protein response. Genes Cells 2015; 20:512-20. [PMID: 25847286 DOI: 10.1111/gtc.12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/10/2015] [Indexed: 11/27/2022]
Abstract
hK2, a member of the kallikrein protease family encoded by KLK2, is expressed exclusively in prostate and is a putative adjunct tumor marker for prostate cancer screening. The T allele of rs198977, a single nucleotide polymorphism in exon 5 of KLK2, codes for W-hK2 and is associated with lower serum hK2 levels and higher risk of prostate cancer than the C allele encoding R-hK2. To elucidate the mechanism that underlies this SNP's function, we transfected plasmids expressing R-hK2 or W-hK2 into PC3, HeLa and HEK293A cells and measured the hK2 level in cell lysates and conditioned media. The level of W-hK2 was lower than R-hK2 in conditioned media but was not different from R-hK2 in cell lysates. W-hK2 was hardly colocalized with Golgi-targeted fluorescent protein whereas R-hK2 colocalized. Reporter assays related to the unfolded protein response (UPR) and phospho-eIF2α immunoblot showed that W-hK2 increased UPR activity more than R-hK2. These results indicated that W-hK2 had a defect in cellular trafficking from the ER to the Golgi complex due to its misfolding and that it activated the UPR, suggesting a mechanism to explain the association of the T allele with higher prostate cancer risk.
Collapse
Affiliation(s)
- Eun Ju Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 162-1 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
| | - Sei Mee Yoon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 162-1 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
| | - Suman Lee
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Osong, Chungcheongbuk-do, 363-951, Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 162-1 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
| |
Collapse
|
435
|
Odorizzi G. ESCRTs take on a job in surveillance. Cell 2015; 159:240-1. [PMID: 25303522 DOI: 10.1016/j.cell.2014.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear pore assembly can go awry, but how the cell handles defective intermediates has been an ongoing question. In this issue, Lusk and colleagues describe a surveillance pathway during nuclear pore assembly and, in doing so, identify a new role for proteins that function at the endosome and plasma membrane.
Collapse
Affiliation(s)
- Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
436
|
Fang L, Hemion C, Pinho Ferreira Bento AC, Bippes CC, Flammer J, Neutzner A. Mitochondrial function in neuronal cells depends on p97/VCP/Cdc48-mediated quality control. Front Cell Neurosci 2015; 9:16. [PMID: 25698929 PMCID: PMC4313695 DOI: 10.3389/fncel.2015.00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/11/2015] [Indexed: 12/30/2022] Open
Abstract
Maintaining mitochondrial function is essential for neuronal survival and offers protection against neurodegeneration. Ubiquitin-mediated, proteasome-dependent protein degradation in the form of outer mitochondrial membrane associated degradation (OMMAD) was shown to play roles in maintenance of mitochondria on the level of proteostasis, but also mitophagy and cell death. Recently, the AAA-ATPase p97/VCP/Cdc48 was recognized as part of OMMAD acting as retrotranslocase of ubiquitinated mitochondrial proteins for proteasomal degradation. Thus, p97 likely plays a major role in mitochondrial maintenance. Support for this notion comes from mitochondrial dysfunction associated with amyotrophic lateral sclerosis and hereditary inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD) caused by p97 mutation. Using SH-SY5Y cells stably expressing p97 or dominant-negative p97(QQ) treated with mitochondrial toxins rotenone, 6-OHDA, or Aβ-peptide as model for neuronal cells suffering from mitochondrial dysfunction, we found mitochondrial fragmentation under normal and stress conditions was significantly increased upon inactivation of p97. Furthermore, inactivation of p97 resulted in loss of mitochondrial membrane potential and increased production of reactive oxygen species (ROS). Under additional stress conditions, loss of mitochondrial membrane potential and increased ROS production was even more pronounced. Loss of mitochondrial fidelity upon inactivation of p97 was likely due to disturbed maintenance of mitochondrial proteostasis as the employed treatments neither induced mitophagy nor cell death. This was supported by the accumulation of oxidatively-damaged proteins on mitochondria in response to p97 inactivation. Dysfunction of p97 under normal and stress conditions in neuron-like cells severely impacts mitochondrial function, thus supporting for the first time a role for p97 as a major component of mitochondrial proteostasis.
Collapse
Affiliation(s)
- Lei Fang
- Department of Biomedicine, University of Basel Basel, Switzerland
| | - Charles Hemion
- Department of Biomedicine, University of Basel Basel, Switzerland
| | | | - Claudia C Bippes
- Department of Biomedicine, University of Basel Basel, Switzerland
| | - Josef Flammer
- Department of Ophthalmology, University of Basel Basel, Switzerland
| | - Albert Neutzner
- Department of Biomedicine, University of Basel Basel, Switzerland ; Department of Ophthalmology, University of Basel Basel, Switzerland
| |
Collapse
|
437
|
Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 2015; 40:141-8. [PMID: 25656104 DOI: 10.1016/j.tibs.2015.01.002] [Citation(s) in RCA: 785] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 12/18/2022]
Abstract
Cellular stress, induced by external or internal cues, activates several well-orchestrated processes aimed at either restoring cellular homeostasis or committing to cell death. Those processes include the unfolded protein response (UPR), autophagy, hypoxia, and mitochondrial function, which are part of the global endoplasmic reticulum (ER) stress (ERS) response. When one of the ERS elements is impaired, as often occurs under pathological conditions, overall cellular homeostasis may be perturbed. Further, activation of the UPR could trigger changes in mitochondrial function or autophagy, which could modulate the UPR, exemplifying crosstalk processes. Among the numerous factors that control the magnitude or duration of these processes are ubiquitin ligases, which govern overall cellular stress outcomes. Here we summarize crosstalk among the fundamental processes governing ERS responses.
Collapse
Affiliation(s)
- Daniela Senft
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA.
| | - Ze'ev A Ronai
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
438
|
Ho DV, Chan JY. Induction of Herpud1 expression by ER stress is regulated by Nrf1. FEBS Lett 2015; 589:615-20. [PMID: 25637874 PMCID: PMC10084809 DOI: 10.1016/j.febslet.2015.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 12/30/2022]
Abstract
Herpud1 is an ER-localized protein that contributes to endoplasmic reticulum (ER) homeostasis by participating in the ER-associated protein degradation pathway. The Nrf1 transcription factor is important in cellular stress pathways. We show that loss of Nrf1 function results in decreased Herpud1 expression in cells and liver tissues. Expression of Herpud1 increases in response to ER stress, but not in Nrf1 knockout cells. Transactivation studies show that Nrf1 acts through antioxidant response elements located in the Herpud1 promoter, and chromatin immunoprecipitation demonstrates that Herpud1 is a direct Nrf1 target gene. These results indicate that Nrf1 is a transcriptional activator of Herpud1 expression during ER stress, and they suggest Nrf1 is a key player in the regulation of the ER stress response in cells.
Collapse
Affiliation(s)
- Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
439
|
Lyons JJ, Milner JD, Rosenzweig SD. Glycans Instructing Immunity: The Emerging Role of Altered Glycosylation in Clinical Immunology. Front Pediatr 2015; 3:54. [PMID: 26125015 PMCID: PMC4463932 DOI: 10.3389/fped.2015.00054] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/25/2015] [Indexed: 12/13/2022] Open
Abstract
Protein glycosylation is an important epigenetic modifying process affecting expression, localization, and function of numerous proteins required for normal immune function. Recessive germline mutations in genes responsible for protein glycosylation processes result in congenital disorders of glycosylation and can have profound immunologic consequences. Genetic mutations in immune signaling pathways that affect glycosylation sites have also been shown to cause disease. Sugar supplementation and in vivo alteration of glycans by medication holds therapeutic promise for some of these disorders. Further understanding of how changes in glycosylation alter immunity may provide novel treatment approaches for allergic disease, immune dysregulation, and immunodeficiency in the future.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Joshua D Milner
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health , Bethesda, MD , USA ; Primary Immunodeficiency Clinic, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
440
|
Protein quality control at the inner nuclear membrane. Nature 2014; 516:410-3. [PMID: 25519137 DOI: 10.1038/nature14096] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/20/2014] [Indexed: 02/05/2023]
Abstract
The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression. The outer nuclear membrane is continuous with the endoplasmic reticulum and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by endoplasmic-reticulum-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc7 (refs 2, 3). However, little is known about protein quality control at the INM. Here we describe a protein degradation pathway at the INM in yeast (Saccharomyces cerevisiae) mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi3 (ref. 4). We report that the Asi complex functions together with the ubiquitin-conjugating enzymes Ubc6 and Ubc7 to degrade soluble and integral membrane proteins. Genetic evidence suggests that the Asi ubiquitin ligase defines a pathway distinct from, but complementary to, ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquitin ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalized integral membrane proteins, thus acting to maintain and safeguard the identity of the INM.
Collapse
|
441
|
Pluquet O, Pourtier A, Abbadie C. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am J Physiol Cell Physiol 2014; 308:C415-25. [PMID: 25540175 DOI: 10.1152/ajpcell.00334.2014] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle critical for the proper folding and assembly of secreted and transmembrane proteins. Perturbations of ER functions cause ER stress, which activates a coordinated system of transcriptional and translational controls called the unfolded protein response (UPR), to cope with accumulation of misfolded proteins and proteotoxicity. It results in ER homeostasis restoration or in cell death. Senescence is a complex cell phenotype induced by several stresses such as telomere attrition, DNA damage, oxidative stress, and activation of some oncogenes. It is mainly characterized by a cell enlargement, a permanent cell-cycle arrest, and the production of a secretome enriched in proinflammatory cytokines and components of the extracellular matrix. Senescent cells accumulate with age in tissues and are suspected to play a role in age-associated diseases. Since senescence is a stress response, the question arises of whether an ER stress could occur concomitantly with senescence and participate in the onset or maintenance of the senescent features. Here, we described the interconnections between the UPR signaling and the different aspects of the cellular senescence programs and discuss the implication of UPR modulations in this context.
Collapse
Affiliation(s)
- Olivier Pluquet
- Centre National de la Recherche Scientifique, UMR8161, Institut de Biologie de Lille, Lille, France; Université Lille 1 Sciences et Techniques, Villeneuve d'Ascq, France; Université Lille 2 Droit et Santé, Lille, France; and Institut Pasteur de Lille, Lille, France
| | - Albin Pourtier
- Centre National de la Recherche Scientifique, UMR8161, Institut de Biologie de Lille, Lille, France; Université Lille 1 Sciences et Techniques, Villeneuve d'Ascq, France; Université Lille 2 Droit et Santé, Lille, France; and Institut Pasteur de Lille, Lille, France
| | - Corinne Abbadie
- Centre National de la Recherche Scientifique, UMR8161, Institut de Biologie de Lille, Lille, France; Université Lille 1 Sciences et Techniques, Villeneuve d'Ascq, France; Université Lille 2 Droit et Santé, Lille, France; and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
442
|
Affiliation(s)
- Sichen Shao
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
443
|
Folding energetics and oligomerization of polytopic α-helical transmembrane proteins. Arch Biochem Biophys 2014; 564:281-96. [DOI: 10.1016/j.abb.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
|
444
|
Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication. Curr Opin Virol 2014; 9:119-26. [DOI: 10.1016/j.coviro.2014.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/11/2022]
|
445
|
Choudhry SK, Kawałek A, van der Klei IJ. Peroxisomal quality control mechanisms. Curr Opin Microbiol 2014; 22:30-7. [PMID: 25305535 DOI: 10.1016/j.mib.2014.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Peroxisomes are ubiquitous organelles that harbor diverse metabolic pathways, which are essential for normal cell performance. Conserved functions of these organelles are hydrogen peroxide metabolism and β-oxidation. Cells employ multiple quality control mechanisms to ensure proper peroxisome function and to protect peroxisomes from damage. These involve the function of molecular chaperones, a peroxisomal Lon protease and autophagic removal of dysfunctional organelles. In addition, multiple mechanisms exist to combat peroxisomal oxidative stress. Here, we outline recent advances in our understanding of peroxisomal quality control, focussing on yeast and filamentous fungi.
Collapse
Affiliation(s)
- Sanjeev K Choudhry
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, P.O. Box 11103, 9300CC Groningen, The Netherlands
| | - Adam Kawałek
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, P.O. Box 11103, 9300CC Groningen, The Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, P.O. Box 11103, 9300CC Groningen, The Netherlands.
| |
Collapse
|
446
|
Mehnert M, Sommermeyer F, Berger M, Kumar Lakshmipathy S, Gauss R, Aebi M, Jarosch E, Sommer T. The interplay of Hrd3 and the molecular chaperone system ensures efficient degradation of malfolded secretory proteins. Mol Biol Cell 2014; 26:185-94. [PMID: 25428985 PMCID: PMC4294667 DOI: 10.1091/mbc.e14-07-1202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A central ubiquitin ligase involved in endoplasmic reticulum (ER)–associated protein degradation is the HRD-ligase. The ER-luminal subunit Hrd3 cooperates with the cochaperone Scj1 in clearing misfolded proteins from the ER. Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum (ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation ligase (HRD-ligase), and degraded by cytosolic 26S proteasomes. This process is termed ER-associated protein degradation (ERAD). We previously showed that the membrane protein Der1, which is a subunit of the HRD-ligase, is involved in the export of aberrant polypeptides from the ER. Unexpectedly, we also uncovered a close spatial proximity of Der1 and the substrate receptor Hrd3 in the ER lumen. We report here on a mutant Hrd3KR that is selectively defective for ERAD of soluble proteins. Hrd3KR displays subtle structural changes that affect its positioning toward Der1. Furthermore, increased quantities of the ER-resident Hsp70-type chaperone Kar2 and the Hsp40-type cochaperone Scj1 bind to Hrd3KR. Of note, deletion of SCJ1 impairs ERAD of model substrates and causes the accumulation of client proteins at Hrd3. Our data imply a function of Scj1 in the removal of malfolded proteins from the receptor Hrd3, which facilitates their delivery to downstream-acting components like Der1.
Collapse
Affiliation(s)
- Martin Mehnert
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Maren Berger
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Robert Gauss
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Ernst Jarosch
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
447
|
Ham H, Woolery AR, Tracy C, Stenesen D, Krämer H, Orth K. Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J Biol Chem 2014; 289:36059-69. [PMID: 25395623 DOI: 10.1074/jbc.m114.612515] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, whereas the level of AMPylated BiP decreases upon the accumulation of misfolded proteins in the ER. Both dFic and BiP are transcriptionally activated upon ER stress, supporting the role of dFic in the unfolded protein response pathway. The inactive conformation of BiP is the preferred substrate for dFic, thus endorsing a model whereby AMPylation regulates the function of BiP as a chaperone, allowing acute activation of BiP by deAMPylation during an ER stress response. These findings not only present the first substrate of eukaryotic AMPylator but also provide a target for regulating the unfolded protein response, an emerging avenue for cancer therapy.
Collapse
Affiliation(s)
- Hyeilin Ham
- From the Departments of Molecular Biology and
| | | | - Charles Tracy
- Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Drew Stenesen
- Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Helmut Krämer
- Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Kim Orth
- From the Departments of Molecular Biology and
| |
Collapse
|
448
|
Hulleman JD, Kelly JW. Genetic ablation of N-linked glycosylation reveals two key folding pathways for R345W fibulin-3, a secreted protein associated with retinal degeneration. FASEB J 2014; 29:565-75. [PMID: 25389134 DOI: 10.1096/fj.14-255414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An R345W mutation in the N-glycoprotein, fibulin-3 (F3), results in inefficient F3 folding/secretion and higher intracellular F3 levels. Inheritance of this mutation causes the retinal dystrophy malattia leventinese. N-Linked glycosylation is a common cotranslational protein modification that can regulate protein folding efficiency and energetics. Therefore, we explored how N-glycosylation alters the protein homeostasis or proteostasis of wild-type (WT) and R345W F3 in ARPE-19 cells. Enzymatic and lectin binding assays confirmed that WT and R345W F3 are both primarily N-glycosylated at Asn249. Tunicamycin treatment selectively reduced R345W F3 secretion by 87% (vs. WT F3). Genetic elimination of F3 N-glycosylation (via an N249Q mutation) caused R345W F3 to aggregate intracellularly and adopt an altered secreted conformation. The endoplasmic reticulum (ER) chaperones GRP78 (glucose-regulated protein 78) and GRP94 (glucose-regulated protein 94), and the ER lectins calnexin and calreticulin were identified as F3 binding partners by immunoprecipitation. Significantly more N249Q and N249Q/R345W F3 interacted with GRP94, while substantially less N249Q and N249Q/R345W interacted with the ER lectins than their N-glycosylated counterparts. Inhibition of GRP94 ATPase activity reduced only N249Q/R345W F3 secretion (by 62%), demonstrating this variant's unique reliance on GRP94 for secretion. These observations suggest that R345W F3, but not WT F3, requires N-glycosylation to acquire a stable, native-like structure.
Collapse
Affiliation(s)
- John D Hulleman
- Departments of Chemistry and the Skaggs Institute for Chemical Biology andMolecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jeffery W Kelly
- Departments of Chemistry and the Skaggs Institute for Chemical Biology andMolecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
449
|
Abstract
The gateway to the secretory pathway is the endoplasmic reticulum (ER), an organelle that is responsible for the accurate folding, post-translational modification and final assembly of up to a third of the cellular proteome. When secretion levels are high, errors in protein biogenesis can lead to the accumulation of abnormally folded proteins, which threaten ER homeostasis. The unfolded protein response (UPR) is an adaptive signaling pathway that counters a buildup in misfolded and unfolded proteins by increasing the expression of genes that support ER protein folding capacity. Fungi, like other eukaryotic cells that are specialized for secretion, rely upon the UPR to buffer ER stress caused by fluctuations in secretory demand. However, emerging evidence is also implicating the UPR as a central regulator of fungal pathogenesis. In this review, we discuss how diverse fungal pathogens have adapted ER stress response pathways to support the expression of virulence-related traits that are necessary in the host environment.
Collapse
Affiliation(s)
- Karthik Krishnan
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529
| | - David S Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529
| |
Collapse
|
450
|
Foresti O, Rodriguez-Vaello V, Funaya C, Carvalho P. Quality control of inner nuclear membrane proteins by the Asi complex. Science 2014; 346:751-5. [PMID: 25236469 DOI: 10.1126/science.1255638] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are eliminated by a quality control system called ER-associated protein degradation (ERAD). However, it is unknown how misfolded proteins in the inner nuclear membrane (INM), a specialized ER subdomain, are degraded. We used a quantitative proteomics approach to reveal an ERAD branch required for INM protein quality control in yeast. This branch involved the integral membrane proteins Asi1, Asi2, and Asi3, which assembled into an Asi complex. Besides INM misfolded proteins, the Asi complex promoted the degradation of functional regulators of sterol biosynthesis. Asi-mediated ERAD was required for ER homeostasis, which suggests that spatial segregation of protein quality control systems contributes to ER function.
Collapse
Affiliation(s)
- Ombretta Foresti
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Carrer del doctor Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Carrer del doctor Aiguader 88, 08003 Barcelona, Spain
| | - Victoria Rodriguez-Vaello
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Carrer del doctor Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Carrer del doctor Aiguader 88, 08003 Barcelona, Spain
| | - Charlotta Funaya
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Pedro Carvalho
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Carrer del doctor Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Carrer del doctor Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|