401
|
Salzberg S, Vilchik S, Cohen S, Heller A, Kronfeld-Kinar Y. Expression of a PKR dominant-negative mutant in myogenic cells interferes with the myogenic process. Exp Cell Res 2000; 254:45-54. [PMID: 10623464 DOI: 10.1006/excr.1999.4721] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, we explored the possibility that PKR, a dsRNA-activated regulatory protein, is an essential component in the differentiation program of myogenic cells in vitro. For this purpose, we used a retroviral expression vector pMV7, harboring the PKR dominant-negative mutant PKRDelta6 (pMV7-p68Delta6). Murine C2C12 myogenic cells were transfected either with pMV7 or with pMV7-p68Delta6. Neomycin-resistant clones from both types were isolated and expanded and the results obtained with the representative clones C2-NEO (transfected with pMV7) and clone 17 and clone 22 (both transfected with pMV7-p68Delta6) are presented. In clone 17 and 22 cells, regardless of IFN treatment, a similar level of the transfected human p68 PKR mutant was detected. This protein was absent in C2-NEO cells. In parallel, in all types of cells, a low basal level of the endogenous murine p65 PKR protein was observed, which was further induced by IFN. However, PKR enzymatic activity was significantly induced by IFN only in C2-NEO cells, while it was hardly detected in both clones 17 and 22, even after IFN treatment. Furthermore, in contrast to C2-NEO cells, only a slight to moderate increase in enzymatic activity was observed in clone 17 and 22 differentiating cells. Next, cells were grown either in growth medium (GM) or differentiation medium (DM), and the progression of the myogenic program was studied. An inhibition in myotube formation in clone 17 versus C2-NEO cells cultivated in DM was clearly observed. Furthermore, while the growth rate and thymidine incorporation were reduced in C2-NEO cells grown in DM, both clone 17 and 22 cells were less affected under the same conditions. Similarly, a delay in the accumulation of the transcription factors MyoD and myogenin, as well as in creatine kinase activity and accumulation of troponin T, was detected in DM-cultivated clone 17 and clone 22 cells. Moreover, a delay in the induction of p21 (WAF1), in down-regulation of cyclin D1 and c-myc, and in the accumulation of the underphosphorylated form of pRb was also observed in clone 17 cells. We conclude that inhibition of endogenous PKR activity by a PKR dominant-negative mutant interferes with the myogenic program of murine C2C12 myogenic cells.
Collapse
Affiliation(s)
- S Salzberg
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | | | | | | | | |
Collapse
|
402
|
Iordanov MS, Paranjape JM, Zhou A, Wong J, Williams BR, Meurs EF, Silverman RH, Magun BE. Activation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase by double-stranded RNA and encephalomyocarditis virus: involvement of RNase L, protein kinase R, and alternative pathways. Mol Cell Biol 2000; 20:617-27. [PMID: 10611240 PMCID: PMC85147 DOI: 10.1128/mcb.20.2.617-627.2000] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Double-stranded RNA (dsRNA) accumulates in virus-infected mammalian cells and signals the activation of host defense pathways of the interferon system. We describe here a novel form of dsRNA-triggered signaling that leads to the stimulation of the p38 mitogen-activated protein kinase (p38 MAPK) and the c-Jun NH(2)-terminal kinase (JNK) and of their respective activators MKK3/6 and SEK1/MKK4. The dsRNA-dependent signaling to p38 MAPK was largely intact in cells lacking both RNase L and the dsRNA-activated protein kinase (PKR), i. e., the two best-characterized mediators of dsRNA-triggered antiviral responses. In contrast, activation of both MKK4 and JNK by dsRNA was greatly reduced in cells lacking RNase L (or lacking both RNase L and PKR) but was restored in these cells when introduction of dsRNA was followed by inhibition of ongoing protein synthesis or transcription. These results are consistent with the notion that the role of RNase L and PKR in the activation of MKK4 and JNK is the elimination, via inhibition of protein synthesis, of a labile negative regulator(s) of the signaling to JNK acting upstream of SEK1/MKK4. In the course of these studies, we identified a long-sought site of RNase L-mediated cleavage in the 28S rRNA, which could cause inhibition of translation, thus allowing the activation of JNK by dsRNA. We propose that p38 MAPK is a general participant in dsRNA-triggered cellular responses, whereas the activation of JNK might be restricted to cells with reduced rates of protein synthesis. Our studies demonstrate the existence of alternative (RNase L- and PKR-independent) dsRNA-triggered signaling pathways that lead to the stimulation of stress-activated MAPKs. Activation of p38 MAPK (but not of JNK) was demonstrated in mouse fibroblasts in response to infection with encephalomyocarditis virus (ECMV), a picornavirus that replicates through a dsRNA intermediate. Fibroblasts infected with EMCV (or treated with dsRNA) produced interleukin-6, an inflammatory and pyrogenic cytokine, in a p38 MAPK-dependent fashion. These findings suggest that stress-activated MAPKs participate in mediating inflammatory and febrile responses to viral infections.
Collapse
Affiliation(s)
- M S Iordanov
- Department of Cell Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
403
|
Korth MJ, Katze MG. Evading the interferon response: hepatitis C virus and the interferon-induced protein kinase, PKR. Curr Top Microbiol Immunol 1999; 242:197-224. [PMID: 10592662 DOI: 10.1007/978-3-642-59605-6_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M J Korth
- Regional Primate Research Center, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
404
|
Chu WM, Ostertag D, Li ZW, Chang L, Chen Y, Hu Y, Williams B, Perrault J, Karin M. JNK2 and IKKbeta are required for activating the innate response to viral infection. Immunity 1999; 11:721-31. [PMID: 10626894 DOI: 10.1016/s1074-7613(00)80146-6] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral infection or double-stranded (ds) RNA induce interferons (IFN) and other cytokines. Transcription factors mediating IFN induction are known, but the signaling pathways that regulate them are less clear. We now describe two such pathways. The first pathway leading to NF-kappaB depends on the dsRNA-responsive protein kinase (PKR), which in turn activates IKB kinase (IKK) through the IKKbeta subunit. The second viral-and dsRNA-responsive pathway is PKR independent and involves Jun kinase (JNK) activation leading to stimulation of AP-1. Both IKKbeta and JNK2 are essential for efficient induction of type I IFN and other cytokines in response to viral infection or dsRNA. This study establishes a general role for these kinases in activation of innate immune responses.
Collapse
Affiliation(s)
- W M Chu
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0636, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Kawakubo K, Kuhen KL, Vessey JW, George CX, Samuel CE. Alternative splice variants of the human PKR protein kinase possessing different 5'-untranslated regions: expression in untreated and interferon-treated cells and translational activity. Virology 1999; 264:106-14. [PMID: 10544135 DOI: 10.1006/viro.1999.9995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The double-stranded RNA-dependent protein kinase PKR is an interferon-inducible enzyme that possesses antiviral and antiproliferative activities. We examined expression of PKR transcripts in human placenta tissue and cultured human amnion U cells. Alternative exon 2 structures were identified and characterized that possess different functional activities. Cloning and sequence analyses of 5'-RACE cDNAs from human placenta established a linkage between exon 1 and three alternative exon 2 structures that constitute, together with part of exon 3, the 5'-untranslated region of the PKR mRNA. The alternative splice variants of exon 2 were designated Ex2alpha (83 nucleotides), Ex2beta (167 nucleotides), and Ex2gamma (401 nucleotides). All three exon 2 variants were present in placenta tissue. However, only the Ex2alpha and Ex2beta forms were detectable in the amnion U cell line. Nuclease protection analysis revealed that the Ex2beta form was slightly more abundant than the Ex2alpha form, in both placenta tissue and U cells. Interferon treatment of U cells increased the level of both Ex2alpha and Ex2beta RNA by approximately 5-fold. The translational activities, measured in a luciferase reporter assay, of RNA transcripts possessing the Ex2alpha and Ex2beta forms of the PKR 5'-UTR were comparable to each other and more efficient than those with the Ex2gamma form.
Collapse
Affiliation(s)
- K Kawakubo
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
406
|
Abstract
Successful viral replication requires not only the efficient production and spread of progeny, but also evasion of host defense mechanisms that limit replication by killing infected cells. In addition to inducing immune and inflammatory responses, infection by most viruses triggers apoptosis or programmed cell death of the infected cell. This cell response often results as a compulsory or unavoidable by-product of the action of critical viral replicative functions. In addition, some viruses seem to use apoptosis as a mechanism of cell killing and virus spread. In both cases, successful replication relies on the ability of certain viral products to block or delay apoptosis until sufficient progeny have been produced. Such proteins target a variety of strategic points in the apoptotic pathway. In this review we summarize the great amount of recent information on viruses and apoptosis and offer insights into how this knowledge may be used for future research and novel therapies.
Collapse
Affiliation(s)
- A Roulston
- GeminX Biotechnologies Inc., Montreal, Quebec, Canada.
| | | | | |
Collapse
|
407
|
Muto NF, Martinand-Mari C, Adelson ME, Suhadolnik RJ. Inhibition of replication of reactivated human immunodeficiency virus type 1 (HIV-1) in latently infected U1 cells transduced with an HIV-1 long terminal repeat-driven PKR cDNA construct. J Virol 1999; 73:9021-8. [PMID: 10516008 PMCID: PMC112934 DOI: 10.1128/jvi.73.11.9021-9028.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/1999] [Accepted: 08/06/1999] [Indexed: 11/20/2022] Open
Abstract
Treatment of human immunodeficiency virus type 1 (HIV-1)-infected individuals with highly active antiretroviral therapy has effectively decreased viral load to undetectable levels. However, efforts to eliminate HIV-1 from these individuals have been unsuccessful, due to the presence of stable, latent viral reservoirs in resting and active CD4(+) T lymphocytes and macrophages. These latent populations have become critical targets in the effort to eradicate HIV-1 from infected individuals. The mechanisms of HIV-1 latency have been studied by using the HIV-1-infected promonocytic cell line U1. The interferon-inducible double-stranded RNA-dependent p68 protein kinase (PKR), a key enzyme in the host-mediated antiviral response, is known to be down-regulated during HIV-1 infection. Therefore, in order to evaluate the role of PKR in the inhibition of replication of reactivated HIV-1 in latently infected U1 cells, we have utilized cDNA constructs containing PKR under the transcriptional control of the HIV-1 long terminal repeat. One PKR-transduced clone, U1/106-4:27, inhibited the tumor necrosis factor alpha (TNF-alpha)-induced replication of HIV-1 by 99% compared to control U1 cells as measured by syncytium formation and HIV-1 p24 antigen enzyme-linked immunosorbent assay. Western blot analysis showed an increase in PKR expression through 96 h postinduction in the U1/106-4:27 clone, concomitant with maximal increases in phosphorylation of the alpha subunit of eukaryotic initiation factor 2 and NF-kappaB activity at 72 h postinduction. These results demonstrate that overexpression of PKR can inhibit the replication of reactivated HIV-1 in latently infected cells and confirm the involvement of PKR in the interferon-associated antiviral pathway against HIV-1 infection. Additionally, treatment of the PKR-transduced U1/106-4:27 clone with the protease inhibitor saquinavir (250 nM) completely inhibited TNF-alpha-induced HIV-1 replication.
Collapse
Affiliation(s)
- N F Muto
- Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
408
|
Rivas C, Gil J, Esteban M. Identification of functional domains of the interferon-induced enzyme PKR in cells lacking endogenous PKR. J Interferon Cytokine Res 1999; 19:1229-36. [PMID: 10574614 DOI: 10.1089/107999099312885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interferon (IFN)-induced, double-stranded RNA (dsRNA)-activated human protein kinase (PKR) has been shown to exert antiviral and antiproliferative effects. Activation of the enzyme in mammalian cells results in protein synthesis inhibition and cell death by apoptosis. Previous studies on the structure-function relationship of PKR have been based on vectors expressing the enzyme in mammalian cells containing endogenous PKR. As exogenously expressed PKR can form heterodimers with endogenous PKR, the results obtained on the functional characterization of mutant forms of PKR have been taken with caution. To address the natural consequences of heterodimer formation between endogenous and exogenous PKR, we have analyzed the structure-function relationship of PKR ectopically expressed from vaccinia virus (VV) recombinants in cells lacking the endogenous enzyme. We demonstrate that PKR-mediated inhibition of protein synthesis and induction of apoptosis is not dependent on the presence of endogenous PKR. Further, PKR activity is independent of the presence of dsRNA binding motifs (dsRBM). Moreover, single-point mutations of the third basic domain decreased PKR activation. Our findings demonstrate that PKR can be activated in the absence of its N-terminal domain (amino acids 1-232) and that the third basic domain is important for its biologic function.
Collapse
Affiliation(s)
- C Rivas
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
409
|
Abstract
The double stranded RNA (dsRNA)-activated protein kinase PKR is a ubiquitously expressed serine/threonine protein kinase that is induced by interferon and activated by dsRNA, cytokine, growth factor and stress signals. It is essential for cells to respond adequately to different stresses including growth factor deprivation, products of the inflammatory response (TNF) and bacterial (lipopolysaccharide) and viral (dsRNA) products. As a vital component of the cellular antiviral response pathway, PKR is autophosphorylated and activated on binding to dsRNA. This results in inhibition of protein synthesis via the phosphorylation of eIF2alpha and also induces transcription of inflammatory genes by PKR-dependent signaling of the activation of different transcription factors. Along with RNaseL, PKR constitutes the antiviral arm of a group of mammalian stress response proteins that have counterparts in yeast. What began as adaptation to amino acid deprivation and sensing unfolded proteins in the endoplasmic reticulum has evolved into a family of sophisticated mammalian stress response proteins able to mediate cellular responses to both physical and biological stress.
Collapse
Affiliation(s)
- B R Williams
- Department of Cancer Biology NB40, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio, OH 44195, USA
| |
Collapse
|
410
|
James MC, Jeffrey IW, Pruijn GJ, Thijssen JP, Clemens MJ. Translational control by the La antigen. Structure requirements for rescue of the double-stranded RNA-mediated inhibition of protein synthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:151-62. [PMID: 10542060 DOI: 10.1046/j.1432-1327.1999.00839.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The La antigen is a protein which can bind both single-stranded and double-stranded forms of RNA and has regulatory effects on gene expression at the levels of transcription and translation. It was previously shown to inhibit the activation of the dsRNA-dependent protein kinase PKR by sequestering and/or unwinding double-stranded RNA. Here, we demonstrate that, as predicted by these properties, the La antigen can rescue protein synthesis in the reticulocyte lysate system from inhibition by low concentrations of dsRNA. This effect is reversed by higher concentrations of dsRNA. Using a series of deletion mutants we have investigated the structural features of the La antigen that are required for these effects. The ability to bind dsRNA is influenced by regions within both the previously characterized N-terminal RNP motif and the C-terminal half of the protein. La mutants with either N-terminal or C-terminal deletions retain the ability to inhibit the protein kinase activity of PKR and to rescue protein synthesis from inhibition by dsRNA. It is notable that sequences in the C-terminal half of the La antigen, including a phosphorylation site at Ser366, which are needed for other regulatory effects of the protein on gene expression are dispensable for the effects of La on PKR. We suggest that La regulates PKR activity solely as a result of its ability to act as an RNA-binding protein that can compete with PKR for limiting amounts of dsRNA.
Collapse
Affiliation(s)
- M C James
- Department of Biochemistry, Cellular and Molecular Sciences Group, St. George's Hospital Medical School, London, UK
| | | | | | | | | |
Collapse
|
411
|
Nguyen H, Teskey L, Lin R, Hiscott J. Identification of the secretory leukocyte protease inhibitor (SLPI) as a target of IRF-1 regulation. Oncogene 1999; 18:5455-63. [PMID: 10498899 DOI: 10.1038/sj.onc.1202924] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon Regulatory Factor (IRF)-1 is a multifunctional transcription factor, involved in cell growth regulation, pathogen response and immune activation. To identify novel gene targets that may contribute to IRF-1 mediated activities, RNA fingerprinting was performed using NIH3T3 cells that inducibly express a hybrid form of IRF-1 under tetracycline regulated control. Secretory leukocyte protease inhibitor (SLPI) - a regulator of inflammation and an inhibitor of the LPS response - was identified as a gene repressed after doxycycline induced IRF-1 expression. Preliminary analysis of the human SLPI promoter identified an ISRE-like site located within the -221 to -200 region to which IRF-1 binds and a second, putative IRF-1 binding site upstream of the TATA box. Furthermore, co-transfection studies demonstrated that SLPI expression was inhibited by IRF-1 co-expression. The identification of SLPI as a target of IRF-1 regulation reveals a unique involvement of IRF-1 in repression of gene transcription and assigns a novel role for IRF-1 in inflammation.
Collapse
Affiliation(s)
- H Nguyen
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | |
Collapse
|
412
|
DeLuca C, Kwon H, Lin R, Wainberg M, Hiscott J. NF-kappaB activation and HIV-1 induced apoptosis. Cytokine Growth Factor Rev 1999; 10:235-53. [PMID: 10647779 DOI: 10.1016/s1359-6101(99)00015-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HIV infection leads to the progressive loss of CD4+ T cells and the near complete destruction of the immune system in the majority of infected individuals. High levels of viral gene expression and replication result in part from the activation of NF-kappaB transcription factors, which in addition to orchestrating the host inflammatory response also activate the HIV-1 long terminal repeat. NF-kappaB induces the expression of numerous cytokine, chemokine, growth factor and immunoregulatory genes, many of which promote HIV-1 replication. Thus, NF-kappaB activation represents a double edged sword in HIV-1 infected cells, since stimuli that induce an NF-kappaB mediated immune response will also lead to enhanced HIV-1 transcription. NF-kappaB has also been implicated in apoptotic signaling, protecting cells from programmed cell death under most circumstances and accelerating apoptosis in others. Therefore, activation of NF-kappaB can impact upon HIV-1 replication and pathogenesis at many levels, making the relationship between HIV-1 expression and NF-kappaB activation multi-faceted. This review will attempt to analyse the many faces and functions of NF-kappaB in the HIV-1 lifecycle.
Collapse
Affiliation(s)
- C DeLuca
- Lady Davis Institute for Medical Research, Department of Microbiology, McGill AIDS Center, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
413
|
Abstract
The non-structural (NS)5A protein of hepatitis C virus (HCV) is cleaved, after translation, by the NS3-encoded zinc-dependent serine proteinase, from the NS4B protein upstream and the NS5B protein downstream. The released, mature NS5A protein is a 56 000 MW phosphoprotein (p56), which also exists within infected cells in a hyperphosphorylated form (p58). The NS5A gene has a quasispecies distribution, meaning that various NS5A sequences co-exist, in various proportions, in infected individuals. HCV NS5A appears to be located in cytoplasmic membranes surrounding the nucleus. Its precise functions are not known. HCV non-structural proteins, including NS5A, form a large multiprotein replication complex, which probably directs the replication of the HCV genome. HCV NS5A lacking the 146 N-terminal amino acids is a potent transcriptional activator in vitro. NS5A can also bind to single-strand RNA-dependent protein kinase (PKR) and inhibit its antiviral function. An 'interferon (IFN) sensitivity-determining region' has recently been postulated in the NS5A protein central region in hepatitis C virus (HCV) genotype 1b, but strongly conflicting evidence has been published. In fact, there would seem to be no such region in the NS5A protein, even though NS5A plays an important and complex role in HCV resistance to IFN. Structure-function studies are required to identify precisely how NS5A and IFN interact.
Collapse
Affiliation(s)
- J M Pawlotsky
- Department of Bacteriology and Virology and INSERM U99, Hôpital Henri Mondor, Université Paris XII, Créteil, France
| | | |
Collapse
|
414
|
Adelson ME, Martinand-Mari C, Iacono KT, Muto NF, Suhadolnik RJ. Inhibition of human immunodeficiency virus (HIV-1) replication in SupT1 cells transduced with an HIV-1 LTR-driven PKR cDNA construct. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:806-15. [PMID: 10491127 DOI: 10.1046/j.1432-1327.1999.00661.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Current strategies against the human immunodeficiency virus type 1 (HIV-1), including nucleoside analogues and protease inhibitors, have limited effectiveness as shown by the evolution of resistant retroviral strains and the presence of latent HIV-1 reservoirs. Therefore, it is necessary to look beyond anti-retroviral strategies and to rely on the body's immune system to inhibit HIV-1 replication. In this study, we approach the inhibition of HIV-1 replication by upregulation of the antiviral pathway that is natural to mammalian cells. Vectors were constructed which were capable of transferring the antiviral enzyme, p68 kinase (PKR), into target SupT1 lymphoblastoid cells under HIV-1 LTR transcriptional regulation via a retroviral-mediated shuttle system. We report a significant inhibition of HIV-1 replication in HIV-1 LTR-PKR cDNA transduced clones (105-10 : 239 and 106-4 : 560) expressing different PKR levels as measured by inhibition of HIV-1 induced syncytia formation and HIV-1 reverse transcriptase activity. Whereas the expression of PKR in parental vector transduced clone (N2-20P) is down-regulated 48 h after HIV-1 infection, the two transduced clones (one with PKR in the forward orientation and one in the reverse orientation) demonstrate increased PKR expression through 96 h post-infection, concomitant with an increase in eIF-2alpha phosphorylation and an increase in NF-kappaB activity at 72 h postinfection. These results demonstrate that the overexpression of PKR can inhibit HIV-1 replication and confirm the involvement of PKR in the IFN-associated antiviral pathway against HIV-1 infection. Finally, the treatment of the transduced clone 106-4 : 560 with AZT resulted in complete inhibition of HIV-1 replication.
Collapse
Affiliation(s)
- M E Adelson
- Fels Institute for Cancer Research, Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
415
|
Farrugia J, Cann AJ. Internally controlled quantitative assays for PKR mRNA and protein from liver biopsies and other finite clinical samples. J Immunol Methods 1999; 228:59-68. [PMID: 10556543 DOI: 10.1016/s0022-1759(99)00092-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A method to quantify double-stranded RNA-dependent protein kinase (PKR) mRNA and protein from human cells is described. A competitive RT-PCR assay has been developed by synthesis of an internal standard control (ISC) species of RNA. A competitive immunoblot assay was used to quantify full-length PKR (FL-PKR) protein in a sample of total cellular proteins, using truncated PKR protein as an internal standard against which FL-PKR protein could be quantified. The method can be used for simultaneous analysis of transcriptional and postranscriptional regulation of PKR gene expression from very small clinical specimens such as liver biopsies, e.g., 2-3 mg (wet weight) and containing only 2x10(5) cells. To the best of our knowledge, this is the first report of a sensitive simultaneous assay system for this important immunoeffector molecule.
Collapse
Affiliation(s)
- J Farrugia
- Department of Microbiology, University of Leicester, Medical Sciences Building, University Road, Leicester, UK
| | | |
Collapse
|
416
|
Abstract
Adenosine deaminases that act on RNA (ADARs) are a family of RNA editing enzymes that convert adenosines to inosines within double-stranded RNA (dsRNA). Although ADARs deaminate perfectly base-paired dsRNA promiscuously, deamination is limited to a few, selected adenosines within dsRNA containing mismatches, bulges and internal loops. As a first step in understanding how RNA structural features promote selectivity, we investigated the role of internal loops within ADAR substrates. We observed that a dsRNA helix is deaminated at the same sites whether it exists as a free molecule or is flanked by internal loops. Thus, internal loops delineate helix ends for ADAR1. Since ADAR1 deaminates short RNAs at fewer adenosines than long RNAs, loops decrease the number of deaminations within an RNA by dividing a long RNA into shorter substrates. For a series of symmetric internal loops related in sequence, larger loops (>/=six nucleotides) acted as helix ends, whereas smaller loops (</=four nucleotides) did not. Our work provides the first information about how secondary structure within ADAR substrates dictates selectivity, and suggests a rational approach for delineating minimal substrates for RNAs deaminated by ADARs in vivo.
Collapse
Affiliation(s)
- K A Lehmann
- University of Utah, 50 N. Medical Drive, Salt Lake City, UT, 84132, USA
| | | |
Collapse
|
417
|
Gale M, Kwieciszewski B, Dossett M, Nakao H, Katze MG. Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase. J Virol 1999; 73:6506-16. [PMID: 10400746 PMCID: PMC112733 DOI: 10.1128/jvi.73.8.6506-6516.1999] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatitis C virus (HCV) is prevalent worldwide and has become a major cause of liver dysfunction and hepatocellular carcinoma. The high prevalence of HCV reflects the persistent nature of infection and the large frequency of cases that resist the current interferon (IFN)-based anti-HCV therapeutic regimens. HCV resistance to IFN has been attributed, in part, to the function of the viral nonstructural 5A (NS5A) protein. NS5A from IFN-resistant strains of HCV can repress the PKR protein kinase, a mediator of the IFN-induced antiviral and apoptotic responses of the host cell and a tumor suppressor. Here we examined the relationship between HCV persistence and resistance to IFN therapy. When expressed in mammalian cells, NS5A from IFN-resistant HCV conferred IFN resistance to vesicular stomatitis virus (VSV), which normally is sensitive to the antiviral actions of IFN. NS5A blocked viral double-stranded RNA (dsRNA)-induced PKR activation and phosphorylation of eIF-2alpha in IFN-treated cells, resulting in high levels of VSV mRNA translation. Mutations within the PKR-binding domain of NS5A restored PKR function and the IFN-induced block to viral mRNA translation. The effects due to NS5A inhibition of PKR were not limited to the rescue of viral mRNA translation but also included a block in PKR-dependent host signaling pathways. Cells expressing NS5A exhibited defective PKR signaling and were refractory to apoptosis induced by exogenous dsRNA. Resistance to apoptosis was attributed to an NS5A-mediated block in eIF-2alpha phosphorylation. Moreover, cells expressing NS5A exhibited a transformed phenotype and formed solid tumors in vivo. Disruption of apoptosis and tumorogenesis required the PKR-binding function of NS5A, demonstrating that these properties may be linked to the IFN-resistant phenotype of HCV.
Collapse
Affiliation(s)
- M Gale
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
418
|
Patel RC, Vestal DJ, Xu Z, Bandyopadhyay S, Guo W, Erme SM, Williams BR, Sen GC. DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR. J Biol Chem 1999; 274:20432-7. [PMID: 10400669 DOI: 10.1074/jbc.274.29.20432] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-induced double-stranded RNA-activated protein kinase PKR is the prototype of a class of double-stranded (dsRNA)-binding proteins (DRBPs) which share a dsRNA-binding motif conserved from Drosophila to humans. Here we report the purification of DRBP76, a new human member of this class of proteins. Sequence from the amino terminus of DRBP76 matched that of the M phase-specific protein, MPP4. DRBP76 was also cloned by the yeast two-hybrid screening of a cDNA library using a mutant PKR as bait. Analysis of the cDNA sequence revealed that it is the full-length version of MPP4, has a bipartite nuclear localization signal, two motifs that can mediate interactions with both dsRNA and PKR, five epitopes for potential M phase-specific phosphorylation, two potential sites for phosphorylation by cyclin-dependent kinases, a RG2 motif present in many RNA-binding proteins and predicts a protein of 76 kDa. DsRNA and PKR interactions of DRBP76 were confirmed by analysis of in vitro translated and purified native proteins. Cellular expression of an epitope-tagged DRBP76 demonstrated its nuclear localization, and its co-immunoprecipitation with PKR demonstrated that the two proteins interact in vivo. Finally, purified DRBP76 was shown to be a substrate of PKR in vitro, indicating that this protein's cellular activities may be regulated by PKR-mediated phosphorylation.
Collapse
Affiliation(s)
- R C Patel
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
419
|
Abstract
The mechanisms whereby ribosomes engage a messenger RNA and select the start site for translation differ between prokaryotes and eukaryotes. Initiation sites in polycistronic prokaryotic mRNAs are usually selected via base pairing with ribosomal RNA. That straightforward mechanism is made complicated and interesting by cis- and trans-acting elements employed to regulate translation. Initiation sites in eukaryotic mRNAs are reached via a scanning mechanism which predicts that translation should start at the AUG codon nearest the 5' end of the mRNA. Interest has focused on mechanisms that occasionally allow escape from this first-AUG rule. With natural mRNAs, three escape mechanisms - context-dependent leaky scanning, reinitiation, and possibly direct internal initiation - allow access to AUG codons which, although not first, are still close to the 5' end of the mRNA. This constraint on the initiation step of translation in eukaryotes dictates the location of transcriptional promoters and may have contributed to the evolution of splicing.The binding of Met-tRNA to ribosomes is mediated by a GTP-binding protein in both prokaryotes and eukaryotes, but the more complex structure of the eukaryotic factor (eIF-2) and its association with other proteins underlie some aspects of initiation unique to eukaryotes. Modulation of GTP hydrolysis by eIF-2 is important during the scanning phase of initiation, while modulating the release of GDP from eIF-2 is a key mechanism for regulating translation in eukaryotes. Our understanding of how some other protein factors participate in the initiation phase of translation is in flux. Genetic tests suggest that some proteins conventionally counted as eukaryotic initiation factors may not be required for translation, while other tests have uncovered interesting new candidates. Some popular ideas about the initiation pathway are predicated on static interactions between isolated factors and mRNA. The need for functional testing of these complexes is discussed. Interspersed with these theoretical topics are some practical points concerning the interpretation of cDNA sequences and the use of in vitro translation systems. Some human diseases resulting from defects in the initiation step of translation are also discussed.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
420
|
Tan SL, Katze MG. The emerging role of the interferon-induced PKR protein kinase as an apoptotic effector: a new face of death? J Interferon Cytokine Res 1999; 19:543-54. [PMID: 10433354 DOI: 10.1089/107999099313677] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent research has thrown a spotlight on the interferon (IFN)-induced PKR protein kinase, implicating it as an important effector of apoptosis induced by several cellular stress conditions, including viral infection, cytokine treatment, and growth factor deprivation. In this review, we summarize the evidence for the role of PKR as a death accomplice and discuss how PKR might promote cell demise in light of current knowledge of the molecular mechanisms of apoptosis. Given its new found role and its established antiviral function, it is no wonder that PKR is a popular target for viral evasion of the host defense. PKR-dependent apoptosis may offer a novel cell-death pathway for specific manipulation in therapeutic strategies against apoptosis-related diseases.
Collapse
Affiliation(s)
- S L Tan
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
421
|
Pavón M, Esteban M. Identification by two-dimensional gel electrophoresis of vaccinia virus and cellular phosphoproteins modified after inducible expression of the dsRNA-activated protein kinase. J Interferon Cytokine Res 1999; 19:589-99. [PMID: 10433359 DOI: 10.1089/107999099313721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) is a serine/threonine kinase that plays an important role in the biology of IFN, exerting antiviral and anticellular actions. These effects have been correlated with phosphorylation of the eukaryotic initiation factor eIF-2alpha and the NF-kappaB inhibitor IkappaB, although it has not been demonstrated that IkappaB is a direct target of PKR in vivo. In view of the various biological effects of PKR, it is likely that other cellular substrates are involved in PKR action. To identify novel substrates of PKR, we have carried out a systematic study of the phosphorylated proteins from cultured cells following PKR activation using high-resolution two-dimensional gel electrophoresis (2D-PAGE). We have used metabolic labeling with [32P]orthophosphate of HeLa cells infected with vaccinia virus (VV) recombinants expressing wild type (wt) or the catalytically inactive mutant form (K296R) of PKR under regulation of the Escherichia coli lacI operator/repressor system. Upon induction of PKR in the presence of isopropyl-beta-D-thiogalactoside (IPTG), the 68-kDA wt enzyme and eIF-2alpha are phosphorylated. These events lead to changes in the phosphorylation state of viral and cellular proteins. A distinct set of VV-induced phosphoproteins remained phophorylated, while the labeling of other viral proteins decreased markedly, probably as a result of a PKR-dependent translational block. Five proteins of unknown origin (68, 26, 20, 19, 15-16 kDA) appeared to be newly phosphorylated after PKR activation. Expression of the catalytically inactive K296R mutant form of PKR did not induce changes in the phosphorylation of VV proteins. Thus, by 2D-PAGE, we identified cellular and VV-induced phosphoproteins modified after PKR activation. Some or all of the phosphoproteins appearing or increasing in amount after PKR activation might not be direct targets of PKR, but rather indirect consequences of PKR activation.
Collapse
Affiliation(s)
- M Pavón
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | |
Collapse
|
422
|
Sharp TV, Raine DA, Gewert DR, Joshi B, Jagus R, Clemens MJ. Activation of the interferon-inducible (2'-5') oligoadenylate synthetase by the Epstein-Barr virus RNA, EBER-1. Virology 1999; 257:303-13. [PMID: 10329541 DOI: 10.1006/viro.1999.9689] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 2'-5' oligoadenylate synthetases and the protein kinase PKR are both interferon-induced, double-stranded RNA-dependent proteins that play important roles in the antiviral effects of the interferons and in cellular growth control. Both enzymes are activated by natural or synthetic dsRNAs and by single-stranded RNAs that possess extensive secondary structure. This report describes the effects of the small Epstein-Barr virus-encoded RNA EBER-1 on the regulation of 2-5(A) synthetase activity. We demonstrate that EBER-1 RNA binds to and activates the human 40-kDa 2-5(A) synthetase in a dose-dependent manner. The efficiency of EBER-1 as an activator of 2-5(A) synthetase is approximately 25% of that of the synthetic double-stranded RNA poly(I)/poly(C), and poly(I)/poly(C) further stimulates enzyme activity even in the presence of a high concentration of EBER-1. Conversely, EBER-1 neither stimulates nor inhibits 2-5(A) synthetase that has been activated by a high concentration of poly(I)/poly(C). Competitive binding assays suggest that the relative affinity of the enzyme for poly(I)/poly(C) is considerably higher than that for EBER-1. Our data indicate that EBER-1, like VAI RNA of adenovirus, TAR RNA of HIV-1, and Rex-RE RNA of HTLV-1, is able to activate the 2-5(A) synthetases. The significance of why several viruses may activate the 2-5(A) synthetase/RNase L-mediated RNA degradation pathway is discussed.
Collapse
Affiliation(s)
- T V Sharp
- Cellular and Molecular Sciences Group, St. George's Hospital Medical School, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
423
|
Tam NW, Ishii T, Li S, Wong AH, Cuddihy AR, Koromilas AE. Upregulation of STAT1 protein in cells lacking or expressing mutants of the double-stranded RNA-dependent protein kinase PKR. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:149-54. [PMID: 10231376 DOI: 10.1046/j.1432-1327.1999.00360.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interferon (IFN)-inducible double-stranded (ds) RNA-dependent protein kinase PKR plays a role in the regulation of gene expression through its capacity to phosphorylate the translation initiation factor eIF-2 and to inhibit protein synthesis. In addition to translational control, PKR has been implicated in the regulation of gene expression at the transcriptional level. In this regard, we have reported that PKR participates in IFN-and dsRNA-mediated signaling pathways by interacting with and modulating the transcriptional activity of the signal transducer and activator of transcription STAT1 [Wong, A.H.-T., Tam, N.W.N., Yang, Y.-L., Cuddihy, A.R., Li, S., Kirchhoff, S., Hauser, H., Decker, T. & Koromilas, A.E. (1997) EMBO J. 16, 1291-1304]. Here we report that the STAT1 protein is upregulated in cells lacking PKR (PKR-/-) and in cells expressing dominant negative PKR mutants. This upregulation is specific for STAT1 as increased expression is not observed for other STAT proteins. The inhibitory effect of PKR on STAT1 expression is exerted at the post-translational level because PKR-/- cells exhibit higher STAT1 protein stability than PKR+/+ cells.
Collapse
Affiliation(s)
- N W Tam
- Department of Oncology, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
424
|
Vojdani A, Lapp CW. Interferon-induced proteins are elevated in blood samples of patients with chemically or virally induced chronic fatigue syndrome. Immunopharmacol Immunotoxicol 1999; 21:175-202. [PMID: 10319275 DOI: 10.3109/08923979909052757] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Overlapping symptomatologies between Chronic Fatigue Syndrome (CFS) and Chemical Sensitivity have been observed by different investigators. Therefore, it is of great importance to develop biomarker(s) for possible differentiation between viral induced CFS (without sensitivity to chemicals) versus chemically induced CFS. Since interferon induced proteins 2-5A Synthetase and Protein Kinase RNA (PKR) have been implicated in the viral induction of CFS, the objective of this study was to utilize 2-5A and PKR activity for differentiation between CFS induced by either viruses or chemicals. Based on the CDC definition and criteria, twenty CFS patients who were positive for viral genome(s) (mainly HHV6; HTLVII, EBV, and CMV) and did not have any history of exposure to toxic chemicals were included in this study. As a comparison, the second group of patients consisted of twenty individuals from the same geographical area who were negative for viral genomes but had been exposed to methyl tertiary-butyl ether concentration of up to 70 ppb and benzene concentration up to 14 ppb. All patients complained of fatigue and other symptoms overlapping between the two groups. From all 40 patients, blood was drawn, leukocyte extract was prepared and assayed for 2-5A Synthetase and PKR activity. Clinical specimens which were positive for viral genomes showed from 2.2-38.7 fold increase in 2-5A activity and 1.3-13.5 fold increase in PKR activities over the background of the healthy controls. Similarly, the second group (negative for viral genomes, but exposed to chemicals) showed a 1.1-29.2 fold increase for 2-5A Synthetase and a 1.3-11.6 fold increase for PKR when they were compared to healthy subjects. To elucidate mechanisms involved in viral versus chemical induction of 2-5A Synthetase and PKR, MDBK cell lines were cultured either in the presence or absence of HHV6, MTBE, or Benzene, heat shock proteins and interferon-beta. 2-5A and PKR activities were measured in all the above conditions. A clear induction of 2-5A and PKR was observed when MDBK cells were exposed to HHV6, MTBE, and Benzene. This induction was more significant with HSP90, HSP70, and IFN-beta indicating their involvement in the mechanism of action. However, when MDBK cells were incubated either with MTBE + Benzene or HHV6 in the presence or absence of anti IFN-beta or anti-HSP-70, the activities of both 2-5A and PKR in HHV6 infected cells were inhibited by more than 90% due to addition of anti IFN-beta, and only 20% by addition of anti-HSP70. While in MTBE + Benzene exposed cells anti IFN-beta reduced the activity of these enzymes by 40% and anti-HSP70 by more than 90%. This variation in the induction of 2-5A and PKR by anti-HSP70 or IFN-beta indicates involvement of IFN-beta in viral induction 2-5A and PKR, and HSP involvement in chemical induction of these enzymes. We conclude that 2-5A and PKR are not only biomarkers for viral induction of CFS, but biomarkers to other stressors that include MTBE and Benzene.
Collapse
Affiliation(s)
- A Vojdani
- Immunosciences Laboratory Inc., Beverly Hills, California, USA.
| | | |
Collapse
|
425
|
Nickolaus P, Rammensee HG, Zawatzky R. Molecular cloning of a macrophage-derived, interferon-inducible secreted immunoglobulin-binding protein. Eur J Immunol 1999; 29:1504-12. [PMID: 10359104 DOI: 10.1002/(sici)1521-4141(199905)29:05<1504::aid-immu1504>3.0.co;2-t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We describe the molecular cloning of a 1803-bp cDNA coding for a product termed interferon-induced immunoglobulin-binding protein (IIBP) from a library of IFN-alpha-induced primary bone marrow macrophages. The open reading frame encodes a protein of 26-kDa containing two immunoglobulin-like and one Fc receptor-like domain. Due to the constitutive release of low amounts of IFN-beta, the IIBP mRNA is already present in macrophage-colony-stimulating factor-cultured macrophages. Its expression could be blocked in the presence of either anti-IFN-beta or interleukin-4, which down-regulates the endogenous IFN-beta production. Upon addition of rIFN-alpha4 a 3-5-fold superinduction of IIBP mRNA was observed. Rat monoclonal antibodies detected a protein of the predicted size exclusively in cell culture supernatants of primary bone marrow macrophages and a B-cell line. In immunoprecipitation experiments an unknown 30-kDa protein co-precipitated. The secreted IIBP showed considerable binding to nonspecific rat IgG2a and could be precipitated using mouse IgG2a, IgG2b and IgG3 antibodies of irrelevant specificities, indicating that this gene product is a novel secreted immunoglobulin-binding protein with a new IgG isotype binding pattern that differs to that of known Fc receptors.
Collapse
Affiliation(s)
- P Nickolaus
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Germany.
| | | | | |
Collapse
|
426
|
Cuddihy AR, Wong AH, Tam NW, Li S, Koromilas AE. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 1999; 18:2690-702. [PMID: 10348343 DOI: 10.1038/sj.onc.1202620] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The tumor suppressor p53 is a multifunctional protein that plays a critical role in modulating cellular responses upon DNA damage or other stresses. These functions of p53 are regulated both by protein-protein interactions and phosphorylation. The double-stranded RNA activated protein kinase PKR is a serine/threonine kinase that modulates protein synthesis through the phosphorylation of translation initiation factor eIF-2alpha. PKR is an interferon (IFN)-inducible protein that is thought to mediate the anti-viral and anti-proliferative effects of IFN via its capacity to inhibit protein synthesis. Here we report that PKR physically associates with p53. The interaction of PKR with p53 is enhanced by IFNs and upon conditions that p53 acquires a wild type conformation. PKR/p53 complex formation in vitro requires the N-terminal regulatory domain of PKR and the last 30 amino acids of the C-terminus of human p53. In addition, p53 may function as a substrate of PKR since phosphorylation of human p53 on serine392 is induced by activated PKR in vitro. These novel findings raise the possibility of a functional interaction between PKR and p53 in vivo, which may account, at least in part, for the ability of each protein to regulate gene expression at both the transcriptional and the translational levels.
Collapse
Affiliation(s)
- A R Cuddihy
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
427
|
Rebouillat D, Hovanessian AG. The human 2',5'-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J Interferon Cytokine Res 1999; 19:295-308. [PMID: 10334380 DOI: 10.1089/107999099313992] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
2',5'-Oligoadenylate synthetase (2',5'-OAS) was discovered and characterized as an interferon (IFN)-induced enzyme that in the presence of double-stranded (ds) RNA converts ATP into 2',5'-linked oligomers of adenosine with the general formula pppA(2'p'A)n, n > or = 1. The product is pppG2'p5'G when GTP is used as a substrate. Now, 20 years later, this activity is attributed to several well-characterized, homologous, and IFN-induced proteins in human cells. Three distinct forms of 2',5'-OAS exist, small, medium, and large, which contain 1, 2, and 3 OAS units, respectively, and are encoded by distinct genes clustered on the 2',5'-OAS locus on human chromosome 12. Recently, other IFN-induced proteins homologous to the OAS unit but devoid of the typical 2',5'-OAS catalytic activity have been described. These OAS-related proteins are encoded by a gene located at the proximity of the 2',5'-OAS locus. These findings illustrate the apparent structural and functional complexity of the human 2',5'-OAS family.
Collapse
Affiliation(s)
- D Rebouillat
- Institut Pasteur, Unité de Virologie et Immunologie Cellulaire, URA CNRS 1930, Paris, France
| | | |
Collapse
|
428
|
Cuddihy AR, Li S, Tam NW, Wong AH, Taya Y, Abraham N, Bell JC, Koromilas AE. Double-stranded-RNA-activated protein kinase PKR enhances transcriptional activation by tumor suppressor p53. Mol Cell Biol 1999; 19:2475-84. [PMID: 10082513 PMCID: PMC84040 DOI: 10.1128/mcb.19.4.2475] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tumor suppressor p53 plays a key role in inducing G1 arrest and apoptosis following DNA damage. The double-stranded-RNA-activated protein PKR is a serine/threonine interferon (IFN)-inducible kinase which plays an important role in regulation of gene expression at both transcriptional and translational levels. Since a cross talk between IFN-inducible proteins and p53 had already been established, we investigated whether and how p53 function was modulated by PKR. We analyzed p53 function in several cell lines derived from PKR+/+ and PKR-/- mouse embryonic fibroblasts (MEFs) after transfection with the temperature-sensitive (ts) mutant of mouse p53 [p53(Val135)]. Here we report that transactivation of transcription by p53 and G0/G1 arrest were impaired in PKR-/- cells upon conditions that ts p53 acquired a wild-type conformation. Phosphorylation of mouse p53 on Ser18 was defective in PKR-/- cells, consistent with an impaired transcriptional induction of the p53-inducible genes encoding p21(WAF/Cip1) and Mdm2. In addition, Ser18 phosphorylation and transcriptional activation by mouse p53 were diminished in PKR-/- cells after DNA damage induced by the anticancer drug adriamycin or gamma radiation but not by UV radiation. Furthermore, the specific phosphatidylinositol-3 (PI-3) kinase inhibitor LY294002 inhibited the induction of phosphorylation of Ser18 of p53 by adriamycin to a higher degree in PKR+/+ cells than in PKR-/- cells. These novel findings suggest that PKR enhances p53 transcriptional function and implicate PKR in cell signaling elicited by a specific type of DNA damage that leads to p53 phosphorylation, possibly through a PI-3 kinase pathway.
Collapse
Affiliation(s)
- A R Cuddihy
- Departments of Oncology and Medicine, McGill University, Montreal, Quebec
| | | | | | | | | | | | | | | |
Collapse
|
429
|
Dhib-Jalbut S, Xia J, Rangaviggula H, Fang YY, Lee T. Failure of Measles Virus to Activate Nuclear Factor-κB in Neuronal Cells: Implications on the Immune Response to Viral Infections in the Central Nervous System. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.4024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Neurons are postmitotic cells that foster virus persistence. These cells lack the HLA class I molecules required for clearance of infected cells. Previously, we showed that HLA class I is induced by measles virus (MV) on glial cells, which is primarily mediated by IFN-β. In contrast, MV was unable to induce HLA class I or IFN-β in neuronal cells. This failure was associated with lack of NF-κB binding to the positive regulatory domain II element of the IFN-β promoter, which is essential for virus-induced IFN-β gene activity. In this study, we demonstrate that the failure to activate NF-κB in neuronal cells is due to the inability of MV to induce phosphorylation and degradation of IκB, the inhibitor of NF-κB. In contrast, TNF-α induced degradation of IκBα in the neuronal cells, suggesting that failure to induce IκBα degradation is likely due to a defect in virus-mediated signaling rather than to a defect involving neuronal IκBα. Like MV, mumps virus and dsRNA failed to induce IκBα degradation in the neuronal cells, suggesting that this defect may be specific to viruses. Autophosphorylation of the dsRNA-dependent protein kinase, a kinase possibly involved in virus-mediated IκBα phosphorylation, was intact in both cell types. The failure of virus to induce IκBα phosphorylation and consequently to activate NF-κB in neuronal cells could explain the repression of IFN-β and class I gene expression in virus-infected cells. These findings provide a potential mechanism for the ability of virus to persist in neurons and to escape immune surveillance.
Collapse
Affiliation(s)
- Suhayl Dhib-Jalbut
- Department of Neurology, University of Maryland at Baltimore, Baltimore, MD 21201; and Department of Veterans Affairs, Baltimore, MD 21201
| | - Jane Xia
- Department of Neurology, University of Maryland at Baltimore, Baltimore, MD 21201; and Department of Veterans Affairs, Baltimore, MD 21201
| | - Himabindu Rangaviggula
- Department of Neurology, University of Maryland at Baltimore, Baltimore, MD 21201; and Department of Veterans Affairs, Baltimore, MD 21201
| | - Yu-Yan Fang
- Department of Neurology, University of Maryland at Baltimore, Baltimore, MD 21201; and Department of Veterans Affairs, Baltimore, MD 21201
| | - Terry Lee
- Department of Neurology, University of Maryland at Baltimore, Baltimore, MD 21201; and Department of Veterans Affairs, Baltimore, MD 21201
| |
Collapse
|
430
|
Abstract
Viruses can induce apoptosis of infected cells either directly, to assist virus dissemination, or by inadvertently triggering cellular sensors that initiate cell death. Cellular checkpoints that can function as 'alarm bells' to transmit pro-apoptotic signals in response to virus infections include death receptors, protein kinase R, mitochondrial membrane potential, p53 and the endoplasmic reticulum.
Collapse
Affiliation(s)
- H Everett
- Dept of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
431
|
Suzuki K, Mori A, Ishii KJ, Saito J, Singer DS, Klinman DM, Krause PR, Kohn LD. Activation of target-tissue immune-recognition molecules by double-stranded polynucleotides. Proc Natl Acad Sci U S A 1999; 96:2285-90. [PMID: 10051633 PMCID: PMC26775 DOI: 10.1073/pnas.96.5.2285] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abnormal expression of major histocompatibility complex (MHC) class I and class II in various tissues is associated with autoimmune disease. Autoimmune responses can be triggered by viral infections or tissue injuries. We show that the ability of a virus or a tissue injury to increase MHC gene expression is duplicated by any fragment of double-stranded (ds) DNA or dsRNA introduced into the cytoplasm of nonimmune cells. Activation is sequence-independent, is induced by ds polynucleotides as small as 25 bp in length, and is not duplicated by single-stranded polynucleotides. In addition to causing abnormal MHC expression, the ds nucleic acids increase the expression of genes necessary for antigen processing and presentation: proteasome proteins (e.g., LMP2), transporters of antigen peptides; invariant chain, HLA-DM, and the costimulatory molecule B7.1. The mechanism is different from and additive to that of gamma-interferon (gammaIFN), i.e., ds polynucleotides increase class I much more than class II, whereas gammaIFN increases class II more than class I. The ds nucleic acids also induce or activate Stat1, Stat3, mitogen-activated protein kinase, NF-kappaB, the class II transactivator, RFX5, and the IFN regulatory factor 1 differently from gammaIFN. CpG residues are not responsible for this effect, and the action of the ds polynucleotides could be shown in a variety of cell types in addition to thyrocytes. We suggest that this phenomenon is a plausible mechanism that might explain how viral infection of tissues or tissue injury triggers autoimmune disease; it is potentially relevant to host immune responses induced during gene therapy.
Collapse
Affiliation(s)
- K Suzuki
- Cell Regulation Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
432
|
Melville MW, Tan SL, Wambach M, Song J, Morimoto RI, Katze MG. The cellular inhibitor of the PKR protein kinase, P58(IPK), is an influenza virus-activated co-chaperone that modulates heat shock protein 70 activity. J Biol Chem 1999; 274:3797-803. [PMID: 9920933 DOI: 10.1074/jbc.274.6.3797] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P58(IPK), a member of the tetratricopeptide repeat and J-domain protein families, was first recognized for its ability to inhibit the double-stranded RNA-activated protein kinase, PKR. PKR is part of the interferon-induced host defense against viral infection, and down-regulates translation initiation via phosphorylation of eukaryotic initiation factor 2 on the alpha-subunit. P58(IPK) is activated in response to infection by influenza virus, and inhibits PKR through direct protein-protein interaction. Previously, we demonstrated that the molecular chaperone heat shock protein 40 (hsp40) was a negative regulator of P58(IPK). We could now report that influenza virus activates the P58(IPK) pathway by promoting the dissociation of hsp40 from P58(IPK) during infection. We also found that the P58(IPK)-hsp40 association was disrupted during recovery from heat shock, which suggested a regulatory role for P58(IPK) in the absence of virus infection. The PKR pathway is even more complex as we show in this report that the molecular chaperone, hsp/Hsc70, was a component of a trimeric complex with hsp40 and P58(IPK). Moreover, like other J-domain proteins, P58(IPK) stimulated the ATPase activity of Hsc70. Taken together, our data suggest that P58(IPK) is a co-chaperone, possibly directing hsp/Hsc70 to refold, and thus inhibit kinase function.
Collapse
Affiliation(s)
- M W Melville
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
433
|
DeGracia DJ, Adamczyk S, Folbe AJ, Konkoly LL, Pittman JE, Neumar RW, Sullivan JM, Scheuner D, Kaufman RJ, White BC, Krause GS. Eukaryotic initiation factor 2alpha kinase and phosphatase activity during postischemic brain reperfusion. Exp Neurol 1999; 155:221-7. [PMID: 10072297 DOI: 10.1006/exnr.1998.6986] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When ischemic brain is reperfused, there is in vulnerable neurons immediate inhibition of protein synthesis associated with a large increase in phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 [eIF2alpha, phosphorylated form eIF2alpha(P)]. We examined eIF2alpha kinase and eIF2alpha(P) phosphatase activity in brain homogenate postmitochondrial supernatants obtained from rats after 3 to 30 min of global brain ischemia (cardiac arrest), after 5 min of ischemia and 5 min of reperfusion (5R), and after 10 min of ischemia and 90 min reperfusion (90R). Because it has been suggested that PKR might be specifically responsible for producing eIF2alpha(P) during reperfusion, we also examined in brain homogenates from wild-type and PKR0/0 C57BL/6J x 129/SV mice the effect of 5 min of ischemia and 5 min of reperfusion on eIF2alpha(P). Cytosolic brain eIF2alpha(P) in the 5R and 90R rats was 18- and 23-fold that of nonischemic controls without any change in the rate of eIF2alpha(P) dephosphorylation. There was no change in eIF2alpha kinase activity between 3 and 30 min of ischemia but an 85% decrease in the 5R group; the 90R group was similar to controls. In wild-type and PKR0/0 mice total eIF2alpha was identical, and there was an identical 16-fold increase in eIF2alpha(P) at 5 min of reperfusion. Our observations contradict hypotheses that PKR activation, loss of eIF2alpha(P) phosphatase activity, or any general increase in eIF2alpha kinase activity are responsible for reperfusion-induced phosphorylation of eIF2alpha, and we suggest that the mechanism may involve regulation of the availability of eIF2alpha to a kinase.
Collapse
Affiliation(s)
- D J DeGracia
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Abstract
Regulation of translation initiation is a central control point in animal cells. We review our current understanding of the mechanisms of regulation, drawing particularly on examples in which the biological consequences of the regulation are clear. Specific mRNAs can be controlled via sequences in their 5' and 3' untranslated regions (UTRs) and by alterations in the translation machinery. The 5'UTR sequence can determine which initiation pathway is used to bring the ribosome to the initiation codon, how efficiently initiation occurs, and which initiation site is selected. 5'UTR-mediated control can also be accomplished via sequence-specific mRNA-binding proteins. Sequences in the 3' untranslated region and the poly(A) tail can have dramatic effects on initiation frequency, with particularly profound effects in oogenesis and early development. The mechanism by which 3'UTRs and poly(A) regulate initiation may involve contacts between proteins bound to these regions and the basal translation apparatus. mRNA localization signals in the 3'UTR can also dramatically influence translational activation and repression. Modulations of the initiation machinery, including phosphorylation of initiation factors and their regulated association with other proteins, can regulate both specific mRNAs and overall translation rates and thereby affect cell growth and phenotype.
Collapse
Affiliation(s)
- N K Gray
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
435
|
Abstract
The double-stranded (ds) RNA-regulated serine/threonine protein kinase, PKR, is an interferon-inducible enzyme of widespread occurrence in mammalian cells. PKR is activated by dsRNA via a mechanism involving autophosphorylation. Once activated, the enzyme phosphorylates the alpha-subunit of protein synthesis initiation factor eIF2, thereby inhibiting translation. Accumulating data suggest that PKR has additional substrates, and that the kinase may also regulate gene transcription and signal transduction pathways. Although PKR plays an important role in mediating the antiviral effects of interferons, PKR is also implicated in regulating cell proliferation in uninfected cells and may have a tumor suppressor function under normal conditions. Studies of human malignancies and tumor cell lines suggest that, in general, patients bearing tumors with a higher PKR content have a more favorable prognosis. However, in human breast carcinoma cells, dysregulation of PKR may be associated with the establishment or maintenance of the transformed state.
Collapse
Affiliation(s)
- R Jagus
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, USA.
| | | | | |
Collapse
|
436
|
Savinova O, Joshi B, Jagus R. Abnormal levels and minimal activity of the dsRNA-activated protein kinase, PKR, in breast carcinoma cells. Int J Biochem Cell Biol 1999; 31:175-89. [PMID: 10216952 DOI: 10.1016/s1357-2725(98)00140-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The interferon induced, dsRNA-activated, protein kinase, PKR, is a key regulator of translational initiation, playing an important role in the regulation of cell proliferation, apoptosis and transformation. PKR levels correlate inversely with proliferative activity in several human tumor systems. This inverse relationship breaks down in human invasive ductal breast carcinomas which exhibit high levels of PKR (Haines et al., Tumor Biol. 17 (1996) 5-12). Consistent with the data from human tumors, the levels of PKR in several breast carcinoma cell lines, MCF7, T47D, BT20, MDAMB231 and MDAMB468, are paradoxically high compared to those found in the normal breast cell lines MCF10A and Hs578Bst. The activity of affinity- or immuno-purified PKR from MCF7, T47D, and BT20 cells appears to be severely attenuated, as judged by its ability to autophosphorylate, or phosphorylate eIF2 alpha. Furthermore, the activity of the kinase from breast carcinoma cells is refractory to stimulation by dsRNA or heparin. However, PKR from breast carcinoma cells remains functional with respect to its ability to bind dsRNA. The activity of PKR from MCF10A cells is reduced by prior incubation with extracts from MCF7 cells, suggesting that MCF7 extracts contain a transdominant inhibitor of PKR. Deregulation of PKR may therefore provide a mechanism for the development or maintenance of a transformed phenotype of human breast carcinomas, mimicking the effects of manipulation of PKR or eIF2 activity observed in experimental systems. Thus, breast carcinomas may provide the first indication of a role for PKR in the pathogenesis of a naturally occurring human cancer.
Collapse
Affiliation(s)
- O Savinova
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, USA
| | | | | |
Collapse
|
437
|
Abstract
eIF2 plays a central role in the maintenance of what is generally considered a rate-limiting step in mRNA translation. In this step, eIF2 binds GTP and Met-tRNAi and transfers Met-tRNAi to the 40S ribosomal subunit. At the end of the initiation process, GTP bound to eIF2 is hydrolyzed to GDP and the eIF2.GDP complex is released from the ribosome. The exchange of GDP bound to eIF2 for GTP is a prerequisite to binding Met-tRNAi and is mediated by a second initiation factor, eIF2B. In what is probably the best-characterized mechanism for the regulation of mRNA translation, phosphorylation of eIF2 on its smallest, or alpha-, subunit converts eIF2 from a substrate of eIF2B into a competitive inhibitor. Thus, phosphorylation of eIF2 alpha effectively prevents formation of the eIF2.GTP.Met-tRNAi complex and inhibits global protein synthesis. Phosphorylation of eIF2 alpha occurs under a variety of conditions including viral infection, apoptosis, nutrient deprivation, heme-deprivation, and certain stresses.
Collapse
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey 17033, USA.
| |
Collapse
|
438
|
Abstract
There is now a growing body of evidence which suggests links between the regulation of protein synthesis and the disruption of cell behaviour that typifies cancer. This directed issue of the International Journal of Biochemistry and Cell Biology presents several review articles of relevance to this field. The topics covered include the significance of the regulation and overexpression of polypeptide chain initiation factors for cell transformation and malignancy, the role of mRNA structure in the control of synthesis of key growth regulatory proteins, the actions of the eIF2 alpha-specific protein kinase PKR in the control cell growth and apoptosis, and the involvement of the elongation factor eEF1 in oncogenesis. The purpose of this article is to give an overview of the field and to indicate where we may expect developments to occur in the next few years.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry, St George's Hospital Medical School, London, UK.
| | | |
Collapse
|
439
|
Kuhen KL, Vessey JW, Samuel CE. Mechanism of interferon action: identification of essential positions within the novel 15-base-pair KCS element required for transcriptional activation of the RNA-dependent protein kinase pkr gene. J Virol 1998; 72:9934-9. [PMID: 9811730 PMCID: PMC110506 DOI: 10.1128/jvi.72.12.9934-9939.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA-dependent protein kinase PKR is an important regulator of gene expression in interferon (IFN)-treated and virus-infected cells. The 50-kb gene encoding human PKR kinase (pkr) is inducible by IFN. Transfection analyses, using chloramphenicol acetyltransferase (CAT) as the reporter in constructs possessing various 5'-flanking fragments of the human pkr gene, led to the identification of a functional TATA-less promoter that directed IFN-inducible transcription. Sequence determination and mutational analysis of the pkr promoter region revealed, in addition to a functional copy of the IFN-stimulated response element (ISRE) responsible for inducibility by type I IFN, a novel 15-bp element required for optimal promoter activity mediated by the ISRE. This element (5' GGGAAGGCGGAGTCC 3'), designated KCS for kinase-conserved sequence, is exactly conserved between the human and mouse pkr promoters in sequence and position relative to the ISRE. We have now carried out an extensive mutational analysis of the 15-bp KCS element. Site-directed mutagenesis was performed, whereby every base pair position within the KCS element was replaced by each of the other three alternatives. Forty-five substitution mutants were analyzed for promoter activity by transient transfection analysis of untreated and IFN-treated human cells. The results establish 5' NNRRRGG(C,A,T)GGRGYYN 3', where R stands for purine and Y stands for pyrimidine, as the consensus sequence for the KCS element, both for basal and for IFN-inducible promoter activity. KCS-binding proteins were detected by electrophoretic mobility shift analysis (EMSA). Competition EMSA established that constitutively expressed nuclear proteins bound the KCS element selectively; KCS protein binding activity correlated with promoter activity in the transient transfection reporter assay.
Collapse
Affiliation(s)
- K L Kuhen
- Interdepartmental Biochemistry and Molecular Biology Graduate Program, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
440
|
Balachandran S, Kim CN, Yeh WC, Mak TW, Bhalla K, Barber GN. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J 1998; 17:6888-902. [PMID: 9843495 PMCID: PMC1171037 DOI: 10.1093/emboj/17.23.6888] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dsRNA-dependent protein kinase (PKR) is considered to play a key role in interferon-mediated host defense against viral infection and conceivably malignant transformation. To investigate further the mechanisms of PKR-induced growth inhibition, we have developed tetracycline-inducible murine cell lines that express wild-type PKR or a catalytically inactive PKR variant, PKRdelta6. Following induction, the growth of the wild-type PKR-expressing cells was similar to that of cells transfected with vector alone, while cells expressing PKRdelta6 became malignantly transformed. Significantly, treatment with dsRNA caused the wild-type PKR-overexpressing cells to undergo programed cell death while, conversely, cells expressing PKRdelta6 were completely resistant. Our studies demonstrated that activation of PKR induces the expression of members of the tumor necrosis factor receptor (TNFR) family, including Fas (CD95/Apo-1) and pro-apopotic Bax. In contrast, transcripts representing Fas, TNFR-1, FADD (Fas-associated death domain), FLICE, Bad and Bax were ablated in cells expressing PKRdelta6. The involvement of the death receptors in PKR-induced apoptosis was underscored by demonstrating that murine fibroblasts lacking FADD were almost completely resistant to dsRNA-mediated cell death. Thus, PKR, a key cellular target for viral repression, is a receptor/inducer for the induction of pro-apoptotic genes by dsRNA and probably functions in interferon-mediated host defense to trigger cell death in response to virus infection and perhaps tumorigenesis.
Collapse
Affiliation(s)
- S Balachandran
- Department of Microbiology and Immunology and Winship Cancer Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
441
|
Sharp TV, Moonan F, Romashko A, Joshi B, Barber GN, Jagus R. The vaccinia virus E3L gene product interacts with both the regulatory and the substrate binding regions of PKR: implications for PKR autoregulation. Virology 1998; 250:302-15. [PMID: 9792841 DOI: 10.1006/viro.1998.9365] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vaccinia virus E3L gene product, pE3, is a dsRNA binding protein that prevents activation of the interferon-induced, dsRNA-activated protein kinase, PKR. Activation of PKR, which results in phosphorylation of the translation initiation factor, eIF2alpha, leads to the inhibition of protein synthesis, a process involved in defense against virus infection. The E3L gene product has a conserved dsRNA binding domain (DRBD) in its carboxyl-terminal region and has been shown to function in vitro by sequestration of dsRNA. We have utilized in vitro binding assays and the yeast two-hybrid system to demonstrate direct interactions of pE3 with PKR. By these methods, we demonstrate that pE3 interacts with two distinct regions in PKR, the amino-terminal (amino acids 1-99) located in the regulatory domain and the carboxyl-terminal (amino acids 367-523) located in the catalytic domain. The amino-terminal region of PKR that interacts with pE3 contains a conserved DRBD, suggesting that PKR can form nonfunctional heterodimers with pE3, analogous to those seen with other dsRNA binding proteins. Interaction of pE3 with the amino-terminal region of PKR is enhanced by dsRNA. In contrast, dsRNA reduces the interaction of pE3 with the carboxyl-terminal region of PKR. Competition experiments demonstrate that the carboxyl-terminal region of PKR, to which pE3 binds, overlaps the region with which eIF2alpha and the pseudosubstrate pK3 interact, suggesting that pE3 may also prevent PKR activation by masking the substrate binding domain. Like pE3, the amino-terminal region of PKR also interacts with the carboxyl-terminal domain of PKR. These interactions increase our understanding of the mechanisms by which pE3 downregulates PKR. In addition, the PKR-PKR interactions observed leads us to suggest a novel autoregulatory mechanism for activation of PKR in which dsRNA binding to the DRBD(s) induces a conformational change that results in release of the amino terminal region from the substrate binding domain, allowing access to eIF2alpha and its subsequent phosphorylation.
Collapse
Affiliation(s)
- T V Sharp
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland, 21202, USA
| | | | | | | | | | | |
Collapse
|
442
|
Raine DA, Jeffrey IW, Clemens MJ. Inhibition of the double-stranded RNA-dependent protein kinase PKR by mammalian ribosomes. FEBS Lett 1998; 436:343-8. [PMID: 9801145 DOI: 10.1016/s0014-5793(98)01163-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previous evidence has shown that the majority of the interferon-inducible, double-stranded RNA-dependent protein kinase PKR is associated with ribosomes in vivo. Here we show that ribosomes are inhibitory for PKR activity since they compete with dsRNA for binding to PKR, inhibit the activation of the protein kinase by dsRNA, and prevent the phosphorylation of the PKR substrate eIF2alpha. We suggest that ribosomes constitute a reservoir of inactive PKR and that the protein kinase must be displaced from the ribosome by dsRNA in order to become activated.
Collapse
Affiliation(s)
- D A Raine
- Department of Biochemistry, St George's Hospital Medical School, London, UK
| | | | | |
Collapse
|
443
|
Gale M, Blakely CM, Kwieciszewski B, Tan SL, Dossett M, Tang NM, Korth MJ, Polyak SJ, Gretch DR, Katze MG. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol 1998; 18:5208-18. [PMID: 9710605 PMCID: PMC109106 DOI: 10.1128/mcb.18.9.5208] [Citation(s) in RCA: 449] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/1998] [Accepted: 06/16/1998] [Indexed: 12/19/2022] Open
Abstract
The PKR protein kinase is a critical component of the cellular antiviral and antiproliferative responses induced by interferons. Recent evidence indicates that the nonstructural 5A (NS5A) protein of hepatitis C virus (HCV) can repress PKR function in vivo, possibly allowing HCV to escape the antiviral effects of interferon. NS5A presents a unique tool by which to study the molecular mechanisms of PKR regulation in that mutations within a region of NS5A, termed the interferon sensitivity-determining region (ISDR), are associated with sensitivity of HCV to the antiviral effects of interferon. In this study, we investigated the mechanisms of NS5A-mediated PKR regulation and the effect of ISDR mutations on this regulatory process. We observed that the NS5A ISDR, though necessary, was not sufficient for PKR interactions; we found that an additional 26 amino acids (aa) carboxyl to the ISDR were required for NS5A-PKR complex formation. Conversely, we localized NS5A binding to within PKR aa 244 to 296, recently recognized as a PKR dimerization domain. Consistent with this observation, we found that NS5A from interferon-resistant HCV genotype 1b disrupted kinase dimerization in vivo. NS5A-mediated disruption of PKR dimerization resulted in repression of PKR function and inhibition of PKR-mediated eIF-2alpha phosphorylation. Introduction of multiple ISDR mutations abrogated the ability of NS5A to bind to PKR in mammalian cells and to inhibit PKR in a yeast functional assay. These results indicate that mutations within the PKR-binding region of NS5A, including those within the ISDR, can disrupt the NS5A-PKR interaction, possibly rendering HCV sensitive to the antiviral effects of interferon. We propose a model of PKR regulation by NS5A which may have implications for therapeutic strategies against HCV.
Collapse
Affiliation(s)
- M Gale
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Tan SL, Katze MG. Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon-induced PKR protein kinase. J Interferon Cytokine Res 1998; 18:757-66. [PMID: 9781815 DOI: 10.1089/jir.1998.18.757] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The interferon (IFN)-induced protein kinase (PKR) functions as a gatekeeper of mRNA translation initiation and is, therefore, a key mediator of the host IFN-induced antiviral defense system. Many viruses have invested countermeasures against PKR. Some apparently use more than one mechanism. The influenza virus can repress PKR activity through the use of at least two factors, the cellular P58IPK protein and the viral NS1 protein. The exact mode of action of the latter has not been established. Here, using a coprecipitation assay, we found that PKR could form a complex with NS1 in crude cell extracts prepared from influenza virus-infected HeLa cells. The NS1-PKR interaction was verified by using the yeast two-hybrid system and an in vitro binding assay. Deletion analysis mapped the NS1 binding site to the N-terminal 98 residues of PKR regulatory region. Furthermore, an NS1 mutant, which lacks PKR inhibitory activity, did not bind PKR. Finally, the functional role of NS1 in PKR inhibition was substantiated using an in vivo assay for PKR activity. These results support the role of NS1 in PKR modulation during viral infection that is mediated through a complex formation between the two proteins.
Collapse
Affiliation(s)
- S L Tan
- Department of Microbiology School of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
445
|
Abstract
PKR, a latent protein kinase, mediates the antiviral actions of interferon. It is also involved in cellular signal transduction, apoptosis, growth regulation and differentiation. Although in virus-infected cells, viral double-stranded (ds) RNA can serve as a PKR activator, cellular activators have remained obscure. Here, we report the cloning of PACT, a cellular protein activator of PKR. PACT heterodimerized with PKR and activated it in vitro in the absence of dsRNA. In mammalian cells, overexpression of PACT caused PKR activation and, in yeast, co-expression of PACT enhanced the anti-growth effect of PKR. Thus, PACT has the hallmarks of a direct activator of PKR.
Collapse
Affiliation(s)
- R C Patel
- Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, OH 44195, USA
| | | |
Collapse
|
446
|
Xu Z, Williams BR. Genomic features of human PKR: alternative splicing and a polymorphic CGG repeat in the 5'-untranslated region. J Interferon Cytokine Res 1998; 18:609-16. [PMID: 9726442 DOI: 10.1089/jir.1998.18.609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The double-stranded RNA-dependent protein kinase (PKR) is a serine/threonine kinase that plays an important role in the antiviral activities of interferon (IFN). To determine the organization and regulation of the PKR locus, lambda phage and bacterial artificial chromosome (BAC) clones containing the human PKR gene were isolated. Characterization of these clones revealed that PKR has 17 exons and 16 introns dispersed in a genomic region of 50 kb. Sequence analysis of the PKR 5'-flanking region identified a canonical IFN-stimulated response element (ISRE), GAAAACGAAACT. Transient transfection of PKR promoter constructs linked to a luciferase reporter gene into human T98G cells indicated that this 5'-flanking region is capable of functioning as a basal promoter that is also inducible by IFN-alpha and IFN-beta but not IFN-gamma. Interestingly, the PKR gene contains a polymorphic CGG trinucleotide repeat in exon 1. In addition, four PKR alleles, varying in repeat number from 7 to 10, were detected in 30 individual chromosomes. The PKR gene undergoes alternative splicing of exon 2, which gives rise to two forms of 5'-untranslated exons of different length. Although the human and murine PKR proteins have high homology, comparison of their gene structures reveals divergence in 5'-flanking regions, suggesting distinct regulation at the genomic level.
Collapse
Affiliation(s)
- Z Xu
- Department of Genetics, Case Western Reserve University, Lerner Research Institute, Cleveland Clinic Foundation, OH 44106, USA
| | | |
Collapse
|
447
|
Wong ML, Yen YR. Protein synthesis in pseudorabies virus-infected cells: decreased expression of protein kinase PKR, and effects of 2-aminopurine and adenine. Virus Res 1998; 56:199-206. [PMID: 9783469 DOI: 10.1016/s0168-1702(98)00077-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The impact of pseudorabies virus (PRV) infection on the synthesis of host cell proteins was studied. By metabolic labeling of protein synthesis with [35S]methionine, it was observed that the translation of cellular proteins was inhibited globally in the late phase of infection and viral proteins became the dominating products. Furthermore, immunoblot analysis showed that the total protein levels of two genes involved in translational regulation, namely the dsRNA-dependent protein kinase (PKR) and extracellular signal-regulated kinase 2 (ERK2), decreased during late time of infection. Using [32P]orthophosphate labeling, it was observed that PRV infection also caused a decrease in the phosphorylation of intracellular PKR. Finally, using 2-aminopurine (2-AP, an inhibitor of serine/threonine protein kinase) or adenine (an isomer of 2-AP) to treat PRV-infected cells, we found that the inhibition of host protein synthesis by PRV was partially prevented by these two drugs, suggesting that 2-AP and adenine may share a same target and pathway to manifest the effect.
Collapse
Affiliation(s)
- M L Wong
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | | |
Collapse
|
448
|
Gale MJ, Korth MJ, Katze MG. Repression of the PKR protein kinase by the hepatitis C virus NS5A protein: a potential mechanism of interferon resistance. CLINICAL AND DIAGNOSTIC VIROLOGY 1998; 10:157-62. [PMID: 9741641 DOI: 10.1016/s0928-0197(98)00034-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic infection with hepatitis C virus (HCV) is associated with progressive liver damage, including the development of cirrhosis and hepatocellular carcinoma, and HCV is a leading cause of liver dysfunction worldwide. The current therapy for chronic HCV infection, interferon-alpha (IFN), is effective in a minority of HCV-infected patients. Several studies have demonstrated a correlation between therapeutic outcome and the amino acid sequence of a small region of the HCV non-structural 5A (NS5A) gene product. It has been suggested that this region, termed the interferon sensitivity-determining region (ISDR), may mediate IFN resistance by directly interacting with one or more cellular proteins associated with the IFN-mediated antiviral response. OBJECTIVES In an attempt to define the molecular mechanism by which the NS5A protein and the ISDR might contribute to HCV resistance to IFN, we examined whether NS5A could regulate the IFN-induced protein kinase, PKR, a primary mediator of the IFN-induced antiviral response. STUDY DESIGN Multiple approaches, including in vitro assays using recombinant proteins, the transfection of recombinant clones into cultured cells, and in vivo studies in yeast, were used to examine the interaction of NS5A with PKR, as well as the functional significance of the interaction. An ISDR deletion mutant was prepared to evaluate the importance of the ISDR in mediating the NS5A-PKR interaction and the requirement of this region for PKR inhibition. RESULTS NS5A repressed PKR activity through a direct interaction with the protein kinase catalytic domain. Both PKR repression and interaction required the presence of the ISDR. CONCLUSIONS Inactivation of PKR may be one mechanism by which HCV avoids the antiviral effects of IFN. Thus,therapeutic strategies designed to block the NS5A-PKR interaction may increase the efficacy of IFN therapy in HCV-infected individuals.
Collapse
Affiliation(s)
- M J Gale
- Regional Primate Research Center and Department of Microbiology, School of Medicine, University of Washington, Seattle 98195-7542, USA
| | | | | |
Collapse
|
449
|
Affiliation(s)
- C E Samuel
- Interdepartmental Graduate Program of Biochemistry and Molecular Biology, University of California at Santa Barbara, Santa Barbara, California, 93106, USA
| |
Collapse
|
450
|
Abstract
PKR is an RNA-dependent protein kinase that is induced in mammalian cells by interferon treatment. It is present in a latent or inactive form in mammalian cells and is activated by very low concentrations of double-stranded (ds) RNA. Activated PKR phosphorylates eIF2, an essential initiation factor of protein synthesis, as well as other substrates including histone IIA, a 90-kDa protein from rabbit reticulocytes, the inhibitor, IkappaB, of the transcription factor, NF-kappaB, and the HIV-1 Tat protein. PKR interacts with several cellular and viral products and these interactions modulate its activation by dsRNA. Here we describe methods that are used to study the activation or inhibition of PKR by RNA modulators. Specifically, we detail (1) the purification of PKR from interferon-treated mammalian cells, (2) functional assays for PKR activation and inhibition in vitro, using purified enzyme or crude cell lysates, and (3) assays allowing evaluation of the binding of dsRNA and single-stranded RNA to PKR.
Collapse
Affiliation(s)
- S Gunnery
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, 185 South Orange Avenue, University Heights, Newark, New Jersey, 07103, USA
| | | |
Collapse
|