401
|
Aubert-Jousset E, Cano M, Guedeney G, Richaud P, Cournac L. Role of HoxE subunit in Synechocystis PCC6803 hydrogenase. FEBS J 2011; 278:4035-43. [PMID: 21848671 DOI: 10.1111/j.1742-4658.2011.08308.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyanobacterial NAD(P)(+)-reducing reversible hydrogenases comprise five subunits. Four of them (HoxF, HoxU, HoxY, and HoxH) are also found in the well-described related enzyme from Ralstonia eutropha. The fifth one (HoxE) is not encoded in the R. eutropha genome, but shares homology with the N-terminal part of R. eutropha HoxF. However, in cyanobacteria, HoxE contains a 2Fe-2S cluster-binding motif that is not found in the related R. eutropha sequence. In order to obtain some insights into the role of HoxE in cyanobacteria, we deleted this subunit in Synechocystis PCC6803. Three types of interaction of the cyanobacterial hydrogenase with pyridine nucleotides were tested: (a) reductive activation of the NiFe site, for which NADPH was found to be more efficient than NADH; (b) H(2) production, for which NADH appeared to be a more efficient electron donor than NADPH; and (c) H(2) oxidation, for which NAD(+) was a much better electron acceptor than NADP(+). Upon hoxE deletion, the Synechocystis hydrogenase active site remained functional with artificial electron donors or acceptors, but the enzyme became unable to catalyze H(2) production or uptake with NADH/NAD(+). However, activation of the electron transfer-independent H/D exchange reaction by NADPH was still observed in the absence of HoxE, whereas activation of this reaction by NADH was lost. These data suggest different mechanisms for diaphorase-mediated electron donation and catalytic site activation in cyanobacterial hydrogenase.
Collapse
Affiliation(s)
- Emeline Aubert-Jousset
- CEA, DSV, IBEB, Laboratoire de Bioénergétique et Biotechnologie des Bactéries & Microalgues, Saint Paul Lez Durance, France
| | | | | | | | | |
Collapse
|
402
|
Osanai T, Oikawa A, Azuma M, Tanaka K, Saito K, Hirai MY, Ikeuchi M. Genetic engineering of group 2 sigma factor SigE widely activates expressions of sugar catabolic genes in Synechocystis species PCC 6803. J Biol Chem 2011; 286:30962-30971. [PMID: 21757761 PMCID: PMC3162455 DOI: 10.1074/jbc.m111.231183] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/25/2011] [Indexed: 11/06/2022] Open
Abstract
Metabolic engineering of photosynthetic organisms is required for utilization of light energy and for reducing carbon emissions.Control of transcriptional regulators is a powerful approach for changing cellular dynamics, because a set of genes is concomitantly regulated. Here, we show that overexpression of a group 2 σ factor, SigE, enhances the expressions of sugar catabolic genes in the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Transcriptome analysis revealed that genes for the oxidative pentose phosphate pathway and glycogen catabolism are induced by overproduction of SigE. Immunoblotting showed that protein levels of sugar catabolic enzymes, such as glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glycogen phosphorylase, and isoamylase, are increased. Glycogen levels are reduced in the SigE-overexpressing strain grown under light. Metabolome analysis revealed that metabolite levels of the TCA cycle and acetyl-CoA are significantly altered by SigE overexpression. The SigE-overexpressing strain also exhibited defective growth under mixotrophic or dark conditions. Thus, SigE overexpression changes sugar catabolism at the transcript to phenotype levels, suggesting a σ factor-based engineering method for modifying carbon metabolism in photosynthetic bacteria.
Collapse
Affiliation(s)
- Takashi Osanai
- Department of Life Sciences (Biology), University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902; RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012.
| | - Akira Oikawa
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045
| | - Miyuki Azuma
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032
| | - Kan Tanaka
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032; Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510
| | - Kazuki Saito
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045; Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Masami Yokota Hirai
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| |
Collapse
|
403
|
Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 2011; 13:610-6. [DOI: 10.1016/j.ymben.2011.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/14/2011] [Accepted: 07/22/2011] [Indexed: 11/30/2022]
|
404
|
Yoshikawa K, Kojima Y, Nakajima T, Furusawa C, Hirasawa T, Shimizu H. Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803. Appl Microbiol Biotechnol 2011; 92:347-58. [PMID: 21881889 DOI: 10.1007/s00253-011-3559-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 08/09/2011] [Accepted: 08/18/2011] [Indexed: 12/25/2022]
Abstract
In terms of generating sustainable energy resources, the prospect of producing energy and other useful materials using cyanobacteria has been attracting increasing attention since these processes require only carbon dioxide and solar energy. To establish production processes with a high productivity, in silico models to predict the metabolic activity of cyanobacteria are highly desired. In this study, we reconstructed a genome-scale metabolic model of the cyanobacterium Synechocystis sp. PCC6803, which included 465 metabolites and 493 metabolic reactions. Using this model, we performed constraint-based metabolic simulations to obtain metabolic flux profiles under various environmental conditions. We evaluated the simulated results by comparing these with experimental results from (13)C-tracer metabolic flux analyses, which were obtained under heterotrophic and mixotrophic conditions. There was a good agreement of simulation and experimental results under both conditions. Furthermore, using our model, we evaluated the production of ethanol by Synechocystis sp. PCC6803, which enabled us to estimate quantitatively how its productivity depends on the environmental conditions. The genome-scale metabolic model provides useful information for the evaluation of the metabolic capabilities, and prediction of the metabolic characteristics, of Synechocystis sp. PCC6803.
Collapse
Affiliation(s)
- Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
405
|
Mohammadi S, Nikkhah M, Nazari M, Hosseinkhani S. Design of a coupled bioluminescent assay for a recombinant pyruvate kinase from a thermophilic Geobacillus. Photochem Photobiol 2011; 87:1338-45. [PMID: 21790618 DOI: 10.1111/j.1751-1097.2011.00973.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A simple and rapid method using coupled bioluminescent assay was developed to determine level of ADP. ADP is involved in many biological reactions and ADP assay can be used for assaying some reactions universally by monitoring ADP formation or depletion. ADP analysis involves incubation of ADP or extracts containing ADP with pyruvate kinase (PK) and PEP. The ATP formed by this reaction is determined by measuring the intensity of the initial light flash produced when luciferin-luciferase preparation injected into the reaction mixture. In regard to the main role of the PK in this assay, the gene of PK from a Geobacillus species has been cloned in expression vector pET28a (+), sequenced and overexpressed in Escherichia coli. Recombinant protein was purified using Ni-NTA column and then the purified PK was used in a coupled bioluminescent assay for ADP measurement. Kinetic properties of PK are determined according to a bioluminescent assay using firefly luciferase.
Collapse
Affiliation(s)
- Soheila Mohammadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
406
|
Abstract
Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H2O2, alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species- and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
407
|
Peter E, Wallner T, Wilde A, Grimm B. Comparative functional analysis of two hypothetical chloroplast open reading frames (ycf) involved in chlorophyll biosynthesis from Synechocystis sp. PCC6803 and plants. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1380-1386. [PMID: 21388705 DOI: 10.1016/j.jplph.2011.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 05/30/2023]
Abstract
Hypothetical chloroplast open reading frames (ycfs) are highly conserved and interspecifically occurring genes in plastomes of plants and algae with significant functions in gene expression and photosynthesis. However, the function of many ycfs is still in vain so that attention is directed to other chloroplast functions such as metabolism of co-factors, protein translocation and protection against abiotic stress. We provide a comprehensive functional description of ycf53 and ycf59, two genes involved in chlorophyll biosynthesis. While ycf59 encodes an essential enzymatic component of Mg protoporphyrin monomethylester cyclase, ycf53 encodes a posttranslational regulator of chlorophyll biosynthesis. Their roles in tetrapyrrole biosynthesis were compared by using cyanobacterial and plant mutants with modulated expression of these two genes. Our work provides indications for diverse effects of these homologous gene products in plants and cyanobacteria on tetrapyrrole biosynthesis and photosynthesis.
Collapse
Affiliation(s)
- E Peter
- Institute of Biology, Plant Physiology, Humboldt University Berlin, Philippstrasse 13, Berlin, Germany
| | | | | | | |
Collapse
|
408
|
Hess WR. Cyanobacterial genomics for ecology and biotechnology. Curr Opin Microbiol 2011; 14:608-14. [PMID: 21840247 DOI: 10.1016/j.mib.2011.07.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/16/2011] [Accepted: 07/23/2011] [Indexed: 11/15/2022]
Abstract
Cyanobacteria are the only prokaryotes that directly convert solar energy and CO(2) into organic matter by oxygenic photosynthesis, explaining their relevance for primary production in many ecosystems and the increasing interest for biotechnology. At present, there are more than 60 cyanobacteria for which a total genome sequence is publicly available. These cyanobacteria belong to different lifestyles and origins, coming from marine and freshwater aquatic environments, as well as terrestrial and symbiotic habitats. Genome sizes vary by a factor of six, from 1.44 Mb to 9.05 Mb, with the number of reported genes ranging from 1241 to 8462. Several studies have demonstrated how these sequences could be used to successfully infer important ecological, physiological and biotechnologically relevant characteristics. However, sequences of cyanobacterial origin also comprise a significant portion of certain metagenomes. Moreover, genome analysis has been employed for culture-independent approaches and for resequencing mutant strains, a very recent tool in cyanobacterial research.
Collapse
Affiliation(s)
- Wolfgang R Hess
- University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany.
| |
Collapse
|
409
|
Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 2011; 91:471-90. [PMID: 21691792 PMCID: PMC3136707 DOI: 10.1007/s00253-011-3394-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 01/05/2023]
Abstract
The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review.
Collapse
Affiliation(s)
- Naira Quintana
- Division of Pharmacognosy, Section of Metabolomics, Institute of Biology, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
410
|
Tajima N, Sato S, Maruyama F, Kaneko T, Sasaki NV, Kurokawa K, Ohta H, Kanesaki Y, Yoshikawa H, Tabata S, Ikeuchi M, Sato N. Genomic structure of the cyanobacterium Synechocystis sp. PCC 6803 strain GT-S. DNA Res 2011; 18:393-9. [PMID: 21803841 PMCID: PMC3190959 DOI: 10.1093/dnares/dsr026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Synechocystis sp. PCC 6803 is the most popular cyanobacterial strain, serving as a standard in the research fields of photosynthesis, stress response, metabolism and so on. A glucose-tolerant (GT) derivative of this strain was used for genome sequencing at Kazusa DNA Research Institute in 1996, which established a hallmark in the study of cyanobacteria. However, apparent differences in sequences deviating from the database have been noticed among different strain stocks. For this reason, we analysed the genomic sequence of another GT strain (GT-S) by 454 and partial Sanger sequencing. We found 22 putative single nucleotide polymorphisms (SNPs) in comparison to the published sequence of the Kazusa strain. However, Sanger sequencing of 36 direct PCR products of the Kazusa strains stored in small aliquots resulted in their identity with the GT-S sequence at 21 of the 22 sites, excluding the possibility of their being SNPs. In addition, we were able to combine five split open reading frames present in the database sequence, and to remove the C-terminus of an ORF. Aside from these, two of the Insertion Sequence elements were not present in the GT-S strain. We have thus become able to provide an accurate genomic sequence of Synechocystis sp. PCC 6803 for future studies on this important cyanobacterial strain.
Collapse
Affiliation(s)
- Naoyuki Tajima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Yuan H, Dragnea V, Wu Q, Gardner KH, Bauer CE. Mutational and structural studies of the PixD BLUF output signal that affects light-regulated interactions with PixE. Biochemistry 2011; 50:6365-75. [PMID: 21688827 PMCID: PMC3139782 DOI: 10.1021/bi200701d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PixD (Slr1694) is a BLUF (blue-light-using FAD) photoreceptor used by the cyanobacterium Synechocystis sp. PCC6803 to control phototaxis toward blue light. In this study, we probe the involvement of a conserved Tyr8-Gln50-Met93 triad in promoting an output signal upon blue light excitation of the bound flavin. Analysis of acrylamide quenching of Trp91 fluorescence shows that the side chain of this residue remains partially solvent exposed in both the lit and dark states. Mutational analysis demonstrates that substitution mutations at Tyr8 and Gln50 result in the loss of the photocycle while a mutation of Met93 does not appreciably disturb the formation of the light-excited state and only minimally accelerates its decay from 5.7 to 4.5 s. However, mutations of Tyr8, Gln50, and Met93 disrupt the ability of PixD dimers to interact with PixE to form a higher-order PixD(10)-PixE(5) complex, which is indicative of a lit conformational state. Solution nuclear magnetic resonance spectroscopy and X-ray crystallographic analyses confirm that a Tyr8 to Phe mutation is locked in a pseudo-light-excited state revealing flexible areas in PixD that likely constitute part of an output signal upon light excitation of wild-type PixD.
Collapse
Affiliation(s)
- Hua Yuan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8816
| | - Vladimira Dragnea
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8816
| | - Qiong Wu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kevin H. Gardner
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8816
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8816
| |
Collapse
|
412
|
Rowland JG, Simon WJ, Prakash JSS, Slabas AR. Proteomics Reveals a Role for the RNA Helicase crhR in the Modulation of Multiple Metabolic Pathways during Cold Acclimation of Synechocystis sp. PCC6803. J Proteome Res 2011; 10:3674-89. [DOI: 10.1021/pr200299t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John G. Rowland
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - William J. Simon
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Jogadhenu S. S. Prakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Antoni R. Slabas
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
413
|
Fujita H, Syono K, Machida Y, Kawaguchi M. Morphological effects of sinefungin, an inhibitor of S-adenosylmethionine-dependent methyltransferases, on Anabaena sp. PCC 7120. Microbes Environ 2011; 23:346-9. [PMID: 21558729 DOI: 10.1264/jsme2.me08519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anabaena cells develop regular one-dimensional filaments through cell division in planes parallel to each other. A gcvP mutant displayed morphological defects such as filaments with sharp bends and/or branching and irregular cell clumps. The defects probably result from depletion of S-adenosylmethionine (AdoMet), because they were rescued by the application of methionine, an AdoMet precursor, and because sinefungin, a strong inhibitor of AdoMet-dependent methyltransferases, caused morphological abnormalities in wild-type Anabaena similar to those of the mutant. AdoMet-dependent methylation is involved in the spatial regulation of cell polarity in Anabaena.
Collapse
Affiliation(s)
- Hironori Fujita
- Division of Theoretical Biology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | |
Collapse
|
414
|
Recombinant Deg/HtrA proteases from Synechocystis sp. PCC 6803 differ in substrate specificity, biochemical characteristics and mechanism. Biochem J 2011; 435:733-42. [PMID: 21332448 PMCID: PMC3195437 DOI: 10.1042/bj20102131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cyanobacteria require efficient protein-quality-control mechanisms to survive under dynamic, often stressful, environmental conditions. It was reported that three serine proteases, HtrA (high temperature requirement A), HhoA (HtrA homologue A) and HhoB (HtrA homologue B), are important for survival of Synechocystis sp. PCC 6803 under high light and temperature stresses and might have redundant physiological functions. In the present paper, we show that all three proteases can degrade unfolded model substrates, but differ with respect to cleavage sites, temperature and pH optima. For recombinant HhoA, and to a lesser extent for HtrA, we observed an interesting shift in the pH optimum from slightly acidic to alkaline in the presence of Mg2+ and Ca2+ ions. All three proteases formed different homo-oligomeric complexes with and without substrate, implying mechanistic differences in comparison with each other and with the well-studied Escherichia coli orthologues DegP (degradation of periplasmic proteins P) and DegS. Deletion of the PDZ domain decreased, but did not abolish, the proteolytic activity of all three proteases, and prevented substrate-induced formation of complexes higher than trimers by HtrA and HhoA. In summary, biochemical characterization of HtrA, HhoA and HhoB lays the foundation for a better understanding of their overlapping, but not completely redundant, stress-resistance functions in Synechocystis sp. PCC 6803.
Collapse
|
415
|
Psakis G, Mailliet J, Lang C, Teufel L, Essen LO, Hughes J. Signaling Kinetics of Cyanobacterial Phytochrome Cph1, a Light Regulated Histidine Kinase. Biochemistry 2011; 50:6178-88. [DOI: 10.1021/bi200612d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georgios Psakis
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Jo Mailliet
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Christina Lang
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Lotte Teufel
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University, D35032 Marburg, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| |
Collapse
|
416
|
Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Appl Microbiol Biotechnol 2011; 92:1187-96. [DOI: 10.1007/s00253-011-3403-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/03/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
|
417
|
Ohkawa H, Hashimoto N, Furukawa S, Kadono T, Kawano T. Forced symbiosis between Synechocystis spp. PCC 6803 and apo-symbiotic Paramecium bursaria as an experimental model for evolutionary emergence of primitive photosynthetic eukaryotes. PLANT SIGNALING & BEHAVIOR 2011; 6:773-6. [PMID: 21494093 PMCID: PMC3218470 DOI: 10.4161/psb.6.6.15239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Single-cell green paramecia (Paramecium bursaria) is a swimming vehicle that carries several hundred cells of endo-symbiotic green algae. Here, a novel model for endo-symbiosis, prepared by introducing and maintaining the cells of cyanobacterium (Synechocystis spp. PCC 6803) in the apo-symbiotic cells of P. bursaria is described.
Collapse
Affiliation(s)
- Hiroshi Ohkawa
- Faculty of Agriculture and Life Science; Hirosaki
University; Hirosaki, Japan
| | - Naoko Hashimoto
- Faculty of Agriculture and Life Science; Hirosaki
University; Hirosaki, Japan
| | - Shunsuke Furukawa
- Laboratory of Chemical Biology and Bioengineering; Faculty
and Graduate School of Environmental Engineering; The University of Kitakyushu;
Kitakyushu, Japan
| | - Takashi Kadono
- Laboratory of Chemical Biology and Bioengineering; Faculty
and Graduate School of Environmental Engineering; The University of Kitakyushu;
Kitakyushu, Japan
| | - Tomonori Kawano
- Faculty of Agriculture and Life Science; Hirosaki
University; Hirosaki, Japan
| |
Collapse
|
418
|
Yodsang P, Raksajit W, Brandt AM, Salminen TA, Mäenpää P, Incharoensakdi A. Recombinant polyamine-binding protein of Synechocystis sp. PCC 6803 specifically binds to and is induced by polyamines. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:713-719. [PMID: 21639853 DOI: 10.1134/s0006297911060137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
His-tagged Synechocystis sp. PCC 6803 PotD protein (rPotD) involved in polyamine transport was overexpressed in Escherichia coli. The purified rPotD showed saturable binding kinetics with radioactively labeled polyamines. The rPotD exhibited a similar binding characteristic for three polyamines, with putrescine having less preference. The K(d) values for putrescine, spermine, and spermidine were 13.2, 8.3, and 7.8 µM, respectively. Binding of rPotD with polyamines was maximal at pH 8.0. Docking of these polyamines into the homology model of Synechocystis PotD showed that all three polyamines are able to interact with Synechocystis PotD. The binding modes of the docked putrescine and spermidine in Synechocystis are similar to those of PotF and PotD in E. coli, respectively. Competition experiments showed specific binding of rPotD with polyamines. The presence of putrescine and spermidine in the growth medium could induce an increase in PotD contents, suggesting the role of PotD in mediating the transport of polyamine in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- P Yodsang
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
419
|
Zorina A, Stepanchenko N, Novikova GV, Sinetova M, Panichkin VB, Moshkov IE, Zinchenko VV, Shestakov SV, Suzuki I, Murata N, Los DA. Eukaryotic-like Ser/Thr protein kinases SpkC/F/K are involved in phosphorylation of GroES in the Cyanobacterium synechocystis. DNA Res 2011; 18:137-51. [PMID: 21551175 PMCID: PMC3111230 DOI: 10.1093/dnares/dsr006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Serine/threonine protein kinases (STPKs) are the major participants in intracellular signal transduction in eukaryotes, such as yeasts, fungi, plants, and animals. Genome sequences indicate that these kinases are also present in prokaryotes, such as cyanobacteria. However, their roles in signal transduction in prokaryotes remain poorly understood. We have attempted to identify the roles of STPKs in response to heat stress in the prokaryotic cyanobacterium Synechocystis sp. PCC 6803, which has 12 genes for STPKs. Each gene was individually inactivated to generate a gene-knockout library of STPKs. We applied in vitro Ser/Thr protein phosphorylation and phosphoproteomics and identified the methionyl-tRNA synthetase, large subunit of RuBisCO, 6-phosphogluconate dehydrogenase, translation elongation factor Tu, heat-shock protein GrpE, and small chaperonin GroES as the putative targets for Ser/Thr phosphorylation. The expressed and purified GroES was used as an external substrate to screen the protein extracts of the individual mutants for their Ser/Thr kinase activities. The mutants that lack one of the three protein kinases, SpkC, SpkF, and SpkK, were unable to phosphorylate GroES in vitro, suggesting possible interactions between them towards their substrate. Complementation of the mutated SpkC, SpkF, and SpkK leads to the restoration of the ability of cells to phosphorylate the GroES. This suggests that these three STPKs are organized in a sequential order or a cascade and they work one after another to finally phosphorylate the GroES.
Collapse
Affiliation(s)
- Anna Zorina
- Institute of Plant Physiology, Botanicheskaya Street 35, 127276 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
420
|
Abstract
Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H2O2, alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species- and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
421
|
|
422
|
Specific and promiscuous functions of multiple DnaJ proteins in Synechocystis sp. PCC 6803. Microbiology (Reading) 2011; 157:1269-1278. [DOI: 10.1099/mic.0.045542-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacterial genomes typically encode multiple Hsp70 (DnaK) and Hsp40 (DnaJ) chaperones, and in the genome of the cyanobacterium Synechocystis PCC 6803, three DnaK proteins are encoded together with seven DnaJ proteins. While only two of the DnaJ proteins can complement the growth defect of an Escherichia coli ΔdnaJ strain, only disruption of the dnaJ gene sll0897 resulted in a growth defect at elevated temperatures. Based on the domain structure and the phenotype observed following disruption of the encoding gene, Sll0897 can be classified as a canonical heat-shock protein in Synechocystis. Furthermore, most dnaJ genes could be deleted individually, whereas disruption of the gene encoding the DnaJ Sll1933 failed, which suggests an essential, yet undefined, function for Sll1933. Since after deletion of the remaining dnaJ genes the phenotypes were not altered, the functions of these DnaJs either are not critical or are taken over by the remaining DnaJs. Nevertheless, only the two dnaJ genes sll0909 and sll1384 could be disrupted in combination, suggesting physiological functions for the two encoded proteins which either are not overlapping and/or can be fulfilled by the remaining DnaJs in the double-disruption strain. Taken together, the present analysis indicates specific and promiscuous functions for multiple DnaJ proteins in Synechocystis.
Collapse
|
423
|
Sakiyama T, Araie H, Suzuki I, Shiraiwa Y. Functions of a hemolysin-like protein in the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 2011; 193:565-71. [DOI: 10.1007/s00203-011-0700-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
|
424
|
Schwarz D, Nodop A, Hüge J, Purfürst S, Forchhammer K, Michel KP, Bauwe H, Kopka J, Hagemann M. Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT PHYSIOLOGY 2011; 155:1640-55. [PMID: 21282404 PMCID: PMC3091134 DOI: 10.1104/pp.110.170225] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The amount of inorganic carbon is one of the main limiting environmental factors for photosynthetic organisms such as cyanobacteria. Using Synechococcus elongatus PCC 7942, we characterized metabolic and transcriptomic changes in cells that had been shifted from high to low CO(2) levels. Metabolic phenotyping indicated an activation of glycolysis, the oxidative pentose phosphate cycle, and glycolate metabolism at lowered CO(2) levels. The metabolic changes coincided with a general reprogramming of gene expression, which included not only increased transcription of inorganic carbon transporter genes but also genes for enzymes involved in glycolytic and photorespiratory metabolism. In contrast, the mRNA content for genes from nitrogen assimilatory pathways decreased. These observations indicated that cyanobacteria control the homeostasis of the carbon-nitrogen ratio. Therefore, results obtained from the wild type were compared with the MP2 mutant of Synechococcus 7942, which is defective for the carbon-nitrogen ratio-regulating PII protein. Metabolites and genes linked to nitrogen assimilation were differentially regulated, whereas the changes in metabolite concentrations and gene expression for processes related to central carbon metabolism were mostly similar in mutant and wild-type cells after shifts to low-CO(2) conditions. The PII signaling appears to down-regulate the nitrogen metabolism at lowered CO(2), whereas the specific shortage of inorganic carbon is recognized by different mechanisms.
Collapse
|
425
|
Lin S, Haas S, Zemojtel T, Xiao P, Vingron M, Li R. Genome-wide comparison of cyanobacterial transposable elements, potential genetic diversity indicators. Gene 2011; 473:139-49. [DOI: 10.1016/j.gene.2010.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/13/2010] [Accepted: 11/26/2010] [Indexed: 01/27/2023]
|
426
|
Aguirre von Wobeser E, Ibelings BW, Bok J, Krasikov V, Huisman J, Matthijs HC. Concerted changes in gene expression and cell physiology of the cyanobacterium Synechocystis sp. strain PCC 6803 during transitions between nitrogen and light-limited growth. PLANT PHYSIOLOGY 2011; 155:1445-57. [PMID: 21205618 PMCID: PMC3046598 DOI: 10.1104/pp.110.165837] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/08/2010] [Indexed: 05/20/2023]
Abstract
Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression.
Collapse
|
427
|
Tan X, Yao L, Gao Q, Wang W, Qi F, Lu X. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng 2011; 13:169-76. [DOI: 10.1016/j.ymben.2011.01.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/14/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
428
|
Azad AK, Sato R, Ohtani K, Sawa Y, Ishikawa T, Shibata H. Functional characterization and hyperosmotic regulation of aquaporin in Synechocystis sp. PCC 6803. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:375-382. [PMID: 21421383 DOI: 10.1016/j.plantsci.2010.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/17/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
The genome of the cyanobacterium Synechocystis sp. PCC 6803 (hereafter, Synechocystis) contains an aqpZ gene (slr2057) which encodes an aquaporin (SsAqpZ), a membrane channel protein that might play a role in osmotic water transport and therefore the growth of Synechocystis. Structural characterization of SsAqpZ by protein sequence analysis and homology modelling revealed that it was more similar to bacterial aquaporin Z than the glycerol facilitator. To understand the functional role of SsAqpZ, the aqpZ knockout (KO) and myc-tagged aqpZ knockin (KI) Synechocystis were constructed. Water channel activity assays showed that SsAqpZ facilitated water transportation. SsAqpZ-mediated changes in cell volume were observed in wild-type (WT) and KI Synechocystis. Expression of SsAqpZ in KI Synechocystis was induced by extracellular hyperosmolarity. In the absence of hyperosmolarity, WT, KO and KI Synechocystis showed the same pattern of growth and no morphological or phenotypical perturbations. Under hyperosmotic condition, while the WT and also KI cells maintained a similar growth rate throughout the entire exponential phase, KO cells grew significantly slower. These results indicate that SsAqpZ has water channel activity and is involved in the adaptation and maintenance of growth of Synechocystis in a hyperosmotic environment.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | | | | | | | | | | |
Collapse
|
429
|
Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voß B, Steglich C, Wilde A, Vogel J, Hess WR. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 2011; 108:2124-9. [PMID: 21245330 PMCID: PMC3033270 DOI: 10.1073/pnas.1015154108] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ∼64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5' annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research.
Collapse
Affiliation(s)
- Jan Mitschke
- Faculty of Biology and Freiburg Initiative in Systems Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Jens Georg
- Faculty of Biology and Freiburg Initiative in Systems Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Ingeborg Scholz
- Faculty of Biology and Freiburg Initiative in Systems Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Cynthia M. Sharma
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Dennis Dienst
- Institute of Biology, Humboldt University Berlin, D-10115 Berlin, Germany
| | - Jens Bantscheff
- Faculty of Biology and Freiburg Initiative in Systems Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Björn Voß
- Faculty of Biology and Freiburg Initiative in Systems Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Claudia Steglich
- Faculty of Biology and Freiburg Initiative in Systems Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Annegret Wilde
- Institute of Microbiology and Molecular Biology, Justus-Liebig University Giessen, D-35392 Giessen, Germany; and
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology and Freiburg Initiative in Systems Biology, University of Freiburg, D-79104 Freiburg, Germany
- Zentrum für Biosystemanalyse, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
430
|
Mukhopadhyay A, Kennelly PJ. A low molecular weight protein tyrosine phosphatase from Synechocystis sp. strain PCC 6803: enzymatic characterization and identification of its potential substrates. J Biochem 2011; 149:551-62. [PMID: 21288886 DOI: 10.1093/jb/mvr014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The predicted protein product of open reading frame slr0328 from Synechocystis sp. PCC 6803, SynPTP, possesses significant amino acid sequence similarity with known low molecular weight protein tyrosine phosphatases (PTPs). To determine the functional properties of this hypothetical protein, open reading frame slr0328 was expressed in Escherichia coli. The purified recombinant protein, SynPTP, displayed its catalytic phosphatase activity towards several tyrosine, but not serine, phosphorylated exogenous protein substrates. The protein phosphatase activity of SynPTP was inhibited by sodium orthovanadate, a known inhibitor of tyrosine phosphatases, but not by okadaic acid, an inhibitor for many serine/threonine phosphatases. Kinetic analysis indicated that the K(m) and V(max) values for SynPTP towards p-nitrophenyl phosphate are similar to those of other known bacterial low molecular weight PTPs. Mutagenic alteration of the predicted catalytic cysteine of PTP, Cys(7), to serine abolished enzyme activity. Using a combination of immunodetection, mass spectrometric analysis and mutagenically altered Cys(7)SerAsp(125)Ala-SynPTP, we identified PsaD (photosystem I subunit II), CpcD (phycocyanin rod linker protein) and phycocyanin-α and -β subunits as possible endogenous substrates of SynPTP in this cyanobacterium. These results indicate that SynPTP might be involved in the regulation of photosynthesis in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Archana Mukhopadhyay
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
431
|
Montagud A, Zelezniak A, Navarro E, de Córdoba PF, Urchueguía JF, Patil KR. Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnol J 2011; 6:330-42. [PMID: 21226012 DOI: 10.1002/biot.201000109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/26/2010] [Accepted: 11/07/2010] [Indexed: 01/20/2023]
Abstract
Synechocystis sp. PCC6803 is a model cyanobacterium capable of producing biofuels with CO(2) as carbon source and with its metabolism fueled by light, for which it stands as a potential production platform of socio-economic importance. Compilation and characterization of Synechocystis genome-scale metabolic model is a pre-requisite toward achieving a proficient photosynthetic cell factory. To this end, we report iSyn811, an upgraded genome-scale metabolic model of Synechocystis sp. PCC6803 consisting of 956 reactions and accounting for 811 genes. To gain insights into the interplay between flux activities and metabolic physiology, flux coupling analysis was performed for iSyn811 under four different growth conditions, viz., autotrophy, mixotrophy, heterotrophy, and light-activated heterotrophy (LH). Initial steps of carbon acquisition and catabolism formed the versatile center of the flux coupling networks, surrounded by a stable core of pathways leading to biomass building blocks. This analysis identified potential bottlenecks for hydrogen and ethanol production. Integration of transcriptomic data with the Synechocystis flux coupling networks lead to identification of reporter flux coupling pairs and reporter flux coupling groups - regulatory hot spots during metabolic shifts triggered by the availability of light. Overall, flux coupling analysis provided insight into the structural organization of Synechocystis sp. PCC6803 metabolic network toward designing of a photosynthesis-based production platform.
Collapse
Affiliation(s)
- Arnau Montagud
- Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Spain
| | | | | | | | | | | |
Collapse
|
432
|
Azuma M, Osanai T, Hirai MY, Tanaka K. A Response Regulator Rre37 and an RNA Polymerase Sigma Factor SigE Represent Two Parallel Pathways to Activate Sugar Catabolism in a Cyanobacterium Synechocystis sp. PCC 6803. ACTA ACUST UNITED AC 2011; 52:404-12. [DOI: 10.1093/pcp/pcq204] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
433
|
|
434
|
Eaton-Rye JJ. Construction of gene interruptions and gene deletions in the cyanobacterium Synechocystis sp. strain PCC 6803. Methods Mol Biol 2011; 684:295-312. [PMID: 20960137 DOI: 10.1007/978-1-60761-925-3_22] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of protocols are presented for the storage, growth, transformation, and characterization of wild type and mutant strains of Synechocystis sp. strain PCC 6803. These protocols include the isolation of genomic DNA and the strategies required for the construction of specific gene interruptions or deletions in this organism. This cyanobacterium has been used widely as a model for photosynthesis research, and the sequence of its genome is available at CyanoBase (http://genome.kazusa.or.jp/cyanobase/). The details provided in this chapter do not assume any previous experience in working with cyanobacteria and are intended to enable new investigators to take advantage of a wide range of gene modification and mutation mapping techniques that have been adapted for use in this system.
Collapse
|
435
|
Yang Y, Ramelot TA, Cort JR, Wang D, Ciccosanti C, Hamilton K, Nair R, Rost B, Acton TB, Xiao R, Everett JK, Montelione GT, Kennedy MA. Solution NMR structure of photosystem II reaction center protein Psb28 from Synechocystis sp. Strain PCC 6803. Proteins 2011; 79:340-4. [PMID: 21058299 PMCID: PMC3248274 DOI: 10.1002/prot.22876] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunhuang Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
| | - Theresa A. Ramelot
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
| | - John R. Cort
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Dongyan Wang
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Colleen Ciccosanti
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Keith Hamilton
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Rajesh Nair
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | - Burkhard Rost
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | - Thomas B. Acton
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Rong Xiao
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - John K. Everett
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Gaetano T. Montelione
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854
| | - Michael A. Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
- Northeast Structural Genomics Consortium, Piscataway, New Jersey 08854
| |
Collapse
|
436
|
Inoue-Kashino N, Kashino Y, Orii H, Satoh K, Terashima I, Pakrasi HB. S4 protein Sll1252 is necessary for energy balancing in photosynthetic electron transport in Synechocystis sp. PCC 6803. Biochemistry 2010; 50:329-39. [PMID: 21141807 DOI: 10.1021/bi101077e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sll1252 was identified as a novel protein in photosystem II complexes from Synechocystis sp. PCC 6803. To investigate the function of Sll1252, the corresponding gene, sll1252, was deleted in Synechocystis 6803. Despite the homology of Sll1252 to YlmH, which functions in the cell division machinery in Streptococcus, the growth rate and cell morphology of the mutant were not affected in normal growth medium. Instead, it seems that cells lacking this polypeptide have increased sensitivity to Cl(-) depletion. The growth and oxygen evolving activity of the mutant cells was highly suppressed compared with those of wild-type cells when Cl(-) and/or Ca(2+) was depleted from the medium. Recovery of photosystem II from photoinhibition was suppressed in the mutant. Despite the defects in photosystem II, in the light, the acceptor side of photosystem II was more reduced and the donor side of photosystem I was more oxidized compared with wild-type cells, suggesting that functional impairments were also present in cytochrome b(6)/f complexes. The amounts of cytochrome c(550) and cytochrome f were smaller in the mutant in the Ca(2+)- and Cl(-)-depleted medium. Furthermore, the amount of IsiA protein was increased in the mutant, especially in the Cl(-)-depleted medium, indicating that the mutant cells perceive environmental stress to be greater than it is. The amount of accompanying cytochrome c(550) in purified photosystem II complexes was also smaller in the mutant. Overall, the Sll1252 protein appears to be closely related to redox sensing of the plastoquinone pool to balance the photosynthetic electron flow and the ability to cope with global environmental stresses.
Collapse
|
437
|
Sundaram S, Soumya K. Study of Physiological and Biochemical Alterations in Cyanobacterium under Organic Stress. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ajpp.2011.1.16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
438
|
Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R. Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 2010; 64:585-610. [PMID: 20533875 DOI: 10.1146/annurev.micro.112408.134000] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Light is one of the most important environmental factors for orientation of almost all organisms on Earth. Whereas light sensing is of crucial importance in plants to optimize light-dependent energy conservation, in nonphotosynthetic organisms, the synchronization of biological clocks to the length of a day is an important function. Filamentous fungi may use the light signal as an indicator for the exposure of hyphae to air and adapt their physiology to this situation or induce morphogenetic pathways. Although a yes/no decision appears to be sufficient for the light-sensing function in fungi, most species apply a number of different, wavelength-specific receptors. The core of all receptor types is a chromophore, a low-molecular-weight organic molecule, such as flavin, retinal, or linear tetrapyrrols for blue-, green-, or red-light sensing, respectively. Whereas the blue-light response in fungi is one of the best-studied light responses, all other light-sensing mechanisms are less well studied or largely unknown. The discovery of phytochrome in bacteria and fungi in recent years not only advanced the scientific field significantly, but also had great impact on our view of the evolution of phytochrome-like photoreceptors.
Collapse
Affiliation(s)
- Julio Rodriguez-Romero
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Microbiology, D-76187 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
439
|
Kortmann J, Sczodrok S, Rinnenthal J, Schwalbe H, Narberhaus F. Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res 2010; 39:2855-68. [PMID: 21131278 PMCID: PMC3074152 DOI: 10.1093/nar/gkq1252] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Structured RNA regions are important gene control elements in prokaryotes and eukaryotes. Here, we show that the mRNA of a cyanobacterial heat shock gene contains a built-in thermosensor critical for photosynthetic activity under stress conditions. The exceptionally short 5′-untranslated region is comprised of a single hairpin with an internal asymmetric loop. It inhibits translation of the Synechocystis hsp17 transcript at normal growth conditions, permits translation initiation under stress conditions and shuts down Hsp17 production in the recovery phase. Point mutations that stabilized or destabilized the RNA structure deregulated reporter gene expression in vivo and ribosome binding in vitro. Introduction of such point mutations into the Synechocystis genome produced severe phenotypic defects. Reversible formation of the open and closed structure was beneficial for viability, integrity of the photosystem and oxygen evolution. Continuous production of Hsp17 was detrimental when the stress declined indicating that shutting-off heat shock protein production is an important, previously unrecognized function of RNA thermometers. We discovered a simple biosensor that strictly adjusts the cellular level of a molecular chaperone to the physiological need.
Collapse
Affiliation(s)
- Jens Kortmann
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
440
|
Mendoza-Hernández G, Pérez-Gómez B, Krogmann DW, Gutiérrez-Cirlos EB, Gómez-Lojero C. Interactions of linker proteins with the phycobiliproteins in the phycobilisome substructures of Gloeobacter violaceus. PHOTOSYNTHESIS RESEARCH 2010; 106:247-261. [PMID: 21136295 DOI: 10.1007/s11120-010-9601-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 11/17/2010] [Indexed: 05/30/2023]
Abstract
Gloeobacter violaceus PCC 7421 is a unicellular oxygenic photosynthetic organism, which precedes the diversification of cyanobacteria in the phylogenetic tree. It is the only cyanobacterium that does not contain internal membranes. The unique structure of the rods of the phycobilisome (PBS), grouped as one bundle of six parallel rods, distinguishes G. violaceus from the other PBS-containing cyanobacteria. It has been proposed that unique multidomain rod-linkers are responsible for this peculiarly organized shape. However, the localization of the multidomain linkers Glr1262 and Glr2806 in the PBS-rods remains controversial (Koyama et al. 2006, FEBS Lett 580:3457-3461; Krogmann et al. 2007, Photosynth Res 93:27-43). To further increase our understanding of the structure of the G. violaceus PBS, the identification of the proteins present in fractions obtained from sucrose gradient centrifugation and from native electrophoresis of partially dissociated PBS was conducted. The identification of the proteins, after electrophoresis, was done by spectrophotometry and mass spectrometry. The results support the localization of the multidomain linkers as previously proposed by us. The Glr1262 (92 kDa) linker protein was found to be the rod-core linker L(RC) (92), and Glr2806 (81 kDa), a special rod linker L(R) (81) that joins six disks of hexameric PC. Consequently, we propose to designate glr1262 as gene cpcGm (encoding L(RC) (92)) and glr2806 as gene cpcJm (encoding L(R) (81)). We also propose that the cpeC (glr1263) gene encoding L(R) (31.8) forms the interface that binds PC to PE.
Collapse
|
441
|
Montagud A, Navarro E, Fernández de Córdoba P, Urchueguía JF, Patil KR. Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC SYSTEMS BIOLOGY 2010; 4:156. [PMID: 21083885 PMCID: PMC3009638 DOI: 10.1186/1752-0509-4-156] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 11/17/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Synechocystis sp. PCC6803 is a cyanobacterium considered as a candidate photo-biological production platform--an attractive cell factory capable of using CO2 and light as carbon and energy source, respectively. In order to enable efficient use of metabolic potential of Synechocystis sp. PCC6803, it is of importance to develop tools for uncovering stoichiometric and regulatory principles in the Synechocystis metabolic network. RESULTS We report the most comprehensive metabolic model of Synechocystis sp. PCC6803 available, iSyn669, which includes 882 reactions, associated with 669 genes, and 790 metabolites. The model includes a detailed biomass equation which encompasses elementary building blocks that are needed for cell growth, as well as a detailed stoichiometric representation of photosynthesis. We demonstrate applicability of iSyn669 for stoichiometric analysis by simulating three physiologically relevant growth conditions of Synechocystis sp. PCC6803, and through in silico metabolic engineering simulations that allowed identification of a set of gene knock-out candidates towards enhanced succinate production. Gene essentiality and hydrogen production potential have also been assessed. Furthermore, iSyn669 was used as a transcriptomic data integration scaffold and thereby we found metabolic hot-spots around which gene regulation is dominant during light-shifting growth regimes. CONCLUSIONS iSyn669 provides a platform for facilitating the development of cyanobacteria as microbial cell factories.
Collapse
Affiliation(s)
- Arnau Montagud
- Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia, Spain
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Emilio Navarro
- Departamento de Lenguajes y Ciencias de la Computación, Campus de Teatrinos, Universidad de Málaga, 29071 Málaga, Spain
| | - Pedro Fernández de Córdoba
- Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia, Spain
| | - Javier F Urchueguía
- Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia, Spain
| | - Kiran Raosaheb Patil
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
442
|
Gisin J, Müller A, Pfänder Y, Leimkühler S, Narberhaus F, Masepohl B. A Rhodobacter capsulatus member of a universal permease family imports molybdate and other oxyanions. J Bacteriol 2010; 192:5943-52. [PMID: 20851900 PMCID: PMC2976454 DOI: 10.1128/jb.00742-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/03/2010] [Indexed: 02/04/2023] Open
Abstract
Molybdenum (Mo) is an important trace element that is toxic at high concentrations. To resolve the mechanisms underlying Mo toxicity, Rhodobacter capsulatus mutants tolerant to high Mo concentrations were isolated by random transposon Tn5 mutagenesis. The insertion sites of six independent isolates mapped within the same gene predicted to code for a permease of unknown function located in the cytoplasmic membrane. During growth under Mo-replete conditions, the wild-type strain accumulated considerably more Mo than the permease mutant. For mutants defective for the permease, the high-affinity molybdate importer ModABC, or both transporters, in vivo Mo-dependent nitrogenase (Mo-nitrogenase) activities at different Mo concentrations suggested that ModABC and the permease import molybdate in nanomolar and micromolar ranges, respectively. Like the permease mutants, a mutant defective for ATP sulfurylase tolerated high Mo concentrations, suggesting that ATP sulfurylase is the main target of Mo inhibition in R. capsulatus. Sulfate-dependent growth of a double mutant defective for the permease and the high-affinity sulfate importer CysTWA was reduced compared to those of the single mutants, implying that the permease plays an important role in sulfate uptake. In addition, permease mutants tolerated higher tungstate and vanadate concentrations than the wild type, suggesting that the permease acts as a general oxyanion importer. We propose to call this permease PerO (for oxyanion permease). It is the first reported bacterial molybdate transporter outside the ABC transporter family.
Collapse
Affiliation(s)
- Jonathan Gisin
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Alexandra Müller
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Yvonne Pfänder
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Silke Leimkühler
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Franz Narberhaus
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Bernd Masepohl
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
443
|
Lu X. A perspective: Photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 2010; 28:742-6. [DOI: 10.1016/j.biotechadv.2010.05.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/13/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
|
444
|
Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 2010; 47:900-8. [DOI: 10.1016/j.fgb.2010.05.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/09/2010] [Accepted: 05/19/2010] [Indexed: 12/14/2022]
|
445
|
Battchikova N, Eisenhut M, Aro EM. Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:935-44. [PMID: 21035426 DOI: 10.1016/j.bbabio.2010.10.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022]
Abstract
Cyanobacterial NDH-1 complexes belong to a family of energy converting NAD(P)H:Quinone oxidoreductases that includes bacterial type-I NADH dehydrogenase and mitochondrial Complex I. Several distinct NDH-1 complexes may coexist in cyanobacterial cells and thus be responsible for a variety of functions including respiration, cyclic electron flow around PSI and CO(2) uptake. The present review is focused on specific features that allow to regard the cyanobacterial NDH-1 complexes, together with NDH complexes from chloroplasts, as a separate sub-class of the Complex I family of enzymes. Here, we summarize our current knowledge about structure of functionally different NDH-1 complexes in cyanobacteria and consider implications for a functional mechanism. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Natalia Battchikova
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | | | | |
Collapse
|
446
|
Pathak RR, Lochab S. A method for rapid isolation of total RNA of high purity and yield from Arthrospira platensis. Can J Microbiol 2010; 56:578-84. [PMID: 20651857 DOI: 10.1139/w10-045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arthrospira (Spirulina) platensis is widely used as a food supplement and has been an economically important species for centuries. However, the genetic aspect of studies of this particular organism has always been neglected, mainly because of the nonavailability of suitable methods for isolation of nucleic acids and the difficulties faced during further manipulations. Although total RNA has been isolated using commercially available kits, we present a method optimized to obtain DNA-free total RNA of higher yields and higher purity in less time than is required by other methods (<2 h). It involves hot phenol - chloroform - IAA extraction using an aqueous to organic phase ratio of 1:2 followed by lithium chloride precipitation and 70% ethanol wash. This method, optimized for the cyanobacterium Arthrospira (Spirulina) platensis, eliminates the need for DNase treatment and produces high-quality RNA, as validated by bioanalyzer, RT-PCR, and cloning. With the recent release of the Arthrospira genome, the current method will be of great value for carrying out high-throughput studies like microarray and real-time PCR.
Collapse
|
447
|
Battchikova N, Vainonen JP, Vorontsova N, Keranen M, Carmel D, Aro EM. Dynamic changes in the proteome of Synechocystis 6803 in response to CO(2) limitation revealed by quantitative proteomics. J Proteome Res 2010; 9:5896-912. [PMID: 20795750 DOI: 10.1021/pr100651w] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteria developed efficient carbon concentrating mechanisms which significantly improve the photosynthetic performance and survival of cells under limiting CO(2) conditions. Dynamic changes of the Synechocystis proteome to CO(2) limitation were investigated using shotgun LC-MS/MS approach with isobaric tag for relative and absolute quantification (iTRAQ) technique. Synechocystis cells grown at high (3%) CO(2) were shifted to air-level CO(2) followed by protein extraction after 6, 24, and 72 h. About 19% of the cyanobacterial proteome was identified and the expression changes were quantified for 17% of theoretical ORFs. For 76 proteins, up- or down-regulation was found to be significant (more than 1.5 or less than 0.7). Major changes were observed in proteins participating in inorganic carbon uptake, CO(2) fixation, nitrogen transport and assimilation, as well as in the protection of the photosynthetic machinery from excess of light. Further, a number of hypothetical proteins with unknown functions were discovered. In general, the cells appear to acclimate to low CO(2) without a significant stress since the stress-related molecular chaperones were down-regulated and only a minor decline was detected for proteins of phycobilisomes, photosynthetic complexes, and translation machinery. The results of iTRAQ experiment were validated by the Western blot analysis for selected proteins.
Collapse
Affiliation(s)
- Natalia Battchikova
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, Finland.
| | | | | | | | | | | |
Collapse
|
448
|
Rowland JG, Simon WJ, Nishiyama Y, Slabas AR. Differential proteomic analysis using iTRAQ reveals changes in thylakoids associated with Photosystem II-acquired thermotolerance in Synechocystis sp. PCC 6803. Proteomics 2010; 10:1917-29. [PMID: 20336677 DOI: 10.1002/pmic.200900337] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Growth temperature has a marked influence on the thermotolerance of photosystem II (PSII), which is the most heat-sensitive component of photosynthesis. Using Synechocystis sp. PCC 6803 we have established that thylakoids isolated from cells grown at 38 degrees C have a greater degree of thermotolerance than those isolated from cells grown at 25 degrees C. Reconstitution experiments using Triton X-100 protein extracts of these thylakoids added to Triton-treated thylakoid membranes further indicated that the 38 degrees C Triton extract contains proteins that are directly capable of enhancing PSII thermotolerance. We have used 4-plex iTRAQ, extensive off-line fractionation and sample re-injection to comprehensively identify the differences between these two preparations that may be responsible for the observed effects on PSII thermotolerance. This has resulted in the reproducible identification of 168 proteins out of a total of 385 distinct proteins. Our results have identified 15 proteins whose levels are increased in extracts that result in increased thermotolerance of PSII and 33 proteins whose levels decrease. Notably, components of the cytochrome b(6)/f and NADH dehydrogenase complexes, crucial components in electron transport, are approximately twofold more abundant in 38 degrees C thylakoid extracts. The possible biological importance of these changes is discussed.
Collapse
Affiliation(s)
- John G Rowland
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | | | | | | |
Collapse
|
449
|
Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB. Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC SYSTEMS BIOLOGY 2010; 4:105. [PMID: 20678200 PMCID: PMC2924297 DOI: 10.1186/1752-0509-4-105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 08/02/2010] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis. They play significant roles in global biogeochemical cycles and carbon sequestration, and have recently been recognized as potential vehicles for production of renewable biofuels. Synechocystis sp. PCC 6803 has been extensively used as a model organism for cyanobacterial studies. DNA microarray studies in Synechocystis have shown varying degrees of transcriptome reprogramming under altered environmental conditions. However, it is not clear from published work how transcriptome reprogramming affects pre-existing networks of fine-tuned cellular processes. RESULTS We have integrated 163 transcriptome data sets generated in response to numerous environmental and genetic perturbations in Synechocystis. Our analyses show that a large number of genes, defined as the core transcriptional response (CTR), are commonly regulated under most perturbations. The CTR contains nearly 12% of Synechocystis genes found on its chromosome. The majority of genes in the CTR are involved in photosynthesis, translation, energy metabolism and stress protection. Our results indicate that a large number of differentially regulated genes identified in most reported studies in Synechocystis under different perturbations are associated with the general stress response. We also find that a majority of genes in the CTR are coregulated with 25 regulatory genes. Some of these regulatory genes have been implicated in cellular responses to oxidative stress, suggesting that reactive oxygen species are involved in the regulation of the CTR. A Bayesian network, based on the regulation of various KEGG pathways determined from the expression patterns of their associated genes, has revealed new insights into the coordination between different cellular processes. CONCLUSION We provide here the first integrative analysis of transcriptome data sets generated in a cyanobacterium. This compilation of data sets is a valuable resource to researchers for all cyanobacterial gene expression related queries. Importantly, our analysis provides a global description of transcriptional reprogramming under different perturbations and a basic framework to understand the strategies of cellular adaptations in Synechocystis.
Collapse
Affiliation(s)
- Abhay K Singh
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
450
|
Synthesis of fatty acids de novo is required for photosynthetic acclimation of Synechocystis sp. PCC 6803 to high temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1483-90. [DOI: 10.1016/j.bbabio.2010.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/10/2010] [Accepted: 03/15/2010] [Indexed: 11/22/2022]
|